JP2002206788A - Multi-chamber type air conditioner - Google Patents

Multi-chamber type air conditioner

Info

Publication number
JP2002206788A
JP2002206788A JP2001002190A JP2001002190A JP2002206788A JP 2002206788 A JP2002206788 A JP 2002206788A JP 2001002190 A JP2001002190 A JP 2001002190A JP 2001002190 A JP2001002190 A JP 2001002190A JP 2002206788 A JP2002206788 A JP 2002206788A
Authority
JP
Japan
Prior art keywords
temperature
storage device
indoor
rapid operation
setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001002190A
Other languages
Japanese (ja)
Other versions
JP4151219B2 (en
Inventor
Takayuki Izeki
貴之 井関
Yoshikazu Nishihara
義和 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001002190A priority Critical patent/JP4151219B2/en
Publication of JP2002206788A publication Critical patent/JP2002206788A/en
Application granted granted Critical
Publication of JP4151219B2 publication Critical patent/JP4151219B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve amenity by distributing a part of a capacity of an indoor machine having no demand of quick change of an air-conditioning temperature to another indoor machine having the demand of quick change of the same. SOLUTION: In a multi-chamber type air conditioner wherein a compressor 3, a fan 9 and an expansion valve 10 are controlled at a predetermined period of time employing data obtained by an operation setting device 12a, a quick operation setting device 13a, a time counting device 30, a temperature difference operating device 22 and a rated capacity memory device 31, a temperature difference correcting value setting device for setting the correcting value of the temperature difference by the signal of the quick operation setting device 13a and the time counting device 30 is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、1台の室外機に複
数台の室内機を接続し、電動膨張弁にて冷媒流量を制御
する多室形空気調和システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-room air conditioning system in which a plurality of indoor units are connected to one outdoor unit, and the flow rate of refrigerant is controlled by an electric expansion valve.

【0002】[0002]

【従来の技術】近年、1台の室外機に複数台の室内機を
接続した多室形空気調和システムが、室外の省スペース
性やエクステリア性や少ない電源容量の点でその需要を
伸ばしている。 従来、この多室形空気調和システムに
おいて、容量(周波数)可変形圧縮機を用い、冷凍サイ
クルの液側冷媒配管に、各室内機への冷媒流量を制御す
る冷媒流量制御装置を設け、室外機の容量と各室内機の
容量との比較により圧縮機容量を制御し、各室内機への
冷媒流量を制御するものが提案されている(例えば特開
平6−257827号公報)。
2. Description of the Related Art In recent years, a demand for a multi-room air conditioning system in which a plurality of indoor units are connected to one outdoor unit has been increasing in terms of outdoor space saving, exterior characteristics, and small power supply capacity. . Conventionally, in this multi-chamber air conditioning system, a refrigerant flow control device for controlling a refrigerant flow to each indoor unit is provided in a liquid side refrigerant pipe of a refrigeration cycle using a variable capacity (frequency) compressor, and an outdoor unit is provided. A compressor that controls the compressor capacity by comparing the capacity of each indoor unit with the capacity of each indoor unit to control the flow rate of the refrigerant to each indoor unit has been proposed (for example, Japanese Patent Application Laid-Open No. 6-257827).

【0003】以下、図面を参照しながら上記従来の多室
形空気調和システムについて説明する。 図12は、従
来の多室形空気調和システムの冷凍サイクル図である。
この多室形空気調和システムは1台の室外機102と複
数台の室内機、本従来例では3台の室内機101a、1
01b、101cを接続して構成される。
Hereinafter, the conventional multi-room air conditioning system will be described with reference to the drawings. FIG. 12 is a refrigeration cycle diagram of a conventional multi-room air conditioning system.
This multi-room air conditioning system includes one outdoor unit 102 and a plurality of indoor units, and in this conventional example, three indoor units 101a, 1
01b and 101c.

【0004】室外機102内にはインバータ駆動の周波
数可変形圧縮機103(以下単に圧縮機と称す)、室外
熱交換器104、冷暖房切換用の四方弁105が設けら
れ、また室内機101a、101b、101c内にそれ
ぞれ室内熱交換器106a、106b、106cが設け
られている。液側主管107は液側分岐管107a,1
07b,107cとに分岐されている。そして液側分岐
管それぞれには電動膨張弁108a、108b、108
cが設けられている。室内機101a、101b、10
1cとは、液側分岐管107a、107b、107cお
よびガス側分岐管109a,109b、109cとで接
続されている。また、各室内機101a、101b、1
01cには各室内機が設置されている部屋の室温を検出
する室内温度センサ110a、110b、110cおよ
び居住者が希望する運転モード(冷房または暖房)と室
温と運転、停止を設定できる運転設定装置111a、1
11b、111cと、急速運転を設定できる急速運転運
転設定装置112a、112b、112cが設けられて
いる。
An outdoor unit 102 is provided with an inverter-driven variable frequency compressor 103 (hereinafter simply referred to as a compressor), an outdoor heat exchanger 104, a four-way valve 105 for switching between cooling and heating, and indoor units 101a and 101b. , 101c are provided with indoor heat exchangers 106a, 106b, 106c, respectively. The liquid side main pipe 107 is a liquid side branch pipe 107a, 1
07b and 107c. Each of the liquid side branch pipes has an electric expansion valve 108a, 108b, 108
c is provided. Indoor units 101a, 101b, 10
1c is connected to the liquid side branch pipes 107a, 107b, 107c and the gas side branch pipes 109a, 109b, 109c. In addition, each indoor unit 101a, 101b, 1
01c is an indoor temperature sensor 110a, 110b, 110c for detecting the room temperature of the room where each indoor unit is installed, and an operation setting device that can set an operation mode (cooling or heating) desired by the occupant, room temperature, operation and stop. 111a, 1
11b, 111c, and rapid operation setting devices 112a, 112b, 112c capable of setting rapid operation are provided.

【0005】この冷凍サイクルにおいて、冷房時は圧縮
機103から吐出された冷媒は、四方弁105より室外
熱交換器104へ流れてここで室外空気と熱交換して凝
縮液化する。そして、液側主管107を流れて分岐機内
部の液側分岐管107a、107b、107cへと分岐
する。電動膨張弁108a、108b、108cの弁開
度は、それぞれの部屋の負荷に見合った開度になるよう
に制御されるため、冷媒もそれぞれの負荷に応じた流量
で低圧となって室内熱交換器106a、106b、10
6cへと流れて蒸発した後、ガス側分岐管109a、1
09b、109cよりガス側主管109、四方弁105
を通過して再び圧縮機103に吸入される。また、圧縮
機周波数は総負荷に応じて決定される。
In this refrigeration cycle, during cooling, the refrigerant discharged from the compressor 103 flows from the four-way valve 105 to the outdoor heat exchanger 104, where it exchanges heat with outdoor air to condense and liquefy. Then, it flows through the liquid side main pipe 107 and branches into liquid side branch pipes 107a, 107b, 107c inside the branching machine. Since the valve openings of the electric expansion valves 108a, 108b, 108c are controlled so as to be in accordance with the loads of the respective rooms, the refrigerant also has a low pressure at a flow rate corresponding to the respective loads, and the indoor heat exchange is performed. Vessels 106a, 106b, 10
6c, and after vaporization, the gas side branch pipes 109a,
09b, 109c, gas side main pipe 109, four-way valve 105
And is sucked into the compressor 103 again. Also, the compressor frequency is determined according to the total load.

【0006】暖房時は圧縮機103から吐出された冷媒
は、四方弁105を切換えてガス側主管109よりガス
側分岐管109a、109b、109cへと分岐し、室
内熱交換器106a、106b、106cへと流れて凝
縮液化し、液側分岐管107a、107b、107c上
の電動膨張弁108a、108b、108cで減圧され
てる。電動膨張弁108a、108b、108cの弁開
度は、冷房時と同様にれぞれの部屋の負荷に見合った開
度に制御されるため、冷媒もそれに応じた流量で室内熱
交換器106a、106b、106cを流れ、室外熱交
換器104を流れて蒸発した後、四方弁105を通過し
て再び圧縮機103に吸入される。また、圧縮機周波数
は冷房時と同様に総負荷に応じて決定される。
At the time of heating, the refrigerant discharged from the compressor 103 switches the four-way valve 105 to branch from the gas side main pipe 109 to the gas side branch pipes 109a, 109b, 109c, and the indoor heat exchangers 106a, 106b, 106c. And is condensed and liquefied, and the pressure is reduced by the electric expansion valves 108a, 108b, 108c on the liquid side branch pipes 107a, 107b, 107c. The valve opening of the electric expansion valves 108a, 108b, 108c is controlled to an opening corresponding to the load of each room as in the case of cooling, so that the refrigerant also has a flow rate corresponding to the indoor heat exchanger 106a, After flowing through 106b and 106c, flowing through the outdoor heat exchanger 104 and evaporating, the refrigerant passes through the four-way valve 105 and is sucked into the compressor 103 again. Further, the compressor frequency is determined according to the total load as in the case of cooling.

【0007】次に、圧縮機周波数および電動膨張弁開度
の制御方法について説明する。図13は圧縮機周波数お
よび電動膨張弁開度の制御の流れを示すブロック図、図
14は室内温度Trと設定温度Tsとの差温△Tの温度
ゾーン分割図、図15は負荷テーブル図である。
Next, a method for controlling the compressor frequency and the electric expansion valve opening will be described. FIG. 13 is a block diagram showing a flow of control of the compressor frequency and the electric expansion valve opening, FIG. 14 is a temperature zone division diagram of a temperature difference ΔT between the room temperature Tr and the set temperature Ts, and FIG. 15 is a load table diagram. is there.

【0008】まず、室内機1aにおいて、室内温度セン
サ110aの出力を室内温度検出装置113aより温度
信号として差温演算装置114に送出し、また室内温度
設定記憶装置115にて運転設定装置111aで設定さ
れた設定温度および運転モードを判別して、差温演算装
置114に送出する。ここで、差温△T(=Tr−T
s)を算出し、図14に示す負荷ナンバーLn値に変換
してこれを差温信号とする。たとえば、冷房運転時でT
r=26.3℃、Ts=26℃とすると、差温△T=
0.3℃でLn=4となる。
First, in the indoor unit 1a, the output of the indoor temperature sensor 110a is sent from the indoor temperature detecting device 113a to the differential temperature calculating device 114 as a temperature signal, and is set by the operation setting device 111a in the indoor temperature setting storage device 115. The determined set temperature and operation mode are determined and sent to the differential temperature calculating device 114. Here, the temperature difference ΔT (= Tr−T
s) is calculated and converted into a load number Ln value shown in FIG. For example, during cooling operation, T
Assuming that r = 26.3 ° C. and Ts = 26 ° C., the differential temperature ΔT =
Ln = 4 at 0.3 ° C.

【0009】しかし、冷房運転時でTr=29.3℃、
Ts=26℃とすると、差温△T=3.3℃でLn=8
の領域に有るが、急速運転の設定がされていない場合
は、最大負荷がLn=7に制限されるようになってい
る。さらに定格容量記憶装置116に室内機101aの
定格容量を記憶しておく。
However, Tr = 29.3 ° C. during cooling operation,
Assuming that Ts = 26 ° C., Ln = 8 at the temperature difference ΔT = 3.3 ° C.
However, when rapid operation is not set, the maximum load is limited to Ln = 7. Further, the rated capacity of the indoor unit 101a is stored in the rated capacity storage device 116.

【0010】急速運転設定装置112aでは、冷房運
転、除湿運転あるいは暖房運転の開始時に短時間で室温
を下げ、あるいは室温を上げるための急速運転を設定で
きる。
The rapid operation setting device 112a can set a rapid operation for lowering the room temperature or increasing the room temperature in a short time at the start of the cooling operation, the dehumidifying operation or the heating operation.

【0011】急速運転設定装置112aからの信号は信
号受信装置117に送られるともに、急速運転設定記憶
装置118で記憶さる。これらの定格容量信号、差温信
号、運転モード信号、急速運転信号等が信号送出装置1
19より室外機102の信号受信装置120へられる。
室内機101b、101cからも同様の信号が信号受信
装置120へ送られる。信号受信装置120で受けた信
号は、図15に示す負荷定数テーブル121から負荷定
数を設定し、所定の計算を行うことにより運転周波数、
膨張弁開度を決定する。
The signal from the rapid operation setting device 112a is sent to the signal receiving device 117 and stored in the rapid operation setting storage device 118. These rated capacity signal, differential temperature signal, operation mode signal, rapid operation signal, etc.
From 19, the signal is sent to the signal receiving device 120 of the outdoor unit 102.
Similar signals are sent from the indoor units 101b and 101c to the signal receiving device 120. The signal received by the signal receiving device 120 sets the load constant from the load constant table 121 shown in FIG.
Determine the expansion valve opening.

【0012】一例として、冷房時の運転開始時におい
て、室内機101a、101b、101cからの信号が
下記表1の場合について説明する。
As an example, a case where signals from the indoor units 101a, 101b, and 101c at the start of cooling operation will be described with reference to Table 1 below.

【0013】[0013]

【表1】 [Table 1]

【0014】風量はすべてMe+の設定とする。All air volumes are set to Me +.

【0015】例えば冷房運転時でa室停止、b室Tr=
27.8℃、Ts=26℃、c室Tr=27.6℃、Ts
=26℃とすると、差温ΔTb=1.8℃でLn=7、
差温ΔTc=1.6℃でLn=7となり、室内機101
a、101b、101cの負荷定数はそれぞれ0、2.
5、3.2となり、したがって圧縮機4の周波数Hz
は、Aを定数とすると Hz=A×(0+2.5+3.2)=A×5.7 となる。
For example, in the cooling operation, the room a is stopped and the room b Tr =
27.8 ° C., Ts = 26 ° C., Tr room Tr = 27.6 ° C., Ts
= 26 ° C., Ln = 7 at the temperature difference ΔTb = 1.8 ° C.,
Ln = 7 at the temperature difference ΔTc = 1.6 ° C., and the indoor unit 101
a, 101b, and 101c are 0, 2,.
5, 3.2 and therefore the frequency Hz of the compressor 4
Is given by: Hz = A × (0 + 2.5 + 3.2) = A × 5.7 where A is a constant.

【0016】圧縮機103の運転許容値は室内機101
a、101b、101cの定格容量に相当する2.0、
2.5、3.2の合計値7.7とすれば、周波数の演算
結果は圧縮機103の運転許容値に達しておらず、約2
5%の余裕度を残しており、この演算結果を周波数信号
として圧縮機駆動装置(図示せず)に送出して、圧縮機
103の周波数制御を行う。以降、所定周期毎に室内機
101a、101b、101cのそれぞれの定格容量信
号、差温信号、運転モード信号より演算を行い、演算結
果を周波数信号として圧縮機駆動装置(図示せず)に送
出して圧縮機103の周波数制御を行う。
The allowable operation value of the compressor 103 is
a, 2.0 corresponding to the rated capacity of 101b, 101c,
Assuming that the total value of 2.5 and 3.2 is 7.7, the frequency calculation result does not reach the allowable operation value of the compressor 103, and
A margin of 5% is left, and the calculation result is sent as a frequency signal to a compressor driving device (not shown) to control the frequency of the compressor 103. Thereafter, calculation is performed based on the rated capacity signal, the differential temperature signal, and the operation mode signal of each of the indoor units 101a, 101b, and 101c at predetermined intervals, and the calculation result is transmitted as a frequency signal to a compressor driving device (not shown). To control the frequency of the compressor 103.

【0017】次に、表2(a)のように室内機101
a、101bが低負荷で運転中に、表2(b)のように
室内機101cを急速運転での運転を開始した場合につ
いて説明する。
Next, as shown in Table 2 (a), the indoor unit 101
A description will be given of a case where the indoor unit 101c starts the rapid operation as shown in Table 2 (b) while the a and 101b are operating at a low load.

【0018】[0018]

【表2】 [Table 2]

【0019】室内機101a、101b、101cの負
荷定数はそれぞれ0.8、1.0、3.8となり、した
がって圧縮機103の周波数Hzは、同様に Hz=A×(0.8+1.0+3.8)=A×5.6 となり、周波数の演算結果は圧縮機4の運転許容値に達
しておらず、約25%の余裕度を残しており、この演算
結果を周波数信号として圧縮機駆動装置(図示せず)に
送出して、圧縮機103の周波数制御を行う。以降、所
定周期毎に室内機101a、101b、101cのそれ
ぞれの定格容量信号、差温信号、運転モード信号より演
算を行い、演算結果を周波数信号として圧縮機駆動装置
(図示せず)に送出して圧縮機103の周波数制御を行
う。上記説明は、主に冷房時について行ったが、暖房時
についても同様に制御可能である。
The load constants of the indoor units 101a, 101b, and 101c are 0.8, 1.0, and 3.8, respectively. Therefore, the frequency Hz of the compressor 103 is similarly given by: Hz = A × (0.8 + 1.0 + 3. 8) = A × 5.6, and the calculation result of the frequency has not reached the allowable operation value of the compressor 4 and has a margin of about 25%. The calculation result is used as a frequency signal as a compressor driving device. (Not shown) to control the frequency of the compressor 103. Thereafter, calculation is performed based on the rated capacity signal, the differential temperature signal, and the operation mode signal of each of the indoor units 101a, 101b, and 101c at predetermined intervals, and the calculation result is transmitted as a frequency signal to a compressor driving device (not shown). To control the frequency of the compressor 103. The above description has been made mainly for cooling, but control for heating is also possible.

【0020】このように、急速運転の設定のない室内機
に対しては、その負荷に応じた能力を供給し、急速運転
の設定のある室内機にのみ、室内機の定格容量を上回る
能力を目標に、余裕ある室外能力を供給するよう圧縮機
周波数と室内風量を制御するため、設定温度に到達する
までの時間を早くすることができ、快適性の向上および
省エネルギ−を図ることができる。
As described above, the capacity corresponding to the load is supplied to the indoor unit not set to the rapid operation, and only the indoor unit set to the rapid operation has the capacity exceeding the rated capacity of the indoor unit. Since the compressor frequency and the indoor air volume are controlled so as to supply a sufficient outdoor capacity to the target, the time until the set temperature is reached can be shortened, and comfort can be improved and energy can be saved. .

【0021】[0021]

【発明が解決しようとする課題】しかしながら、上記従
来の構成では、室外機に余裕がある場合は、大能力の運
転が可能だが、例えばの表3ように室内機101a、1
01bの負荷がLn=7の場合には、Hz=A×(2.
0+2.5+3.8)=A×8.3となり、圧縮機10
3の運転許容値を越えるため、周波数はHz=A×7.
7となる圧縮機103の運転許容値として、圧縮機駆動
装置に送出して、圧縮機103の周波数制御を行ため、
急速運転スイッチをしたC室の能力も制限されてしま
う。
However, in the above-described conventional configuration, a large-capacity operation can be performed when the outdoor unit has a margin.
When the load of 01b is Ln = 7, Hz = A × (2.
0 + 2.5 + 3.8) = A × 8.3 and the compressor 10
The frequency is Hz = A × 7.
As the allowable operation value of the compressor 103, which is 7, is sent to the compressor driving device to control the frequency of the compressor 103.
The capacity of the room C that has been switched to the rapid operation is also limited.

【0022】[0022]

【表3】 [Table 3]

【0023】一方、以上様な能力制限を回避する為に、
急速運転の設定されていない室内機の設定温度を変更し
サーモオフしやすいように制御するものが提案されてい
るが(特開平09−145130号公報)、設定温度を
一時的にでも変更すると、近年の空気調和装置の機能の
特徴の一つであるお知らせ表示(設定温度や現在の室内
・室外温度を表示するもの)が設定温度とは違った表示
をしてしまう。これを回避するためには、設定温度を記
憶する装置とは別に変更した設定温度を記憶する部分を
持つ必要がああり、制御が複雑になると同時に、コスト
が増大するというデメリットが生じる。
On the other hand, in order to avoid the above-mentioned ability limitation,
There has been proposed a method of changing the set temperature of an indoor unit for which rapid operation is not set and performing control so as to easily perform thermo-off (Japanese Patent Application Laid-Open No. 09-145130). The information display (displaying the set temperature and the current indoor / outdoor temperature), which is one of the features of the function of the air conditioner, is different from the set temperature. In order to avoid this, it is necessary to have a portion for storing the changed set temperature separately from the device for storing the set temperature, which has disadvantages in that the control becomes complicated and the cost increases.

【0024】[0024]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、可変容量圧縮機、室外熱交換器、送風
機、冷媒液側主管、冷媒ガス側主管を有する1台の室外
機と、熱交換器及び送風機を有する複数台の室内機を、
冷媒液が流れる冷媒液側主管から分岐した液側分岐管、
及び冷媒ガスが流れる前記冷媒ガス側主管から分岐した
ガス側分岐管を介して接続し、冷媒液側主管から室内機
の間に弁開度を制御可能とした電動膨張弁を介装して冷
凍サイクルを構成し、室内機の各々に室内温度の設定値
を記憶する室内温度設定記憶装置と、室内温度を検出す
る室内温度検出装置と、室内温度設定記憶装置と室内温
度検出装置とから設定室内温度と室内温度との差温を算
出する差温算出装置と、差温が取りうる温度範囲を複数
個の温度ゾーンに分割して記憶する温度ゾーン記憶装置
と、室内機が運転か停止かを記憶する運転停止記憶装置
とを設け、温度ゾーン記憶置と、前記運転停止記憶装置
の信号により、前記室内機の送風機と可変容量圧縮機と
電動膨張弁とを制御する制御装置を有し、各々の室内機
に冷房運転、除湿運転あるいは暖房運転の開始時に短時
間で室温を下げ、あるいは室温を上げるための急速運転
を行う急速運転設定装置と、急速運転の設定を記憶する
急速運転設定記憶装置と、急速運転設定記憶装置の信号
により、圧縮機の能力を増大し、急速運転設定がない室
内機への冷媒の分流を減少させ、急速運転記憶装置に急
速運転の設定がされた室内機の送風機の風量を増加さ
せ、かつ冷媒の分流を増大させるように、各々の室内機
の送風機と可変容量圧縮機と膨張弁を制御する制御装置
を設けたものである。
In order to solve the above-mentioned problems, the present invention relates to an outdoor unit having a variable capacity compressor, an outdoor heat exchanger, a blower, a refrigerant liquid side main pipe, and a refrigerant gas side main pipe. , A plurality of indoor units having a heat exchanger and a blower,
A liquid side branch pipe branched from a refrigerant liquid side main pipe through which the refrigerant liquid flows,
A refrigerant is connected to the refrigerant gas-side main pipe through a gas-side branch pipe branched from the refrigerant gas-side main pipe, and an electric expansion valve is provided between the refrigerant liquid-side main pipe and the indoor unit so that the valve opening can be controlled. An indoor temperature setting storage device that configures a cycle and stores a set value of an indoor temperature in each of the indoor units, an indoor temperature detection device that detects an indoor temperature, and an indoor temperature setting storage device and an indoor temperature detection device. A temperature difference calculating device that calculates a temperature difference between the temperature and the indoor temperature, a temperature zone storage device that stores a temperature range in which the temperature difference can be obtained by dividing the temperature range into a plurality of temperature zones, and determines whether the indoor unit is operating or stopped. An operation stop storage device for storing is provided, a temperature zone storage device, and a control device for controlling a blower, a variable capacity compressor, and an electric expansion valve of the indoor unit according to a signal of the operation stop storage device, Cooling operation and dehumidification for indoor units A rapid operation setting device that performs a rapid operation for lowering the room temperature or increasing the room temperature in a short time at the start of the rolling or heating operation, a rapid operation setting storage device that stores the setting of the rapid operation, and a rapid operation setting storage device. With the signal, the capacity of the compressor is increased, the shunt of the refrigerant to the indoor unit without the rapid operation setting is reduced, the airflow of the blower of the indoor unit with the rapid operation set in the rapid operation storage device is increased, and A control device for controlling the blower, the variable displacement compressor and the expansion valve of each indoor unit is provided so as to increase the branch flow of the refrigerant.

【0025】上記の発明によって、冷房時に短時間で温
度を下げたい(暖房時は上げたい)部屋に圧縮機のパワ
ーを一時的に集中させることが可能となる。
According to the invention described above, it is possible to temporarily concentrate the power of the compressor in a room where the temperature is desired to be reduced in a short time during cooling (or desired to be increased during heating).

【0026】[0026]

【発明の実施の形態】請求項1に記載の発明は、可変容
量圧縮機、室外熱交換器、送風機、冷媒液側主管、冷媒
ガス側主管を有する1台の室外機と、熱交換器及び送風
機を有する複数台の室内機を、冷媒液が流れる冷媒液側
主管から分岐した液側分岐管、及び冷媒ガスが流れる冷
媒ガス側主管から分岐したガス側分岐管を介して接続
し、冷媒液側主管から室内機の間に弁開度を制御可能と
した電動膨張弁を介装して冷凍サイクルを構成し、室内
機の各々に室内温度の設定値を記憶する室内温度設定記
憶装置と、室内温度を検出する室内温度検出装置と、室
内温度設定記憶装置と室内温度検出装置とから室内温度
と室内温度との差温を算出する差温算出装置と、差温が
取りうる温度範囲を複数個の温度ゾーンに分割して記憶
する温度ゾーン記憶装置と、室内機が運転か停止かを記
憶する運転停止記憶装置とを設け、温度ゾーン記憶置
と、運転停止記憶装置の信号により、室内機の送風機と
可変容量圧縮機と電動膨張弁とを制御する制御装置を有
し、各々の室内機に冷房運転、除湿運転あるいは暖房運
転の開始時に短時間で室温を下げ、あるいは室温を上げ
るための急速運転を行う急速運転設定装置と、急速運転
の設定を記憶する急速運転設定記憶装置と、急速運転設
定記憶装置の信号により、各々の室内機の送風機と可変
容量圧縮機と膨張弁を制御する制御装置を設け、急速運
転記憶装置の信号により、前記差温の補正値を設定する
差温補正値設定装置を設けたものである。
DETAILED DESCRIPTION OF THE INVENTION The invention according to a first aspect of the present invention is directed to an outdoor unit having a variable capacity compressor, an outdoor heat exchanger, a blower, a refrigerant liquid-side main pipe, and a refrigerant gas-side main pipe; A plurality of indoor units having a blower are connected via a liquid side branch pipe branched from a refrigerant liquid side main pipe through which a refrigerant liquid flows, and a gas side branch pipe branched from a refrigerant gas side main pipe through which a refrigerant gas flows. An indoor temperature setting storage device that configures a refrigeration cycle by interposing an electric expansion valve capable of controlling the valve opening between the side main pipe and the indoor unit, and stores a set value of the indoor temperature in each of the indoor units; An indoor temperature detecting device for detecting the indoor temperature, a differential temperature calculating device for calculating a differential temperature between the indoor temperature and the indoor temperature from the indoor temperature setting storage device and the indoor temperature detecting device, and a plurality of temperature ranges in which the differential temperature can be taken. Temperature zone storage that divides and stores temperature zones Device, an operation stop storage device for storing whether the indoor unit is operating or stopped, a temperature zone storage device, and a blower of the indoor unit, a variable displacement compressor, and an electric expansion valve, according to a signal of the operation stop storage device. A rapid operation setting device which has a control device for controlling, and in each of the indoor units, a cooling operation, a dehumidifying operation or a rapid operation for decreasing the room temperature in a short time at the start of the heating operation, or a rapid operation for increasing the room temperature; A rapid operation setting storage device for storing settings, and a control device for controlling the blower, the variable capacity compressor and the expansion valve of each indoor unit by a signal of the rapid operation setting storage device are provided. A differential temperature correction value setting device for setting the differential temperature correction value is provided.

【0027】そしてこの構成によれば、短時間で温度を
下げたい(暖房時は上げたい)部屋に圧縮機のパワーを
一時的に集中させることが可能となる。
According to this configuration, it is possible to temporarily concentrate the power of the compressor in a room where the temperature is to be lowered in a short time (when the temperature is to be raised during heating).

【0028】請求項2に記載の発明は、可変容量圧縮
機、室外熱交換器、送風機、冷媒液側主管、冷媒ガス側
主管を有する1台の室外機と、熱交換器及び送風機を有
する複数台の室内機を、冷媒液が流れる冷媒液側主管か
ら分岐した液側分岐管、及び冷媒ガスが流れる冷媒ガス
側主管から分岐したガス側分岐管を介して接続し、冷媒
液側主管から室内機の間に弁開度を制御可能とした電動
膨張弁を介装して冷凍サイクルを構成し、室内機の各々
に室内温度の設定値を記憶する室内温度設定記憶装置
と、室内温度を検出する室内温度検出装置と、室内温度
設定記憶装置と室内温度検出装置とから室内温度と室内
温度との差温を算出する差温算出装置と、差温が取りう
る温度範囲を複数個の温度ゾーンに分割して記憶する温
度ゾーン記憶装置と、室内機が運転か停止かを記憶する
運転停止記憶装置とを設け、温度ゾーン記憶置と、運転
停止記憶装置の信号により、室内機の送風機と可変容量
圧縮機と電動膨張弁とを制御する制御装置を有し、各々
の室内機に冷房運転、除湿運転あるいは暖房運転の開始
時に短時間で室温を下げ、あるいは室温を上げるための
急速運転を行う急速運転設定装置と、急速運転の設定を
記憶する急速運転設定記憶装置と、各々の室内機に温度
ゾーン記憶装置と温度ゾーンのしきい値を記憶する温度
ゾーンしきい値記憶装置を設け、急速運転設定記憶装置
と温度ゾーンしきい値記憶装置と温度ゾーン記憶装置の
信号により、運転中でかつ急速運転設定記憶装置に急速
運転の設定がない室内機の差温の補正値を設定する差温
補正値設定装置を設けたものである。
According to a second aspect of the present invention, there is provided an outdoor unit having a variable capacity compressor, an outdoor heat exchanger, a blower, a refrigerant liquid side main pipe, and a refrigerant gas side main pipe, and a plurality of units having a heat exchanger and a blower. The indoor units are connected via a liquid side branch pipe branched from the refrigerant liquid side main pipe through which the refrigerant liquid flows, and a gas side branch pipe branched from the refrigerant gas side main pipe through which the refrigerant gas flows. An indoor temperature setting storage device that stores a set value of the indoor temperature in each of the indoor units, and detects an indoor temperature, with a refrigeration cycle configured with an electric expansion valve capable of controlling the valve opening between the units. An indoor temperature detecting device, a differential temperature calculating device that calculates a differential temperature between the indoor temperature and the indoor temperature from the indoor temperature setting storage device and the indoor temperature detecting device, and a temperature range in which the differential temperature can be taken is set to a plurality of temperature zones. A temperature zone storage device, which is divided and stored An operation stop storage device that stores whether the inner unit is operating or stopped is provided, and control is performed to control the blower, the variable capacity compressor, and the electric expansion valve of the indoor unit by a signal of the temperature zone storage device and the operation stop storage device. A quick-operation setting device that has a device and that quickly lowers the room temperature at the start of the cooling operation, dehumidification operation, or heating operation at the start of the cooling operation, dehumidification operation or heating operation, and stores the setting of the rapid operation to increase the room temperature. A rapid operation setting storage device, and a temperature zone storage device and a temperature zone threshold value storage device for storing a temperature zone threshold value in each indoor unit. And a signal from the temperature zone storage device, and a difference temperature correction value setting device for setting a correction value of a difference temperature of the indoor unit during operation and in which the rapid operation is not set in the rapid operation setting storage device.

【0029】そしてこの構成によれば、より一層、短時
間で温度を下げたい(暖房時は上げたい)部屋に圧縮機
のパワーを一時的に集中させることが可能となる。ま
た、負荷が小さい(設定温度と吸込み検知温度の差が小
さい)部屋のみの空気調和機の性能を抑制する為に、他
室の快適性の影響が少なくなる。
According to this configuration, it is possible to temporarily concentrate the power of the compressor in a room where the temperature is desired to be further reduced in a short time (when it is desired to increase the temperature during heating). Further, since the performance of the air conditioner only in the room where the load is small (the difference between the set temperature and the suction detection temperature is small) is suppressed, the influence of the comfort of the other room is reduced.

【0030】請求項3に記載の発明は、可変容量圧縮
機、室外熱交換器、送風機、冷媒液側主管、冷媒ガス側
主管を有する1台の室外機と、熱交換器及び送風機を有
する複数台の室内機を、冷媒液が流れる冷媒液側主管か
ら分岐した液側分岐管、及び冷媒ガスが流れる冷媒ガス
側主管から分岐したガス側分岐管を介して接続し、冷媒
液側主管から室内機の間に弁開度を制御可能とした電動
膨張弁を介装して冷凍サイクルを構成し、室内機の各々
に室内温度の設定値を記憶する室内温度設定記憶装置
と、室内温度を検出する室内温度検出装置と、室内温度
設定記憶装置と室内温度検出装置とから室内温度と室内
温度との差温を算出する差温算出装置と、差温が取りう
る温度範囲を複数個の温度ゾーンに分割して記憶する温
度ゾーン記憶装置と、室内機が運転か停止かを記憶する
運転停止記憶装置とを設け、温度ゾーン記憶置と、運転
停止記憶装置の信号により、室内機の送風機と可変容量
圧縮機と電動膨張弁とを制御する制御装置を有し、各々
の室内機に冷房運転、除湿運転あるいは暖房運転の開始
時に短時間で室温を下げ、あるいは室温を上げるための
急速運転を行う急速運転設定装置と、急速運転の設定を
記憶する急速運転設定記憶装置と、各々の室内機に温度
ゾーン記憶装置と温度ゾーンのしきい値を記憶する温度
ゾーンしきい値記憶装置を設け、急速運転設定記憶装置
と温度ゾーンしきい値記憶装置と温度ゾーン記憶装置の
信号により、運転中でかつ急速運転設定記憶装置に急速
運転の設定がない室内機の差温の補正値を設定する差温
補正値設定装置と、急速運転設定記憶装置に急速運転の
設定がされてからの時間を計数する時間計数装置と計数
時間のしきい値を記憶する計数時間しきい値記憶装置を
設け、時間計数装置と計数時間しきい値記憶装置の信号
により、差温補正装置に設定された差温の補正値を元に
戻す制御装置を設けたものである。
According to a third aspect of the present invention, there is provided an outdoor unit having a variable capacity compressor, an outdoor heat exchanger, a blower, a refrigerant liquid side main pipe and a refrigerant gas side main pipe, and a plurality of units having a heat exchanger and a blower. The indoor units are connected via a liquid side branch pipe branched from the refrigerant liquid side main pipe through which the refrigerant liquid flows, and a gas side branch pipe branched from the refrigerant gas side main pipe through which the refrigerant gas flows. An indoor temperature setting storage device that stores a set value of the indoor temperature in each of the indoor units, and detects an indoor temperature, with a refrigeration cycle configured with an electric expansion valve capable of controlling the valve opening between the units. An indoor temperature detecting device, a differential temperature calculating device that calculates a differential temperature between the indoor temperature and the indoor temperature from the indoor temperature setting storage device and the indoor temperature detecting device, and a temperature range in which the differential temperature can be taken is set to a plurality of temperature zones. A temperature zone storage device, which is divided and stored An operation stop storage device that stores whether the inner unit is operating or stopped is provided, and control is performed to control the blower, the variable capacity compressor, and the electric expansion valve of the indoor unit by a signal of the temperature zone storage device and the operation stop storage device. A quick-operation setting device that has a device and that quickly lowers the room temperature at the start of the cooling operation, dehumidification operation, or heating operation at the start of the cooling operation, dehumidification operation or heating operation, and stores the setting of the rapid operation to increase the room temperature. A rapid operation setting storage device, and a temperature zone storage device and a temperature zone threshold value storage device for storing a temperature zone threshold value in each indoor unit. A differential temperature correction value setting device for setting a correction value for a differential temperature of an indoor unit that is in operation and has no rapid operation setting in the rapid operation setting storage device according to a signal of the temperature zone storage device; A time counting device for counting the time since the setting of the rapid operation and a counting time threshold value storing device for storing a threshold value of the counting time, and the signals of the time counting device and the counting time threshold value storing device are provided. Thus, there is provided a control device for restoring the correction value of the differential temperature set in the differential temperature correction device.

【0031】そしてこの構成によれば、短時間で温度を
下げたい(暖房時は上げたい)部屋に圧縮機のパワーを
一時的に集中させることが可能となる。また、負荷が小
さい(設定温度と吸込み検知温度の差が小さい)部屋の
み、ある一定時間のみ空気調和機の性能を抑制する為
に、他室の快適性の影響が少なくなる。
According to this configuration, it is possible to temporarily concentrate the power of the compressor in a room where the temperature is to be decreased in a short time (when the temperature is to be increased during heating). In addition, only in a room where the load is small (the difference between the set temperature and the suction detection temperature is small), since the performance of the air conditioner is suppressed only for a certain period of time, the influence of the comfort of other rooms is reduced.

【0032】請求項4に記載の発明は、可変容量圧縮
機、室外熱交換器、送風機、冷媒液側主管、冷媒ガス側
主管を有する1台の室外機と、熱交換器及び送風機を有
する複数台の室内機を、冷媒液が流れる冷媒液側主管か
ら分岐した液側分岐管、及び冷媒ガスが流れる冷媒ガス
側主管から分岐したガス側分岐管を介して接続し、冷媒
液側主管から室内機の間に弁開度を制御可能とした電動
膨張弁を介装して冷凍サイクルを構成し、室内機の各々
に室内温度の設定値を記憶する室内温度設定記憶装置
と、室内温度を検出する室内温度検出装置と、室内温度
設定記憶装置と室内温度検出装置とから室内温度と室内
温度との差温を算出する差温算出装置と、差温が取りう
る温度範囲を複数個の温度ゾーンに分割して記憶する温
度ゾーン記憶装置と、室内機が運転か停止かを記憶する
運転停止記憶装置とを設け、温度ゾーン記憶置と、運転
停止記憶装置の信号により、室内機の送風機と可変容量
圧縮機と電動膨張弁とを制御する制御装置を有し、各々
の室内機に冷房運転、除湿運転あるいは暖房運転の開始
時に短時間で室温を下げ、あるいは室温を上げるための
急速運転を行う急速運転設定装置と、急速運転の設定を
記憶する急速運転設定記憶装置と、各々の室内機に温度
ゾーン記憶装置と温度ゾーンのしきい値を記憶する温度
ゾーンしきい値記憶装置を設け、急速運転設定記憶装置
と温度ゾーンしきい値記憶装置と温度ゾーン記憶装置の
信号により、運転中でかつ急速運転設定記憶装置に急速
運転の設定がない室内機を停止し、冷媒を分流する膨張
弁を閉じる制御装置を設けたものである。
According to a fourth aspect of the present invention, there is provided an outdoor unit having a variable capacity compressor, an outdoor heat exchanger, a blower, a refrigerant liquid side main pipe and a refrigerant gas side main pipe, and a plurality of units having a heat exchanger and a blower. The indoor units are connected via a liquid side branch pipe branched from the refrigerant liquid side main pipe through which the refrigerant liquid flows, and a gas side branch pipe branched from the refrigerant gas side main pipe through which the refrigerant gas flows. An indoor temperature setting storage device that stores a set value of the indoor temperature in each of the indoor units, and detects an indoor temperature, with a refrigeration cycle configured with an electric expansion valve capable of controlling the valve opening between the units. An indoor temperature detecting device, a differential temperature calculating device that calculates a differential temperature between the indoor temperature and the indoor temperature from the indoor temperature setting storage device and the indoor temperature detecting device, and a temperature range in which the differential temperature can be taken is set to a plurality of temperature zones. A temperature zone storage device, which is divided and stored An operation stop storage device that stores whether the inner unit is operating or stopped is provided, and control is performed to control the blower, the variable capacity compressor, and the electric expansion valve of the indoor unit by a signal of the temperature zone storage device and the operation stop storage device. A quick-operation setting device that has a device and that quickly lowers the room temperature at the start of the cooling operation, dehumidification operation, or heating operation at the start of the cooling operation, dehumidification operation or heating operation, and stores the setting of the rapid operation to increase the room temperature. A rapid operation setting storage device, and a temperature zone storage device and a temperature zone threshold value storage device for storing a temperature zone threshold value in each indoor unit. And a control device that closes an expansion valve that diverts the refrigerant by stopping the indoor unit that is in operation and has no rapid operation setting in the rapid operation setting storage device in response to a signal from the temperature zone storage device.

【0033】そしてこの構成によれば、より一層、短時
間で温度を下げたい(暖房時は上げたい)部屋に圧縮機
のパワーを一時的に集中させることが可能となる。ま
た、負荷が小さい(設定温度と吸込み検知温度の差が小
さい)部屋のみの空気調和機の性能を抑制する為に、他
室の快適性の影響が少なくなる。
According to this configuration, it is possible to temporarily concentrate the power of the compressor in a room where the temperature is desired to be further reduced in a short time (when the temperature is to be increased during heating). Further, since the performance of the air conditioner only in the room where the load is small (the difference between the set temperature and the suction detection temperature is small) is suppressed, the influence of the comfort of the other room is reduced.

【0034】請求項5に記載の発明は、可変容量圧縮
機、室外熱交換器、送風機、冷媒液側主管、冷媒ガス側
主管を有する1台の室外機と、熱交換器及び送風機を有
する複数台の室内機を、冷媒液が流れる冷媒液側主管か
ら分岐した液側分岐管、及び冷媒ガスが流れる冷媒ガス
側主管から分岐したガス側分岐管を介して接続し、冷媒
液側主管から室内機の間に弁開度を制御可能とした電動
膨張弁を介装して冷凍サイクルを構成し、室内機の各々
に室内温度の設定値を記憶する室内温度設定記憶装置
と、室内温度を検出する室内温度検出装置と、室内温度
設定記憶装置と室内温度検出装置とから室内温度と室内
温度との差温を算出する差温算出装置と、差温が取りう
る温度範囲を複数個の温度ゾーンに分割して記憶する温
度ゾーン記憶装置と、室内機が運転か停止かを記憶する
運転停止記憶装置とを設け、温度ゾーン記憶置と、運転
停止記憶装置の信号により、室内機の送風機と可変容量
圧縮機と電動膨張弁とを制御する制御装置を有し、各々
の室内機に冷房運転、除湿運転あるいは暖房運転の開始
時に短時間で室温を下げ、あるいは室温を上げるための
急速運転を行う急速運転設定装置と、急速運転の設定を
記憶する急速運転設定記憶装置と、各々の室内機に温度
ゾーン記憶装置と温度ゾーンのしきい値を記憶する温度
ゾーンしきい値記憶装置を設け、急速運転設定記憶装置
と温度ゾーンしきい値記憶装置と温度ゾーン記憶装置の
信号により、運転中でかつ急速運転設定記憶装置に急速
運転の設定がない室内機停止し、冷媒を分流する膨張弁
を閉じる制御装置を設け,急速運転設定記憶装置に急速
運転の設定がされてからの時間を計数する時間計数装置
と計数時間のしきい値を記憶する計数時間しきい値記憶
装置を設け、時間計数装置と計数時間しきい値記憶装置
の信号により、停止した室内機を再運転させ、冷媒を分
流する膨張弁を開ける制御装置を設けたものである。
According to a fifth aspect of the present invention, there is provided an outdoor unit having a variable capacity compressor, an outdoor heat exchanger, a blower, a refrigerant liquid side main pipe, and a refrigerant gas side main pipe, and a plurality of units having a heat exchanger and a blower. The indoor units are connected via a liquid side branch pipe branched from the refrigerant liquid side main pipe through which the refrigerant liquid flows, and a gas side branch pipe branched from the refrigerant gas side main pipe through which the refrigerant gas flows. An indoor temperature setting storage device that stores a set value of the indoor temperature in each of the indoor units, and detects an indoor temperature, with a refrigeration cycle configured with an electric expansion valve capable of controlling the valve opening between the units. An indoor temperature detecting device, a differential temperature calculating device that calculates a differential temperature between the indoor temperature and the indoor temperature from the indoor temperature setting storage device and the indoor temperature detecting device, and a temperature range in which the differential temperature can be taken is set to a plurality of temperature zones. A temperature zone storage device, which is divided and stored An operation stop storage device that stores whether the inner unit is operating or stopped is provided, and control is performed to control the blower, the variable capacity compressor, and the electric expansion valve of the indoor unit by a signal of the temperature zone storage device and the operation stop storage device. A quick-operation setting device that has a device and that quickly lowers the room temperature at the start of the cooling operation, dehumidification operation, or heating operation at the start of the cooling operation, dehumidification operation or heating operation, and stores the setting of the rapid operation to increase the room temperature. A rapid operation setting storage device, and a temperature zone storage device and a temperature zone threshold value storage device for storing a temperature zone threshold value in each indoor unit. And a signal from the temperature zone storage device, a control device that shuts down the indoor unit that is in operation and has no rapid operation setting in the rapid operation setting storage device and closes the expansion valve that divides the refrigerant is provided. A time counting device for counting the time since the setting of the rapid operation in the storage device and a counting time threshold value storing device for storing a threshold value of the counting time, and a time counting device and a counting time threshold value storing device. In response to the signal, the stopped indoor unit is restarted, and a control device for opening the expansion valve for diverting the refrigerant is provided.

【0035】そしてこの構成によれば、短時間で温度を
下げたい(暖房時は上げたい)部屋に圧縮機のパワーを
一時的に集中させることが可能となる。また、負荷が小
さい(設定温度と吸込み検知温度の差が小さい)部屋の
み、ある一定時間のみ空気調和機の性能を抑制する為
に、他室の快適性の影響が少なくなる。
According to this configuration, it is possible to temporarily concentrate the power of the compressor in a room where the temperature is to be lowered in a short time (when the temperature is to be raised during heating). In addition, only in a room where the load is small (the difference between the set temperature and the suction detection temperature is small), the performance of the air conditioner is suppressed only for a certain period of time.

【0036】(実施例)以下、本発明の実施例につい
て、図面を参照しながら説明する。図1は、本発明にか
かる多室形空気調和装置の冷凍サイクル図の1例であ
り、1台の室外機2に複数台(例えば3台)の室内機1
a、1b、1cを接続した場合を示している。図2は、
本発明にかかる多室形空気調和装置の冷凍サイクル図の
別の1例であり、1台の室外機2に分岐ユニット16を
接続し複数台(例えば3台)の室内機1a、1b、1c
を接続した場合を示している。この図2の冷凍サイクル
でも今回の構成の範囲とし、効果も同じである。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an example of a refrigeration cycle diagram of a multi-room air conditioner according to the present invention, in which one outdoor unit 2 has a plurality of (for example, three) indoor units 1.
a, 1b, and 1c are connected. FIG.
It is another example of the refrigeration cycle diagram of the multi-room air conditioner according to the present invention, in which a branch unit 16 is connected to one outdoor unit 2 and a plurality (for example, three) of indoor units 1a, 1b, and 1c.
Is connected. The refrigeration cycle of FIG. 2 is also in the range of the present configuration, and the effect is the same.

【0037】図1において、室外機2にはインバータ駆
動の容量(周波数)可変形圧縮機3(以下単に圧縮機と
称す)と、室外熱交換器4と、冷媒液側主管5と、冷媒
ガス側主管6と、冷暖房切換用の四方弁7が設けられて
いる。一方、室内機1a,1b,1cには室内熱交換器
8a,8b,8c、室内送風機9a、9b、9cがそれ
ぞれ設けられていて、室外機2と室内機1a、1b、1
cは冷媒液側主管5より分岐した液側分岐管5a,5
b,5c及び冷媒ガス側主管6より分岐したガス側分岐
管6a,6b,6cとで接続されており、液側分岐管5
a,5b,5cには、例えばステッピングモータ等によ
り弁開度をパルス制御可能な電動冷媒分配膨張弁10
a,10b,10cがそれぞれ介装されている。
In FIG. 1, the outdoor unit 2 has an inverter-driven variable capacity (frequency) compressor 3 (hereinafter simply referred to as a compressor), an outdoor heat exchanger 4, a refrigerant liquid side main pipe 5, a refrigerant gas A side main pipe 6 and a four-way valve 7 for switching between cooling and heating are provided. On the other hand, the indoor units 1a, 1b, 1c are provided with indoor heat exchangers 8a, 8b, 8c and indoor blowers 9a, 9b, 9c, respectively, and the outdoor unit 2 and the indoor units 1a, 1b, 1c are provided.
c is a liquid side branch pipe 5a, 5 branched from the refrigerant liquid side main pipe 5.
b, 5c and the gas side branch pipes 6a, 6b, 6c branched from the refrigerant gas side main pipe 6, and the liquid side branch pipe 5
a, 5b, and 5c are provided with an electric refrigerant distribution expansion valve 10 capable of pulse-controlling the valve opening by a stepping motor or the like.
a, 10b and 10c are interposed respectively.

【0038】また、室内機1a,1b,1cには部屋の
室温を検出する室内温度センサ11a,11b,11
c、居住者が希望する運転モード(冷房または暖房)と
室温と運転あるいは停止を設定できる運転設定装置12
a,12b,12c、急速運転を設定できる急速運転運
転設定装置13a,13b,13cが設けられている。
The indoor units 1a, 1b, 1c have room temperature sensors 11a, 11b, 11 for detecting the room temperature in the room.
c, an operation setting device 12 that can set an operation mode (cooling or heating) desired by the resident, a room temperature, and operation or stop.
a, 12b, 12c, and a rapid operation setting device 13a, 13b, 13c capable of setting rapid operation.

【0039】また図2において、分岐ユニット16の中
に冷媒液側主管5より分岐した液側分岐管5a,5b,
5c及び冷媒ガス側主管6より分岐したガス側分岐管6
a,6b,6cを設けており、液側分岐管5a,5b,
5cには、例えばステッピングモータ等により弁開度を
パルス制御可能な電動冷媒分配膨張弁10a,10b,
10cがそれぞれ介装されている。
In FIG. 2, the liquid side branch pipes 5 a, 5 b, branched from the refrigerant liquid main pipe 5 into the branch unit 16.
5c and a gas side branch pipe 6 branched from the refrigerant gas side main pipe 6
a, 6b, 6c, and the liquid side branch pipes 5a, 5b,
5c, electric refrigerant distribution expansion valves 10a, 10b, which can pulse-control the valve opening degree by a stepping motor or the like, for example.
10c are interposed respectively.

【0040】上記構成の冷凍サイクルにおいて、冷房あ
るいは除湿運転時、圧縮機3から吐出された冷媒は四方
弁7を介して室外熱交換器4と流れ、室外送風機15の
駆動により室外熱交換器4で室外空気と熱交換して凝縮
液化し、冷媒液側主管5を通り液側分岐管5a,5b,
5cにて冷媒分配させ冷媒分配膨張弁10a,10b,
10cで複数の室内機に分配された冷媒を流量制御して
室内機1a,1b,1c,で蒸発した後に、ガス側分岐
から冷媒ガス側主管6に合流して四方弁7、アキュムレ
ータ−16を介して再び圧縮機3に吸入される。この冷
媒分配膨張弁10a,10b,10cは室内の負荷に見
合った開度となるようにステッピングモータ等によりパ
ルス制御されるため、冷媒も室内負荷に応じた流量で制
御される。
In the refrigeration cycle having the above configuration, during the cooling or dehumidifying operation, the refrigerant discharged from the compressor 3 flows through the outdoor heat exchanger 4 through the four-way valve 7, and is driven by the outdoor blower 15. Exchanges heat with the outdoor air to condense and liquefy, passes through the refrigerant liquid-side main pipe 5, and flows into the liquid-side branch pipes 5a, 5b
The refrigerant is distributed at 5c, and the refrigerant distribution expansion valves 10a, 10b,
After the refrigerant distributed to the plurality of indoor units is controlled at 10c to evaporate at the indoor units 1a, 1b, and 1c, the refrigerant is joined from the gas side branch to the refrigerant gas side main pipe 6, and the four-way valve 7 and the accumulator 16 are operated. Is sucked into the compressor 3 again. Since the refrigerant distribution expansion valves 10a, 10b, and 10c are pulse-controlled by a stepping motor or the like so as to have an opening corresponding to the indoor load, the refrigerant is also controlled at a flow rate corresponding to the indoor load.

【0041】第3図は本発明にかかる多室形空気調和装
置の室内機の断面図であり、室内機1a本体上部及び前
部には複数の吸込口17が形成されるとともに、本体下
部には吹出口18が形成されている。また、吸込口17
と吹出口18とを連通する空気通路19には室内熱交換
器11aと室内送風機9aが設けられており、吹出口1
8には風向変更羽根20が揺動自在に取り付けられてい
る。室内温度センサ11aは本体の中に配置されてい
る。
FIG. 3 is a cross-sectional view of the indoor unit of the multi-room air conditioner according to the present invention. The indoor unit 1a has a plurality of suction ports 17 formed in the upper part and the front part of the main unit, and in the lower part of the main unit. Has an outlet 18 formed therein. In addition, the suction port 17
An indoor heat exchanger 11a and an indoor blower 9a are provided in an air passage 19 that communicates with the air outlet 18.
A wind direction changing blade 20 is swingably attached to 8. The room temperature sensor 11a is disposed in the main body.

【0042】第4図は本発明にかかる多室型空気調和装
置の信号の流れを示すブロック図である。まず、室内機
1aにおいて、室内温度センサ11aの出力を室内温度
検出装置21より温度信号として差温算出装置22に送
出する一方、運転設定装置12aからの信号を信号受信
装置23で受けて運転設定装置12aで設定された温度
設定を室内温度設定記憶装置24で記憶されその温度設
定を差温算出装置22に送出し、ここで差温ΔT(=T
r−Ts)を算出し、差温信号とする。この室内温度を
Trとし設定温度をTsとする。
FIG. 4 is a block diagram showing a signal flow of the multi-room air conditioner according to the present invention. First, in the indoor unit 1a, the output of the indoor temperature sensor 11a is sent from the indoor temperature detecting device 21 to the differential temperature calculating device 22 as a temperature signal, while the signal from the operation setting device 12a is received by the signal receiving device 23 to set the operation. The temperature setting set by the device 12a is stored in the room temperature setting storage device 24, and the temperature setting is sent to the differential temperature calculating device 22, where the differential temperature ΔT (= T
r−Ts) is calculated and used as a differential temperature signal. The room temperature is Tr and the set temperature is Ts.

【0043】運転設定装置12aでは、温度設定の他に
運転停止信号、冷房・除湿・暖房等の運転モード、風量
設定、風量自動、風向設定、風向自動が設定できるもの
である。
The operation setting device 12a can set an operation stop signal, an operation mode such as cooling, dehumidification, and heating, an air volume setting, an automatic air volume, an air direction setting, and an automatic air direction in addition to the temperature setting.

【0044】また、運転停止記憶装置25て、運転設定
装置12aで設定された信号を信号受信装置23で受信
し室内機1aの運転(ON)あるいは停止(OFF)を
記憶する。また、運転モード記憶装置26にて、運転設
定装置12aで設定された信号を信号受信装置23で受
信し室内機1aの冷房・除湿・暖房等どれかの運転モー
ドを記憶する。
The operation stop storage device 25 receives the signal set by the operation setting device 12a by the signal receiving device 23 and stores the operation (ON) or stop (OFF) of the indoor unit 1a. The operation mode storage device 26 receives the signal set by the operation setting device 12a by the signal receiving device 23, and stores one of the operation modes such as cooling, dehumidification, and heating of the indoor unit 1a.

【0045】さらに、風量モード記憶装置27にて、運
転設定装置12aで設定された信号を信号受信装置23
で受信し、室内機1aの風量の設定値(自動あるいはH
i、Me+、Me、Me−、Loの5速のうちどれか1
つ)を記憶し、送風機電圧設定装置28に室内送風機9
aに印加電圧が設定される。
Further, the signal set by the operation setting device 12a is stored in the airflow mode storage device 27 by the signal receiving device 23.
And the set value of the air volume of the indoor unit 1a (automatic or H
One of 5 speeds i, Me +, Me, Me-, Lo
) Is stored in the blower voltage setting device 28 and the indoor blower 9
The applied voltage is set to a.

【0046】急速運転設定装置13aでは、冷房運転、
除湿運転あるいは暖房運転の開始時に短時間で室温を下
げ、あるいは室温を上げるための急速運転を設定でき
る。急速運転設定装置13aからの信号は信号受信装置
23に送られるともに、急速運転設定記憶装置29で記
憶さる。
In the rapid operation setting device 13a, the cooling operation,
At the start of the dehumidifying operation or the heating operation, the room temperature can be lowered in a short time, or the rapid operation for raising the room temperature can be set. The signal from the rapid operation setting device 13a is sent to the signal receiving device 23 and stored in the rapid operation setting storage device 29.

【0047】また、時間計数装置30にて、運転設定装
置12aで設定された信号を信号受信装置23で受信し
てからの経過時間を計数する。
Further, the time counting device 30 counts the elapsed time after the signal set by the operation setting device 12a is received by the signal receiving device 23.

【0048】さらに、定格容量記憶装置31に室内機1
aの定格容量を記憶しておき、これらの定格容量信号、
差温信号、運転モード信号、運転停止信号、室内温度信
号、急速運転信号、計数時間信号を信号送出装置32よ
り室外機2の信号受信装置33へ送出する。
Further, the indoor unit 1 is stored in the rated capacity storage device 31.
a is stored, and these rated capacity signals,
A signal difference signal, an operation mode signal, an operation stop signal, an indoor temperature signal, a rapid operation signal, and a counting time signal are transmitted from the signal transmission device 32 to the signal reception device 33 of the outdoor unit 2.

【0049】信号受信装置33で受信した信号は、圧縮
機周波数演算装置34と冷媒分配膨張弁開度演算装置3
5へ送出される。圧縮機周波数演算装置34で求められ
た演算結果は、周波数信号として圧縮機駆動装置(図示
せず)に送出され、圧縮機3の周波数制御が行われる。
また、冷媒分配膨張弁開度演算装置35にて、冷媒分配
比率を演算して各冷媒分配膨張弁10a,10b,10
cの開度を設定する。
The signal received by the signal receiving device 33 is transmitted to the compressor frequency calculating device 34 and the refrigerant distribution expansion valve opening calculating device 3
5 is sent. The calculation result obtained by the compressor frequency calculation device 34 is sent to a compressor drive device (not shown) as a frequency signal, and the frequency of the compressor 3 is controlled.
Further, the refrigerant distribution expansion valve opening calculating device 35 calculates the refrigerant distribution ratio to calculate the refrigerant distribution expansion valves 10a, 10b, 10
Set the opening of c.

【0050】以後、所定周期毎に、定格容量信号、差温
信号、運転モード信号、運転停止信号に基づいて圧縮機
3の周波数No.及び電動膨張弁10a、10b、10
cの弁開度を算出し、圧縮機3の周波数制御及び電動膨
張弁の開度制御が行われる。
Thereafter, at every predetermined cycle, the frequency No. of the compressor 3 is determined based on the rated capacity signal, the differential temperature signal, the operation mode signal and the operation stop signal. And electric expansion valves 10a, 10b, 10
The valve opening of c is calculated, and the frequency control of the compressor 3 and the opening control of the electric expansion valve are performed.

【0051】次に、本発明の第1の実施例について、図
5〜7を参照しながら説明する。図5は室内温度Trと
設定温度Tsとの差温ΔTの温度ゾーン分割図。図6負
荷定数テーブル図。図7はフローチャート図である。
Next, a first embodiment of the present invention will be described with reference to FIGS. FIG. 5 is a temperature zone division diagram of a temperature difference ΔT between the room temperature Tr and the set temperature Ts. 6 is a load constant table diagram. FIG. 7 is a flowchart.

【0052】まず、室内機1aにおいて、室内吸込み温
度(Tr)と設定温度(Ts)の差温ΔT(=Tr−T
s)を算出し(フローチャートS1)、図6に示す負荷
ナンバーLn値に変換してこれを差温信号とするが、急
速運転設定装置13aが設定されると(S2)、冷房運
転の場合は(S3)、差温ΔTに温度補正値Tha(こ
こでは仮に2℃とする)追加(S5)し、これに対応す
る負荷ナンバーLn値に変換(S11)してこれを差温
信号とする。暖房運転の場合、(S3)は差温ΔTに温
度補正値Tha(ここでは仮に2℃とする)マイナス
(S8)し、これに対応する負荷ナンバーLn値に変換
(S13)してこれを差温信号とする。
First, in the indoor unit 1a, the temperature difference ΔT (= Tr−T) between the indoor suction temperature (Tr) and the set temperature (Ts).
s) is calculated (flowchart S1), converted into a load number Ln value shown in FIG. 6 and used as a differential temperature signal. When the rapid operation setting device 13a is set (S2), in the case of cooling operation, (S3) A temperature correction value Tha (here, supposed to be 2 ° C.) is added to the temperature difference ΔT (S5), converted into a corresponding load number Ln value (S11), and used as a temperature difference signal. In the case of the heating operation, (S3) subtracts the temperature difference ΔT from the temperature correction value Tha (here, supposed to be 2 ° C.) (S8), converts it to the corresponding load number Ln value (S13), and subtracts this value. Temperature signal.

【0053】しかし、ここではフローチャートに記載し
ないが、急速運転設定装置13aが設定されている場合
は、負荷ナンバーLn=Lmax(ここでは例えばLn
=8とする)に設定されるが、設定されていない時の最
高負荷ナンバーはLn=Lmax−1に制限されるもの
とする(ここでは例えば7とする)。
However, although not described in the flowchart here, when the rapid operation setting device 13a is set, the load number Ln = Lmax (here, for example, Ln
= 8), but the maximum load number when not set is limited to Ln = Lmax-1 (here, for example, 7).

【0054】例えば冷房運転時でTr=27.3℃、Ts
=26℃とすると、差温ΔT=1.3℃でLn=6とな
るが、急速運転設定装置13aに急速運転が設定される
と、ΔT=1.3℃+2℃=3.3℃となりLn=8と
なる。しかし、冷房運転時でTr=30℃、Ts=26℃
とすると、差温ΔT=4℃でLn=8の領域に有るが、
急速運転設定装置13aに急速運転が設定されていない
と、Ln=8の領域ではなくLn=7の領域の負荷と判
断する。Ln=8の領域への移行は急速運転が設定され
た時のみとし、設定されていない時の負荷テーブルの上
限はLn=7とする。
For example, during cooling operation, Tr = 27.3 ° C., Ts
= 26 ° C, Ln = 6 at the temperature difference ΔT = 1.3 ° C, but when rapid operation is set in the rapid operation setting device 13a, ΔT = 1.3 ° C + 2 ° C = 3.3 ° C. Ln = 8. However, during cooling operation, Tr = 30 ° C., Ts = 26 ° C.
Then, there is a temperature difference ΔT = 4 ° C. and Ln = 8,
If the rapid operation is not set in the rapid operation setting device 13a, it is determined that the load is not in the region of Ln = 8 but in the region of Ln = 7. The transition to the region of Ln = 8 is made only when the rapid operation is set, and the upper limit of the load table when the rapid operation is not set is Ln = 7.

【0055】次に、急速運転設定装置13aに急速運転
が設定(S4、S7)されかつ、図5のに示す負荷ナン
バーLn値がLn=Lmax(ここでは例えばLn=
8)の領域にある場合(S15、S16)、ユーザーが
リモコン等で設定した風量より数タップ(ここでは例え
ば2タップ)上の設定値に風量を自動的に変更する(S
17、S18)。
Next, the rapid operation is set in the rapid operation setting device 13a (S4, S7), and the load number Ln shown in FIG. 5 is changed to Ln = Lmax (here, for example, Ln = Lmax).
8) (S15, S16), the air volume is automatically changed to a set value several taps (here, for example, two taps) higher than the air volume set by the user with the remote controller or the like (S15).
17, S18).

【0056】例えば、ユーザーが風量をMeで設定して
いた場合は、風量はHiに変更される。また、フローチ
ャートには記載しないが、ユーザーがMe+以上の風量
の設定をしていた場合は、ユーザーよる外部操作では設
定できないHi設定を上回る空調負荷極大風量設定PH
iとなるように風量設定変更を行う。
For example, if the user has set the air volume in Me, the air volume is changed to Hi. Although not described in the flow chart, if the user has set an air volume equal to or greater than Me +, the air conditioning load maximum air volume setting PH that exceeds the Hi setting that cannot be set by an external operation by the user.
The air volume setting is changed so as to become i.

【0057】一方、急速運転設定装置13b、13cが
設定されていない室内機1b、1cは、冷房運転の場合
は差温ΔTに補正値Thb(ここでは仮に2℃)マイナ
スし(S6)、これに対応する負荷ナンバーLn値に変
換(S12)してこれを差温信号とする。暖房運転の場
合は差温ΔTに補正値Thb(ここでは仮に2℃)プラ
スし(S9)、これに対応する負荷ナンバーLn値に変
換(S14)してこれを差温信号とする。
On the other hand, in the indoor units 1b and 1c for which the rapid operation setting devices 13b and 13c are not set, in the case of the cooling operation, the correction value Thb (in this case, 2 ° C.) is subtracted from the difference temperature ΔT (S6). Is converted into a load number Ln value (S12), which is used as a differential temperature signal. In the case of the heating operation, a correction value Thb (here, tentatively 2 ° C.) is added to the temperature difference ΔT (S9), converted into a corresponding load number Ln value (S14), and this is used as a temperature difference signal.

【0058】又、これもフローチャートに記載しない
が、室内機1a、1b、1cのそれぞれの定格容量信
号、差温信号、運転モード信号、運転停止信号より図6
に示す負荷定数テーブルから負荷定数を読みだし、この
負荷定数の総和に定数を乗じて圧縮機3の周波数をおよ
び膨張弁10の開度を決定する。
Although not shown in the flowchart, the rated capacity signal, the differential temperature signal, the operation mode signal, and the operation stop signal of each of the indoor units 1a, 1b, and 1c are shown in FIG.
The load constant is read from the load constant table shown in FIG. 3, and the sum of the load constants is multiplied by a constant to determine the frequency of the compressor 3 and the opening of the expansion valve 10.

【0059】1例として、表4(a)のような2室運転
時(1b、1c)に、表4(b)のようにもう1室(1
a)を急速運転で立ち上げた場合を説明する。
As an example, during the two-room operation (1b, 1c) as shown in Table 4 (a), another room (1) is operated as shown in Table 4 (b).
The case where a) is started by rapid operation will be described.

【0060】[0060]

【表4】 [Table 4]

【0061】風量はすべてMe+の設定とする。All the air volumes are set to Me +.

【0062】例えば冷房運転時でa室停止、b室Tr=
25.3℃、Ts=26℃、c室Tr=27.3℃、Ts
=26℃とすると、差温ΔTb=―0.8℃でLn=
2、差温ΔTc=1.3℃でLn=6となり、室内機1
a、1b、1cの負荷定数はそれぞれ0、0.4,2.
4となり、従って圧縮機3の周波数Hzは、Aを定数と
すると Hz=A×(0+0.4+2.4)=A×2.8 となる。
For example, in the cooling operation, the room a is stopped, and the room b Tr =
25.3 ° C, Ts = 26 ° C, Tr room c = 27.3 ° C, Ts
= 26 ° C., Ln = ΔTb = −0.8 ° C.
2. Ln = 6 when the temperature difference ΔTc = 1.3 ° C., and the indoor unit 1
The load constants of a, 1b, 1c are 0, 0.4, 2,.
4, the frequency Hz of the compressor 3 is given by: Hz = A × (0 + 0.4 + 2.4) = A × 2.8 where A is a constant.

【0063】この演算結果を周波数信号として圧縮機駆
動装置(図示せず)に送出して圧縮機3の周波数及び膨
張弁10の開度の制御を行なう。
The calculation result is sent as a frequency signal to a compressor driving device (not shown) to control the frequency of the compressor 3 and the opening of the expansion valve 10.

【0064】この時、a室がTr=27.3℃、Ts=2
6℃、(差温ΔTa=1.3℃でLn=6)の条件で急
速運転で立ち上げると、急速運転設定装置13aが設定
され、差温ΔTに2℃追加しこれに対応する負荷ナンバ
ーLn値に変換してこれを差温信号とする。よって、Δ
Ta=1.3℃+2℃=3.3℃となりLn=8とな
る。
At this time, the temperature in the chamber a is Tr = 27.3 ° C. and Ts = 2
When the apparatus is started by rapid operation under the condition of 6 ° C., (differential temperature ΔTa = 1.3 ° C. and Ln = 6), the rapid operation setting device 13a is set, and 2 ° C. is added to the differential temperature ΔT, and the load number corresponding thereto is set. The value is converted into an Ln value and is used as a differential temperature signal. Therefore, Δ
Ta = 1.3 ° C. + 2 ° C. = 3.3 ° C., and Ln = 8.

【0065】一方、急速運転設定装置13b、13cが
設定されていない室内機1b、1cは急速運転設定装置
13aが設定されると、差温ΔTに2℃マイナスしこれ
に対応する負荷ナンバーLn値に変換してこれを差温信
号とすると ΔTb=−0.7℃―2℃=−1.7℃となりLn=0 ΔTc=+1.3℃―2℃=−0.3℃となりLn=2 となる。
On the other hand, when the rapid operation setting device 13a is set, the indoor units 1b and 1c, for which the rapid operation setting devices 13b and 13c are not set, subtract the temperature difference ΔT by 2 ° C. and the corresponding load number Ln value Is converted to a differential temperature signal, ΔTb = −0.7 ° C.−2 ° C. = − 1.7 ° C., and Ln = 0 ΔTc = + 1.3 ° C.−2 ° C. = − 0.3 ° C., and Ln = 2 Becomes

【0066】よって、室内機1a、1b、1cの負荷定
数はそれぞれ2.4、0,0.5となり、従って圧縮機
3の周波数Hzは、Aを定数とするとHz=A×(2.
4+0+0.5)=A×2.9となる。
Accordingly, the load constants of the indoor units 1a, 1b, and 1c are 2.4, 0, and 0.5, respectively. Therefore, when the frequency Hz of the compressor 3 is A, Hz = A × (2.
4 + 0 + 0.5) = A × 2.9.

【0067】この演算結果を周波数信号として圧縮機駆
動装置(図示せず)に送出して圧縮機3の周波数の制御
および膨張弁10の開度の制御を行う。
The calculation result is sent as a frequency signal to a compressor driving device (not shown) to control the frequency of the compressor 3 and the opening of the expansion valve 10.

【0068】次に、第2の実施例について、図5,6,
8を参照しながら説明する。図5は室内温度Trと設定
温度Tsとの差温ΔTの温度ゾーン分割図。図6負荷定
数テーブル図。図8はフローチャート図である。
Next, a second embodiment will be described with reference to FIGS.
This will be described with reference to FIG. FIG. 5 is a temperature zone division diagram of a temperature difference ΔT between the room temperature Tr and the set temperature Ts. 6 is a load constant table diagram. FIG. 8 is a flowchart.

【0069】急速運転設定装置13aが設定されると
(S2)、冷房運転の場合は、差温ΔTに温度補正値T
ha(ここでは仮に2℃とする)プラスし(S5)、こ
れに対応する負荷ナンバーLn値に変換してこれを差温
信号とする(S15)。暖房運転の場合は、差温ΔTに
温度補正値Tha(ここでは仮に2℃とする)マイナス
し(S10)、これに対応する負荷ナンバーLn値に変
換してこれを差温信号とする(S17)。
When the rapid operation setting device 13a is set (S2), in the case of the cooling operation, the temperature correction value T is added to the temperature difference ΔT.
ha (here, supposed to be 2 ° C.) plus (S5), which is converted into a corresponding load number Ln value, which is used as a differential temperature signal (S15). In the heating operation, the temperature difference ΔT is subtracted from the temperature correction value Tha (here, supposed to be 2 ° C.) (S10), converted into a load number Ln value corresponding to the temperature difference ΔT, and used as a temperature difference signal (S17). ).

【0070】しかし、ここではフローチャートに記載し
ないが、急速運転設定装置13aが設定されている場合
は、負荷ナンバーLn=Lmax(ここでは例えばLn
=8)に設定されるが、設定されていないの最高負荷ナ
ンバーはLn=Lmax−1(ここでは例えばLn=
7)に制限されるものとする。
However, although not described in the flowchart here, when the rapid operation setting device 13a is set, the load number Ln = Lmax (here, for example, Ln
= 8), but the highest load number not set is Ln = Lmax-1 (here, for example, Ln =
7).

【0071】次に、急速運転設定装置13aに急速運転
が設定されかつ、図5のに示す負荷ナンバーLn値がL
n=Lmax(ここでは例えばLn=8)の領域にある
場合(S19、S20)、ユーザーがリモコン等で設定
した風量より数タップ(ここでは例えば2タップ)上の
設定値に風量を自動的に変更する(S21,S22)。
Next, rapid operation is set in the rapid operation setting device 13a, and the load number Ln shown in FIG.
When it is in the region of n = Lmax (here, for example, Ln = 8) (S19, S20), the air volume is automatically increased to a set value several taps (here, for example, two taps) above the air volume set by the user with a remote controller or the like. It is changed (S21, S22).

【0072】一方、急速運転設定装置13b、13cが
設定されていない室内機1b、1cは、現在の負荷Ln
がLa以下(ここでは例えばLa=2)かどうか判断
し、Ln≦Laの(ここでは例えばLa=2以下)の場
合は(S7、S12)、冷房運転の場合は差温ΔTに温
度補正値Thb(ここでは例えば1℃)マイナスし(S
8)、これに対応する負荷ナンバーLn値に変換してこ
れを差温信号とする(S16)。
On the other hand, the indoor units 1b and 1c, for which the rapid operation setting devices 13b and 13c are not set, have the current load Ln
Is determined to be La or less (here, for example, La = 2). If Ln ≦ La (here, for example, La = 2 or less) (S7, S12), and in the case of the cooling operation, the temperature difference ΔT is added to the temperature correction value. Thb (here, for example, 1 ° C.) minus (S
8) The load number Ln is converted into a corresponding value of the load number Ln, which is used as a differential temperature signal (S16).

【0073】暖房運転の場合は差温ΔTに温度補正値T
hb(ここでは例えば1℃)プラスし(S13)、これ
に対応する負荷ナンバーLn値に変換してこれを差温信
号とする。(S18)。Ln=La+1(ここでは例え
ばLn=3)以上の場合は差温ΔTの補正は行われな
い。
In the case of the heating operation, the temperature difference T
hb (here, for example, 1 ° C.) is added (S13), converted to a corresponding load number Ln value, and used as a differential temperature signal. (S18). When Ln = La + 1 (here, for example, Ln = 3) or more, the correction of the temperature difference ΔT is not performed.

【0074】この演算結果より、フローチャートに記載
しないが、図6に示す負荷定数テーブルから負荷定数を
読みだし、この負荷定数の総和に定数を乗じて圧縮機3
の周波数をおよび膨張弁10の開度を決定する。
Although not described in the flowchart, the load constants are read from the load constant table shown in FIG. 6 based on the calculation results, and the sum of the load constants is multiplied by a constant to obtain the compressor 3.
And the opening of the expansion valve 10 are determined.

【0075】1例として、表5(a)のような2室運転
時(1b、1c)に、表5(b)のようにもう1室(1
a)を急速運転で立ち上げた場合を説明する。
As an example, during two-room operation (1b, 1c) as shown in Table 5 (a), another room (1) is operated as shown in Table 5 (b).
The case where a) is started by rapid operation will be described.

【0076】[0076]

【表5】 [Table 5]

【0077】風量はすべてMe+の設定とする。All air volumes are set to Me +.

【0078】例えば冷房運転時でa室停止、b室Tr=
25.3℃、Ts=26℃、c室Tr=27.3℃、Ts
=26℃とすると、差温ΔTb=―0.8℃でLn=
2、差温ΔTc=1.3℃でLn=6となり、室内機1
a、1b、1cの負荷定数はそれぞれ0、0.4,2.
4となり、従って圧縮機3の周波数Hzは、Aを定数と
すると Hz=A×(0+0.4+2.4)=A×2.8 となる。
For example, in the cooling operation, the room a is stopped and the room b Tr =
25.3 ° C, Ts = 26 ° C, Tr room c = 27.3 ° C, Ts
= 26 ° C., Ln = ΔTb = −0.8 ° C.
2. Ln = 6 when the temperature difference ΔTc = 1.3 ° C., and the indoor unit 1
The load constants of a, 1b, 1c are 0, 0.4, 2,.
4, the frequency Hz of the compressor 3 is given by: Hz = A × (0 + 0.4 + 2.4) = A × 2.8 where A is a constant.

【0079】この演算結果を周波数信号として圧縮機駆
動装置(図示せず)に送出して圧縮機3の周波数の制御
を行なう。この時、a室がTr=27.3℃、Ts=26
℃、(差温ΔTa=1.3℃でLn=6)の条件で急速
運転で立ち上げると、急速運転設定装置13aが設定さ
れ、差温ΔTに2℃追加しこれに対応する負荷ナンバー
Ln値に変換してこれを差温信号とする。よって、ΔT
a=1.3℃+2℃=3.3℃となりLn=8となる。
The calculation result is sent to a compressor driving device (not shown) as a frequency signal to control the frequency of the compressor 3. At this time, the temperature in the chamber a is Tr = 27.3 ° C. and Ts = 26.
When the apparatus is started by rapid operation under the condition of ° C, (differential temperature ΔTa = 1.3 ° C and Ln = 6), the rapid operation setting device 13a is set, and 2 ° C is added to the differential temperature ΔT, and the corresponding load number Ln This is converted into a value and this is used as a differential temperature signal. Therefore, ΔT
a = 1.3 ° C. + 2 ° C. = 3.3 ° C., and Ln = 8.

【0080】一方、急速運転設定装置13b、13cが
設定されていない室内機1b、1cは急速運転設定装置
13aが設定されると、現在の負荷がLn=2以下かど
うか判断し、Ln=2以下の場合は、差温ΔTに2℃マ
イナスしこれに対応する負荷ナンバーLn値に変換して
これを差温信号とする。Ln=3以上の場合は差温ΔT
の補正は行われない。よって、 ΔTb=−0.8℃ー2℃=―2.8℃となりLn=0 ΔTb= 1.3℃ー0℃= 1.3℃となりLn=6 のままである。
On the other hand, when the rapid operation setting device 13a is set, the indoor units 1b and 1c in which the rapid operation setting devices 13b and 13c are not set judge whether the current load is Ln = 2 or less, and Ln = 2 In the following cases, the temperature difference ΔT is subtracted by 2 ° C., converted into a corresponding load number Ln value, and used as a temperature difference signal. Difference temperature ΔT when Ln = 3 or more
Is not corrected. Accordingly, ΔTb = −0.8 ° C.−2 ° C. = − 2.8 ° C., and Ln = 0 ΔTb = 1.3 ° C.-0 ° C. = 1.3 ° C., and Ln = 6.

【0081】よって、室内機1a、1b、1cの負荷定
数はそれぞれ2.4、0、2.4となり、圧縮機3の周
波数Hzは、Aを定数とすると Hz=A×(2.4+
0+2.4)=A×4.8となる。
Therefore, the load constants of the indoor units 1a, 1b, and 1c are 2.4, 0, and 2.4, respectively, and the frequency Hz of the compressor 3 is given by: Hz = A × (2.4+
0 + 2.4) = A × 4.8.

【0082】この演算結果を周波数信号として圧縮機駆
動装置(図示せず)に送出して圧縮機3の周波数の制御
および膨張弁10の制御を行う。
The calculation result is sent as a frequency signal to a compressor driving device (not shown) to control the frequency of the compressor 3 and the expansion valve 10.

【0083】次に、第3の実施例について、図5、6,
9を参照しながら説明する。図5は室内温度Trと設定
温度Tsとの差温ΔTの温度ゾーン分割図。図6負荷定
数テーブル図。図9はフローチャート図である。
Next, a third embodiment will be described with reference to FIGS.
This will be described with reference to FIG. FIG. 5 is a temperature zone division diagram of a temperature difference ΔT between the room temperature Tr and the set temperature Ts. 6 is a load constant table diagram. FIG. 9 is a flowchart.

【0084】急速運転設定装置13aに急速運転が設定
されると、時間計数装置30にて、急速運転が設定され
てからの経過時間tを計数する(S3)。
When the rapid operation is set in the rapid operation setting device 13a, the time counting device 30 counts the elapsed time t after the rapid operation is set (S3).

【0085】その後、請求項1又は2と同様の制御を行
うが(S4〜S19)、経過時間t=ta(ここでは例
えば5分)時間経過すると(S20〜23)、急速運転
設定装置13b、13cに急速運転が設定されていない
室内機1b、1cの差温ΔTを現在の負荷に対応した差
温ΔT(補正してない温度)に戻し、(S31,S3
3)、圧縮機、送風機、膨張弁も現在の負荷に対応した
設定値へ設定される。
Thereafter, the same control as in claim 1 or 2 is performed (S4 to S19), but when the elapsed time t = ta (here, for example, 5 minutes) elapses (S20 to 23), the rapid operation setting device 13b, The temperature difference ΔT of the indoor units 1b and 1c for which the rapid operation is not set to 13c is returned to the temperature difference ΔT (uncorrected temperature) corresponding to the current load, and (S31, S3
3) The compressor, blower, and expansion valve are also set to the set values corresponding to the current load.

【0086】一方、急速運転設定装置13aに急速運転
が設定された室内機1aは、急速運転が設定されてから
の経過時間t=tb(ここでは例えば1時間)経過する
か、(S24、S25)又は負荷領域ががLn≦Lma
x−1(ここでは例えばLn=7)の領域に入ると(S
26、S27)、急速運転設定装置13aの設定をを解
除し、風量を元の状態に戻し(S28,S29)、差温
ΔTを現在の負荷に対応した差温ΔT(補正してない温
度)に戻し(S30,S32)、圧縮機、送風機、膨張
弁も現在の負荷に対応した設定値へ設定される。
On the other hand, in the indoor unit 1a in which the rapid operation has been set in the rapid operation setting device 13a, the elapsed time t = tb (here, for example, one hour) has elapsed since the rapid operation was set, or (S24, S25). ) Or the load area is Ln ≦ Lma
x-1 (here, Ln = 7, for example)
26, S27), the setting of the rapid operation setting device 13a is released, the air volume is returned to the original state (S28, S29), and the differential temperature ΔT is changed to the differential temperature ΔT corresponding to the current load (temperature not corrected). (S30, S32), the compressor, the blower, and the expansion valve are also set to the set values corresponding to the current load.

【0087】次に、第4の実施例について、図5、6,
10を参照しながら説明する。図5は室内温度Trと設定
温度Tsとの差温ΔTの温度ゾーン分割図。図6負荷定
数テーブル図。図10はフローチャート図である。
Next, a fourth embodiment will be described with reference to FIGS.
This will be described with reference to FIG. FIG. 5 is a temperature zone division diagram of a temperature difference ΔT between the room temperature Tr and the set temperature Ts. 6 is a load constant table diagram. FIG. 10 is a flowchart.

【0088】急速運転設定装置13aが設定されると、
冷房運転の場合は差温ΔTに温度補正値Tha(ここで
は例えば2℃)プラスし(S5)、これに対応する負荷ナ
ンバーLn値に変換してこれを差温信号とする。(S1
5)。
When the rapid operation setting device 13a is set,
In the case of the cooling operation, a temperature correction value Tha (here, for example, 2 ° C.) is added to the temperature difference ΔT (S5), converted into a corresponding load number Ln value, and used as a temperature difference signal. (S1
5).

【0089】暖房運転の場合は差温ΔTに温度補正値T
ha(ここでは例えば2℃)マイナスし(S10)、これ
に対応する負荷ナンバーLn値に変換してこれを差温信
号とする。(S16)。
In the case of the heating operation, a temperature correction value T is added to the temperature difference ΔT.
ha (here, for example, 2 ° C.) is subtracted (S10), converted into a corresponding load number Ln value, and used as a differential temperature signal. (S16).

【0090】ただし、急速運転設定装置13aが設定さ
れている場合は、負荷ナンバーLn=Lmax(ここで
は例えばLn=8)に設定されるが、急速運転設定装置
13aが設定されていない場合は、設定されていないの
最高負荷ナンバーはLn=Lmax−1(ここでは例え
ばLn=7)に制限されるものとする。
However, when the rapid operation setting device 13a is set, the load number is set to Ln = Lmax (here, for example, Ln = 8), but when the rapid operation setting device 13a is not set, It is assumed that the maximum load number not set is limited to Ln = Lmax-1 (here, for example, Ln = 7).

【0091】また、急速運転設定装置13aに急速運転
が設定されかつ、図5のに示す負荷ナンバーLn値がL
n=Lmax(ここでは例えばLn=8)の領域にある
場合(S17、S18)、ユーザーがリモコン等で設定
した風量より2段階上の設定値に風量を自動的に変更す
る(S19,S20)。一方、急速運転設定装置13
b、13cが設定されていない室内機1b、1cは、現
在の負荷LnがLa(ここでは例えばLa=2)以下か
どうか判断し(S7、S12)、 Ln≦La以下(こ
こでは例えばLn=2以下)の場合は、室内機13b、
13cの送風機9b、9cの運転を停止する(S8,S
13)。Ln=La+1(ここでは例えばLn=3以
上)以上の場合はこの動作を行わない。
Further, rapid operation is set in the rapid operation setting device 13a, and the load number Ln shown in FIG.
When it is in the region of n = Lmax (here, for example, Ln = 8) (S17, S18), the air volume is automatically changed to a set value two steps higher than the air volume set by the user with the remote controller (S19, S20). . On the other hand, the rapid operation setting device 13
The indoor units 1b and 1c for which b and 13c are not set determine whether the current load Ln is equal to or less than La (here, for example, La = 2) (S7, S12), and Ln ≦ La or less (here, for example, Ln = 2 or less), the indoor unit 13b,
The operation of the blowers 9b and 9c of 13c is stopped (S8, S
13). If Ln = La + 1 (here, for example, Ln = 3 or more), this operation is not performed.

【0092】この結果より、フローチャートに記載しな
いが、図6に示す負荷定数テーブルから負荷定数を読み
だし、この負荷定数の総和に定数を乗じて圧縮機3の周
波数をおよび膨張弁10の開度を決定する。
From this result, although not described in the flowchart, a load constant is read from the load constant table shown in FIG. 6, and the sum of the load constants is multiplied by a constant to determine the frequency of the compressor 3 and the opening degree of the expansion valve 10. To determine.

【0093】次に、第5の実施例について、図5、6,
11を参照しながら説明する。図5は室内温度Trと設定
温度Tsとの差温ΔTの温度ゾーン分割図。図6負荷定
数テーブル。図11はフローチャート図である。
Next, a fifth embodiment will be described with reference to FIGS.
This will be described with reference to FIG. FIG. 5 is a temperature zone division diagram of a temperature difference ΔT between the room temperature Tr and the set temperature Ts. Figure 6 load constant table. FIG. 11 is a flowchart.

【0094】急速運転設定装置13aに急速運転が設定
されると、時間計数装置30にて、急速運転が設定され
てからの経過時間tを計数する。(S3)その後、請求
項4と同様の制御を行うが(S4〜S21)、経過時間
t=ta(ここでは例えば5分)時間経過すると(S2
2〜25)、急速運転設定装置13b、13cに急速運
転が設定されていない室内機1b、1cは、送風機の運
転を再開し(S36,S37)、圧縮機、送風機、膨張
弁も現在の負荷に対応した設定値へ設定される。急速運
転設定装置13aに急速運転が設定された室内機1aは
急速運転が設定されてからの経過時間t=tb(ここで
は例えば1時間)経過するか(S26,S27)、又は
負荷LnがLn≦Lmax−1(ここでは例えばLn≦
7)の領域に入ると(S28,S29)、急速運転設定
装置13aの設定をを解除し、風量を元の設定に戻し
(S30,S31)、差温ΔTを現在の負荷に対応した
差温ΔT(補正してない温度)に戻し、(S32,S3
3)、圧縮機、送風機、膨張弁も現在の負荷に対応した
設定値へ設定される。
When the rapid operation is set in the rapid operation setting device 13a, the time counting device 30 counts the elapsed time t after the rapid operation is set. (S3) Thereafter, the same control as in claim 4 is performed (S4 to S21), but when the elapsed time t = ta (here, for example, 5 minutes) elapses (S2).
2 to 25), the indoor units 1b and 1c for which the rapid operation is not set in the rapid operation setting devices 13b and 13c restart the operation of the blower (S36, S37), and the compressor, the blower, and the expansion valve also have the current load. Is set to the set value corresponding to. In the indoor unit 1a in which the rapid operation is set in the rapid operation setting device 13a, the elapsed time t = tb (here, for example, 1 hour) has elapsed since the rapid operation was set (S26, S27), or the load Ln is Ln. ≦ Lmax−1 (here, for example, Ln ≦
7) (S28, S29), the setting of the rapid operation setting device 13a is released, the air flow is returned to the original setting (S30, S31), and the temperature difference ΔT is changed to the temperature difference corresponding to the current load. ΔT (the temperature not corrected), and (S32, S3
3) The compressor, blower, and expansion valve are also set to the set values corresponding to the current load.

【0095】また図2に示した構成の場合でも、図1の
室外機の冷媒分配膨張弁10a,10b,10cの制御
を図2の分岐ユニット16の冷媒分配膨張弁10a、1
0b、10cが行うもので制御動作は同等となることか
ら説明は省略する。
Also in the configuration shown in FIG. 2, the control of the refrigerant distribution expansion valves 10a, 10b and 10c of the outdoor unit of FIG.
Since the control operations are the same as those performed by 0b and 10c, the description is omitted.

【0096】[0096]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0097】請求項1に記載の発明によれば、急速運転
スイッチが押されていない(急速な空調の変化を要求さ
れていない)室内機の能力を落とし、急速運転スイッチ
が押された(急速な空調の変化を要求されている)室内
機の能力を上げるように、圧縮機のパワーを集中させ、
風量を変化させることにより、負荷が高い(設定温度と
室内雰囲気温度の温度差が大きい)部屋の空調を無理な
く急激に変化させることが可能となる。
According to the first aspect of the present invention, the capacity of the indoor unit in which the rapid operation switch is not pressed (the rapid change of air conditioning is not required) is reduced, and the rapid operation switch is pressed (rapidly operated). Compressor power is concentrated to increase the capacity of indoor units,
By changing the air volume, it becomes possible to easily and abruptly change the air conditioning in a room with a high load (a large difference between the set temperature and the indoor atmosphere temperature).

【0098】さらに、請求項2、4に記載の発明によれ
ば、急速運転スイッチが押されていない(急速な空調の
変化を要求されていない)室内機の能力を落とし(又は
停止し)、急速運転スイッチが押された(急速な空調の
変化を要求されている)室内機の能力を上げるように、
圧縮機のパワーを集中させ、風量を変化させることによ
り、負荷が高い(設定温度と室内雰囲気温度の温度差が
大きい)部屋の空調を無理なく急激に変化させることが
可能となる。又、急速運転スイッチが押されてはいない
が(急速な空調の変化を要求されていない)、負荷が高
い(設定温度と室内雰囲気温度の温度差が大きい)部屋
の室内機の能力は落とさないので、快適性への影響が少
なくなる。
Further, according to the second and fourth aspects of the present invention, the capacity of the indoor unit in which the rapid operation switch is not pressed (the rapid change of air conditioning is not required) is reduced (or stopped), In order to increase the capacity of the indoor unit where the rapid operation switch is pressed (a rapid change in air conditioning is required),
By concentrating the power of the compressor and changing the air volume, the air conditioning in a room with a high load (the temperature difference between the set temperature and the room ambient temperature is large) can be changed abruptly and without difficulty. In addition, although the rapid operation switch is not pressed (a rapid change in air conditioning is not required), the performance of the indoor unit in a room where the load is high (the temperature difference between the set temperature and the indoor atmosphere temperature is large) is not reduced. Therefore, the influence on comfort is reduced.

【0099】さらに、請求項3、5に記載の発明によれ
ば、急速運転スイッチが押されていない(急速な空調の
変化を要求されていない)室内機の能力を一時的に落と
し(又は停止し)、急速運転スイッチが押された(急速
な空調の変化を要求されている)室内機の能力を上げる
ように、圧縮機のパワーを集中させ、風量を変化させる
ことにより、負荷が高い(設定温度と室内雰囲気温度の
温度差が大きい)部屋の空調を無理なく急激に変化させ
ることが可能となる。又、急速運転スイッチが押されて
はいない(急激な空調の変化を要求されていない)部屋
の室内機の能力は一時的に落とされるだけなので、快適
性への影響がさらに少なくなる。
Further, according to the third and fifth aspects of the present invention, the capability of the indoor unit in which the rapid operation switch is not pressed (the rapid change of air conditioning is not required) is temporarily reduced (or stopped). The load is high by concentrating the power of the compressor and changing the air volume so as to increase the capacity of the indoor unit whose rapid operation switch is pressed (requiring a rapid change in air conditioning). (The temperature difference between the set temperature and the indoor atmosphere temperature is large.) The air conditioning in the room can be changed abruptly and without difficulty. In addition, since the capacity of the indoor unit in the room where the rapid operation switch is not pressed (a rapid change in air conditioning is not required) is only temporarily reduced, the influence on the comfort is further reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる実施例の多室形空気調和装置の
冷凍サイクルの配管系統およびセンサ配置図
FIG. 1 is a diagram showing a piping system and sensor arrangement of a refrigeration cycle of a multi-room air conditioner according to an embodiment of the present invention.

【図2】本発明にかかる実施例の多室形空気調和装置の
冷凍サイクルの配管系統およびセンサ配置図
FIG. 2 is a piping diagram and a sensor arrangement diagram of a refrigeration cycle of the multi-room air conditioner according to the embodiment of the present invention.

【図3】本発明にかかる実施例の多室形空気調和装置の
室内機の概略縦断面図
FIG. 3 is a schematic longitudinal sectional view of an indoor unit of the multi-room air conditioner of the embodiment according to the present invention.

【図4】本発明にかかる実施例の制御の流れを示すブロ
ック図
FIG. 4 is a block diagram showing a control flow according to the embodiment of the present invention.

【図5】本発明にかかる実施例の差温△Tの温度ゾーン
分割図
FIG. 5 is a temperature zone division diagram of the differential temperature ΔT of the embodiment according to the present invention.

【図6】本発明にかかる実施例の運転している室内機負
荷定数の総和と圧縮機周波数の関係図
FIG. 6 is a diagram showing the relationship between the sum of operating indoor unit load constants and the compressor frequency according to the embodiment of the present invention.

【図7】本発明にかかる実施例1の制御を示すフローチ
ャート
FIG. 7 is a flowchart illustrating control according to the first embodiment of the present invention.

【図8】本発明にかかる実施例2の制御を示すフローチ
ャート
FIG. 8 is a flowchart illustrating control according to a second embodiment of the present invention.

【図9】本発明にかかる実施例3の制御を示すフローチ
ャート
FIG. 9 is a flowchart illustrating control according to a third embodiment of the present invention.

【図10】本発明にかかる実施例4の制御を示すフロー
チャート
FIG. 10 is a flowchart illustrating control according to a fourth embodiment of the present invention.

【図11】本発明にかかる実施例5の制御を示すフロー
チャート
FIG. 11 is a flowchart illustrating control according to a fifth embodiment of the present invention.

【図12】従来の多室形空気調和装置の冷凍サイクルの
配管系統およびセンサ配置図
FIG. 12 is a piping diagram and a sensor arrangement diagram of a refrigeration cycle of a conventional multi-room air conditioner.

【図13】従来の多室形空気調和装置の制御の流れを示
すブロック図
FIG. 13 is a block diagram showing a control flow of a conventional multi-room air conditioner.

【図14】従来の多室形空気調和装置の差温△Tの温度
ゾーン分割図
FIG. 14 is a temperature zone division diagram of a differential temperature ΔT of a conventional multi-room air conditioner.

【図15】従来の多室形空気調和装置の運転している室
内機負荷定数の総和と圧縮機周波数の関係図
FIG. 15 is a diagram showing the relationship between the sum of the load constants of the indoor units operated by the conventional multi-room air conditioner and the compressor frequency.

【符号の説明】[Explanation of symbols]

1a、2a、3a 室内機 2 室外機 3 可変容量圧縮機 4 室外熱交換器 5 冷媒液側主管 6 冷媒ガス側主管 10 電動膨張弁 11a、11b、11c 室内温度検出装置 13a、13b、13c 急速運転設定装置 15 送風機 22 差温算出装置 24 室内温度設定記憶装置 25 運転停止記憶装置 27 急速運転記憶装置 29 急速運転記憶装置 30 時間計数装置 1a, 2a, 3a Indoor unit 2 Outdoor unit 3 Variable capacity compressor 4 Outdoor heat exchanger 5 Refrigerant liquid side main pipe 6 Refrigerant gas side main pipe 10 Electric expansion valve 11a, 11b, 11c Indoor temperature detector 13a, 13b, 13c Rapid operation Setting device 15 Blower 22 Difference temperature calculating device 24 Room temperature setting storage device 25 Operation stop storage device 27 Rapid operation storage device 29 Rapid operation storage device 30 Time counter

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3L060 AA05 AA06 CC02 CC08 DD02 EE05 EE09 3L092 AA03 DA14 EA15 FA03 FA19 FA27 GA02 GA03 GA09 JA14 KA13 LA06 LA07  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3L060 AA05 AA06 CC02 CC08 DD02 EE05 EE09 3L092 AA03 DA14 EA15 FA03 FA19 FA27 GA02 GA03 GA09 JA14 KA13 LA06 LA07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】可変容量圧縮機、室外熱交換器、送風機、
冷媒液側主管、冷媒ガス側主管を有する1台の室外機
と、熱交換器及び送風機を有する複数台の室内機を、冷
媒液が流れる前記冷媒液側主管から分岐した液側分岐
管、及び冷媒ガスが流れる前記冷媒ガス側主管から分岐
したガス側分岐管を介して接続し、前記冷媒液側主管か
ら前記室内機の間に弁開度を制御可能とした電動膨張弁
を介装して冷凍サイクルを構成し、前記室内機の各々に
室内温度の設定値を記憶する室内温度設定記憶装置と、
室内温度を検出する室内温度検出装置と、前記室内温度
設定記憶装置と前記室内温度検出装置とから設定室内温
度と室内温度との差温を算出する差温算出装置と、前記
差温が取りうる温度範囲を複数個の温度ゾーンに分割し
て記憶する温度ゾーン記憶装置と、前記室内機が運転か
停止かを記憶する運転停止記憶装置とを設け、前記温度
ゾーン記憶置と、前記運転停止記憶装置の信号により、
前記室内機の送風機と前記可変容量圧縮機と前記電動膨
張弁とを制御する制御装置を有し、前記各々の室内機に
冷房運転、除湿運転あるいは暖房運転の開始時に短時間
で室温を下げ、あるいは室温を上げるための急速運転を
行う急速運転設定装置と、急速運転の設定を記憶する急
速運転設定記憶装置と、前記急速運転設定記憶装置の信
号により、前記各々の室内機の送風機と前記可変容量圧
縮機と前記膨張弁を制御する制御装置を設け、前記急速
運転記憶装置の信号により、前記差温の補正値を設定す
る差温補正値設定装置を設けた多室型空気調和装置。
1. A variable displacement compressor, an outdoor heat exchanger, a blower,
A refrigerant liquid side main pipe, one outdoor unit having a refrigerant gas side main pipe, and a plurality of indoor units having a heat exchanger and a blower, a liquid side branch pipe branched from the refrigerant liquid side main pipe through which refrigerant liquid flows, and An electric expansion valve connected via a gas-side branch pipe branched from the refrigerant gas-side main pipe through which the refrigerant gas flows and having a valve opening controllable between the refrigerant liquid-side main pipe and the indoor unit is provided. An indoor temperature setting storage device that configures a refrigeration cycle and stores a set value of an indoor temperature in each of the indoor units,
An indoor temperature detecting device that detects an indoor temperature, a differential temperature calculating device that calculates a differential temperature between a set indoor temperature and an indoor temperature from the indoor temperature setting storage device and the indoor temperature detecting device, and the differential temperature can be obtained. A temperature zone storage device for storing a temperature range by dividing the temperature range into a plurality of temperature zones; and an operation stop storage device for storing whether the indoor unit is operating or stopped, wherein the temperature zone storage device and the operation stop storage are provided. Depending on the device signal,
A control device for controlling the blower, the variable displacement compressor, and the electric expansion valve of the indoor unit, and the cooling operation, the dehumidification operation, or the start of the heating operation for each of the indoor units, the room temperature is reduced in a short time, Alternatively, a rapid operation setting device for performing a rapid operation for raising the room temperature, a rapid operation setting storage device for storing the setting of the rapid operation, and a signal of the rapid operation setting storage device, the blower of each indoor unit and the variable A multi-room air conditioner, comprising: a control device for controlling a displacement compressor and the expansion valve; and a differential temperature correction value setting device for setting a correction value for the differential temperature based on a signal from the rapid operation storage device.
【請求項2】前記各々の室内機に前記温度ゾーン記憶装
置と温度ゾーンのしきい値を記憶する温度ゾーンしきい
値記憶装置を設け、前記急速運転設定記憶装置と前記温
度ゾーンしきい値記憶装置と前記温度ゾーン記憶装置の
信号により、運転中でかつ前記急速運転設定記憶装置に
急速運転の設定がない室内機の前記差温の補正値を設定
する差温補正値設定装置を設けた請求項第1項に記載の
多室型空気調和装置。
2. Each of the indoor units is provided with the temperature zone storage device and a temperature zone threshold value storage device for storing a temperature zone threshold value, and the rapid operation setting storage device and the temperature zone threshold value storage device. A differential temperature correction value setting device for setting a correction value of the differential temperature of an indoor unit that is in operation and has no rapid operation setting in the rapid operation setting storage device, based on a signal from the device and the temperature zone storage device. Item 2. The multi-room air conditioner according to Item 1.
【請求項3】前記各々の室内機に、前記急速運転設定記
憶装置に急速運転の設定がされてからの時間を計数する
時間計数装置と計数時間のしきい値を記憶する計数時間
しきい値記憶装置を設け、前記時間計数装置と計数時間
しきい値記憶装置の信号により、前記差温補正装置に設
定された前記差温の補正値を元に戻すことを特徴とする
請求項第1、2項に記載の多室型空気調和装置。
3. A time counting device for counting the time after the rapid operation is set in the rapid operation setting storage device in each of the indoor units, and a counting time threshold value for storing a threshold value of the counting time. A storage device is provided, and the correction value of the differential temperature set in the differential temperature correction device is returned to an original value by a signal of the time counting device and a counting time threshold value storage device. 3. The multi-room air conditioner according to item 2.
【請求項4】前記各々の室内機に前記温度ゾーン記憶装
置と温度ゾーンのしきい値を記憶する温度ゾーンしきい
値記憶装置を設け、前記急速運転設定記憶装置と前記温
度ゾーンしきい値記憶装置と前記温度ゾーン記憶装置の
信号により、運転中でかつ前記急速運転設定記憶装置に
急速運転の設定がない室内機を停止する多室型空気調和
装置。
4. Each of the indoor units is provided with the temperature zone storage device and a temperature zone threshold value storage device for storing a temperature zone threshold value, and the rapid operation setting storage device and the temperature zone threshold value storage device. A multi-room air conditioner that stops an indoor unit that is in operation and has no setting for rapid operation in the rapid operation setting storage device, based on a signal from the device and the temperature zone storage device.
【請求項5】前記各々の室内機に、前記急速運転設定記
憶装置に急速運転の設定がされてからの時間を計数する
時間計数装置と計数時間のしきい値を記憶する計数時間
しきい値記憶装置を設け、前記時間計数装置と計数時間
しきい値記憶装置の信号により、停止した室内機を再運
転することを特徴とする請求項第4項に記載の多室型空
気調和装置。
5. A time counting device for counting the time since the rapid operation was set in the rapid operation setting storage device in each of the indoor units, and a counting time threshold value for storing a threshold value of the counting time. The multi-room air conditioner according to claim 4, further comprising a storage device, wherein the stopped indoor unit is restarted by a signal from the time counting device and the counting time threshold value storage device.
JP2001002190A 2001-01-10 2001-01-10 Multi-chamber air conditioner Expired - Fee Related JP4151219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001002190A JP4151219B2 (en) 2001-01-10 2001-01-10 Multi-chamber air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001002190A JP4151219B2 (en) 2001-01-10 2001-01-10 Multi-chamber air conditioner

Publications (2)

Publication Number Publication Date
JP2002206788A true JP2002206788A (en) 2002-07-26
JP4151219B2 JP4151219B2 (en) 2008-09-17

Family

ID=18870736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001002190A Expired - Fee Related JP4151219B2 (en) 2001-01-10 2001-01-10 Multi-chamber air conditioner

Country Status (1)

Country Link
JP (1) JP4151219B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120938A (en) * 2005-10-28 2007-05-17 Lg Electronics Inc Partial overload eliminating method and device for air conditioner
US20090019879A1 (en) * 2006-03-22 2009-01-22 Shinichi Kasahara Refrigeration System
JP2011117625A (en) * 2009-12-01 2011-06-16 Denso Wave Inc Central air conditioning system
WO2013144996A1 (en) * 2012-03-27 2013-10-03 三菱電機株式会社 Air conditioning device
EP3067635A4 (en) * 2013-11-08 2017-08-09 Mitsubishi Electric Corporation Air conditioning device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110332682B (en) * 2019-07-25 2021-05-14 宁波奥克斯电气股份有限公司 Method and device for adjusting working frequency of compressor and air conditioner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120938A (en) * 2005-10-28 2007-05-17 Lg Electronics Inc Partial overload eliminating method and device for air conditioner
US20090019879A1 (en) * 2006-03-22 2009-01-22 Shinichi Kasahara Refrigeration System
JP2011117625A (en) * 2009-12-01 2011-06-16 Denso Wave Inc Central air conditioning system
US8219252B2 (en) 2009-12-01 2012-07-10 Denso Wave Incorporated Central air-conditioning system
WO2013144996A1 (en) * 2012-03-27 2013-10-03 三菱電機株式会社 Air conditioning device
JPWO2013144996A1 (en) * 2012-03-27 2015-08-03 三菱電機株式会社 Air conditioner
US9683768B2 (en) 2012-03-27 2017-06-20 Mitsubishi Electric Corporation Air-conditioning apparatus
EP3067635A4 (en) * 2013-11-08 2017-08-09 Mitsubishi Electric Corporation Air conditioning device

Also Published As

Publication number Publication date
JP4151219B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
US9021822B2 (en) Air conditioner having a variable speed indoor side blower and flaps being control based on outside air temperature and indoor heat exchanger temperature
JP2003194384A (en) Heat pump type air conditioner
KR20040069613A (en) Method for dehumidification of air conditioner
JPH0762569B2 (en) Operation control device for air conditioner
WO2019053876A1 (en) Air conditioning device
JPH06257828A (en) Multi-chamber type air conditioning system
JP2002206788A (en) Multi-chamber type air conditioner
JP2001065949A (en) Controller for multi-chamber type air conditioner
JP3223918B2 (en) Multi-room air conditioning system
JP2001272149A (en) Show case cooling device
JP2002106913A (en) Method for controlling automatic operation of air conditioner
JPH1030853A (en) Controller for air conditioner
JP2730398B2 (en) Multi-room air conditioning system
JPH10220845A (en) Air conditioner
JPH06257827A (en) Multi chamber type air conditioning system
JPH08189690A (en) Heating and dehumidifying operation controller for multi-room split type air conditioner
KR20140112681A (en) Method of controlling an air conditioner
JP3286817B2 (en) Multi-room air conditioner
JPH09318140A (en) Air conditioner
JPH06123512A (en) Multi-room air conditioner
JP3097350B2 (en) Multi-room air conditioner
JPH09145130A (en) Multi-room type air conditioner system
JP2730381B2 (en) Multi-room air conditioner
JPH0814698A (en) Operation control device for air-conditioner
JP2536313B2 (en) Operation control device for air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040909

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080623

R151 Written notification of patent or utility model registration

Ref document number: 4151219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140711

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees