JP2002198211A - Method of manufacturing high weather-resistant magnet powder, and product obtained by use of the same - Google Patents

Method of manufacturing high weather-resistant magnet powder, and product obtained by use of the same

Info

Publication number
JP2002198211A
JP2002198211A JP2000393932A JP2000393932A JP2002198211A JP 2002198211 A JP2002198211 A JP 2002198211A JP 2000393932 A JP2000393932 A JP 2000393932A JP 2000393932 A JP2000393932 A JP 2000393932A JP 2002198211 A JP2002198211 A JP 2002198211A
Authority
JP
Japan
Prior art keywords
powder
magnet
iron
magnet powder
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000393932A
Other languages
Japanese (ja)
Inventor
Takashi Izeki
隆士 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2000393932A priority Critical patent/JP2002198211A/en
Publication of JP2002198211A publication Critical patent/JP2002198211A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing iron magnet powder which contains rare earth elements and has superior weather-resistant properties and a high coercive force in important environmental conditions in practice, such as high humidity, high weather-resistant magnet powder obtained through the above manufacturing method, a bonded magnet resin composition containing the same, and to provide a bonded magnet. SOLUTION: In a method of manufacturing an iron magnet powder, that is coated with low-melting metal and contains rare earth elements, iron magnetic coarse powder of grain diameter 150 μm or smaller is mixed into a low-melting metal powder, the mixture is subjected to thermal treatment at temperatures of 200 to 600 deg.C, in an atmosphere of nitrogen gas and/or hydrogen gas and then ground into iron magnet powder containing rare earth elements.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高耐候性磁石粉末
の製造方法及び得られる製品に関し、さらに詳しくは、
耐候性に優れた希土類元素を含む鉄系磁石粉末を製造す
る方法、及びその製法により得られる高耐候性磁石粉
末、さらに、これを含むボンド磁石用樹脂組成物、並び
にボンド磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a highly weatherable magnet powder and a product obtained therefrom.
The present invention relates to a method for producing an iron-based magnet powder containing a rare earth element having excellent weather resistance, a highly weather-resistant magnet powder obtained by the method, a resin composition for a bonded magnet containing the same, and a bonded magnet.

【0002】[0002]

【従来の技術】従来から、フェライト磁石、アルニコ磁
石、希土類磁石等は、モーターをはじめとする種々の用
途に用いられている。しかし、これらの磁石は、主に焼
結法により製造されるため、一般に脆く、薄肉のものや
複雑な形状のものを得るのが難しいという問題点を有し
ている。それに加え、焼結時の収縮が15〜20%と大
きいため、寸法精度の高いものが得られず、精度を上げ
るには研磨等の後加工が必要であるという問題点をも有
している。
2. Description of the Related Art Conventionally, ferrite magnets, alnico magnets, rare earth magnets, and the like have been used for various applications including motors. However, since these magnets are mainly manufactured by a sintering method, they have a problem that they are generally brittle, and it is difficult to obtain a thin or complicated one. In addition, since shrinkage during sintering is as large as 15 to 20%, a product having high dimensional accuracy cannot be obtained, and post-processing such as polishing is required to increase accuracy. .

【0003】一方、ボンド磁石は、これら焼結法の問題
点を解決すると共に新しい用途をも開拓するために、近
年になって開発されたものであるが、通常は、ポリアミ
ド樹脂、ポリフェニレンサルファイド樹脂等の熱可塑性
樹脂をバインダーとし、これに磁石粉末を充填すること
により製造されている。しかし、こうしたボンド磁石の
中でも、特に、希土類元素を含む鉄系磁石粉末を用いた
ボンド磁石は、高温多湿雰囲気下で錆の発生や磁気特性
の低下を起こし易いため、例えば、成形体表面に熱硬化
性樹脂等のコーティング膜を形成することで発錆を抑制
したり、また、特開2000−208321号公報に開
示されているように、成形体表面に燐酸塩含有塗料によ
る被膜処理を施すことで発錆を抑制しているが、難発錆
特性や保磁力等の磁気特性の点で十分に満足できるもの
ではない。
On the other hand, bonded magnets have been developed in recent years in order to solve these problems of the sintering method and to open up new applications. However, usually, bonded magnets are usually made of polyamide resin, polyphenylene sulfide resin. It is manufactured by filling a thermoplastic resin such as a binder with a magnet powder. However, among these bonded magnets, particularly, bonded magnets using an iron-based magnet powder containing a rare earth element are liable to generate rust and deteriorate magnetic properties in a high-temperature and high-humidity atmosphere. Rust can be suppressed by forming a coating film of a curable resin or the like, or as described in Japanese Patent Application Laid-Open No. 2000-208321, the surface of a molded product is subjected to a coating treatment with a phosphate-containing paint. However, it is not satisfactory in terms of magnetic characteristics such as hard rusting characteristics and coercive force.

【0004】ところで、希土類元素を含む鉄系磁石粉末
を樹脂と混練してボンド磁石として使用する場合、高い
磁気特性を得るためには磁性粗粉末を数μmに粉砕する
必要がある。磁性粗粉末の粉砕は、通常、不活性ガス中
または溶剤中で行なわれるが、粉砕後の磁石粉末は極め
て活性が高いため、成形体に被膜処理を施す前に大気に
触れると、酸化発錆が急激に進んで磁気特性が劣化する
という問題がある。
[0004] Incidentally, when an iron-based magnet powder containing a rare-earth element is kneaded with a resin and used as a bond magnet, it is necessary to grind the magnetic coarse powder to several μm in order to obtain high magnetic properties. The grinding of the magnetic coarse powder is usually carried out in an inert gas or in a solvent, but the magnet powder after grinding is extremely active. However, there is a problem that the magnetic properties deteriorate due to rapid progress.

【0005】この問題を解決するために、例えば、磁性
粗粉末を数μmに粉砕した後に僅かな酸素を不活性雰囲
気中に導入して磁石粉末を徐酸化したり、また、特開平
7−310102号公報に開示されているように、粉砕
後の磁石粉末に銅−亜鉛メッキによる被膜処理を施すこ
とが行なわれている。しかしながら、粉砕後の磁石粉末
はその磁力により互いに凝集しており、凝集粉表面が皮
膜で保護されていたとしても個々の磁石粉末に対する保
護が十分ではないためか、このようにして得られた磁石
粉末は、乾燥環境下での耐候性は向上しているものの、
実用上重要な湿度環境下での耐候性は満足できるほど改
善されていないという問題がある。
[0005] In order to solve this problem, for example, a magnetic coarse powder is pulverized to several μm and then a slight amount of oxygen is introduced into an inert atmosphere to gradually oxidize the magnet powder. As disclosed in Japanese Unexamined Patent Publication, a coating treatment by copper-zinc plating is performed on a magnet powder after pulverization. However, the magnet powder obtained after the pulverization is agglomerated with each other by its magnetic force, and even if the surface of the agglomerated powder is protected by a film, the protection of the individual magnet powder is not sufficient. Although the powder has improved weather resistance in a dry environment,
There is a problem that the weather resistance in a humid environment, which is important for practical use, has not been improved satisfactorily.

【0006】こうした状況下、近年、小型モーター、音
響機器、OA機器等に用いられるボンド磁石には、機器
の小型化の要請から磁気特性に優れたものが要求されて
いるが、従来の希土類元素を含む鉄系磁石粉末から得ら
れるボンド磁石の磁気特性はこれらの用途に使用するに
は不十分であり、希土類元素を含む鉄系磁石粉末の耐候
性を早期に改善し、ボンド磁石の磁気特性を向上させる
ことが強く望まれていた。
Under these circumstances, in recent years, bond magnets used in small motors, audio equipment, OA equipment, and the like have been required to have excellent magnetic properties in order to reduce the size of the equipment. The magnetic properties of bonded magnets obtained from iron-based magnet powders containing iron are insufficient for these applications, and the weather resistance of iron-based magnet powders containing rare earth elements is improved early, and the magnetic properties of bonded magnets are improved. It was strongly desired to improve the quality.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、上記
の従来技術の問題点に鑑み、耐候性に優れた、特に実用
上重要な湿度環境下で高い保磁力を有する希土類元素を
含む鉄系磁石粉末を製造する方法、及びその製法により
得られる高耐候性磁石粉末、さらにはこれを含むボンド
磁石用樹脂組成物、並びにボンド磁石を提供することに
ある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, an object of the present invention is to provide an iron containing rare earth element which has excellent weather resistance, and particularly has a high coercive force in a humidity environment which is important for practical use. An object of the present invention is to provide a method for producing a system magnet powder, a highly weather-resistant magnet powder obtained by the method, a resin composition for a bonded magnet containing the same, and a bonded magnet.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記目的を
達成するために鋭意研究を重ねた結果、低融点金属が被
覆された希土類元素を含む鉄系磁石粉末の製造方法にお
いて、希土類元素を含む鉄系磁性粗粉末を、低融点金属
粉末と混合し、窒素ガス及び/又は水素ガス中、加熱処
理した後、粉砕することにより、所望とする、耐候性に
優れ、湿度環境下での保磁力の低下が抑制された磁石粉
末が得られることを見出し、本発明を完成するに至っ
た。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, in a method for producing an iron-based magnet powder containing a rare earth element coated with a low melting point metal, a rare earth element Is mixed with a low-melting metal powder, heat-treated in a nitrogen gas and / or a hydrogen gas, and then pulverized to obtain a desired, excellent weather resistance and excellent humidity. The present inventors have found that a magnetic powder in which a decrease in coercive force is suppressed can be obtained, and have completed the present invention.

【0009】即ち、本発明の第1の発明によれば、低融
点金属が被覆された希土類元素を含む鉄系磁石粉末の製
造法において、粒径150μm以下の希土類元素を含む
鉄系磁性粗粉未を、低融点金属粉末と混合し、窒素ガス
及び/又は水素ガス中200〜600℃で加熱処理した
後、粉砕することを特徴とする希土類元素を含む鉄系磁
石粉末の製造方法が提供される。
That is, according to the first aspect of the present invention, in a method for producing a rare earth element-containing iron-based magnet powder coated with a low melting point metal, the iron-based magnetic coarse powder containing a rare earth element having a particle size of 150 μm or less is used. The present invention provides a method for producing a rare earth element-containing iron-based magnet powder, which comprises mixing non-ferrous metal powder with a low-melting metal powder, heat-treating the powder in a nitrogen gas and / or a hydrogen gas at 200 to 600 ° C., and pulverizing the mixture. You.

【0010】また、本発明の第2の発明によれば、第1
の発明において、低融点金属粉末は、Zn、Sn、I
n、及びPbからなる群から選ばれた少なくとも1種の
金属の粉末であることを特徴とする希土類元素を含む鉄
系磁石粉末の製造方法が提供される。
Further, according to the second aspect of the present invention, the first aspect
In the invention, the low melting point metal powder is Zn, Sn, I
A method for producing an iron-based magnet powder containing a rare earth element, characterized by being a powder of at least one metal selected from the group consisting of n and Pb.

【0011】さらに、本発明の第3の発明によれば、第
1又は2の発明において、低融点金属粉末は、粒径が5
0μm以下であることを特徴とする希土類元素を含む鉄
系磁石粉末の製造方法が提供される。
According to a third aspect of the present invention, in the first or second aspect, the low melting point metal powder has a particle size of 5
A method for producing an iron-based magnet powder containing a rare earth element, which is characterized in that the particle diameter is 0 μm or less.

【0012】一方、本発明の第4の発明によれば、第1
〜第3のいずれかの発明の製造方法によって得られるこ
とを特徴とする希土類元素を含む鉄系磁石粉末が提供さ
れる。
On the other hand, according to the fourth aspect of the present invention, the first
An iron-based magnet powder containing a rare earth element, which is obtained by the production method according to any one of the third to third inventions, is provided.

【0013】また、本発明の第5の発明によれば、第4
の発明の希土類元素を含む鉄系磁石粉末を主成分として
含有することを特徴とするボンド磁石用樹脂組成物が提
供される。
According to the fifth aspect of the present invention, the fourth aspect
The present invention provides a resin composition for a bonded magnet, characterized by containing the iron-based magnet powder containing a rare earth element according to the invention as a main component.

【0014】さらに、本発明の第6の発明によれば、第
5の発明のボンド磁石用樹脂組成物を成形して得られる
ことを特徴とするボンド磁石が提供される。
Further, according to a sixth aspect of the present invention, there is provided a bonded magnet obtained by molding the resin composition for a bonded magnet of the fifth aspect.

【0015】[0015]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0016】1.磁性粗粉末 本発明に用いられる磁性粗粉未は、少なくとも希土類元
素を含む鉄系磁性粗粉未であれば、特に制限はなく、例
えば、ボンド磁石に通常用いられる希土類−鉄−硼素
系、希土類−鉄−窒素系の各種磁性粗粉末が挙げられ
る。これらの中でも、Nd−Fe−B系の液体急冷法に
よる磁性粗粉未、Sm−Fe−N系の磁性粗粉未、Nd
−(Dy,Tb)−Fe−B系の磁性粗粉未、Sm−F
e−Co−N系の磁性粗粉未は、特に好適である。ま
た、磁性粗粉未の粒径は150μm以下であることが好
ましい。
1. Magnetic coarse powder The magnetic coarse powder used in the present invention is not particularly limited as long as it is not an iron-based magnetic coarse powder containing at least a rare earth element. For example, rare-earth-iron-boron-based, rare-earth -Various magnetic coarse powders of iron-nitrogen system. Among these, Nd—Fe—B-based magnetic coarse powder by liquid quenching method, Sm—Fe—N-based magnetic coarse powder, Nd
-(Dy, Tb) -Fe-B based magnetic coarse powder, Sm-F
An e-Co-N-based magnetic coarse powder is particularly suitable. The particle size of the magnetic coarse powder is preferably 150 μm or less.

【0017】2.高耐候性磁石粉末の製造方法 本発明においては、粒径が150μm以下の希土類元素
を含む鉄系磁性粗粉末を粉砕して粒径が数μmの磁石粉
末とする前に、磁性粗粉末の表面に低融点金属を被覆す
る。
2. Method for Producing Highly Weatherable Magnet Powder In the present invention, before grinding the iron-based magnetic coarse powder containing a rare earth element having a particle size of 150 μm or less into a magnet powder having a particle size of several μm, Is coated with a low melting point metal.

【0018】低融点金属の被覆方法としては、まず、磁
性粗粉末を低融点金属粉末と混合し、窒素ガス及び/又
は水素ガス中で熱処理することにより磁石粉未表面に金
属被覆層を形成する。
As a method for coating a low melting point metal, first, a magnetic coarse powder is mixed with a low melting point metal powder, and a heat treatment is performed in a nitrogen gas and / or a hydrogen gas to form a metal coating layer on the non-surface of the magnet powder. .

【0019】熱処理温度は、通常200〜600℃、好
ましくは300〜500℃である。温度が200℃未満
では低融点金属粉末と磁石粉末の反応が進まず、600
℃を超えると磁石粉末が分解する恐れがある。
The heat treatment temperature is usually from 200 to 600 ° C, preferably from 300 to 500 ° C. When the temperature is lower than 200 ° C., the reaction between the low melting point metal powder and the magnet powder does not proceed,
If the temperature exceeds ℃, the magnet powder may be decomposed.

【0020】被覆層を形成する低融点金属粉末として
は、磁性粗粉未の表面に被覆可能であり、かつ磁性粗粉
未の表面を修復できるものであって、磁石粉末との間に
混在部が形成されるものであれば制限されず、例えば、
融点が150〜500℃である、Zn粉末、Sn粉末、
In粉末、Pb粉末等が挙げられる。これらの中では特
にZn粉末が好ましい。
The low-melting metal powder forming the coating layer can cover the surface of the magnetic coarse powder but can also repair the surface of the magnetic coarse powder. Is not limited as long as is formed, for example,
Zn powder, Sn powder having a melting point of 150 to 500 ° C.,
In powder, Pb powder and the like can be mentioned. Of these, Zn powder is particularly preferred.

【0021】低融点金属粉末の粒径としては、粒径が5
0μm以下のものを用いることが好ましい。粒径が50
μmを超えると、反応が円滑に進まず、磁石粉末表面を
均一に被覆することが困難となる。
The low melting point metal powder has a particle size of 5
It is preferable to use one having a size of 0 μm or less. Particle size 50
If it exceeds μm, the reaction does not proceed smoothly, and it is difficult to uniformly coat the surface of the magnet powder.

【0022】低融点金属粉末の添加量としては、磁性粗
粉未に対し0.1〜8質量%の範囲が好ましい。低融点
金属粉末の添加量が0.1質量%未満になると磁石粉末
表面を均一に被覆することが困難となり、8質量%を超
えると、非磁性の低融点金属により磁気特性が低下す
る。
The amount of the low melting metal powder to be added is preferably in the range of 0.1 to 8% by mass based on the magnetic coarse powder. If the amount of the low-melting-point metal powder is less than 0.1% by mass, it is difficult to uniformly coat the surface of the magnet powder, and if it exceeds 8% by mass, the magnetic properties are degraded by the non-magnetic low-melting-point metal.

【0023】一般に、希土類元素を含む鉄系磁性粗粉未
の表面には、不純物が付着し、幾何学的な凹凸等が形成
される。これらは、例えば、窒化後にも磁石粒子表面に
残り、逆磁区発生の原因である核となって、耐食性、耐
熱性も含めた磁石特性を下げる原因になると推測され
る。従って、特に、磁石粉末の活性が極めて高くなる粉
砕後ではなく、粉砕前に金属で磁性粗粉末を被覆すれ
ば、皮膜形成時に突起等の表面欠陥が修復されて逆磁区
発生の核が減少し、かつ磁石粉末の酸化等も抑制され
る。この結果、高い保磁力が得られるとともに、耐熱
性、耐食性も向上するものと考えられる。
Generally, impurities adhere to the surface of the iron-based magnetic coarse powder containing a rare earth element, and geometric unevenness and the like are formed. It is presumed that, for example, they remain on the surface of the magnet particles even after nitriding, become nuclei that cause the generation of reverse magnetic domains, and reduce magnet properties including corrosion resistance and heat resistance. Therefore, in particular, if the magnetic coarse powder is coated with metal before milling, not after milling when the activity of the magnet powder becomes extremely high, surface defects such as protrusions are repaired at the time of film formation, and nuclei for generating reverse magnetic domains are reduced. Also, oxidation of the magnet powder and the like are suppressed. As a result, it is considered that a high coercive force is obtained, and heat resistance and corrosion resistance are also improved.

【0024】ところで、従来の方法においては、磁石粉
末の酸化を防止するために、乾燥時に微量な酸素を不活
性雰囲気に注意深く導入して徐酸化を行う必要がある。
このため、乾燥時間を長く取らざるを得ず、製造コスト
を高くする要因となる。また、得られた磁石粉末の磁気
特性の経時変化をみると、60℃乾燥状態では比較的大
きな保磁力を維持するものの、60℃相対湿度80%の
環境下に10時間放置すると約50%の保磁力低下が起
きる。
By the way, in the conventional method, in order to prevent oxidation of the magnet powder, it is necessary to carefully introduce a small amount of oxygen into an inert atmosphere during drying to perform slow oxidation.
For this reason, the drying time must be long, which is a factor of increasing the manufacturing cost. In addition, when the magnetic properties of the obtained magnet powder are changed over time, a relatively large coercive force is maintained in a dry state at 60 ° C., but about 50% when left in an environment of 60 ° C. and a relative humidity of 80% for 10 hours. Coercive force decreases.

【0025】一方、本発明の方法においては、皮膜形成
時に突起等の表面欠陥が修復されて逆磁区発生の核が減
少するとともに、磁石粉末表面に金属皮膜が形成される
ため磁石粉末の劣化も抑制され、磁石粉末の乾燥を不活
性ガス中または真空中で行なうこと以外に特別な条件を
必要とせず、乾燥時間の短縮が可能となる。また、得ら
れた磁石粉末の保磁力は、60℃相対湿度80%の環境
下に10時間曝しても殆ど変化せず、大幅な耐候性の改
善が達成されている。
On the other hand, in the method of the present invention, surface defects such as projections are repaired during the film formation, and the nuclei of the generation of reverse magnetic domains are reduced. As a result, the drying time can be reduced without requiring any special conditions other than performing the drying of the magnet powder in an inert gas or in a vacuum. Further, the coercive force of the obtained magnet powder hardly changes even when exposed to an environment of 60 ° C. and a relative humidity of 80% for 10 hours, and a significant improvement in weather resistance is achieved.

【0026】3.ボンド磁石用樹脂組成物及びボンド磁
石 本発明の高耐候性磁石粉末を用いてボンド磁石用樹脂組
成物及びボンド磁石を製造する方法は、特に限定され
ず、例えば、以下に示すような公知の熱可塑性樹脂や添
加剤を用いて製造することができる。
3. Bonded Magnet Resin Composition and Bonded Magnet The method for producing the bonded magnet resin composition and the bonded magnet using the highly weatherable magnet powder of the present invention is not particularly limited, and includes, for example, a known thermal method as shown below. It can be manufactured using a plastic resin or an additive.

【0027】(熱可塑性樹脂)熱可塑性樹脂は、磁石粉
末のバインダーとして働くものであり、特に制限なく、
従来公知のものを使用できる。熱可塑性樹脂の具体例と
しては、6ナイロン、6、6ナイロン、11ナイロン、
12ナイロン、6、12ナイロン、芳香族系ナイロン、
これらの分子を一部変性した変性ナイロン等のポリアミ
ド樹脂、直鎖型ポリフェニレンサルファイド樹脂、架橋
型ポリフェニレンサルファイド樹脂、セミ架橋型ポリフ
ェニレンサルファイド樹脂、低密度ポリエチレン、線状
低密度ポリエチレン樹脂、高密度ポリエチレン樹脂、超
高分子量ポリエチレン樹脂、ポリプロピレン樹脂、エチ
レン−酢酸ビニル共重合樹脂、エチレン−エチルアクリ
レート共重合樹脂、アイオノマー樹脂、ポリメチルペン
テン樹脂、ポリスチレン樹脂、アクリロニトリル−ブタ
ジエン−スチレン共重合樹脂、アクリロニトリル−スチ
レン共重合樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリ
デン樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール
樹脂、ポリビニルブチラール樹脂、ポリビニルホルマー
ル樹脂、メタクリル樹脂、ポリフッ化ビニリデン樹脂、
ポリ三フッ化塩化エチレン樹脂、四フッ化エチレン−六
フッ化プロピレン共重合樹脂、エチレン−四フッ化エチ
レン共重合樹脂、四フッ化エチレン−パーフルオロアル
キルビニルエーテル共重合樹脂、ポリテトラフルオロエ
チレン樹脂、ポリカーボネート樹脂、ポリアセタール樹
脂、ポリエチレンテレフタレート樹脂、ポリブチレンテ
レフタレート樹脂、ポリフェニレンオキサイド樹脂、ポ
リアリルエーテルアリルスルホン樹脂、ポリエーテルス
ルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリア
リレート樹脂、芳香族ポリエステル樹脂、酢酸セルロー
ス樹脂、前出各樹脂系エラストマー等が挙げられ、これ
らの単重合体や他種モノマーとのランダム共重合体、ブ
ロック共重合体、グラフト共重合体、他の物質での末端
基変性品等が挙げられる。
(Thermoplastic resin) The thermoplastic resin serves as a binder for the magnet powder, and is not particularly limited.
Conventionally known ones can be used. As specific examples of the thermoplastic resin, 6 nylon, 6, 6 nylon, 11 nylon,
12 nylon, 6, 12 nylon, aromatic nylon,
Polyamide resin such as modified nylon partially modified from these molecules, linear polyphenylene sulfide resin, cross-linked polyphenylene sulfide resin, semi-cross-linked polyphenylene sulfide resin, low density polyethylene, linear low density polyethylene resin, high density polyethylene resin , Ultra high molecular weight polyethylene resin, polypropylene resin, ethylene-vinyl acetate copolymer resin, ethylene-ethyl acrylate copolymer resin, ionomer resin, polymethylpentene resin, polystyrene resin, acrylonitrile-butadiene-styrene copolymer resin, acrylonitrile-styrene copolymer Polymerized resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl acetate resin, polyvinyl alcohol resin, polyvinyl butyral resin, polyvinyl formal resin, methacrylic Resin, polyvinylidene fluoride resin,
Polytetrafluoroethylene chloride resin, ethylene tetrafluoride-propylene hexafluoride copolymer resin, ethylene-tetrafluoroethylene copolymer resin, ethylene tetrafluoride-perfluoroalkyl vinyl ether copolymer resin, polytetrafluoroethylene resin, Polycarbonate resin, polyacetal resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyphenylene oxide resin, polyallyl ether allyl sulfone resin, polyether sulfone resin, polyether ether ketone resin, polyarylate resin, aromatic polyester resin, cellulose acetate resin, The above-mentioned respective resin-based elastomers and the like, such as random copolymers with these homopolymers and other monomers, block copolymers, graft copolymers, end-group modified products with other substances, and the like. It is.

【0028】これら熱可塑性樹脂の溶融粘度や分子量
は、得られるボンド磁石に所望の機械的強度が得られる
範囲で低い方が望ましい。また、熱可塑性樹脂の形状
は、パウダー状、ビーズ状、ペレット状等、特に限定さ
れないが、磁石粉と均一に混合される点で、パウダー状
が望ましい。熱可塑性樹脂の配合量は、磁石粉末100
重量部に対して、通常5〜100重量部、好ましくは5
〜50重量部である。熱可塑性樹脂の配合量が5重量部
未満であると、組成物の混練抵抗(トルク)が大きくな
ったり、流動性が低下して磁石の成形が困難となり、一
方、100重量部を超えると所望の磁気特性が得られな
い。
It is desirable that the melt viscosity and the molecular weight of these thermoplastic resins be as low as possible so long as the desired mechanical strength of the resulting bonded magnet can be obtained. The shape of the thermoplastic resin is not particularly limited, such as a powder, a bead, a pellet, or the like, but a powder is desirable because it is uniformly mixed with the magnet powder. The blending amount of the thermoplastic resin is 100
5 to 100 parts by weight, preferably 5 to 100 parts by weight,
5050 parts by weight. If the blending amount of the thermoplastic resin is less than 5 parts by weight, the kneading resistance (torque) of the composition becomes large, or the fluidity is reduced, making molding of the magnet difficult. Cannot be obtained.

【0029】(他の添加剤)本発明の高耐候性磁石粉末
を用いたボンド磁石用組成物には、本発明の目的を損な
わない範囲で、プラスチック成形用滑剤や種々の安定剤
等の他の添加剤を配合することができる。
(Other Additives) The composition for a bonded magnet using the highly weather-resistant magnet powder of the present invention may contain other additives such as a lubricant for plastic molding and various stabilizers as long as the object of the present invention is not impaired. Additives can be blended.

【0030】滑剤としては、例えば、パラフィンワック
ス、流動パラフィン、ポリエチレンワックス、ポリプロ
ピレンワックス、エステルワックス、カルナウバ、マイ
クロワックス等のワックス類、ステアリン酸、1,2−
オキシステアリン酸、ラウリン酸、パルミチン酸、オレ
イン酸等の脂肪酸類、ステアリン酸カルシウム、ステア
リン酸バリウム、ステアリン酸マグネシウム、ステアリ
ン酸リチウム、ステアリン酸亜鉛、ステアリン酸アルミ
ニウム、ラウリン酸カルシウム、リノール酸亜鉛、リシ
ノール酸カルシウム、2−エチルヘキソイン酸亜鉛等の
脂肪酸塩(金属石鹸類)ステアリン酸アミド、オレイン
酸アミド、エルカ酸アミド、ベヘン酸アミド、パルミチ
ン酸アミド、ラウリン酸アミド、ヒドロキシステアリン
酸アミド、メチレンビスステアリン酸アミド、エチレン
ビスステアリン酸アミド、エチレンビスラウリン酸アミ
ド、ジステアリルアジピン酸アミド、エチレンビスオレ
イン酸アミド、ジオレイルアジピン酸アミド、N−ステ
アリルステアリン酸アミド等脂肪酸アミド類、ステアリ
ン酸ブチル等の脂肪酸エステル、エチレングリコール、
ステアリルアルコール等のアルコール類、ポリエチレン
グリコール、ポリプロピレングリコール、ポリテトラメ
チレングリコール、及びこれら変性物からなるポリエー
テル類、ジメチルポリシロキサン、シリコングリース等
のポリシロキサン類、弗素系オイル、弗素系グリース、
含弗素樹脂粉末といった弗素化合物、窒化珪素、炭化珪
素、酸化マグネシウム、アルミナ、二酸化珪素、二硫化
モリブデン等の無機化合物粉体が挙げられる。これらの
滑剤は、一種単独でも二種以上組み合わせても良い。該
滑剤の配合量は、磁石粉末100重量部に対して、通常
0.01〜20重量部、好ましくは0.1〜10重量部
である。
Examples of the lubricant include waxes such as paraffin wax, liquid paraffin, polyethylene wax, polypropylene wax, ester wax, carnauba, microwax, stearic acid, 1,2-
Fatty acids such as oxystearic acid, lauric acid, palmitic acid, oleic acid, calcium stearate, barium stearate, magnesium stearate, lithium stearate, zinc stearate, aluminum stearate, calcium laurate, zinc linoleate, calcium ricinoleate Fatty acid salts (metal soaps) such as zinc 2-ethylhexoate, stearic acid amide, oleic acid amide, erucic acid amide, behenic acid amide, palmitic acid amide, lauric acid amide, hydroxystearic acid amide, methylenebisstearic acid amide, Ethylenebisstearic acid amide, ethylenebislauric amide, distearyladipamide, ethylenebisoleic amide, dioleyladipamide, N-stearylstearin Amides such as fatty acid amides, fatty acid esters, ethylene glycol and butyl stearate,
Alcohols such as stearyl alcohol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and polyethers composed of these modified products, dimethylpolysiloxane, polysiloxanes such as silicon grease, fluorine-based oil, fluorine-based grease,
Examples include fluorine compound such as fluorine-containing resin powder, and inorganic compound powder such as silicon nitride, silicon carbide, magnesium oxide, alumina, silicon dioxide, and molybdenum disulfide. These lubricants may be used alone or in combination of two or more. The compounding amount of the lubricant is usually 0.01 to 20 parts by weight, preferably 0.1 to 10 parts by weight based on 100 parts by weight of the magnet powder.

【0031】また、安定剤としては、ビス(2、2、
6、6、−テトラメチル−4−ピペリジル)セバケー
ト、ビス(1、2、2、6、6、−ペンタメチル−4−
ピペリジル)セバケート、1−[2−{3−(3,5−
ジ−第三ブチル−4−ヒドロキシフェニル)プロピオニ
ルオキシ}エチル]−4−{3−(3、5−ジ−第三ブ
チル−4−ヒドロキシフェニル)プロピオニルオキシ}
−2、2、6、6−テトラメチルピペリジン、8−ベン
ジル−7、7、9、9−テトラメチル−3−オクチル−
1、2、3−トリアザスピロ[4、5]ウンデカン−
2、4−ジオン、4−ベンゾイルオキシ−2、2、6、
6−テトラメチルピペリジン、こはく酸ジメチル−1−
(2−ヒドロキシエチル)−4−ヒドロキシ−2、2、
6、6−テトラメチルピペリジン重縮合物、ポリ[[6
−(1、1、3、3−テトラメチルブチル)イミノ−
1、3、5−トリアジン−2、4−ジイル][(2、
2、6、6−テトラメチル−4−ピペリジル)イミノ]
ヘキサメチレン[[2、2、6、6−テトラメチル−4
−ピペリジル]イミノ]]、2−(3、5−ジ・第三ブ
チル−4−ヒドロキシベンジル)−2−n−ブチルマロ
ン酸ビス(1、2、2、6、6−ペンタメチル−4−ピ
ペリジル)等のヒンダード・アミン系安定剤のほか、フ
ェノール系、ホスファイト系、チオエーテル系等の抗酸
化剤等が挙げられる。これらの安定剤も、一種単独でも
二種以上組み合わせても良い。該安定剤の配合量は、磁
石粉末100重量部に対して、通常0.01〜5重量
部、好ましくは0.05〜3重量部である。
As the stabilizer, bis (2, 2,
6,6, -tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6, -pentamethyl-4-
Piperidyl) sebacate, 1- [2- {3- (3,5-
Di-tert-butyl-4-hydroxyphenyl) propionyloxy {ethyl] -4- {3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy}
-2,2,6,6-tetramethylpiperidine, 8-benzyl-7,7,9,9-tetramethyl-3-octyl-
1,2,3-triazaspiro [4,5] undecane-
2,4-dione, 4-benzoyloxy-2,2,6,
6-tetramethylpiperidine, dimethyl succinate-1-
(2-hydroxyethyl) -4-hydroxy-2,2,
6,6-tetramethylpiperidine polycondensate, poly [[6
-(1,1,3,3-tetramethylbutyl) imino-
1,3,5-triazine-2,4-diyl] [(2,
2,6,6-tetramethyl-4-piperidyl) imino]
Hexamethylene [[2,2,6,6-tetramethyl-4
-Piperidyl] imino]], bis (1,2,2,6,6-pentamethyl-4-piperidyl) 2- (3,5-di-tert-butyl-4-hydroxybenzyl) -2-n-butylmalonate ), Antioxidants such as phenolic, phosphite, thioether and the like. These stabilizers may be used alone or in combination of two or more. The amount of the stabilizer is usually 0.01 to 5 parts by weight, preferably 0.05 to 3 parts by weight, based on 100 parts by weight of the magnet powder.

【0032】尚、上記の各成分の混合方法は、特に限定
されず、例えばリボンブレンダー、タンブラー、ナウタ
ーミキサー、ヘンシェルミキサー、スーパーミキサー等
の混合機、あるいは、バンバリーミキサー、ニーダー、
ロール、ニーダールーダー、単軸押出機、二軸押出機等
の混練機を用いて実施される。得られるボンド磁石用組
成物の形状は、パウダー状、ビーズ状、ペレット状、あ
るいはこれらの混合物の形であるが、取扱い易さの点
で、ペレット状が望ましい。
The method of mixing the above components is not particularly limited. For example, a mixer such as a ribbon blender, a tumbler, a Nauter mixer, a Henschel mixer, a super mixer, or a Banbury mixer, a kneader,
It is carried out using a kneader such as a roll, a kneader-ruder, a single-screw extruder, a twin-screw extruder, or the like. The shape of the composition for a bonded magnet to be obtained is in the form of powder, beads, pellets, or a mixture thereof, but pellets are desirable from the viewpoint of easy handling.

【0033】次いで、上記のボンド磁石用組成物は、熱
可塑性樹脂の溶融温度で加熱溶融された後、所望の形状
を有する磁石に成形される。その際、成形法としては、
従来からプラスチック成形加工等に利用されている射出
成形法、押出成形法、射出圧縮成形法、射出プレス成形
法、トランスファー成形法等の各種成形法が挙げられる
が、これらの中では、特に射出成形法、押出成形法、射
出圧縮成形法、及び射出プレス成形法が好ましい。
Next, the above composition for a bonded magnet is heated and melted at the melting temperature of the thermoplastic resin, and then formed into a magnet having a desired shape. At that time, as a molding method,
Various molding methods, such as injection molding, extrusion molding, injection compression molding, injection press molding, and transfer molding, which have been conventionally used for plastic molding, etc., can be mentioned. Among these, particularly injection molding is preferred. , Extrusion molding, injection compression molding, and injection press molding are preferred.

【0034】[0034]

【実施例】以下に、本発明の実施例及び比較例を示す
が、本発明は、これらの実施例によって何ら限定される
ものではない。尚、実施例や比較例に用いた各成分の詳
細や評価方法は、以下の通りである。
EXAMPLES Examples and comparative examples of the present invention will be shown below, but the present invention is not limited to these examples. The details and evaluation methods of each component used in Examples and Comparative Examples are as follows.

【0035】(1)成分磁石磁性粗粉 ・Sm−Fe−N系磁石合金粉末(住友金属鉱山(株)
製)Zn粉末 ・Zn粉末(三井金属鉱山(株)製) 粒径:325
メッシュ以下
(1) ComponentMagnet magnetic coarse powder  ・ Sm-Fe-N magnet alloy powder (Sumitomo Metal Mining Co., Ltd.)
Made)Zn powder  ・ Zn powder (Mitsui Metal Mining Co., Ltd.) Particle size: 325
Below mesh

【0036】(2)評価方法 耐熱性評価 得られた磁石粉末試料、及び真空オーブン中で210℃
に1時間保持した試料の保磁力を振動試料型磁力計(東
英工業(株)製 VSM−3)にて常温で測定した。 耐食性評価 60℃相対湿度80%雰囲気中で10時間放置した磁石
粉末試料の保磁力を上記振動試料型磁力計にて常温で測
定した。
(2) Evaluation method Evaluation of heat resistance The obtained magnet powder sample and 210 ° C. in a vacuum oven
The coercive force of the sample held for 1 hour was measured at room temperature with a vibration sample magnetometer (VSM-3 manufactured by Toei Kogyo Co., Ltd.). Evaluation of Corrosion Resistance The coercive force of a magnet powder sample left for 10 hours in an atmosphere of 60 ° C. and 80% relative humidity was measured at room temperature with the above-mentioned vibrating sample magnetometer.

【0037】(実施例1〜4、比較例1)還元拡散法に
よって得られたSm−Fe系磁性粗粉末(Sm含量:2
5wt%)を100μm以下に篩い分けし、水素/アン
モニア混合ガス中で480℃、270分間保持して窒化
した後、冷却した。得られたSm−Fe−N系磁性粗粉
末1kgに対してZn粉末を表1に示す割合で添加し、
混合した。次に、窒素/水素混合ガスを11/minで
供給しながら430℃で10時間保持した後、室温まで
冷却した。次いで、アトライターを用いて溶媒中200
rpmで60分間粉砕した後、乾燥した。乾燥後の磁石
粉末(平均粒径:4〜5μm)を用いて磁気特性の測定
を行った。得られた結果を表1に示す。
(Examples 1 to 4, Comparative Example 1) Sm—Fe-based magnetic coarse powder obtained by the reduction diffusion method (Sm content: 2)
(5 wt%) was sieved to 100 μm or less, nitrided at 480 ° C. for 270 minutes in a hydrogen / ammonia mixed gas, and then cooled. Zn powder was added at a ratio shown in Table 1 to 1 kg of the obtained Sm-Fe-N-based magnetic coarse powder,
Mixed. Next, the mixture was maintained at 430 ° C. for 10 hours while supplying a nitrogen / hydrogen mixed gas at 11 / min, and then cooled to room temperature. Then, 200 ml in a solvent was prepared using an attritor.
After crushing at 60 rpm for 60 minutes, it was dried. Magnetic properties were measured using the dried magnet powder (average particle size: 4 to 5 μm). Table 1 shows the obtained results.

【0038】[0038]

【表1】 [Table 1]

【0039】表1から明らかなように、本発明の製造方
法で得られた磁石粉末は、従来法で製造された磁石粉末
に較べて、保磁力が高く、また、耐熱性、耐候性も著し
く改善されている。
As is evident from Table 1, the magnet powder obtained by the manufacturing method of the present invention has a higher coercive force and remarkably high heat resistance and weather resistance as compared with the magnet powder manufactured by the conventional method. Has been improved.

【発明の効果】以上説明した通り、本発明の製造方法で
得られた磁石粉末は、皮膜形成時に突起等の表面欠陥が
修復されて逆磁区発生の核が減少し、また、磁石粉末の
表面が低融点金属で被覆されるため、保磁力に優れると
ともに、耐熱性、耐食性が著しく向上する。また、磁石
粉末を乾燥した後の凝集体を解砕しても発熱することが
ないため、ボンド磁石の製造工程において、樹脂と混練
する際の粉末の取り扱いが容易になるとともに、発熱に
よる磁気特性の劣化を抑制することができる。本発明の
製造方法で得られた磁石粉末により高耐候性ボンド磁石
の製造が可能となり、その工業的価値は極めて大きい。
As described above, in the magnetic powder obtained by the manufacturing method of the present invention, surface defects such as projections are repaired during the formation of a film, the nuclei for generating reverse magnetic domains are reduced, and the surface of the magnet powder is reduced. Is coated with a low-melting metal, so that it has excellent coercive force and remarkably improved heat resistance and corrosion resistance. In addition, since heat is not generated even when the aggregates after the magnet powder is dried are disintegrated, the handling of the powder when kneading with the resin is facilitated in the manufacturing process of the bonded magnet, and the magnetic properties due to the heat generation are improved. Degradation can be suppressed. The magnet powder obtained by the manufacturing method of the present invention makes it possible to manufacture a highly weather-resistant bonded magnet, and its industrial value is extremely large.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 低融点金属が被覆された希土類元素を含
む鉄系磁石粉末の製造法において、粒径150μm以下
の希土類元素を含む鉄系磁性粗粉未を、低融点金属粉末
と混合し、窒素ガス及び/又は水素ガス中200〜60
0℃で加熱処理した後、粉砕することを特徴とする希土
類元素を含む鉄系磁石粉末の製造方法。
1. A method for producing an iron-based magnet powder containing a rare-earth element coated with a low-melting-point metal, comprising mixing an iron-based magnetic coarse powder containing a rare-earth element with a particle size of 150 μm or less with the low-melting-point metal powder, 200 to 60 in nitrogen gas and / or hydrogen gas
A method for producing an iron-based magnet powder containing a rare-earth element, which is heat-treated at 0 ° C. and then pulverized.
【請求項2】 低融点金属粉末は、Zn、Sn、In、
及びPbからなる群から選ばれた少なくとも1種の金属
の粉末であることを特徴とする請求項1に記載の希土類
元素を含む鉄系磁石粉末の製造方法。
2. The low melting point metal powder is Zn, Sn, In,
The method of claim 1, wherein the powder is at least one metal selected from the group consisting of Pb and Pb.
【請求項3】 低融点金属粉末は、粒径が50μm以下
であることを特徴とする請求項1又は2に記載の希土類
元素を含む鉄系磁石粉末の製造方法。
3. The method for producing an iron-based magnet powder containing a rare earth element according to claim 1, wherein the low melting point metal powder has a particle size of 50 μm or less.
【請求項4】 請求項1〜3のいずれか1項に記載の製
造方法によって得られることを特徴とする希土類元素を
含む鉄系磁石粉末。
4. An iron-based magnet powder containing a rare earth element, which is obtained by the production method according to claim 1.
【請求項5】 請求項4に記載の希土類元素を含む鉄系
磁石粉末を主成分として含有することを特徴とするボン
ド磁石用樹脂組成物。
5. A resin composition for a bonded magnet, comprising the iron-based magnet powder containing a rare earth element according to claim 4 as a main component.
【請求項6】 請求項5に記載のボンド磁石用樹脂組成
物を成形して得られることを特徴とするボンド磁石。
6. A bonded magnet obtained by molding the resin composition for a bonded magnet according to claim 5.
JP2000393932A 2000-12-26 2000-12-26 Method of manufacturing high weather-resistant magnet powder, and product obtained by use of the same Pending JP2002198211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000393932A JP2002198211A (en) 2000-12-26 2000-12-26 Method of manufacturing high weather-resistant magnet powder, and product obtained by use of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000393932A JP2002198211A (en) 2000-12-26 2000-12-26 Method of manufacturing high weather-resistant magnet powder, and product obtained by use of the same

Publications (1)

Publication Number Publication Date
JP2002198211A true JP2002198211A (en) 2002-07-12

Family

ID=18859647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000393932A Pending JP2002198211A (en) 2000-12-26 2000-12-26 Method of manufacturing high weather-resistant magnet powder, and product obtained by use of the same

Country Status (1)

Country Link
JP (1) JP2002198211A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004027795A1 (en) * 2002-09-19 2004-04-01 Nec Tokin Corporation Method for manufacturing bonded magnet and method for manufacturing magnetic device having bonded magnet
JP2006269937A (en) * 2005-03-25 2006-10-05 Nichia Chem Ind Ltd Bond magnet
JP2008258463A (en) * 2007-04-06 2008-10-23 Nec Tokin Corp Permanent magnet material and permanent magnet using the same, and manufacturing method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004027795A1 (en) * 2002-09-19 2004-04-01 Nec Tokin Corporation Method for manufacturing bonded magnet and method for manufacturing magnetic device having bonded magnet
EP1548765A1 (en) * 2002-09-19 2005-06-29 Nec Tokin Corporation Method for manufacturing bonded magnet and method for manufacturing magnetic device having bonded magnet
EP1548765A4 (en) * 2002-09-19 2006-01-11 Nec Tokin Corp Method for manufacturing bonded magnet and method for manufacturing magnetic device having bonded magnet
JPWO2004027795A1 (en) * 2002-09-19 2006-01-19 Necトーキン株式会社 Method for manufacturing bonded magnet and method for manufacturing magnetic device including bonded magnet
JP2006269937A (en) * 2005-03-25 2006-10-05 Nichia Chem Ind Ltd Bond magnet
JP2008258463A (en) * 2007-04-06 2008-10-23 Nec Tokin Corp Permanent magnet material and permanent magnet using the same, and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP3882545B2 (en) High weather-resistant magnet powder and magnet using the same
JP3882490B2 (en) Method for producing highly weather-resistant magnet powder and product obtained
JP5910467B2 (en) Bonded magnet composition and bonded magnet using the same
JP4135447B2 (en) High weather-resistant magnet powder, resin composition for bonded magnet, and bonded magnet obtained using the same
JP3139827B2 (en) Manufacturing method of bonded magnet using rare earth magnetic resin composite material
JP2007250646A (en) Composition for resin bond type magnet, magnetically anisotropic bond magnet using same, and manufacturing method thereof
JP2002198211A (en) Method of manufacturing high weather-resistant magnet powder, and product obtained by use of the same
JP3478126B2 (en) Resin-bonded metal composition and metal molding
JP4438445B2 (en) Rare earth hybrid bonded magnet composition and rare earth hybrid bonded magnet
JP2016092262A (en) Material for bond magnet formation and bond magnet
JP2008305878A (en) Magnetic material, its manufacturing method and resin bond type magnet for sensor employing it
JP4412376B2 (en) Salt-water resistant magnet alloy powder, and resin composition for bond magnet, bond magnet or compacted magnet obtained by using the same
JP4126947B2 (en) Salt-resistant magnetic alloy powder, method for producing the same, resin composition for bonded magnet obtained by using the same, bonded magnet or compacted magnet
JPH08167512A (en) Resin bound magnet and magnetic raw material
JP2003217916A (en) High heat resistance magnetic powder, its manufacturing method and bonded magnet using the same
JP3473677B2 (en) Magnetic powder for rare earth bonded magnet, composition for rare earth bonded magnet, and rare earth bonded magnet
JP2001072863A (en) Composition for resin-bonded type magnet
JP2007324618A (en) High weather resistance magnetic powder and resin composition for bond magnet, and bond magnet obtained using it
JP2004266151A (en) Composition for rare earth hybrid magnet, and rare earth hybrid magnet
JP2002359107A (en) High weatherability magnet powder composition and its manufacturing method, and product manufactured thereby
JP2000173808A (en) Composition for resin-bonded magnet and resin-bonded magnet
JPH04157705A (en) Magnetic-material resin composite material
JP3468070B2 (en) Resin-bonded metal composition and metal molding
JPH10208919A (en) Resin-bonded magnet composition
JP3835133B2 (en) Rare earth hybrid magnet composition and magnet