EP2121197B1 - Deflecting air ring and corresponding coating process - Google Patents

Deflecting air ring and corresponding coating process Download PDF

Info

Publication number
EP2121197B1
EP2121197B1 EP08714223.8A EP08714223A EP2121197B1 EP 2121197 B1 EP2121197 B1 EP 2121197B1 EP 08714223 A EP08714223 A EP 08714223A EP 2121197 B1 EP2121197 B1 EP 2121197B1
Authority
EP
European Patent Office
Prior art keywords
shaping air
ring
jet
air nozzles
shaping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP08714223.8A
Other languages
German (de)
French (fr)
Other versions
EP2121197B8 (en
EP2121197A1 (en
Inventor
Harald Gummlich
Hans-Jürgen Nolte
Andreas Fischer
Peter Marquardt
Jürgen BERKOWITSCH
Harry Krumma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duerr Systems AG
Original Assignee
Duerr Systems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39333099&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2121197(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Duerr Systems AG filed Critical Duerr Systems AG
Priority to SI200831717A priority Critical patent/SI2121197T1/en
Publication of EP2121197A1 publication Critical patent/EP2121197A1/en
Application granted granted Critical
Publication of EP2121197B1 publication Critical patent/EP2121197B1/en
Publication of EP2121197B8 publication Critical patent/EP2121197B8/en
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0807Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets
    • B05B7/0815Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets with at least one gas jet intersecting a jet constituted by a liquid or a mixture containing a liquid for controlling the shape of the latter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/10Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/10Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces
    • B05B3/1092Means for supplying shaping gas

Definitions

  • the invention relates to a shaping air ring for a nebulizer and a corresponding coating method according to the independent claims.
  • the invention is therefore based on the object to reduce the pollution prone room area in the known Rotationszerstäubern.
  • the invention is based on the technical-physical realization that frictional effects in the interior of the spray jet generate a negative pressure, which contributes to a concentration of the spray jet, so that the spray jet is stable over relatively large distances.
  • the friction on the outer surface of the spray is too small to cause a significant beam expansion of the spray.
  • the spray jet emitted by the rotary atomizer can have a large spatial length, while maintaining the internal flow velocity, so that the applied coating agent particles can still cause contamination at a great distance from the rotary atomizer.
  • the invention therefore encompasses the general technical teaching of specifically generating turbulences in the shaping air jet and thus also in the spray jet in order to limit the undisturbed range of the spray jet and thus the spatial contamination potential.
  • turbulence in the spray are basically undesirable and should therefore be limited within the scope of the invention to a remote area.
  • the spray jet or the surrounding directing air jet should preferably be directed and low-turbulence, so that the coating quality is not impaired by turbulence.
  • the spray jet thus has a significantly greater degree of turbulence in the far range than in the near range.
  • the directing air jet has a decay length from the directing air ring to the turbulent far end, which is less than 1 m, 75 cm, 50 cm, 40 cm, 30 cm or 20 cm.
  • the decay length of the shaping air jet is preferably greater than the component distance between the shaping air ring and the component to be coated, so that the component to be coated is located in the directional and low-turbulence near region of the spray jet. This is advantageous because the component to be coated is then in the vicinity, so that the coating quality by the relatively strong turbulence in the long range is not affected.
  • the irregularities for generating the turbulences are that the shaping air nozzles are arranged asymmetrically with respect to the spray axis and the axis of rotation of the atomizer, respectively. not rotationally symmetric.
  • the nozzle cross-section and / or the jet direction of the individual shaping air nozzles can be varied over the circumference of the shaping air ring.
  • the flow velocity over the circumference of the shaping air ring faster and slower flows in the shaping air jet run side by side, which leads to velocity gradients and thereby flow friction in the spray jet, whereby turbulences are then produced in the course of the spray jet.
  • one part of the shaping air nozzles has a jet direction which is aligned essentially parallel to the spray axis of the atomizer, while another part of the shaping air nozzles has a jet direction which is inclined radially inward with respect to the spray axis.
  • the shaping air ring according to the invention can have six groups each with five shaping air nozzles, wherein three groups have shaping air nozzles which are aligned substantially axially parallel to the spray axis, while the other three groups comprise shaping air nozzles whose jet direction is inclined radially inwards with respect to the spray axis.
  • a part of the shaping air nozzles has a jet direction which is inclined radially inwards with respect to the spray axis, while another part of the shaping air nozzles has a jet direction which is inclined radially outward with respect to the spray axis.
  • the individual shaping air nozzles are therefore inclined either radially inwards or radially outwards.
  • the individual shaping air nozzles are here also subdivided into groups with a uniform jet direction, wherein the different groups of the shaping air nozzles are arranged alternately in the circumferential direction.
  • a part of the shaping air nozzles is arranged on an inner ring, while another part of the shaping air nozzles is arranged on an outer ring.
  • the shaping air nozzles on the inner ring preferably have a jet direction which is inclined radially outward with respect to the spray axis, while the shaping air nozzles on the outer ring preferably have a jet direction which is inclined radially inwards with respect to the spray axis.
  • the shaping air nozzles are preferably arranged in groups with a uniform beam direction, wherein the different groups are arranged alternately in the circumferential direction.
  • the shaping air jet has the shape of a flat jet.
  • two mutually opposite groups of shaping air nozzles each have a jet direction, which is inclined radially inwardly with respect to the spray axis, while two other, likewise mutually opposite groups of shaping air nozzles have a jet direction which is aligned substantially parallel to the axis of the spray axis or opposite the spray axis is inclined radially outward.
  • the radial Inwardly inclined shaping air nozzles thus compress the resulting shaping air jet into a flat jet.
  • the individual shaping air nozzles have a jet direction which is inclined radially inwards relative to the spray axis, which leads to a crossing shaping air flow and causes a constriction of the spray jet downstream of the bell plate.
  • the directing air jet or the spray jet in this exemplary embodiment has a widening, as a result of which the contamination-relevant range of the spray jet is reduced.
  • the turbulence-generating irregularities consist essentially of variations in the jet direction of the shaping air nozzles.
  • the irregularities to produce the desired turbulence can also consist of variations of the nozzle cross-section of the individual shaping air nozzles, which leads to corresponding variations in the flow velocity.
  • the nozzle cross section can be varied over the circumference of the shaping air ring, wherein the shaping air nozzles can again be subdivided into different groups with uniform cross sections.
  • the irregularities for generating the turbulence may consist in that the nozzle cross-section of the shaping air nozzles widens conically or tapers in the direction of flow.
  • the turbulence generation irregularities can consist of slots which adjoin the shaping air nozzles and run essentially parallel to the flow direction.
  • the slot can also be arranged annularly on the shaping air nozzle ring and cut all shaping air nozzles.
  • the slots are arranged in a cross shape and concentric with the individual shaping air nozzles.
  • the turbulence generation irregularities may be that the flow profile of the shaping air nozzles is deliberately distorted.
  • the nozzle opening of the individual shaping air nozzles can be inclined with respect to the preceding shaping air bore.
  • the turbulence generating irregularities may also be formed by cuts into each of which one shaping air hole or several (e.g., 2 or 3) shaping air holes open, the cuts being preferably triangular in cross section and forming the shaping air nozzles.
  • the invention comprises not only the above-described shaping air ring according to the invention but also an atomizer with such a shaping air ring and a painting machine, in particular a painting robot, with such a rotary atomizer.
  • the invention also includes a corresponding coating method, as already apparent from the above description.
  • FIG. 1 shows in a greatly simplified form a rotary atomizer 1 with a shaping air ring 2 and a bell cup 3, which rotates in operation about a rotation axis 4 and emits a spray jet 5 in a conventional manner.
  • the directing air ring 2 has on its front side numerous shaping air nozzles which are arranged in a ring and direct a shaping air jet 6 from the rear onto the jacket surface of the bell cup 3, so that the spray jet 5 has a constriction behind the bell cup 3 and subsequently expands in the jet direction.
  • the inventive arrangement of the shaping air nozzles illustrated by way of example is divided into spray jet 5 into a low-turbulence, directed near zone and a turbulent distant zone, the spray jet 5 decaying after a decay length L ZERFALL at the transition from the near zone into the long-range zone.
  • the rotary atomizer 1 is in this case guided so that a component 7 to be coated is located in the directional proximity, so that the coating of the component 7 is not disturbed by turbulence.
  • turbulences 8 are generated in the turbulent remote area, which destroy the flow energy of the spray jet 5 and reduce its velocity and thereby contribute to the widening of the spray jet 5.
  • 5 defects are thereby generated in the lateral surface of the spray, which allow an influx 9 of ambient air into the inner negative pressure area of the spray jet 5, so that the bundling forces of the spray jet 5 are reduced.
  • the turbulences 8 are in this case selectively generated in that the shaping air nozzles in the shaping air ring 2 have irregularities in comparison with a rotationally symmetrical arrangement, such as, for example, variations of the jet direction and / or of the nozzle cross section.
  • FIG. 2 shows a simplified perspective view of a modification of the shaping air ring 2 from FIG. 1 , this modification largely with the embodiment according to FIG. 1 is true, so to avoid repetition, reference is made largely to the above description, wherein the same reference numerals are used for corresponding details in the following.
  • a special feature of this embodiment is that different shaping air nozzles 10, 11 are arranged distributed over the circumference of the shaping air ring 2, wherein the shaping air nozzles 11 have a smaller nozzle cross-section than the shaping air nozzles 10, which leads to correspondingly different flow velocities.
  • the shaping air nozzles 10 and 11 are in this case subdivided into six groups each having five shaping air nozzles 10 and 11, wherein the shaping air nozzles 10 and 11 each have a uniform nozzle cross section within the individual groups.
  • FIG. 3 is largely consistent with that described above and in FIG. 2 illustrated embodiment, so reference is made to avoid repetition of the above description, wherein for corresponding details in the following the same reference numerals are used.
  • a special feature of this embodiment is that the shaping air nozzles 10, 11 do not differ by the nozzle cross-section, but by the jet direction.
  • the shaping air nozzles 10 have a jet direction which is aligned substantially parallel to the rotation axis 4 of the bell cup 3.
  • the shaping air nozzles 11 have a jet direction which is inclined radially inwards relative to the axis of rotation 4, wherein the angle of inclination is preferably in the range between 5 ° and 30 °.
  • FIG. 4 shows a further embodiment of a shaping air ring 2 according to the invention, which is largely with the above-described and in FIG. 2 illustrated shaping air ring 2, so that reference is made to avoid repetition of the above description, wherein for corresponding details in the following the same reference numerals are used.
  • FIG. 5 shows a further embodiment of the shaping air ring 2 according to the invention, this embodiment in turn substantially with the above-described and in FIG. 2
  • the same reference numerals are used for corresponding details.
  • a special feature of this embodiment is that the shaping air nozzles 10 are arranged on an inner ring 12, while the shaping air nozzles 11 are arranged on an outer ring 13, wherein the two rings 12, 13 are arranged concentrically.
  • the shaping air nozzles 11 on the outer ring 13 in this case have a jet direction which is inclined radially inwardly relative to the rotation axis 4 of the bell cup 3.
  • the shaping air nozzles 10 on the inner ring 12 in this exemplary embodiment have a jet direction which is directed radially outward with respect to the rotation axis 4 of the bell cup 3.
  • FIG. 6 shows a further embodiment of the shaping air ring 2 according to the invention, wherein also this embodiment is largely similar to that described above and in FIG. 2
  • this embodiment is largely similar to that described above and in FIG. 2
  • a special feature of this embodiment is that the shaping air nozzles 10 have a jet direction, the relative to the axis of rotation 4 of the bell cup 3 is inclined radially inwardly, while the other shaping air nozzles 11 have a substantially axially parallel beam direction.
  • the shaping air nozzles 10 thus constrict the shaping air jet so that the shaping air flow takes the form of a flat jet.
  • FIG. 7 corresponds substantially to the representation in Figure 1, so that to avoid repetition of the above description to FIG. 1 is referenced. From this illustration, it is also apparent that the shaping air ring 2 emits an intersecting directing air jet 6 due to the inwardly inclined jet direction.
  • FIG. 8 also shows an embodiment of a rotary atomizer 1 according to the invention, this embodiment being largely similar to that described above and in FIG. 1
  • a special feature of this embodiment is that the shaping air ring 2 has three concentric shaping air nozzle rings, which deliver three shaping air jets 6.1, 6.2, 6.3.
  • the outer shaping air jet 6.1 has a jet direction which is inclined radially inwards relative to the axis of rotation 4.
  • the middle shaping air jet 6.2 has a substantially axis-parallel jet direction.
  • the inner shaping air jet 6.3 finally has a jet direction which is inclined radially outward with respect to the rotation axis 4 of the bell cup 3.
  • FIG. 9 shows a simplified cross-sectional view of a shaping air nozzle 14 according to the invention, which is fed by a shaping air bore 15 with shaping air.
  • the shaping air nozzle 14 expands stepwise at the transition from the shaping air bore 15 to the shaping air nozzle 14, whereby turbulence 16 is created in the shaping air nozzle 14.
  • FIG. 10 shows a simplified cross-sectional view of another embodiment of a shaping air nozzle 14 according to the invention, partially FIG. 9 , so to avoid repetition, reference is made to the above description, wherein the same reference numerals are used for corresponding details.
  • a special feature of this embodiment is that the shaping air nozzle at the transition from the Lenkluftbohrung 15 not stepped, but conically widened.
  • FIG. 11 shows a further embodiment of a shaping air nozzle 14 according to the invention, which partially according to the embodiment FIG. 9 , so to avoid repetition, reference is made to the above description, wherein the same reference numerals are used for corresponding details.
  • a special feature of this embodiment is first that the shaping air nozzle 14 does not expand in the beam direction, but tapers in the beam direction.
  • the shaping air nozzle 14 has three successive stepped nozzle sections 17, 18, 19 whose cross-section decreases in the flow direction.
  • FIG. 12 partially with the embodiment described above, so that reference is made to avoid repetition of the above description, wherein the same reference numerals are used for corresponding details.
  • a special feature in turn is that the shaping air nozzle 14 tapers in the flow direction.
  • the shaping air nozzle 14 has a conical inner contour.
  • FIG. 13 shows a section of a shaping air ring according to the invention with annularly arranged shaping air nozzles, wherein in the drawing only two shaping air nozzles 20, 21 are shown. Through the two shaping air nozzles 20, 21 in this case runs an annular slot 22 whose diameter is equal to the diameter of the shaping air nozzle ring.
  • FIG. 14 shows a schematic representation of a shaping air nozzle 23 according to the invention with a cross-shaped, concentric slot arrangement 24th
  • a shaping air bore 25 opens into a shaping air nozzle 26, the nozzle cross section of the shaping air nozzle 26 being inclined relative to the cross section of the shaping air bore 25.
  • the shaping air flow in the shaping air bore 25 therefore has a conventional parabolic profile 27, while the shaping air jet emerging from the shaping air nozzle 26 has a distorted flow profile 28.
  • FIG. 16 two shaping air nozzles, which are formed by cuts 29, 30, wherein in the two incisions 29, 30 each a shaping air bore 31, 32 opens.
  • the two incisions 29, 30 are each triangular in cross section.
  • a special feature of this embodiment is that the two guide air holes 31, 32 open into a common recess 33, which forms a shaping air nozzle and is also triangular in cross section.

Description

Die Erfindung betrifft einen Lenkluftring für einen Zerstäuber und ein entsprechendes Beschichtungsverfahren gemäß den nebengeordneten Ansprüchen.The invention relates to a shaping air ring for a nebulizer and a corresponding coating method according to the independent claims.

Es ist bekannt, zur Lackbeschichtung von Bauteilen (z.B. Kraftfahrzeugkarosserieteilen) Hochrotationszerstäuber einzusetzen, die den zu applizierenden Lack (z.B. Pulverlack, Nasslack) mittels eines schnell rotierenden Glockentellers zerstäuben, wobei der rotierende Glockenteller an einer kreisförmig umlaufenden Glockentellerkante einen Sprühstrahl abgibt, der sich in Sprühstrahlrichtung aufweitet. Es ist weiterhin bekannt, zur Formung des Sprühstrahls bei einem derartigen Hochrotationszerstäuber einen Lenkluftstrahl einzusetzen, der von einem Lenkluftring von hinten gegen den Sprühstrahl gerichtet wird, so dass der Sprühstrahl in Abhängigkeit von der Stärke des Lenkluftstrahls eingeschnürt wird.It is known to use for the paint coating of components (eg motor vehicle body parts) Hochrotationszerstäuber that disperse the paint to be applied (eg powder paint, wet paint) by means of a rapidly rotating bell cup, wherein the rotating bell plate emits a spray at a circular encircling Glockentellerkante, which is in Sprühstrahlrichtung expands. It is also known to use for shaping the spray jet in such a high-rotation atomizer a directing air jet, which is directed by a directing air ring from behind against the spray, so that the spray jet is constricted in dependence on the strength of the shaping air jet.

Nachteilig an den vorstehend beschriebenen bekannten Hochrotationszerstäubern ist die Tatsache, dass die nicht auf dem zu beschichtenden Bauteil abgeschiedenen Lackteilchen ("Overspray") weit entfernte Oberflächen verschmutzen können, wie beispielsweise die Kabinenwände einer Lackierkabine oder Handhabungsgeräte in der Lackierkabine. Die bekannten Hochrotationszerstäuber können also über große Entfernungen zu Verschmutzungen führen.A disadvantage of the known Hochrotationszerstäubern described above is the fact that the not deposited on the component to be coated paint particles ("overspray") can contaminate far away surfaces, such as the cabin walls of a paint booth or handling equipment in the paint booth. The known Hochrotationszerstäuber can thus lead over long distances to contamination.

Weitere Lenkluftsysteme sind bekannt aus JP 08 071455 A , welches alle Merkmale des Oberbegriffs von Anspruch 1 offenbart, JP 2001 121043 A , JP 07 024367 A , JP 2002 224611 A und JP 09 094488 A . Auch bei diesen Lenkluftsystemen besteht jedoch die Gefahr einer Verschmutzung weit entfernter Bauteiloberflächen.Other steering air systems are known from JP 08 071455 A disclosing all features of the preamble of claim 1, JP 2001 121043 A . JP 07 024367 A . JP 2002 224611 A and JP 09 094488 A , Even with these steering air systems, however, there is the Danger of contamination of distant component surfaces.

Der Erfindung liegt deshalb die Aufgabe zugrunde, bei den bekannten Rotationszerstäubern den verschmutzungsanfälligen Raumbereich zu verkleinern.The invention is therefore based on the object to reduce the pollution prone room area in the known Rotationszerstäubern.

Diese Aufgabe wird durch einen erfindungsgemäßen Lenkluftring und ein entsprechendes Beschichtungsverfahren gemäß den nebengeordneten Ansprüchen gelöst.This object is achieved by an inventive shaping air ring and a corresponding coating method according to the independent claims.

Die Erfindung beruht auf der technisch-physikalischen Erkenntnis, dass Reibungseffekte im Inneren des Sprühstrahls einen Unterdruck erzeugen, der zu einer Bündelung des Sprühstrahls beiträgt, so dass der Sprühstrahl über relativ große Entfernungen stabil ist. Darüber hinaus ist die Reibung an der äußeren Mantelfläche des Sprühstrahls zu gering, um eine deutliche Strahlaufweitung des Sprühstrahls zu bewirken. Dies hat zur Folge, dass der von dem Rotationszerstäuber abgegebene Sprühstrahl unter Beibehaltung der inneren Strömungsgeschwindigkeit eine große räumliche Länge aufweisen kann, so dass die applizierten Beschichtungsmittelteilchen noch in großer Entfernung von dem Rotationszerstäuber Verschmutzungen verursachen können.The invention is based on the technical-physical realization that frictional effects in the interior of the spray jet generate a negative pressure, which contributes to a concentration of the spray jet, so that the spray jet is stable over relatively large distances. In addition, the friction on the outer surface of the spray is too small to cause a significant beam expansion of the spray. As a result, the spray jet emitted by the rotary atomizer can have a large spatial length, while maintaining the internal flow velocity, so that the applied coating agent particles can still cause contamination at a great distance from the rotary atomizer.

Die Erfindung umfasst deshalb die allgemeine technische Lehre, gezielt Turbulenzen in dem Lenkluftstrahl und damit auch in dem Sprühstrahl zu erzeugen, um die ungestörte Reichweite des Sprühstrahls und damit das räumliche Verschmutzungspotenzial zu begrenzen. Hierbei ist zu berücksichtigen, dass Turbulenzen in dem Sprühstrahl grundsätzlich unerwünscht sind und deshalb im Rahmen der Erfindung auf einen Fernbereich beschränkt werden sollen. In einem Nahbereich sollte der Sprühstrahl bzw. der umgebende Lenkluftstrahl dagegen vorzugsweise gerichtet und turbulenzarm sein, damit die Beschichtungsqualität nicht durch Turbulenzen beeinträchtigt wird. Gemäß der Erfindung weist der Sprühstrahl also in dem Fernbereich einen wesentlichen größeren Turbulenzgrad auf als in dem Nahbereich.The invention therefore encompasses the general technical teaching of specifically generating turbulences in the shaping air jet and thus also in the spray jet in order to limit the undisturbed range of the spray jet and thus the spatial contamination potential. It should be noted that turbulence in the spray are basically undesirable and should therefore be limited within the scope of the invention to a remote area. On the other hand, in a near zone, the spray jet or the surrounding directing air jet should preferably be directed and low-turbulence, so that the coating quality is not impaired by turbulence. According to the invention, the spray jet thus has a significantly greater degree of turbulence in the far range than in the near range.

Zur Erzeugung der Turbulenzen in dem Lenkluftstrahl ist erfindungsgemäß vorgesehen, dass im Vergleich zu einem herkömmlichen Lenkluftring mit einer rotationssymmetrischen Anordnung der Lenkluftdüsen zusätzlichen Unregelmäßigkeiten vorgesehen sind, die einerseits die ursprüngliche Funktion der Lenkung des Sprühstrahls beibehalten, aber durch eine gezielte Variation von Strömungsgeschwindigkeit und/oder Strömungsrichtung die Laminarität bzw. Homogenität in dem Lenkluftstrahl in einem solchen Maße stören, dass in dem Fernbereich Turbulenzen erzeugt werden, die Strömungsenergie vernichten, die Strömungsgeschwindigkeit verringern und den Lenkluftstrahl und damit auch den Sprühstrahl aufweiten. Darüber hinaus ermöglichen dadurch erzeugte Effekte in der Mantelfläche des Strömungszylinders den Zustrom von Umgebungsluft in das innere Unterdruckgebiet des Sprühstrahls, so dass die eingangs erwähnten Bündelungskräfte im weiteren Verlauf reduziert werden.To generate the turbulence in the shaping air jet, it is provided according to the invention that additional irregularities are provided in comparison to a conventional shaping air ring with a rotationally symmetrical arrangement of the shaping air nozzles, which on the one hand maintain the original function of steering the spray jet but through a specific variation of flow velocity and / or Direction of flow disturb the laminar or homogeneity in the Lenkluftstrahl to such an extent that turbulence are generated in the long range, destroy the flow energy, reduce the flow velocity and expand the Lenluftluftstrahl and thus the spray jet. In addition, effects generated thereby in the lateral surface of the flow cylinder allow the influx of ambient air into the inner negative pressure area of the spray jet, so that the bundling forces mentioned in the introduction are reduced in the further course.

In einem bevorzugten Ausführungsbeispiel der Erfindung weist der Lenkluftstrahl eine Zerfallslänge von dem Lenkluftring bis zu dem turbulenten Fernbereich auf, die kleiner als 1 m, 75 cm, 50 cm, 40 cm, 30 cm oder 20 cm ist. Dadurch wird das räumliche Verschmutzungspotenzial des Zerstäubers auf den Nahbereich des Zerstäubers beschränkt, so dass die Verschmutzung entfernter Oberflächen verhindert wird.In a preferred embodiment of the invention, the directing air jet has a decay length from the directing air ring to the turbulent far end, which is less than 1 m, 75 cm, 50 cm, 40 cm, 30 cm or 20 cm. As a result, the spatial contamination potential of the atomizer is limited to the vicinity of the atomizer, so that the contamination of remote surfaces is prevented.

Darüber hinaus ist die Zerfallslänge des Lenkluftstrahl vorzugsweise größer als der Bauteilabstand zwischen dem Lenkluftring und dem zu beschichtenden Bauteil, so dass sich das zu beschichtende Bauteil in dem gerichteten und turbulenzarmen Nahbereich des Sprühstrahls befindet. Dies ist vorteilhaft, weil sich das zu beschichtende Bauteil dann in dem Nahbereich befindet, so dass die Beschichtungsqualität durch die relativ starken Turbulenzen in dem Fernbereich nicht beeinträchtigt wird.In addition, the decay length of the shaping air jet is preferably greater than the component distance between the shaping air ring and the component to be coated, so that the component to be coated is located in the directional and low-turbulence near region of the spray jet. This is advantageous because the component to be coated is then in the vicinity, so that the coating quality by the relatively strong turbulence in the long range is not affected.

In einem bevorzugten Ausführungsbeispiel des erfindungsgemäßen Lenkluftrings bestehen die Unregelmäßigkeiten zur Erzeugung der Turbulenzen darin, dass die Lenkluftdüsen bezüglich der Sprühachse bzw. der Rotationsachse des Zerstäubers asymmetrisch angeordnet sind, d.h. nicht rotationssymmetrisch.In a preferred embodiment of the shaping air ring according to the invention, the irregularities for generating the turbulences are that the shaping air nozzles are arranged asymmetrically with respect to the spray axis and the axis of rotation of the atomizer, respectively. not rotationally symmetric.

Beispielsweise kann zur Turbulenzerzeugung der Düsenquerschnitt und/oder die Strahlrichtung der einzelnen Lenkluftdüsen über den Umfang des Lenkluftrings variiert werden. Bei einer Variierung der Strömungsgeschwindigkeit über den Umfang des Lenkluftrings verlaufen dann schnellere und langsamere Strömungen in dem Lenkluftstrahl nebeneinander, was zu Geschwindigkeitsgradienten und dadurch Strömungsreibung in dem Sprühstrahl führt, wodurch im Verlauf des Sprühstrahls dann Turbulenzen erzeugt werden.For example, for turbulence generation, the nozzle cross-section and / or the jet direction of the individual shaping air nozzles can be varied over the circumference of the shaping air ring. With a variation of the flow velocity over the circumference of the shaping air ring, faster and slower flows in the shaping air jet run side by side, which leads to velocity gradients and thereby flow friction in the spray jet, whereby turbulences are then produced in the course of the spray jet.

In einem Ausführungsbeispiel der Erfindung mit ringförmig angeordneten Lenkluftdüsen weist ein Teil der Lenkluftdüsen eine Strahlrichtung auf, die im Wesentlichen parallel zur Sprühachse des Zerstäubers ausgerichtet ist, während ein anderer Teil der Lenkluftdüsen eine Strahlrichtung aufweist, die gegenüber der Sprühachse radial nach innen geneigt ist. Beispielsweise kann der erfindungsgemäße Lenkluftring sechs Gruppen mit jeweils fünf Lenkluftdüsen aufweisen, wobei drei Gruppen Lenkluftdüsen aufweisen, die im Wesentlichen achsparallel zur Sprühachse ausgerichtet sind, während die anderen drei Gruppen Lenkluftdüsen umfassen, deren Strahlrichtung gegenüber der Sprühachse radial nach innen geneigt ist.In one exemplary embodiment of the invention with ring-shaped shaping air nozzles, one part of the shaping air nozzles has a jet direction which is aligned essentially parallel to the spray axis of the atomizer, while another part of the shaping air nozzles has a jet direction which is inclined radially inward with respect to the spray axis. For example, the shaping air ring according to the invention can have six groups each with five shaping air nozzles, wherein three groups have shaping air nozzles which are aligned substantially axially parallel to the spray axis, while the other three groups comprise shaping air nozzles whose jet direction is inclined radially inwards with respect to the spray axis.

In einem anderen Ausführungsbeispiel des erfindungsgemäßen Lenkluftrings mit einer ringförmigen Anordnung der Lenkluftdüsen weist dagegen ein Teil der Lenkluftdüsen eine Strahlrichtung auf, die gegenüber der Sprühachse radial nach innen geneigt ist, während ein anderer Teil der Lenkluftdüsen eine Strahlrichtung aufweist, die gegenüber der Sprühachse radial nach außen geneigt ist. Die einzelnen Lenkluftdüsen sind also entweder radial nach innen oder radial nach außen geneigt. Vorzugsweise sind die einzelnen Lenkluftdüsen auch hierbei in Gruppen mit einer einheitlichen Strahlrichtung unterteilt, wobei die verschiedenen Gruppen der Lenkluftdüsen in Umfangsrichtung abwechselnd angeordnet sind.In another embodiment of the shaping air ring according to the invention with an annular arrangement of the shaping air nozzles On the other hand, a part of the shaping air nozzles has a jet direction which is inclined radially inwards with respect to the spray axis, while another part of the shaping air nozzles has a jet direction which is inclined radially outward with respect to the spray axis. The individual shaping air nozzles are therefore inclined either radially inwards or radially outwards. Preferably, the individual shaping air nozzles are here also subdivided into groups with a uniform jet direction, wherein the different groups of the shaping air nozzles are arranged alternately in the circumferential direction.

Bei einem anderen Ausführungsbeispiel des erfindungsgemäßen Lenkluftrings mit einer ringförmigen Anordnung der Lenkluftdüsen ist ein Teil der Lenkluftdüsen auf einem inneren Ring angeordnet, während ein anderer Teil der Lenkluftdüsen auf einem äußeren Ring angeordnet ist. Die Lenkluftdüsen auf dem inneren Ring weisen hierbei vorzugsweise eine Strahlrichtung auf, die gegenüber der Sprühachse radial nach außen geneigt ist, während die Lenkluftdüsen auf dem äußeren Ring vorzugsweise eine Strahlrichtung aufweisen, die gegenüber der Sprühachse radial nach innen geneigt ist. Auch hierbei sind die Lenkluftdüsen vorzugsweise in Gruppen mit einer einheitlichen Strahlrichtung angeordnet, wobei die unterschiedlichen Gruppen in Umfangsrichtung abwechselnd angeordnet sind.In another embodiment of the shaping air ring according to the invention with an annular arrangement of the shaping air nozzles, a part of the shaping air nozzles is arranged on an inner ring, while another part of the shaping air nozzles is arranged on an outer ring. The shaping air nozzles on the inner ring preferably have a jet direction which is inclined radially outward with respect to the spray axis, while the shaping air nozzles on the outer ring preferably have a jet direction which is inclined radially inwards with respect to the spray axis. Again, the shaping air nozzles are preferably arranged in groups with a uniform beam direction, wherein the different groups are arranged alternately in the circumferential direction.

Bei einem anderen Ausführungsbeispiel der Erfindung weist der Lenkluftstrahl dagegen die Form eines Flachstrahls auf. Hierzu weisen zwei einander gegenüber liegende Gruppen von Lenkluftdüsen jeweils eine Strahlrichtung auf, die gegenüber der Sprühachse radial nach innen geneigt ist, während zwei andere, einander ebenfalls gegenüber liegende Gruppen von Lenkluftdüsen eine Strahlrichtung aufweisen, die im Wesentlichen achsparallel zu der Sprühachse ausgerichtet ist oder gegenüber der Sprühachse radial nach außen geneigt ist. Die radial nach innen geneigten Lenkluftdüsen drücken den resultierenden Lenkluftstrahl also zu einem Flachstrahl zusammen.In contrast, in another embodiment of the invention, the shaping air jet has the shape of a flat jet. For this purpose, two mutually opposite groups of shaping air nozzles each have a jet direction, which is inclined radially inwardly with respect to the spray axis, while two other, likewise mutually opposite groups of shaping air nozzles have a jet direction which is aligned substantially parallel to the axis of the spray axis or opposite the spray axis is inclined radially outward. The radial Inwardly inclined shaping air nozzles thus compress the resulting shaping air jet into a flat jet.

In einem weiteren Ausführungsbeispiel des erfindungsgemäßen Lenkluftrings mit einer ringförmigen Anordnung der Lenkluftdüsen weisen die einzelnen Lenkluftdüsen eine Strahlrichtung auf, die gegenüber der Sprühachse radial nach innen geneigt ist, was zu einer sich kreuzenden Lenkluftströmung führt und stromabwärts hinter dem Glockenteller eine Einschnürung des Sprühstrahls verursacht. Hinter der Einschnürung weist der Lenkluftstrahl bzw. der Sprühstrahl dagegen in diesem Ausführungsbeispiel eine Aufweitung auf, wodurch die verschmutzungsrelevante Reichweite des Sprühstrahls reduziert wird.In a further embodiment of the shaping air ring according to the invention with an annular arrangement of the shaping air nozzles, the individual shaping air nozzles have a jet direction which is inclined radially inwards relative to the spray axis, which leads to a crossing shaping air flow and causes a constriction of the spray jet downstream of the bell plate. By contrast, behind the constriction, the directing air jet or the spray jet in this exemplary embodiment has a widening, as a result of which the contamination-relevant range of the spray jet is reduced.

Bei den vorstehend beschriebenen Ausführungsbeispielen bestehen die Unregelmäßigkeiten zur Erzeugung der Turbulenzen im Wesentlichen aus Variationen der Strahlrichtung der Lenkluftdüsen. Die Unregelmäßigkeiten zur Erzeugung der gewünschten Turbulenzen können dagegen auch aus Variationen des Düsenquerschnitts der einzelnen Lenkluftdüsen bestehen, was zu entsprechenden Variationen der Strömungsgeschwindigkeit führt. Bei einer ringförmigen Anordnung der Lenkluftdüsen kann beispielsweise der Düsenquerschnitt über den Umfang des Lenkluftrings variiert werden, wobei die Lenkluftdüsen wieder in unterschiedliche Gruppen mit einheitlichen Querschnitten unterteilt werden können.In the embodiments described above, the turbulence-generating irregularities consist essentially of variations in the jet direction of the shaping air nozzles. The irregularities to produce the desired turbulence, however, can also consist of variations of the nozzle cross-section of the individual shaping air nozzles, which leads to corresponding variations in the flow velocity. In the case of an annular arrangement of the shaping air nozzles, for example, the nozzle cross section can be varied over the circumference of the shaping air ring, wherein the shaping air nozzles can again be subdivided into different groups with uniform cross sections.

Darüber hinaus können die Unregelmäßigkeiten zur Erzeugung der Turbulenzen darin bestehen, dass sich der Düsenquerschnitt der Lenkluftdüsen in Strömungsrichtung konisch erweitert oder verjüngt.In addition, the irregularities for generating the turbulence may consist in that the nozzle cross-section of the shaping air nozzles widens conically or tapers in the direction of flow.

Weiterhin besteht die Möglichkeit, dass sich der Düsenquerschnitt in Strömungsrichtung mit einer Stufe oder mit mehreren Stufen ändert, wobei wiederum eine Verjüngung oder eine Erweiterung des Düsenquerschnitts möglich ist.Furthermore, there is the possibility that the nozzle cross section in the flow direction with one step or more Stages changes, in turn, a taper or extension of the nozzle cross-section is possible.

Ferner besteht im Rahmen der Erfindung die Möglichkeit, dass die Unregelmäßigkeiten zur Turbulenzerzeugung aus Schlitzen bestehen, die an die Lenkluftdüsen angrenzen und im Wesentlichen parallel zur Strömungsrichtung verlaufen. Bei einer ringförmigen Anordnung der einzelnen Lenkluftdüsen kann der Schlitz ebenfalls ringförmig auf dem Lenkluftdüsenring angeordnet sein und sämtliche Lenkluftdüsen schneiden. Es besteht jedoch alternativ auch die Möglichkeit, dass die Schlitze kreuzförmig und konzentrisch zu den einzelnen Lenkluftdüsen angeordnet sind.Furthermore, it is possible within the scope of the invention for the turbulence generation irregularities to consist of slots which adjoin the shaping air nozzles and run essentially parallel to the flow direction. In an annular arrangement of the individual shaping air nozzles, the slot can also be arranged annularly on the shaping air nozzle ring and cut all shaping air nozzles. However, there is also the alternative possibility that the slots are arranged in a cross shape and concentric with the individual shaping air nozzles.

Weiterhin können die Unregelmäßigkeiten zur Turbulenzerzeugung darin bestehen, dass das Strömungsprofil der Lenkluftdüsen gezielt verzerrt wird. Hierzu kann im Rahmen der Erfindung die Düsenöffnung der einzelnen Lenkluftdüsen gegenüber der vorangehenden Lenkluftbohrung geneigt sein.Furthermore, the turbulence generation irregularities may be that the flow profile of the shaping air nozzles is deliberately distorted. For this purpose, in the context of the invention, the nozzle opening of the individual shaping air nozzles can be inclined with respect to the preceding shaping air bore.

Ferner können die Unregelmäßigkeiten zur Turbulenzerzeugung auch durch Einschnitte gebildet werden, in die jeweils eine Lenkluftbohrung oder mehrere (z.B. 2 oder 3) Lenkluftbohrungen münden, wobei die Einschnitte im Querschnitt vorzugsweise dreieckig sind und die Lenkluftdüsen bilden.Further, the turbulence generating irregularities may also be formed by cuts into each of which one shaping air hole or several (e.g., 2 or 3) shaping air holes open, the cuts being preferably triangular in cross section and forming the shaping air nozzles.

Weiterhin ist zu erwähnen, dass die Erfindung nicht nur den vorstehend beschriebenen erfindungsgemäßen Lenkluftring umfasst, sondern auch einen Zerstäuber mit einem derartigen Lenkluftring sowie eine Lackiermaschine, insbesondere einen Lackierroboter, mit einem solchen Rotationszerstäuber. Schließlich umfasst die Erfindung auch ein entsprechendes Beschichtungsverfahren, wie sich bereits aus der vorstehenden Beschreibung ergibt.It should also be mentioned that the invention comprises not only the above-described shaping air ring according to the invention but also an atomizer with such a shaping air ring and a painting machine, in particular a painting robot, with such a rotary atomizer. Finally, the invention also includes a corresponding coating method, as already apparent from the above description.

Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet oder werden nachstehend zusammen mit der Beschreibung der bevorzugten Ausführungsbeispiele der Erfindung anhand der Figuren näher erläutert. Es zeigen:

Figur 1
eine schematisierte Seitenansicht eines erfindungsgemäßen Rotationszerstäubers, aus der die Unterteilung des Sprühstrahls in einen turbulenzarmen, gerichteten Nahbereich und einen turbulenten Fernbereich ersichtlich ist,
Figuren 2-6
verschiedene Ausführungsbeispiele von erfindungsgemäßen Lenkluftringen mit einer Variation der Strahlrichtung bzw. des Düsenquerschnitts der einzelnen Lenkluftdüsen über den Umfang des Lenkluftrings,
Figur 7
eine stark schematisierte Seitenansicht eines Rotationszerstäubers mit einem Lenkluftring, der einen radial nach innen gerichteten, sich kreuzenden Lenkluftstrahl abgibt,
Figur 8
eine stark vereinfachte Seitenansicht eines Rotationszerstäubers mit einem Lenkluftring, der drei unterschiedlich geneigte Lenkluftstrahlen abgibt,
Figur 9
eine vereinfachte Querschnittsansicht einer Lenkluftdüse mit einer stufenförmigen Innenkontur zur Turbulenzerzeugung,
Figur 10
eine vereinfachte Querschnittsansicht einer Lenkluftdüse mit einer Innenkontur, die sich in Strömungsrichtung konisch erweitert,
Figur 11
eine vereinfachte Querschnittsansicht einer erfindungsgemäßen Lenkluftdüse mit einer Innenkontur, die sich in mehreren Stufen in Strahlrichtung verjüngt,
Figur 12
eine vereinfachte Querschnittsansicht einer erfindungsgemäßen Lenkluftdüse mit einer Innenkontur, die sich in Strahlrichtung konisch verjüngt,
Figur 13
einen Ausschnitt eines erfindungsgemäßen Lenkluftrings mit zwei Lenkluftdüsen, die von einem ringförmigen Schlitz durchzogen sind,
Figur 14
eine vereinfachte Darstellung einer erfindungsgemäßen Lenkluftdüse mit kreuzförmigen Schlitzen,
Figur 15
eine vereinfachte Darstellung einer Lenkluftdüse mit einer geneigten Düsenöffnung zur Verzerrung des Strömungsprofils des austretenden Lenkluftstrahls,
Figur 16
eine vereinfachte Darstellung einer Lenkluftdüse, die durch einen Einschnitt gebildet wird, in den eine Lenkluftbohrung mündet, sowie
Figur 17
eine vereinfachte Querschnittsansicht einer Lenkluftdüse, die durch einen Einschnitt gebildet wird, in den zwei Lenkluftbohrungen münden.
Other advantageous developments of the invention are characterized in the subclaims or are explained in more detail below together with the description of the preferred embodiments of the invention with reference to FIGS. Show it:
FIG. 1
2 a schematic side view of a rotary atomizer according to the invention, from which the subdivision of the spray jet into a low-turbulence, directed near zone and a turbulent distant zone can be seen,
Figures 2-6
Various embodiments of the invention Lenkluftringen with a variation of the beam direction and the nozzle cross-section of the individual shaping air nozzles over the circumference of the shaping air ring,
FIG. 7
a highly schematic side view of a rotary atomizer with a shaping air ring, which emits a radially inwardly directed, intersecting Lenkluftstrahl,
FIG. 8
a greatly simplified side view of a rotary atomizer with a shaping air ring, which emits three differently inclined shaping air jets,
FIG. 9
a simplified cross-sectional view of a shaping air nozzle with a stepped inner contour for turbulence generation,
FIG. 10
5 is a simplified cross-sectional view of a shaping air nozzle with an inner contour which widens conically in the flow direction,
FIG. 11
2 a simplified cross-sectional view of a shaping air nozzle according to the invention with an inner contour which tapers in several stages in the jet direction,
FIG. 12
2 a simplified cross-sectional view of a shaping air nozzle according to the invention with an inner contour which tapers conically in the jet direction,
FIG. 13
a detail of an inventive shaping air ring with two shaping air nozzles, which are traversed by an annular slot,
FIG. 14
a simplified representation of a shaping air nozzle according to the invention with cross-shaped slots,
FIG. 15
a simplified representation of a shaping air nozzle with an inclined nozzle opening for the distortion of the flow profile of the exiting Lenkluftstrahls,
FIG. 16
a simplified representation of a shaping air nozzle, which is formed by an incision into which a shaping air hole opens, and
FIG. 17
a simplified cross-sectional view of a shaping air nozzle, which is formed by an incision, open into the two shaping air holes.

Die Seitenansicht in Figur 1 zeigt in stark vereinfachter Form einen Rotationszerstäuber 1 mit einem Lenkluftring 2 und einem Glockenteller 3, der im Betrieb um eine Rotationsachse 4 rotiert und in herkömmlicher Weise einen Sprühstrahl 5 abgibt.The side view in FIG. 1 shows in a greatly simplified form a rotary atomizer 1 with a shaping air ring 2 and a bell cup 3, which rotates in operation about a rotation axis 4 and emits a spray jet 5 in a conventional manner.

Der Lenkluftring 2 weist an seiner Stirnseite zahlreiche Lenkluftdüsen auf, die ringförmig angeordnet sind und einen Lenkluftstrahl 6 von hinten auf die Mantelfläche des Glockentellers 3 richten, so dass der Sprühstrahl 5 hinter dem Glockenteller 3 eine Einschnürung aufweist und sich anschließend in Strahlrichtung aufweitet.The directing air ring 2 has on its front side numerous shaping air nozzles which are arranged in a ring and direct a shaping air jet 6 from the rear onto the jacket surface of the bell cup 3, so that the spray jet 5 has a constriction behind the bell cup 3 and subsequently expands in the jet direction.

Durch die in den Figuren 2-6 exemplarisch dargestellte erfindungsgemäße Anordnung der Lenkluftdüsen unterteilt sich der Sprühstrahl 5 in einen turbulenzarmen, gerichteten Nahbereich und einen turbulenten Fernbereich, wobei der Sprühstrahl 5 nach einer Zerfallslänge LZERFALL am Übergang von dem Nahbereich in den Fernbereich zerfällt.By in the Figures 2-6 The inventive arrangement of the shaping air nozzles illustrated by way of example is divided into spray jet 5 into a low-turbulence, directed near zone and a turbulent distant zone, the spray jet 5 decaying after a decay length L ZERFALL at the transition from the near zone into the long-range zone.

Der Rotationszerstäuber 1 wird hierbei so geführt, dass sich ein zu beschichtendes Bauteil 7 in dem gerichteten Nahbereich befindet, so dass die Beschichtung des Bauteils 7 nicht durch Turbulenzen gestört wird.The rotary atomizer 1 is in this case guided so that a component 7 to be coated is located in the directional proximity, so that the coating of the component 7 is not disturbed by turbulence.

In dem turbulenten Fernbereich werden dagegen Turbulenzen 8 erzeugt, die Strömungsenergie des Sprühstrahls 5 vernichten und dessen Geschwindigkeit reduzieren und dadurch zur Aufweitung des Sprühstrahls 5 beitragen. Darüber hinaus werden dadurch in der Mantelfläche des Sprühstrahls 5 Defekte erzeugt, die einen Zustrom 9 von Umgebungsluft in das innere Unterdruckgebiet des Sprühstrahls 5 ermöglichen, so dass die Bündelungskräfte des Sprühstrahls 5 reduziert werden.On the other hand turbulences 8 are generated in the turbulent remote area, which destroy the flow energy of the spray jet 5 and reduce its velocity and thereby contribute to the widening of the spray jet 5. In addition, 5 defects are thereby generated in the lateral surface of the spray, which allow an influx 9 of ambient air into the inner negative pressure area of the spray jet 5, so that the bundling forces of the spray jet 5 are reduced.

Die Turbulenzen 8 werden hierbei dadurch gezielt erzeugt, dass die Lenkluftdüsen in dem Lenkluftring 2 im Vergleich zu einer rotationssymmetrischen Anordnung Unregelmäßigkeiten aufweisen, wie beispielsweise Variationen der Strahlrichtung und/oder des Düsenquerschnitts.The turbulences 8 are in this case selectively generated in that the shaping air nozzles in the shaping air ring 2 have irregularities in comparison with a rotationally symmetrical arrangement, such as, for example, variations of the jet direction and / or of the nozzle cross section.

Figur 2 zeigt eine vereinfachte Perspektivansicht einer Abwandlung des Lenkluftrings 2 aus Figur 1, wobei diese Abwandlung weitgehend mit dem Ausführungsbeispiel gemäß Figur 1 überein stimmt, so dass zur Vermeidung von Wiederholungen weitgehend auf die vorstehende Beschreibung verwiesen wird, wobei für entsprechende Einzelheiten im Folgenden die selben Bezugszeichen verwendet werden. FIG. 2 shows a simplified perspective view of a modification of the shaping air ring 2 from FIG. 1 , this modification largely with the embodiment according to FIG. 1 is true, so to avoid repetition, reference is made largely to the above description, wherein the same reference numerals are used for corresponding details in the following.

Eine Besonderheit dieses Ausführungsbeispiels besteht darin, dass unterschiedliche Lenkluftdüsen 10, 11 über den Umfang des Lenkluftrings 2 verteilt angeordnet sind, wobei die Lenkluftdüsen 11 einen kleineren Düsenquerschnitt aufweisen als die Lenkluftdüsen 10, was zu entsprechend unterschiedlichen Strömungsgeschwindigkeiten führt.A special feature of this embodiment is that different shaping air nozzles 10, 11 are arranged distributed over the circumference of the shaping air ring 2, wherein the shaping air nozzles 11 have a smaller nozzle cross-section than the shaping air nozzles 10, which leads to correspondingly different flow velocities.

Die Lenkluftdüsen 10 bzw. 11 sind hierbei in sechs Gruppen mit jeweils fünf Lenkluftdüsen 10 bzw. 11 unterteilt, wobei die Lenkluftdüsen 10 bzw. 11 innerhalb der einzelnen Gruppen jeweils einen einheitlichen Düsenquerschnitt aufweisen.The shaping air nozzles 10 and 11 are in this case subdivided into six groups each having five shaping air nozzles 10 and 11, wherein the shaping air nozzles 10 and 11 each have a uniform nozzle cross section within the individual groups.

Über den Umfang des Lenkluftrings 2 treten deshalb nebeneinander langsamere und schnellere Lenkluftströmungen aus, so dass die aus dem Geschwindigkeitsunterschied resultierende Strömungsreibung im weiteren Verlauf des Lenkluftstrahls Turbulenzen erzeugt.Therefore, side by side slower and faster shaping air flows occur over the circumference of the shaping air ring 2, so that the resulting from the speed difference Flow friction generates turbulence in the course of the shaping air jet.

Das Ausführungsbeispiel gemäß Figur 3 stimmt weitgehend mit dem vorstehend beschriebenen und in Figur 2 dargestellten Ausführungsbeispiel überein, so dass zur Vermeidung von Wiederholungen auf die vorstehende Beschreibung verwiesen wird, wobei für entsprechende Einzelheiten im Folgenden die selben Bezugszeichen verwendet werden.The embodiment according to FIG. 3 is largely consistent with that described above and in FIG. 2 illustrated embodiment, so reference is made to avoid repetition of the above description, wherein for corresponding details in the following the same reference numerals are used.

Eine Besonderheit dieses Ausführungsbeispiels besteht darin, dass sich die Lenkluftdüsen 10, 11 nicht durch den Düsenquerschnitt unterscheiden, sondern durch die Strahlrichtung. So weisen die Lenkluftdüsen 10 eine Strahlrichtung auf, die im Wesentlichen parallel zu der Rotationsachse 4 des Glockentellers 3 ausgerichtet ist. Die Lenkluftdüsen 11 weisen dagegen eine Strahlrichtung auf, die gegenüber der Rotationsachse 4 radial nach innen geneigt ist, wobei der Neigungswinkel vorzugsweise im Bereich zwischen 5° und 30° liegt.A special feature of this embodiment is that the shaping air nozzles 10, 11 do not differ by the nozzle cross-section, but by the jet direction. Thus, the shaping air nozzles 10 have a jet direction which is aligned substantially parallel to the rotation axis 4 of the bell cup 3. By contrast, the shaping air nozzles 11 have a jet direction which is inclined radially inwards relative to the axis of rotation 4, wherein the angle of inclination is preferably in the range between 5 ° and 30 °.

Figur 4 zeigt ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Lenkluftrings 2, der weitgehend mit dem vorstehend beschriebenen und in Figur 2 dargestellten Lenkluftring 2 übereinstimmt, so dass zur Vermeidung von Wiederholungen auf die vorstehende Beschreibung verwiesen wird, wobei für entsprechende Einzelheiten im Folgenden die selben Bezugszeichen verwendet werden. FIG. 4 shows a further embodiment of a shaping air ring 2 according to the invention, which is largely with the above-described and in FIG. 2 illustrated shaping air ring 2, so that reference is made to avoid repetition of the above description, wherein for corresponding details in the following the same reference numerals are used.

Eine Besonderheit dieses Ausführungsbeispiels besteht darin, dass die Lenkluftdüsen 10 eine Strahlrichtung aufweisen, die gegenüber der Rotationsachse 4 des Glockentellers 3 radial nach außen gerichtet ist, wohingegen die Lenkluftdüsen 11 eine Strahlrichtung aufweisen, die gegenüber der Rotationsachse 4 des Glockentellers 3 radial nach innen gerichtet ist. Figur 5 zeigt ein weiteres Ausführungsbeispiel für den erfindungsgemäßen Lenkluftring 2, wobei dieses Ausführungsbeispiel wiederum weitgehend mit dem vorstehend beschriebenen und in Figur 2 dargestellten Ausführungsbeispiel übereinstimmt, so dass zur Vermeidung von Wiederholungen auf die vorstehende Beschreibung verwiesen wird, wobei für entsprechende Einzelheiten die selben Bezugszeichen verwendet werden.A special feature of this embodiment is that the shaping air nozzles 10 have a jet direction, which is directed radially outward with respect to the rotation axis 4 of the bell cup 3, whereas the shaping air nozzles 11 have a jet direction which is directed radially inwards relative to the rotation axis 4 of the bell cup 3 , FIG. 5 shows a further embodiment of the shaping air ring 2 according to the invention, this embodiment in turn substantially with the above-described and in FIG. 2 In order to avoid repetition, reference is made to the above description, wherein the same reference numerals are used for corresponding details.

Eine Besonderheit dieses Ausführungsbeispiels besteht darin, dass die Lenkluftdüsen 10 auf einem inneren Ring 12 angeordnet sind, während die Lenkluftdüsen 11 auf einem äußeren Ring 13 angeordnet sind, wobei die beiden Ringe 12, 13 konzentrisch angeordnet sind.A special feature of this embodiment is that the shaping air nozzles 10 are arranged on an inner ring 12, while the shaping air nozzles 11 are arranged on an outer ring 13, wherein the two rings 12, 13 are arranged concentrically.

Die Lenkluftdüsen 11 auf dem äußeren Ring 13 weisen hierbei eine Strahlrichtung auf, die gegenüber der Rotationsachse 4 des Glockentellers 3 radial nach innen geneigt ist.The shaping air nozzles 11 on the outer ring 13 in this case have a jet direction which is inclined radially inwardly relative to the rotation axis 4 of the bell cup 3.

Die Lenkluftdüsen 10 auf dem inneren Ring 12 weisen dagegen in diesem Ausführungsbeispiel eine Strahlrichtung auf, die gegenüber der Rotationsachse 4 des Glockentellers 3 radial nach außen gerichtet ist.In contrast, the shaping air nozzles 10 on the inner ring 12 in this exemplary embodiment have a jet direction which is directed radially outward with respect to the rotation axis 4 of the bell cup 3.

Figur 6 zeigt ein weiteres Ausführungsbeispiel für den erfindungsgemäßen Lenkluftring 2, wobei auch dieses Ausführungsbeispiel weitgehend mit dem vorstehend beschriebenen und in Figur 2 dargestellten Ausführungsbeispiel übereinstimmt, so dass zur Vermeidung von Wiederholungen auf die vorstehende Beschreibung verwiesen wird, wobei für entsprechende Einzelheiten die selben Bezugszeichen verwendet werden. FIG. 6 shows a further embodiment of the shaping air ring 2 according to the invention, wherein also this embodiment is largely similar to that described above and in FIG. 2 In order to avoid repetition, reference is made to the above description, wherein the same reference numerals are used for corresponding details.

Eine Besonderheit dieses Ausführungsbeispiels besteht darin, dass die Lenkluftdüsen 10 eine Strahlrichtung aufweisen, die gegenüber der Rotationsachse 4 des Glockentellers 3 radial nach innen geneigt ist, während die anderen Lenkluftdüsen 11 eine im Wesentlichen achsparallele Strahlrichtung aufweisen. Die Lenkluftdüsen 10 schnüren den Lenkluftstrahl also zusammen, so dass der Lenkluftstrom die Form eines Flachstrahls annimmt.A special feature of this embodiment is that the shaping air nozzles 10 have a jet direction, the relative to the axis of rotation 4 of the bell cup 3 is inclined radially inwardly, while the other shaping air nozzles 11 have a substantially axially parallel beam direction. The shaping air nozzles 10 thus constrict the shaping air jet so that the shaping air flow takes the form of a flat jet.

Figur 7 entspricht im Wesentlichen der Darstellung in Figur 1, so dass zur Vermeidung von Wiederholungen auf die vorstehende Beschreibung zu Figur 1 verwiesen wird. Aus dieser Darstellung geht zusätzlich hervor, dass der Lenkluftring 2 aufgrund der nach innen geneigten Strahlrichtung einen sich kreuzenden Lenkluftstrahl 6 abgibt. FIG. 7 corresponds substantially to the representation in Figure 1, so that to avoid repetition of the above description to FIG. 1 is referenced. From this illustration, it is also apparent that the shaping air ring 2 emits an intersecting directing air jet 6 due to the inwardly inclined jet direction.

Figur 8 zeigt ebenfalls ein Ausführungsbeispiel eines erfindungsgemäßen Rotationszerstäubers 1, wobei dieses Ausführungsbeispiel weitgehend mit dem vorstehend beschriebenen und in Figur 1 dargestellten Ausführungsbeispiel übereinstimmt, so dass zur Vermeidung von Wiederholungen auf die vorstehende Beschreibung verwiesen wird, wobei für entsprechende Einzelheiten die selben Bezugszeichen verwendet werden. FIG. 8 also shows an embodiment of a rotary atomizer 1 according to the invention, this embodiment being largely similar to that described above and in FIG FIG. 1 In order to avoid repetition, reference is made to the above description, wherein the same reference numerals are used for corresponding details.

Eine Besonderheit dieses Ausführungsbeispiels besteht darin, dass der Lenkluftring 2 drei konzentrische Lenkluftdüsenringe aufweist, die drei Lenkluftstrahlen 6.1, 6.2, 6.3 abgeben.A special feature of this embodiment is that the shaping air ring 2 has three concentric shaping air nozzle rings, which deliver three shaping air jets 6.1, 6.2, 6.3.

Der äußere Lenkluftstrahl 6.1 weist hierbei eine Strahlrichtung auf, die gegenüber der Rotationsachse 4 radial nach innen geneigt ist. Der mittlere Lenkluftstrahl 6.2 weist dagegen eine im Wesentlichen achsparallele Strahlrichtung auf. Der innere Lenkluftstrahl 6.3 weist schließlich eine Strahlrichtung auf, die gegenüber der Rotationsachse 4 des Glockentellers 3 radial nach außen geneigt ist.In this case, the outer shaping air jet 6.1 has a jet direction which is inclined radially inwards relative to the axis of rotation 4. By contrast, the middle shaping air jet 6.2 has a substantially axis-parallel jet direction. The inner shaping air jet 6.3 finally has a jet direction which is inclined radially outward with respect to the rotation axis 4 of the bell cup 3.

Figur 9 zeigt eine vereinfachte Querschnittsansicht einer erfindungsgemäßen Lenkluftdüse 14, die von einer Lenkluftbohrung 15 mit Lenkluft gespeist wird. Die Lenkluftdüse 14 erweitert sich hierbei am Übergang von der Lenkluftbohrung 15 zu der Lenkluftdüse 14 stufenförmig, wodurch in der Lenkluftdüse 14 Turbulenzen 16 entstehen. FIG. 9 shows a simplified cross-sectional view of a shaping air nozzle 14 according to the invention, which is fed by a shaping air bore 15 with shaping air. The shaping air nozzle 14 expands stepwise at the transition from the shaping air bore 15 to the shaping air nozzle 14, whereby turbulence 16 is created in the shaping air nozzle 14.

Figur 10 zeigt eine vereinfachte Querschnittsansicht eines weiteren Ausführungsbeispiels einer erfindungsgemäßen Lenkluftdüse 14, die teilweise Figur 9 entspricht, so dass zur Vermeidung von Wiederholungen auf die vorstehende Beschreibung verwiesen wird, wobei für entsprechende Einzelheiten die selben Bezugszeichen verwendet werden. FIG. 10 shows a simplified cross-sectional view of another embodiment of a shaping air nozzle 14 according to the invention, partially FIG. 9 , so to avoid repetition, reference is made to the above description, wherein the same reference numerals are used for corresponding details.

Eine Besonderheit dieses Ausführungsbeispiels besteht darin, dass sich die Lenkluftdüse am Übergang von der Lenkluftbohrung 15 nicht stufenförmig, sondern konisch erweitert.A special feature of this embodiment is that the shaping air nozzle at the transition from the Lenkluftbohrung 15 not stepped, but conically widened.

Figur 11 zeigt ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Lenkluftdüse 14, die teilweise dem Ausführungsbeispiel gemäß Figur 9 entspricht, so dass zur Vermeidung von Wiederholungen auf die vorstehende Beschreibung verwiesen wird, wobei für entsprechende Einzelheiten die selben Bezugszeichen verwendet werden. FIG. 11 shows a further embodiment of a shaping air nozzle 14 according to the invention, which partially according to the embodiment FIG. 9 , so to avoid repetition, reference is made to the above description, wherein the same reference numerals are used for corresponding details.

Eine Besonderheit dieses Ausführungsbeispiels besteht zunächst darin, dass sich die Lenkluftdüse 14 nicht in Strahlrichtung erweitert, sondern in Strahlrichtung verjüngt.A special feature of this embodiment is first that the shaping air nozzle 14 does not expand in the beam direction, but tapers in the beam direction.

Zum Anderen weist die Lenkluftdüse 14 drei hintereinander liegende stufenförmige Düsenabschnitte 17, 18, 19 auf, deren Querschnitt sich in Strömungsrichtung verringert.On the other hand, the shaping air nozzle 14 has three successive stepped nozzle sections 17, 18, 19 whose cross-section decreases in the flow direction.

Ferner stimmt auch das Ausführungsbeispiel gemäß Figur 12 teilweise mit dem vorstehend beschriebnen Ausführungsbeispiel überein, so dass zur Vermeidung von Wiederholungen auf die vorstehende Beschreibung verwiesen wird, wobei für entsprechende Einzelheiten die selben Bezugszeichen verwendet werden.Furthermore, the embodiment is also correct FIG. 12 partially with the embodiment described above, so that reference is made to avoid repetition of the above description, wherein the same reference numerals are used for corresponding details.

Eine Besonderheit besteht wiederum darin, dass sich die Lenkluftdüse 14 in Strömungsrichtung verjüngt.A special feature in turn is that the shaping air nozzle 14 tapers in the flow direction.

Ferner besteht eine Besonderheit dieses Ausführungsbeispiels darin, dass die Lenkluftdüse 14 eine konische Innenkontur aufweist.Furthermore, a special feature of this embodiment is that the shaping air nozzle 14 has a conical inner contour.

Figur 13 zeigt einen Ausschnitt aus einem erfindungsgemäßen Lenkluftring mit ringförmig angeordneten Lenkluftdüsen, wobei in der Zeichnung nur zwei Lenkluftdüsen 20, 21 dargestellt sind. Durch die beiden Lenkluftdüsen 20, 21 verläuft hierbei ein ringförmiger Schlitz 22, dessen Durchmesser gleich dem Durchmesser des Lenkluftdüsenrings ist. FIG. 13 shows a section of a shaping air ring according to the invention with annularly arranged shaping air nozzles, wherein in the drawing only two shaping air nozzles 20, 21 are shown. Through the two shaping air nozzles 20, 21 in this case runs an annular slot 22 whose diameter is equal to the diameter of the shaping air nozzle ring.

Figur 14 zeigt eine schematische Darstellung einer erfindungsgemäßen Lenkluftdüse 23 mit einer kreuzförmigen, konzentrischen Schlitzanordnung 24. FIG. 14 shows a schematic representation of a shaping air nozzle 23 according to the invention with a cross-shaped, concentric slot arrangement 24th

Bei dem Ausführungsbeispiel gemäß Figur 15 ist zur Turbulenzerzeugung eine Verzerrung eines Strömungsprofils vorgesehen. Hierbei mündet eine Lenkluftbohrung 25 in eine Lenkluftdüse 26, wobei der Düsenquerschnitt der Lenkluftdüse 26 gegenüber dem Querschnitt der Lenkluftbohrung 25 geneigt ist. Die Lenkluftströmung in der Lenkluftbohrung 25 weist deshalb ein herkömmliches parabolisches Profil 27 auf, während der aus der Lenkluftdüse 26 austretende Lenkluftstrahl ein verzerrtes Strömungsprofil 28 aufweist.In the embodiment according to FIG. 15 is for turbulence generation a distortion of a flow profile provided. Here, a shaping air bore 25 opens into a shaping air nozzle 26, the nozzle cross section of the shaping air nozzle 26 being inclined relative to the cross section of the shaping air bore 25. The shaping air flow in the shaping air bore 25 therefore has a conventional parabolic profile 27, while the shaping air jet emerging from the shaping air nozzle 26 has a distorted flow profile 28.

Ferner zeigt Figur 16 zwei Lenkluftdüsen, die durch Einschnitte 29, 30 gebildet werden, wobei in die beiden Einschnitte 29, 30 jeweils eine Lenkluftbohrung 31, 32 mündet. Die beiden Einschnitte 29, 30 sind hierbei im Querschnitt jeweils dreieckig.Further shows FIG. 16 two shaping air nozzles, which are formed by cuts 29, 30, wherein in the two incisions 29, 30 each a shaping air bore 31, 32 opens. The two incisions 29, 30 are each triangular in cross section.

Das Ausführungsbeispiel gemäß Figur 17 stimmt wiederum teilweise mit dem Ausführungsbeispiel gemäß Figur 16 überein, so dass zur Vermeidung von Wiederholungen auf die vorstehende Beschreibung verwiesen wird, wobei für entsprechende Einzelheiten die selben Bezugszeichen verwendet werden.The embodiment according to FIG. 17 again in part agrees with the embodiment according to FIG. 16 to avoid repetition, reference is made to the above description, wherein the same reference numerals are used for corresponding details.

Eine Besonderheit dieses Ausführungsbeispiels besteht darin, dass die beiden Lenkluftbohrungen 31, 32 in einen gemeinsamen Einschnitt 33 münden, der eine Lenkluftdüse bildet und im Querschnitt ebenfalls dreieckig ist.A special feature of this embodiment is that the two guide air holes 31, 32 open into a common recess 33, which forms a shaping air nozzle and is also triangular in cross section.

Bezugszeichenliste:LIST OF REFERENCE NUMBERS

11
Rotationszerstäuberrotary atomizers
22
LenkluftringDirecting air ring
33
GlockentellerA bell plate
44
Rotationsachseaxis of rotation
55
Sprühstrahlspray
66
LenkluftstrahlDirecting air jet
77
Bauteilcomponent
88th
Turbulenzenturbulence
99
Zustrominflux
10, 1110, 11
LenkluftdüsenSteering air nozzles
1212
Innerer RingInner ring
1313
Äußerer RingOuter ring
1414
Lenkluftdüseair nozzle
1515
LenkluftbohrungShaping air bore
1616
Turbulenzenturbulence
17-1917-19
Düsenabschnittnozzle section
20, 2120, 21
LenkluftdüsenSteering air nozzles
2222
Schlitzslot
2323
Lenkluftdüseair nozzle
2424
Schlitzanordnungslot arrangement
2525
LenkluftbohrungShaping air bore
2626
Lenkluftdüseair nozzle
27, 2827, 28
Strömungsprofilflow profile
29, 3029, 30
Einschnittecuts
31, 3231, 32
LenkluftbohrungShaping air bore
3333
Einschnittincision

Claims (16)

  1. A shaping air ring (2) with a plurality of shaping air nozzles (10, 11; 14; 20, 21; 26) for discharging a shaping air jet (6) for shaping a spray jet (5) of an atomizer (1), characterized in that the shaping air nozzles (10, 11; 14; 20, 21; 26) comprise irregularities compared with a rotationally symmetrical arrangement, which generate turbulences.
  2. The shaping air ring (2) according to claim 1, characterized in that the shaping air nozzles (10, 11) are arranged in a ring shape and have different nozzle cross-sections and/or different jet directions, which vary along the circumference of the shaping air ring (2).
  3. The shaping air ring (2) according to Claim 2, characterized in that
    a) a part of the shaping air nozzles (10, 11) is arranged on an inner ring, and
    b) another part of the shaping air nozzles (10, 11) is arranged on an outer ring.
  4. The shaping air ring (2) according to any of claims 2 to 3, characterized in that
    a) a plurality of different groups of the shaping air nozzles (10, 11) are arranged in a circumferential direction,
    b) the shaping air nozzles (10, 11) within the individual groups each have a uniform jet direction and/or a uniform nozzle cross-section, and
    c) the neighboring groups differ by the jet direction and/or the nozzle cross-section of the respective shaping air nozzle (10, 11).
  5. The shaping air ring (2) according to any one of the preceding claims, characterized in that the individual shaping air nozzles (10, 11) each have a nozzle cross-section that widens in the direction of flow.
  6. The shaping air ring (2) according to claim 5, characterized in that the nozzle cross-section changes in the direction of flow
    a) conically or
    b) stepped in one step or in several steps.
  7. The shaping air ring (2) according to claim 6, characterized in that the nozzle cross-section in the direction of flow
    a) widens or
    b) tapers.
  8. A shaping air ring (2) according to any one of the preceding claims, characterized in that in each case at least one slit (22, 24) is adjacent to the shaping air nozzles (20, 21; 23), which slit runs substantially parallel to the direction of flow.
  9. The shaping air ring (2) according to claim 8, characterized in that
    a) the shaping air nozzles (20, 21) are arranged in a ring shape, and
    b) the slit (22) runs through the shaping air nozzles (20, 21) in a ring-shaped manner.
  10. The shaping air ring (2) according to claim 8, characterized in that the slits (24) are arranged in a cross shape.
  11. The shaping air ring (2) according to any one of the preceding claims characterized in that the shaping air nozzles (26) each are fed by a shaping air bore (25) and have a nozzle cross-section that, compared to the cross-section of the shaping air bore (26), is inclined in order to distort the flow profile (28).
  12. The shaping air ring (2) according to any one of the preceding claims, characterized in that the shaping air nozzles (10, 11; 14; 20, 21; 26) are formed by notches (29, 30, 33), into each of which one or two shaping air bores (31, 32) open.
  13. The shaping air ring (2) according to claim 12, characterized in that the notches (29, 30; 33) are triangular in cross-section.
  14. An atomizer (1), in particular a rotary atomizer with a shaping air ring (2) according to any one of the preceding claims.
  15. A painting machine, in particular a painting robot, with an atomizer (1) according to claim 14.
  16. A coating process with the following steps:
    a) discharge of a spray jet (5) of a coating agent onto a component to be coated (7) using an atomizer (1), the spray jet (5) having a directed flow within a close region in front of the atomizer (1),
    b) discharge of a shaping air jet (6) for shaping the spray jet (5) by means of a shaping air ring (2) with a plurality of shaping air nozzles (10, 11; 14; 20, 21; 26),
    c) Generation of turbulences in a remote region downstream behind the close region of the spray jet (5) in a targeted manner by the shaping air nozzles (10, 11; 14; 20, 21; 26), so that the shaping air jet (6) and the spray jet (5) contain substantially more turbulences in the remote region than in the close region, wherein the turbulences are generated by the shaping air nozzles (10, 11; 14; 20, 21; 26) having irregularities compared with a rotationally symmetrical arrangement.
EP08714223.8A 2007-02-09 2008-02-01 Deflecting air ring and corresponding coating process Revoked EP2121197B8 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200831717A SI2121197T1 (en) 2007-02-09 2008-02-01 Deflecting air ring and corresponding coating process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007006547.9A DE102007006547B4 (en) 2007-02-09 2007-02-09 Shaping air ring and corresponding coating method
PCT/EP2008/000832 WO2008095657A1 (en) 2007-02-09 2008-02-01 Deflecting air ring and corresponding coating process

Publications (3)

Publication Number Publication Date
EP2121197A1 EP2121197A1 (en) 2009-11-25
EP2121197B1 true EP2121197B1 (en) 2016-09-14
EP2121197B8 EP2121197B8 (en) 2016-11-09

Family

ID=39333099

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08714223.8A Revoked EP2121197B8 (en) 2007-02-09 2008-02-01 Deflecting air ring and corresponding coating process

Country Status (12)

Country Link
US (2) US8481124B2 (en)
EP (1) EP2121197B8 (en)
KR (1) KR101452351B1 (en)
CN (1) CN101605611B (en)
DE (1) DE102007006547B4 (en)
ES (1) ES2606211T3 (en)
MX (1) MX346939B (en)
PL (1) PL2121197T3 (en)
RU (1) RU2448780C2 (en)
SI (1) SI2121197T1 (en)
WO (1) WO2008095657A1 (en)
ZA (1) ZA200905367B (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502007000825D1 (en) 2006-12-05 2009-07-16 Sata Gmbh & Co Kg Ventilation for the gravity cup of a paint spray gun
ES2537617T3 (en) 2008-03-12 2015-06-10 Jeffrey D. Fox Disposable spray gun cartridge
DE102008027997A1 (en) * 2008-06-12 2009-12-24 Dürr Systems GmbH Universalzerstäuber
FR2936434B1 (en) * 2008-09-30 2014-07-25 Sames Technologies ROTARY PROJECTOR AND METHOD FOR PROJECTING A COATING PRODUCT USING SUCH A ROTARY PROJECTOR
DE102009032399A1 (en) 2009-07-08 2011-01-13 Sata Gmbh & Co. Kg Spray Gun
DE102010019612A1 (en) 2010-05-06 2011-11-10 Dürr Systems GmbH Coating device, in particular with an application device, and associated coating method that emits a droplets of coating agent droplet
DE202010007355U1 (en) * 2010-05-28 2011-10-20 Sata Gmbh & Co. Kg Nozzle head for a spraying device
EP2646166B1 (en) 2010-12-02 2018-11-07 SATA GmbH & Co. KG Spray gun and accessories
JP6189834B2 (en) 2011-06-30 2017-08-30 サタ ゲーエムベーハー アンド カンパニー カーゲー Spray gun, spray medium guide unit and method for removal or removal
FR2989289B1 (en) * 2012-04-13 2015-07-17 Sames Technologies ROTARY PROJECTOR AND METHOD FOR SPRAYING A COATING PRODUCT
CA155474S (en) 2013-09-27 2015-08-27 Sata Gmbh & Co Kg Spray gun
DE202013105779U1 (en) 2013-12-18 2015-03-19 Sata Gmbh & Co. Kg Air nozzle termination for a paint spray gun
CN105289870B (en) 2014-07-31 2019-09-24 萨塔有限两合公司 Manufacturing method, spray gun, gun body and the lid of spray gun
CA159961S (en) 2014-07-31 2015-07-17 Sata Gmbh & Co Kg Spray gun
USD758537S1 (en) 2014-07-31 2016-06-07 Sata Gmbh & Co. Kg Paint spray gun rear portion
USD768820S1 (en) 2014-09-03 2016-10-11 Sata Gmbh & Co. Kg Paint spray gun with pattern
JP6181094B2 (en) 2015-02-16 2017-08-16 トヨタ自動車株式会社 Rotary atomizing electrostatic coating machine and its shaping air ring
DE202015003664U1 (en) * 2015-05-22 2016-08-23 Sata Gmbh & Co. Kg Nozzle arrangement for a spray gun, in particular paint spray gun and spray gun, in particular paint spray gun
DE102015006484A1 (en) 2015-05-22 2016-11-24 Sata Gmbh & Co. Kg Nozzle arrangement for a spray gun, in particular paint spray gun and spray gun, in particular paint spray gun
JP6789987B2 (en) * 2015-05-27 2020-11-25 スリーエム イノベイティブ プロパティズ カンパニー Sprayer with auxiliary opening
WO2016195044A1 (en) * 2015-06-03 2016-12-08 本田技研工業株式会社 Painting device
DE102015016474A1 (en) 2015-12-21 2017-06-22 Sata Gmbh & Co. Kg Air cap and nozzle assembly for a spray gun and spray gun
CN105642464A (en) * 2016-04-11 2016-06-08 山东交通学院 Enhanced nozzle device and ejector
FR3053608B1 (en) 2016-07-11 2021-04-23 Exel Ind SKIRT FOR ROTARY SPOTLIGHT FOR COATING PRODUCTS INCLUDING AT LEAST THREE SERIES OF SEPARATE AIR EJECTION NOZZLES
CN205966208U (en) 2016-08-19 2017-02-22 萨塔有限两合公司 Hood subassembly and spray gun
CN205995666U (en) 2016-08-19 2017-03-08 萨塔有限两合公司 Spray gun and its trigger
DE102018118738A1 (en) 2018-08-01 2020-02-06 Sata Gmbh & Co. Kg Base body for a spray gun, spray guns, spray gun set, method for producing a base body for a spray gun and method for converting a spray gun
US11826771B2 (en) 2018-08-01 2023-11-28 Sata Gmbh & Co. Kg Set of nozzles for a spray gun, spray gun system, method for embodying a nozzle module, method for selecting a nozzle module from a set of nozzles for a paint job, selection system and computer program product
DE102018118737A1 (en) 2018-08-01 2020-02-06 Sata Gmbh & Co. Kg Nozzle for a spray gun, nozzle set for a spray gun, spray guns and method for producing a nozzle for a spray gun
WO2021181833A1 (en) 2020-03-10 2021-09-16 本田技研工業株式会社 Rotational atomization type electrostatic painter and airing member therefor
CN115193615B (en) * 2022-08-04 2023-06-13 河南正邦铝业有限公司 Spraying device and technology for aluminum plate production and processing

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0186342B1 (en) 1984-12-24 1988-04-27 General Motors Corporation Method of and apparatus for spraying coating material
JPH01249148A (en) 1988-03-30 1989-10-04 Nissan Motor Co Ltd Method for controlling coating pattern of rotary atomizing electrostatic coating machine
JPH0724367A (en) 1993-07-12 1995-01-27 Toyota Motor Corp Method and apparatus for rotary atomization static coating application
EP0695582A1 (en) 1994-06-14 1996-02-07 INPRO Innovationsgesellschaft für fortgeschrittene Produktionssysteme in der Fahrzeugindustrie mbH Method and device for coating electrostatically and/or pneumatically a conductive substrate with a liquid coating product
JPH0871455A (en) 1994-09-09 1996-03-19 Toyota Motor Corp Rotary atomization electrostatic coater
JPH08196946A (en) 1995-01-30 1996-08-06 Mazda Motor Corp Rotary atomization type coating apparatus and method
JPH0985134A (en) 1995-09-27 1997-03-31 Nissan Motor Co Ltd Rotary atomizing electrostatic coating method and device therefor
JPH0994488A (en) 1995-07-27 1997-04-08 Mazda Motor Corp Bell type coating device
JPH1099736A (en) 1996-09-30 1998-04-21 Mazda Motor Corp Bell type coating device and coating method using the same
JP2001121043A (en) 1999-10-21 2001-05-08 Kobe Steel Ltd Rotative atomizing coating apparatus
JP2002224611A (en) 2001-02-01 2002-08-13 Toyota Motor Corp Coating method
JP2007289876A (en) 2006-04-26 2007-11-08 Trinity Ind Corp Coating machine

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923251A (en) * 1970-11-27 1975-12-02 Texaco Inc Oil burner turbulator end cone, and method for generating counter-rotating air flow patterns
DE3118601A1 (en) * 1981-05-11 1982-11-25 Grünzweig + Hartmann und Glasfaser AG, 6700 Ludwigshafen Apparatus for spray-insulating surfaces, in particular uneven surfaces, with mineral fibres
DE3834674A1 (en) * 1988-10-12 1990-04-19 Bernhard Bruene Spray diffuser for colouring agents with different pigments
RU2089301C1 (en) 1991-02-01 1997-09-10 Рауссел-Юклаф Method and device for mixing and metering of liquid active ingredient with liquified gaseous pulverizing agent, device ejector and container for liquid concentrate of active ingredient
RU2128087C1 (en) 1992-10-13 1999-03-27 Патрик Кейси Алан Mixing device
DE4409848A1 (en) * 1994-03-22 1995-10-19 Siemens Ag Device for metering and atomizing fluids
DE19511272A1 (en) 1995-03-27 1996-10-02 Acheson Ind Deutschland Zweign Two-substance spray nozzle, in particular for a spray element of a spraying tool of a form spraying device, and nozzle exchange arrangement for two-substance spray nozzles
JP3307266B2 (en) * 1996-04-15 2002-07-24 トヨタ自動車株式会社 Spray pattern variable rotation atomization coating equipment
JP3529598B2 (en) 1997-08-25 2004-05-24 本田技研工業株式会社 Rotary atomizing type coating equipment
JP2917019B1 (en) * 1998-05-29 1999-07-12 華光造機株式会社 Air spray gun coating equipment
US6745948B1 (en) * 1999-03-29 2004-06-08 Kabushiki Kaisha Santuuru Method and device for spiral spray coating
RU2172893C1 (en) 2000-06-15 2001-08-27 Миасский машиностроительный завод Atomizer
DE10202712A1 (en) * 2002-01-24 2003-07-31 Duerr Systems Gmbh Method for controlling the spray jet width of an atomizer and atomizer for the serial coating of workpieces
US6863228B2 (en) * 2002-09-30 2005-03-08 Delavan Inc. Discrete jet atomizer
US6935577B2 (en) * 2003-02-28 2005-08-30 Illinois Tool Works Inc. One-piece fluid nozzle
US20040195401A1 (en) * 2003-02-28 2004-10-07 Strong Christopher L. Repeatable mounting unit for automatic spray device
KR100587927B1 (en) 2004-04-06 2006-06-08 대한도장플랜트(주) Blade type air turbine and painting equipment with the air turbine
DE102004035313A1 (en) * 2004-07-21 2006-02-16 Robert Bosch Gmbh Fuel injector with two-stage translator
US7611069B2 (en) * 2005-08-09 2009-11-03 Fanuc Robotics America, Inc. Apparatus and method for a rotary atomizer with improved pattern control
DE102006019890B4 (en) * 2006-04-28 2008-10-16 Dürr Systems GmbH Atomizer and associated operating method
UA39186U (en) * 2008-09-17 2009-02-10 Сергей Константинович Казимиров Underbody traction trolley

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0186342B1 (en) 1984-12-24 1988-04-27 General Motors Corporation Method of and apparatus for spraying coating material
JPH01249148A (en) 1988-03-30 1989-10-04 Nissan Motor Co Ltd Method for controlling coating pattern of rotary atomizing electrostatic coating machine
JPH0724367A (en) 1993-07-12 1995-01-27 Toyota Motor Corp Method and apparatus for rotary atomization static coating application
EP0695582A1 (en) 1994-06-14 1996-02-07 INPRO Innovationsgesellschaft für fortgeschrittene Produktionssysteme in der Fahrzeugindustrie mbH Method and device for coating electrostatically and/or pneumatically a conductive substrate with a liquid coating product
JPH0871455A (en) 1994-09-09 1996-03-19 Toyota Motor Corp Rotary atomization electrostatic coater
JPH08196946A (en) 1995-01-30 1996-08-06 Mazda Motor Corp Rotary atomization type coating apparatus and method
JPH0994488A (en) 1995-07-27 1997-04-08 Mazda Motor Corp Bell type coating device
JPH0985134A (en) 1995-09-27 1997-03-31 Nissan Motor Co Ltd Rotary atomizing electrostatic coating method and device therefor
JPH1099736A (en) 1996-09-30 1998-04-21 Mazda Motor Corp Bell type coating device and coating method using the same
JP2001121043A (en) 1999-10-21 2001-05-08 Kobe Steel Ltd Rotative atomizing coating apparatus
JP2002224611A (en) 2001-02-01 2002-08-13 Toyota Motor Corp Coating method
JP2007289876A (en) 2006-04-26 2007-11-08 Trinity Ind Corp Coating machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Symmetrie (Geometrie), Wikipedia", Retrieved from the Internet <URL:https://de.wikipedia.org/wiki/Symmetrie_%28Geometrie%29>

Also Published As

Publication number Publication date
RU2448780C2 (en) 2012-04-27
DE102007006547B4 (en) 2016-09-29
MX346939B (en) 2017-04-05
KR20090108072A (en) 2009-10-14
CN101605611B (en) 2013-05-01
KR101452351B1 (en) 2014-10-21
US20130266734A1 (en) 2013-10-10
ZA200905367B (en) 2010-10-27
WO2008095657A1 (en) 2008-08-14
US8642131B2 (en) 2014-02-04
CN101605611A (en) 2009-12-16
EP2121197B8 (en) 2016-11-09
US8481124B2 (en) 2013-07-09
RU2009133779A (en) 2011-03-20
PL2121197T3 (en) 2017-02-28
DE102007006547A1 (en) 2008-08-14
EP2121197A1 (en) 2009-11-25
MX2009008431A (en) 2009-08-17
ES2606211T3 (en) 2017-03-23
US20100021646A1 (en) 2010-01-28
SI2121197T1 (en) 2016-12-30

Similar Documents

Publication Publication Date Title
EP2121197B1 (en) Deflecting air ring and corresponding coating process
EP2017010B1 (en) Atomiser for a spray gun
EP0710506B1 (en) Nozzle for paint spray gun
DE102015006484A1 (en) Nozzle arrangement for a spray gun, in particular paint spray gun and spray gun, in particular paint spray gun
DE1601958B2 (en)
DE112006002295T5 (en) Spray nozzle arrangement for atomization by means of external air mixture
DE2039957C2 (en) Nozzle for airless atomization of a liquid and process for its production
EP1986788A1 (en) Two-component nozzle with secondary air nozzles arranged in circular form
EP2285495A1 (en) Universal atomizer
DE2549974A1 (en) DEVICE FOR DUSTING FLOWABLE MEDIA, SUCH AS COLORS, VARNISHES, ETC.
WO2008068005A1 (en) Guiding air ring comprising a ring cavity and corresponding bell plate
DE202009019107U1 (en) Rotary injection device for a coating product
EP2189226B1 (en) Air cap with separate formed air horn and his manufacturing process with injection mould
DE2517715C2 (en) PROCESS AND DEVICE FOR MIXING AND / OR DISPERSING AND BLASTING THE COMPONENTS OF A FLOWABLE MATERIAL FOR COATING SURFACES
DE112018005051T5 (en) GAPED SCAN NOZZLE ARRANGEMENT AND PROCEDURE
DE10303617A1 (en) Turbine wheel for driving rapidly rotating tools
EP1560663B1 (en) Ultrasonic standing wave spraying arrangement
DE10112562B4 (en) external mixing
DE3640818C1 (en) Spray head for producing an air-liquid mixture, in particular for a cooling device
DE3505619C2 (en) Process for coating objects and apparatus for carrying out the process
EP1072318B1 (en) Spray head for electrostatic rotary atomizing spray device
EP2392406A1 (en) Spray nozzle for atomizing a pressurised fluid
DE10041164B4 (en) Low-pressure atomization
WO2023057407A1 (en) Bell cup, rotary atomizer having the bell cup, painting installation and corresponding painting method
DE202015003664U1 (en) Nozzle arrangement for a spray gun, in particular paint spray gun and spray gun, in particular paint spray gun

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080319

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20091201

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DUERR SYSTEMS GMBH

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160512

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: DUERR SYSTEMS AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 828339

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008014629

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161215

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

REG Reference to a national code

Ref country code: AT

Ref legal event code: HC

Ref document number: 828339

Country of ref document: AT

Kind code of ref document: T

Owner name: DUERR SYSTEMS AG, DE

Effective date: 20170116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170114

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502008014629

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: EISENMANN SE

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 25361

Country of ref document: SK

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 828339

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180219

Year of fee payment: 11

Ref country code: ES

Payment date: 20180327

Year of fee payment: 11

Ref country code: GB

Payment date: 20180216

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180223

Year of fee payment: 11

Ref country code: IT

Payment date: 20180220

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 502008014629

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 502008014629

Country of ref document: DE

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20190123

Year of fee payment: 12

Ref country code: CZ

Payment date: 20190125

Year of fee payment: 12

27W Patent revoked

Effective date: 20181113

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20181113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20190124

Year of fee payment: 12

Ref country code: SI

Payment date: 20190121

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20180130

Year of fee payment: 11

REG Reference to a national code

Ref country code: SK

Ref legal event code: MC4A

Ref document number: E 25361

Country of ref document: SK

Effective date: 20181113

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 828339

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20201030

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512