JP2008258463A - Permanent magnet material and permanent magnet using the same, and manufacturing method therefor - Google Patents

Permanent magnet material and permanent magnet using the same, and manufacturing method therefor Download PDF

Info

Publication number
JP2008258463A
JP2008258463A JP2007100132A JP2007100132A JP2008258463A JP 2008258463 A JP2008258463 A JP 2008258463A JP 2007100132 A JP2007100132 A JP 2007100132A JP 2007100132 A JP2007100132 A JP 2007100132A JP 2008258463 A JP2008258463 A JP 2008258463A
Authority
JP
Japan
Prior art keywords
permanent magnet
mass
powder
magnet material
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007100132A
Other languages
Japanese (ja)
Other versions
JP4834869B2 (en
Inventor
Keita Isotani
桂太 磯谷
Satoshi Sugimoto
諭 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Tokin Corp
Original Assignee
Tohoku University NUC
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, NEC Tokin Corp filed Critical Tohoku University NUC
Priority to JP2007100132A priority Critical patent/JP4834869B2/en
Publication of JP2008258463A publication Critical patent/JP2008258463A/en
Application granted granted Critical
Publication of JP4834869B2 publication Critical patent/JP4834869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent magnet having temperature characteristics superior than those of an Nd<SB>2</SB>Fe<SB>14</SB>B-based magnet and having saturation magnetization higher than that of Sm<SB>2</SB>Fe<SB>17</SB>N<SB>x</SB>, a manufacturing method therefor, and a permanent magnet material used therefor. <P>SOLUTION: This permanent magnet material contains 10-95 mass% of an Sm<SB>2</SB>Fe<SB>17-x</SB>M<SB>x</SB>N<SB>y</SB>based magnet powder (where M is at least one or more kinds selected from among Mn, Co, Zr, Al, Ga, Ta, Nb, Ti, and x=0-3, y=1-4), and 90-5 mass% of a ferromagnetic material exhibiting saturation magnetization value not less than 1.4 T singly. The permanent magnet is obtained by mixing a binder into the permanent magnet material and solidifying it. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、飽和磁化、保磁力などの磁気特性に優れ、熱的に安定なボンド磁石粉末、またはボンド磁石、または金属バインダー磁石を提供するものである。   The present invention provides a thermally stable bond magnet powder, bond magnet, or metal binder magnet having excellent magnetic properties such as saturation magnetization and coercive force.

現在、希土類磁石の中で最も生産金額が大きく、最も高特性なのはNdFe14B系磁石であるが、この磁石は熱的に不安定であり、温度の上昇に伴い、磁気特性が劣化するという欠点を持つ。そのため最大使用温度は約150℃程度となり、高温状態になる環境での使用はできない。 Currently, Nd 2 Fe 14 B-based magnets have the largest production value and the highest characteristics among rare earth magnets, but these magnets are thermally unstable, and the magnetic characteristics deteriorate as the temperature rises. Have the disadvantages. Therefore, the maximum use temperature is about 150 ° C. and cannot be used in an environment where the temperature is high.

そのため150℃以上の高温環境では、Co系磁石(SmCo17系磁石、SmCo系磁石、FeCrCo系磁石)、やSmFe17系ボンド磁石しか選択肢が無いのが現状である。この中でCo系磁石は磁気特性に劣り高価であるという欠点を持ち、脆性なため、欠けや割れなどもおきやすいという欠点を持ち、また、SmFe17は磁気特性は高いが約500℃以上で不均化反応を起こし、SmN+αFeに分解してしまうという欠点がある。そのため一般に焼結は不可能である。そのため、SmFe17系磁石は焼結体ができず、製品としてはボンド磁石のみであり、一般に高価で、焼結体に比べ特性が低いという欠点を持つ。 Therefore, in a high temperature environment of 150 ° C. or higher, there are currently only options for Co-based magnets (Sm 2 Co 17- based magnets, SmCo 5- based magnets, FeCrCo-based magnets) and Sm 2 Fe 17 N x- based bonded magnets. Among them, the Co-based magnet has the disadvantage that it is inferior in magnetic properties and is expensive, and since it is brittle, it has the disadvantage that cracks and cracks are likely to occur, and Sm 2 Fe 17 N x has high magnetic properties, but it is about There is a disadvantage that a disproportionation reaction is caused at 500 ° C. or more, and it is decomposed into SmN + αFe. Therefore, sintering is generally impossible. For this reason, Sm 2 Fe 17 N x- based magnets cannot be sintered, and as a product, only bonded magnets are used, which are generally expensive and have characteristics that are lower in properties than sintered bodies.

また、特許文献1などでは、希土類磁石粉末にフェライト磁性粉末を混合するハイブリッド磁石について述べられているが、このフェライトを混ぜるという手法では、飽和磁化が小さく、大きな磁気特性の向上は望めないのが現状である。また、メルトスピニング法(急冷凝固法)などで作られたナノコンポジット磁石は等法性粉末であり析出相も制御が難しいため、こちらも磁気特性の大きな向上は望めない。   Further, Patent Document 1 describes a hybrid magnet in which ferrite magnetic powder is mixed with rare earth magnet powder. However, the method of mixing this ferrite has a small saturation magnetization, and a large improvement in magnetic characteristics cannot be expected. Currently. In addition, nanocomposite magnets made by melt spinning method (rapid solidification method) are isotropic powders, and it is difficult to control the precipitation phase, so this also cannot be expected to greatly improve magnetic properties.

特開2003−59706JP 2003-59706 A

そこで、本発明の技術的課題は、NdFe14B系磁石よりも温度特性に優れ、SmFe17よりも飽和磁化の高い永久磁石とその製造方法と、それに用いられる永久磁石材料とを提供することにある。 Therefore, the technical problem of the present invention is that a permanent magnet that is superior in temperature characteristics to an Nd 2 Fe 14 B-based magnet and has a saturation magnetization higher than that of Sm 2 Fe 17 N x, a manufacturing method thereof, and a permanent magnet material used therefor And to provide.

また、本発明の別の技術的課題は、異方性の大きいSmFe17磁石粉末を含むことで、BHループ等も2段にならず、角型の比較的良好な永久磁石とその製造方法と、それに用いられる永久磁石材料とを提供することにある。 Another technical problem of the present invention is that a highly anisotropic Sm 2 Fe 17 N x magnet powder is included, so that the BH loop and the like do not have two stages, and a square-shaped relatively good permanent magnet is obtained. It is in providing the manufacturing method and the permanent magnet material used for it.

本発明によれば、SmFe17−x系磁石粉末(但し,MはMn,Co,Zr,Al,Ga,Ta,Nb,Tiから選ばれる少なくとも1種以上,x=0〜3,y=1〜4)を10〜95質量%含有し、かつ、飽和磁化の値が単体で1.4T以上を示す強磁性体を90〜5質量%含有することを特徴とする永久磁石材料が得られる。 According to the present invention, Sm 2 Fe 17-x M x N y- based magnet powder (where M is at least one selected from Mn, Co, Zr, Al, Ga, Ta, Nb, Ti, x = 0 .About.3, y = 1 to 4) is contained in an amount of 10 to 95% by mass, and a ferromagnetic material having a saturation magnetization value of 1.4 T or more alone is contained in an amount of 90 to 5% by mass. A magnet material is obtained.

また、本発明によれば、前記永久磁石材料において、含有する前記強磁性体の組成が、Feを50質量%以上含有し、Co、Cr、Ni、V、Mo、Mn、W、Al、Zn、C、Si、B、及びYの内、少なくとも一種類以上の元素を0〜50質量%含有(0の場合はFeが100質量%)することを特徴とする永久磁石材料が得られる。   According to the present invention, in the permanent magnet material, the composition of the ferromagnetic material to be contained contains 50 mass% or more of Fe, and Co, Cr, Ni, V, Mo, Mn, W, Al, Zn , C, Si, B and Y contain at least one element in an amount of 0 to 50% by mass (in the case of 0, Fe is 100% by mass), thereby obtaining a permanent magnet material.

また、本発明によれば、前記永久磁石材料において、含有する前記強磁性体の組成が、Coを50質量%以上含有し、Fe、Cr、Ni、V、Mo、Mn、W、Al、Zn、C、Si、B、Yの内、少なくとも一種類以上の元素を0〜50質量%含有(0の場合はCoが100質量%)することを特徴とする永久磁石材料が得られる。   According to the invention, in the permanent magnet material, the composition of the ferromagnetic material to be contained contains 50 mass% or more of Co, Fe, Cr, Ni, V, Mo, Mn, W, Al, Zn , C, Si, B, and Y contain at least one element in an amount of 0 to 50% by mass (in the case of 0, Co is 100% by mass), thereby obtaining a permanent magnet material.

また、本発明によれば、前記いずれか一つに記載の永久磁石材料において、前記強磁性体は、その平均粒径(D50)が30nm〜150μmの範囲の磁性粉末であるか、または、その形状が細線(又はワイヤー)もしくは針状を有し、その細線もしくは針状粉末の平均線径が20nm〜50μm、長さが5mm以下の範囲である磁性粉末の、少なくともいずれか一方を含むことを特徴とする永久磁石材料が得られる。   According to the present invention, in the permanent magnet material according to any one of the above, the ferromagnetic material is a magnetic powder having an average particle diameter (D50) in the range of 30 nm to 150 μm, or The shape has a fine wire (or wire) or needle shape, and the fine wire or needle powder contains at least one of magnetic powders having an average wire diameter of 20 nm to 50 μm and a length of 5 mm or less. A characteristic permanent magnet material is obtained.

また、本発明によれば、前記いずれか一つの永久磁石材料と5容量%〜40容量%の高分子結合剤とを有する混合物を、成形・固化してなることを特徴とする永久磁石が得られる。   In addition, according to the present invention, there is obtained a permanent magnet obtained by molding and solidifying a mixture having any one of the above permanent magnet materials and a polymer binder of 5 volume% to 40 volume%. It is done.

また、本発明によれば、前記いずれか一つの永久磁石材料と、これらに融点が500℃以下の金属結合剤を5容量%〜40容量%含む混合物の成形体を、真空中、または非酸化性雰囲気で500℃以下で熱処理、固化してなることを特徴とする永久磁石が得られる。   Further, according to the present invention, a molded body of any one of the permanent magnet materials and a mixture containing 5% to 40% by volume of a metal binder having a melting point of 500 ° C. or less is formed in vacuum or non-oxidized. A permanent magnet obtained by heat treatment and solidification at 500 ° C. or lower in a neutral atmosphere is obtained.

また、本発明によれば、前記いずれか一つの永久磁石材料に、混合後の比率が5容量%〜40容量%となるように、高分子結合剤を添加・混合することにより混和物を得る混合工程と、その混合物を成形して成形体を得る成形工程と、その成形体を固化する固化工程を有することを特徴とする永久磁石の製造方法が得られる。   In addition, according to the present invention, an admixture is obtained by adding and mixing a polymer binder to any one of the permanent magnet materials so that the ratio after mixing is 5 volume% to 40 volume%. A method for producing a permanent magnet is provided, which includes a mixing step, a forming step of forming the mixture to obtain a formed body, and a solidifying step of solidifying the formed body.

また、本発明によれば、前記いずれか一つの永久磁石材料に、融点が500℃以下の金属結合剤を5容量%〜40容量%となるように混合し、混和物を得る混合工程と、その混合物を成形して得る成形工程と、その成形体を500℃以下の温度域で熱処理する熱処理工程を有することを特徴とする永久磁石の製造方法が得られる。   According to the present invention, any one of the permanent magnet materials is mixed with a metal binder having a melting point of 500 ° C. or lower so as to be 5% by volume to 40% by volume to obtain an admixture; There is obtained a method for producing a permanent magnet comprising a molding step obtained by molding the mixture, and a heat treatment step in which the molded body is heat-treated in a temperature range of 500 ° C. or lower.

また、本発明によれば、前記いずれか一つの永久磁石材料に、融点が500℃以下の金属結合剤を5容量%〜40容量%となるように混合し、混和物を得る混合工程と、その成形体を500℃以下の温度域で成形して成形体を得る工程を有することを特徴とする永久磁石の製造方法が得られる。   According to the present invention, any one of the permanent magnet materials is mixed with a metal binder having a melting point of 500 ° C. or lower so as to be 5% by volume to 40% by volume to obtain an admixture; There is obtained a method for producing a permanent magnet, comprising a step of forming the molded body in a temperature range of 500 ° C. or lower to obtain a molded body.

また、本発明によれば、前記いずれか一つの永久磁石の製造方法において、前記成形体工程は、磁場中で行われることを特徴とする永久磁石の製造方法が得られる。   In addition, according to the present invention, in the method for manufacturing any one of the above permanent magnets, there is obtained a method for manufacturing a permanent magnet, wherein the forming step is performed in a magnetic field.

本発明によれば、飽和磁化の高い強磁性粉末または強磁性ワイヤーとSmFe17系磁石粉末と混ぜ合わせることにより、混合前のSmFe17よりも高飽和磁化となり、優れた磁気特性を示す。これにより、高保磁力と高飽和磁化、高熱特性を満たす、優れた磁石を作製することが可能となる。 According to the present invention, by mixing ferromagnetic powder or ferromagnetic wire with high saturation magnetization and Sm 2 Fe 17 N x- based magnet powder, the saturation magnetization becomes higher than that of Sm 2 Fe 17 N x before mixing, which is superior. Show magnetic properties. This makes it possible to produce an excellent magnet that satisfies high coercivity, high saturation magnetization, and high thermal characteristics.

この磁石に用いる強磁性体は、SmFe17系磁石粉末より、高い飽和磁化を持つことが必要であり、この条件を満たす材料としてはFeまたはCoまたはFe系合金またはCo系合金、またはこれらの混合物が挙げられる。 The ferromagnetic material used for this magnet needs to have a higher saturation magnetization than Sm 2 Fe 17 N x- based magnet powder, and Fe, Co, Fe-based alloy, Co-based alloy, Or a mixture thereof.

また、本発明によれば、SmFe17磁石粉末の異方性の大きいので、BHループ等も2段にならず、角型の比較的良好な永久磁石とその製造方法と、それを用いた永久磁石材料を提供することができる。 Further, according to the present invention, since the anisotropy of the Sm 2 Fe 17 N x magnet powder is large, the BH loop or the like does not have two stages, and the square-shaped relatively good permanent magnet, its manufacturing method, A permanent magnet material using can be provided.

本発明について更に詳細に説明する。   The present invention will be described in more detail.

SmFe14の飽和磁化である1.4T(市販品)よりも飽和磁化の高いFe、またはCo、またはFe系合金、またはCo系合金、またはこれらの混合物をSmFe17系磁石粉末と混ぜ合わせることにより、高い磁気特性を得る。また、混合するこれらのFe、またはCo、またはFe系合金、またはCo系合金の飽和磁化が高いほど、また、保磁力が大きいほど、または、平均粒径が小さいほど、最終的な永久磁石としての特性は向上し、優れた磁石となりうる。 Fe, Co, or Fe-based alloy, Co-based alloy, or a mixture thereof having higher saturation magnetization than 1.4T (commercially available) which is the saturation magnetization of Sm 2 Fe 14 N x is converted into Sm 2 Fe 17 N x. High magnetic properties are obtained by mixing with system magnet powder. Further, the higher the saturation magnetization of these Fe, Co, or Fe-based alloy, or Co-based alloy mixed, the larger the coercive force, or the smaller the average particle size, the more the final permanent magnet. This improves the properties and can be an excellent magnet.

また、SmFe17系磁石粉末と強磁性粉末の比率を変化させることにより、飽和磁化と保磁力の大きさを任意に調整でき、製品に必要とされる磁気特性に柔軟に対応させることができる。 In addition, by changing the ratio of the Sm 2 Fe 17 N x- based magnet powder and the ferromagnetic powder, the saturation magnetization and the coercive force can be arbitrarily adjusted to flexibly correspond to the magnetic characteristics required for the product. be able to.

この変化可能な比率としてはSmFe17(X=1〜4)系磁石粉末と前記強磁性粉末の比率として、SmFe17(X=1〜4)系磁石粉末が10〜95質量%含有し、かつ、強磁性粉末を90〜5質量%含有する時、良好な特性が得られる。 As the ratio of this change, the ratio of the Sm 2 Fe 17 N x (X = 1 to 4) magnet powder to the ferromagnetic powder is 10 Sm 2 Fe 17 N x (X = 1 to 4) magnet powder. When the content is ˜95% by mass and the ferromagnetic powder is contained by 90 to 5% by mass, good characteristics can be obtained.

90質量%より強磁性粉末の比率が多いと、保磁力・最大エネルギー積の観点からFe−Cr−Co系磁石などに対して優位性がなく、また、強磁性粉末の比率が5質量%より少ないと、SmFe17系粉末のみの場合とほぼ特性が変わらず、優位性が現れない。 When the ratio of the ferromagnetic powder is higher than 90% by mass, there is no advantage over the Fe-Cr-Co magnet etc. from the viewpoint of coercive force and maximum energy product, and the ratio of the ferromagnetic powder is more than 5% by mass. When the amount is small, the characteristics are almost the same as in the case of using only the Sm 2 Fe 17 N x powder, and no superiority appears.

また、投入する強磁性体は、その平均粒径(D50)が30nm〜150μmの範囲の磁性粉末であるか、または、その形状が細線(又はワイヤー)もしくは針状を有し、その細線もしくは針状粉末の平均線径が20nm〜50μmの範囲でなくてはならない。この範囲より粒径・線径が小さい場合、作製・取り扱いが困難で、密度も上がりにくく、磁気特性も超常磁性が優勢となってくる。また、この範囲より粒径・線径が大きい場合、ヒステリシス曲線が2段になり、残留磁束密度・角型性・最大エネルギー積が大きく劣化する。   The ferromagnetic material to be added is a magnetic powder having an average particle diameter (D50) in the range of 30 nm to 150 μm, or has a fine line (or wire) or needle shape, and the fine line or needle The average wire diameter of the powder must be in the range of 20 nm to 50 μm. When the particle diameter / wire diameter is smaller than this range, production and handling are difficult, density is difficult to increase, and superparamagnetism is dominant in magnetic properties. Further, when the particle diameter / wire diameter is larger than this range, the hysteresis curve has two steps, and the residual magnetic flux density, squareness, and maximum energy product are greatly deteriorated.

また、これらの磁石粉末の結合剤、即ち、バインダーとしては、高分子と金属が考えられる。本発明に用いる高分子バインダーの種類としては、フェノール樹脂・ポリエステル樹脂・エポキシ樹脂・ユリア樹脂・メラミン樹脂のような熱硬化性樹脂、または、ポリエチレン樹脂・ポリプロピレン樹脂・塩ビ・ABS・アクリル・スチロール・ポリカーボネート・ナイロン・ポリアセタール・ポリエステルのような熱可塑性樹脂が考えられ、用途に応じて使い分ける必要がある。   Moreover, as a binder of these magnet powders, that is, a binder, a polymer and a metal are considered. The type of polymer binder used in the present invention is a thermosetting resin such as phenol resin, polyester resin, epoxy resin, urea resin, melamine resin, or polyethylene resin, polypropylene resin, PVC, ABS, acrylic, styrene, Thermoplastic resins such as polycarbonate, nylon, polyacetal, and polyester are conceivable and need to be properly used depending on the application.

金属バインダーの種類としては、Zn系合金、Bi系合金、Pb系合金、Ga系合金、In系合金、またはこれらの単体金属などが考えられるが、SmFe17は約500℃で不均化反応を起こすため、金属バインダーも500℃以下の融点であることが必要である。 As the types of metal binders, Zn-based alloys, Bi-based alloys, Pb-based alloys, Ga-based alloys, In-based alloys, or single metals thereof can be considered, but Sm 2 Fe 17 N x is not suitable at about 500 ° C. In order to cause a leveling reaction, the metal binder must also have a melting point of 500 ° C. or lower.

これらのバインダーと磁石粉末の混合物より永久磁石を成形する方法としては、圧縮成形、または押し出し成形、または射出成形により成形されることが考えられ、これらの成形は磁場中、または無磁場中のどちらでも可能である。また金属バインダーの場合は熱間加工も考えられる。その際もSmFe17は約500℃で不均化反応を起こすため、熱間加工は500℃以下で行う必要がある。 As a method of forming a permanent magnet from a mixture of these binder and magnet powder, it is conceivable that the permanent magnet is formed by compression molding, extrusion molding, or injection molding. These moldings can be performed either in a magnetic field or in a non-magnetic field. But it is possible. In the case of a metal binder, hot working is also conceivable. At that time, since Sm 2 Fe 17 N x causes a disproportionation reaction at about 500 ° C., it is necessary to perform hot working at 500 ° C. or less.

SmFe14の飽和磁化である1.4T(市販品)よりも飽和磁化の高い強磁性粉末または強磁性ワイヤーとSmFe17系磁石粉末と混ぜ合わせることにより、混合前のSmFe17よりも高飽和磁化となる。また、SmFe17系磁石粉末の異方性磁界・保磁力が大きいため、これらの軟磁性粉末を混ぜたことによる保磁力の減少も比較的少なく、磁石として用いるのに必要な保磁力は確保できる。 By mixing a ferromagnetic powder or a ferromagnetic wire with a saturation magnetization higher than 1.4T (commercial product) which is a saturation magnetization of Sm 2 Fe 14 N x with a Sm 2 Fe 17 N x magnet powder, The saturation magnetization is higher than that of Sm 2 Fe 17 N x . Further, since the anisotropic magnetic field and coercive force of the Sm 2 Fe 17 N x- based magnet powder are large, the coercive force decrease due to the mixing of these soft magnetic powders is relatively small, and the coercive force necessary for use as a magnet is required. Magnetic force can be secured.

これにより、高保磁力と高飽和磁化を満たす、優れた磁石を作製することが可能となる。   This makes it possible to produce an excellent magnet that satisfies high coercivity and high saturation magnetization.

永久磁石に、用いる強磁性体は、SmFe17系磁石粉末より、高い飽和磁化を持つことが必要であり、この条件を満たす材料としてはFeまたはCoまたはFe系合金またはCo系合金、またはこれらの混合物が挙げられる。また、SmFe17磁石粉末の異方性の大きいので、BHループ等も2段にならず、角型の比較的良好な磁石を得ることができる。 The ferromagnetic material used for the permanent magnet is required to have a higher saturation magnetization than the Sm 2 Fe 17 N x- based magnet powder, and Fe, Co, Fe-based alloy or Co-based alloy is a material satisfying this condition. Or mixtures thereof. Further, since the anisotropy of the Sm 2 Fe 17 N x magnet powder is large, the BH loop or the like does not have two stages, and a square-shaped relatively good magnet can be obtained.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

(実施例1)
SmFe17粉末に混合する強磁性粉末は、その平均粒径が80nmのFe粉末であり、カルボニルFe溶液を超音波で分解して作製した。Fe粉とSmFe17Nxの比率を(Fe粉:SmFe17粉)=(100質量%:0質量%),(90質量%:10質量%),(30質量%:70質量%),(5質量%:95質量%),(0質量%:100質量%)の比率で、それぞれ電子天秤を用いて測り取り、アルゴン雰囲気中・乾式ボールミルを用いて30分間混合した。
Example 1
The ferromagnetic powder mixed with the Sm 2 Fe 17 N x powder is an Fe powder having an average particle size of 80 nm, and was prepared by decomposing a carbonyl Fe solution with ultrasonic waves. The ratio of Fe powder to Sm 2 Fe 17 Nx (Fe powder: Sm 2 Fe 17 N x powder) = (100 mass%: 0 mass%), (90 mass%: 10 mass%), (30 mass%: 70 (Mass%), (5% by mass: 95% by mass), and (0% by mass: 100% by mass), respectively, were measured using an electronic balance, and mixed in an argon atmosphere / dry ball mill for 30 minutes.

その後、粉末を取り出し、エポキシ樹脂を5質量%加え、手混合し、これをφ12mmの円柱金型に投入し、約490MPaの圧力により磁場配向プレス(配向磁場H=1185kA/m)を行い圧縮成形を行った。その後、プレス体を120℃・30分・大気中の条件でキュアし、その試料をBHトレーサーにおいて磁気測定を行った。その結果を図1に示す。図1は各組成比における4πI−H曲線を示している。図1から、SmFe17にFeを投入したものは、添加量に従い保磁力は減少するが、飽和磁化は上昇する。 Thereafter, the powder is taken out, 5% by mass of an epoxy resin is added and mixed by hand, and this is put into a cylindrical mold having a diameter of 12 mm and subjected to compression molding with a magnetic field orientation press (orientation magnetic field H = 1185 kA / m) at a pressure of about 490 MPa. Went. Thereafter, the pressed body was cured at 120 ° C. for 30 minutes in the air, and the sample was subjected to magnetic measurement with a BH tracer. The result is shown in FIG. FIG. 1 shows a 4πI-H curve at each composition ratio. From FIG. 1, when Fe is added to Sm 2 Fe 17 N x , the coercive force decreases according to the added amount, but the saturation magnetization increases.

下記表1にA〜Eについて最大エネルギー積を示す。   Table 1 below shows the maximum energy products for A to E.

Figure 2008258463
Figure 2008258463

Fe30%添加した試料においても、(BH)maxは上昇し、磁石の総合的な特性は上昇した。また、DのFeを90質量%投入した試料においても、iHc=58kA/mと保磁力は小さいが、BrはSmFe17のみの1.7倍と、非常に大きいといった特徴がある。現在、市場に出ているアルニコ磁石や、Fe−Cr−Co磁石よりも(BH)maxは大きく、使用用途によってはこれらの磁石に比べ、実用的に優る磁石となりうる。 Even in the sample added with 30% Fe, (BH) max increased, and the overall characteristics of the magnet increased. Further, even in the sample in which 90 mass% of Fe of D is added, iHc = 58 kA / m and the coercive force are small, but Br is very large, 1.7 times that of Sm 2 Fe 17 N x alone. . (BH) max is larger than alnico magnets currently on the market and Fe—Cr—Co magnets, and can be a practically superior magnet depending on the application.

以上の実験により、SmFe17(X=1〜4)系磁石粉末(SmFe17−XMn系磁石などを含む)が10〜95質量%含有し、かつ、Fe粉末を90〜5質量%含有する磁石粉末は、非常に実用的であり、優れた磁石になりうることが明らかとなった。 From the above experiment, the Sm 2 Fe 17 N x (X = 1 to 4) -based magnet powder (including the Sm 2 Fe 17-X Mn X N Y- based magnet) is contained in an amount of 10 to 95% by mass, and Fe It has been clarified that the magnet powder containing 90 to 5% by mass of the powder is very practical and can be an excellent magnet.

また、本実施例ではFe粉末を用いたが、Co粉末、またはFe−Co系合金粉末、Fe−Co−Ni系合金粉末、Fe−Cr−Co系合金粉末(鉄−クロム磁石粉末)、Fe−Cr−Co−Mo−V合金粉末、Fe−Al−Ni−Co−Cu−Nb−Ti合金粉末(アルニコ磁石粉末)、Fe−Co−W−C系合金粉末(KS鋼)、Fe−Ni−Al系合金(MK鋼)、Fe−Co−Y合金粉末、Co−Zn合金粉末、Fe−Si系合金粉末、Fe−Si−Bアモルファス合金粉末、Fe−Co−Zr−Ti−Nb−Si−Gaアモルファス合金などの強磁性合金粉末でも、同様に良好な特性を示すのを確認済みである。   In this example, Fe powder was used, but Co powder, Fe-Co alloy powder, Fe-Co-Ni alloy powder, Fe-Cr-Co alloy powder (iron-chromium magnet powder), Fe -Cr-Co-Mo-V alloy powder, Fe-Al-Ni-Co-Cu-Nb-Ti alloy powder (Alnico magnet powder), Fe-Co-WC system alloy powder (KS steel), Fe-Ni -Al alloy (MK steel), Fe-Co-Y alloy powder, Co-Zn alloy powder, Fe-Si alloy powder, Fe-Si-B amorphous alloy powder, Fe-Co-Zr-Ti-Nb-Si It has been confirmed that ferromagnetic alloy powders such as -Ga amorphous alloy also show good characteristics.

また、これらの混合粉末、または上記の元素を用いた同様な組成においても同様の結果となることは容易に推測可能である。   In addition, it can be easily estimated that the same result can be obtained even in a similar composition using these mixed powders or the above elements.

(実施例2)
本発明の実施例による永久磁石において、用いた粉末は、その平均粒径が30nm、1μm、150μm、500μmのFe粉であり、それぞれのFe粉とSm2Fe17Nxの比率を(Fe粉:SmFe17粉)=(30質量%:70質量%)の比率で、それぞれ電子天秤を用いて測り取り、アルゴン雰囲気中・乾式ボールミルを用いて30分間混合した。
(Example 2)
In the permanent magnet according to the example of the present invention, the powder used is an Fe powder having an average particle size of 30 nm, 1 μm, 150 μm, and 500 μm, and the ratio of each Fe powder to Sm2Fe17Nx (Fe powder: Sm 2 Fe 17 N x powder) = (30% by mass: 70% by mass), respectively, was measured using an electronic balance, and mixed in an argon atmosphere / dry ball mill for 30 minutes.

その後、粉末を取り出し、エポキシ樹脂を4質量%加え、手混合し、これをφ12mmの円柱金型に投入し、約490MPaの圧力により磁場配向プレス(配向磁場H=1185kA/m)を行い圧縮成形を行った。その後、プレス体を120℃・30分・大気中の条件でキュアし、その試料をBHトレーサーにおいて磁気測定を行った。その特性をまとめた結果を図2に示す。図2(a)は磁気特性(Br,Ms,SQ)のFe粒径依存性、図2(b)は磁気特性(iHc,SQ)のFe粒径依存性を夫々示す図である。図2(a)及び(b)において、粒径1000μmの上方に示してある点は、1000μmの粉末ではなく、元のSmFe17の特性である。 After that, the powder is taken out, 4% by mass of epoxy resin is added, mixed by hand, put into a φ12mm cylindrical mold, and subjected to compression molding by magnetic field orientation press (orientation magnetic field H = 1185 kA / m) with a pressure of about 490 MPa. Went. Thereafter, the pressed body was cured at 120 ° C. for 30 minutes in the air, and the sample was subjected to magnetic measurement with a BH tracer. The result of summarizing the characteristics is shown in FIG. FIG. 2A shows the Fe particle size dependence of the magnetic properties (Br, Ms, SQ), and FIG. 2B shows the Fe particle size dependence of the magnetic properties (iHc, SQ). In FIGS. 2A and 2B, the point shown above the particle size of 1000 μm is not the powder of 1000 μm but the characteristics of the original Sm 2 Fe 17 N x .

Fe粒径の増大とともにMsは上昇したが、Brは減少した。これは、第一象限での磁化の減少が大きいことを示している。   Ms increased with increasing Fe particle size, but Br decreased. This indicates that the decrease in magnetization in the first quadrant is large.

また、粒径が大きくなるほど減磁曲線が2段化して行き、角型の指標であるSQ値(=Br×iHcと第2象限の減磁ループの面積比)も大きく減少した。   In addition, the demagnetization curve becomes two steps as the particle size increases, and the SQ value (= Br × iHc and the area ratio of the demagnetization loop in the second quadrant), which is a square index, is greatly reduced.

粒径が増大するにつれMsが上昇した理由としては、Fe粉末の表面酸化の比率が下がったことと、密度の上昇があげられる。   The reason why Ms increases as the particle size increases includes a decrease in the surface oxidation ratio of Fe powder and an increase in density.

Feの平均粒径150μmの粉末では、残留磁化MsがSmFe17より10mT程度大きく、高パーミアンスの形状で使う場合には、SmFe17粉のみより、優位性が出る場合が考えられる。 In the case of Fe powder having an average particle diameter of 150 μm, the remanent magnetization Ms is about 10 mT larger than Sm 2 Fe 17 N x , and when used in a high permeance shape, superiority is obtained over Sm 2 Fe 17 N x powder alone. Can be considered.

Feの平均粒径500μmの粉末では、残留磁束密度Brにおいて、ほぼ元のSmFe17と同じで、他の特性も優位性は全くない。 The powder with an average particle diameter of Fe of 500 μm is almost the same as the original Sm 2 Fe 17 N x in the residual magnetic flux density Br, and there is no superiority in other characteristics.

従って、その平均粒径(D50)が30nm〜150μmを添加した場合において、添加前のSmFe17より優位性を示し、優れた磁石になる可能性があることが明らかになった。 Therefore, when the average particle diameter (D50) of 30 nm to 150 μm was added, it was revealed that there is a possibility of being superior to Sm 2 Fe 17 N x before the addition and an excellent magnet.

(実施例3)
実施例3で用いた軟磁性粉末はCoワイヤー(または針状粉末)とFeワイヤー(または針状粉末のほぼ1:1の混合粉であり、その混同粉の平均線径は20nm、200nm、1μm、50μm、200μm、平均線長は50nm〜2mmであった。20nmと200nmの試料はカルボニルFe、カルボニルCoのガスとArガスの混合気体を熱分解させ、それを永久磁石表面に析出させることで得られた。1〜200μmの試料は、市販品を購入して得た。
(Example 3)
The soft magnetic powder used in Example 3 is a mixed powder of Co wire (or needle-like powder) and Fe wire (or needle powder), and the average wire diameter of the mixed powder is 20 nm, 200 nm, 1 μm. , 50 μm, 200 μm, and the average line length was 50 nm to 2 mm The samples of 20 nm and 200 nm were obtained by thermally decomposing a mixed gas of carbonyl Fe, carbonyl Co gas and Ar gas, and depositing it on the surface of the permanent magnet. Samples of 1 to 200 μm were obtained by purchasing commercially available products.

SmFe17粉末は住友金属鉱山製のものを使用した。 The Sm 2 Fe 17 N x powder was manufactured by Sumitomo Metal Mining.

それぞれのFe/CoワイヤーとSmFe17とZn(平均粒径3μm)を、(Fe/Coワイヤー:SmFe17粉:Zn)=(40質量%:40質量%:20質量%)の比率で、それぞれ電子天秤を用いて測り取り、アルゴン雰囲気中・V型混合機を用いて1時間混合した。粉砕・混合したそれぞれの粉末をAr雰囲気中196MPaの条件で磁場配向プレスを行った。 Respective Fe / Co wires, Sm 2 Fe 17 N x and Zn (average particle size 3 μm) are represented by (Fe / Co wire: Sm 2 Fe 17 N x powder: Zn) = (40 mass%: 40 mass%: 20 (Mass%), each was measured using an electronic balance and mixed for 1 hour in an argon atmosphere using a V-type mixer. The pulverized and mixed powders were subjected to magnetic field orientation pressing in an Ar atmosphere at 196 MPa.

このプレス体をさらにAr雰囲気中・420℃・686MPaの条件で熱プレスを行い、得られた磁石をBHトレーサーで磁気測定を行った。図3(a)はは磁気特性(Br,Ms,SQ)のFe/Co線径比依存性、図2(b)は磁気特性(iHc,SQ)のFeFe/Co線径比依存性を夫々示す図である。   This pressed body was further hot-pressed in an Ar atmosphere at 420 ° C. and 686 MPa, and the obtained magnet was magnetically measured with a BH tracer. 3A shows the dependence of the magnetic properties (Br, Ms, SQ) on the Fe / Co wire diameter ratio, and FIG. 2B shows the dependence of the magnetic properties (iHc, SQ) on the FeFe / Co wire diameter ratio. FIG.

図3(a)及び(b)において、粒径1000μmの上方に示してある点は、1000μmの粉末ではなく、Feを加えない時((Fe/Coワイヤー:SmFe17粉:Zn)=(0質量%:80質量%:20質量%))の特性である。 3 (a) and 3 (b), the point shown above the particle size of 1000 μm is not a powder of 1000 μm, but when Fe is not added ((Fe / Co wire: Sm 2 Fe 17 N x powder: Zn ) = (0 mass%: 80 mass%: 20 mass%))).

図3(a)及び(b)より、Fe/Co線径の増大とともにMsは上昇した。線径が増大するにつれMsが上昇した理由としては、Fe/Co線の表面酸化の比率が下がったことと、密度の上昇があげられる。BrはFe/Co線径が20nm〜50μmの粉末を加えた時には、Feを加えない時(SmFe17+Znのみ)を上回り、優れた磁石特性を示した。 3 (a) and 3 (b), Ms increased as the Fe / Co wire diameter increased. The reason why Ms increases as the wire diameter increases includes a decrease in the surface oxidation ratio of the Fe / Co wire and an increase in density. Br, when a powder having an Fe / Co wire diameter of 20 nm to 50 μm was added, exceeded that when no Fe was added (only Sm 2 Fe 17 N x + Zn), and showed excellent magnetic properties.

しかしながら、BrはFe/Co線径の増大とともに減少した。これは、線径の増大とともに、第一象限での磁化の減少が大きいことを示している。   However, Br decreased with increasing Fe / Co wire diameter. This indicates that the decrease in magnetization in the first quadrant is large as the wire diameter increases.

また、Fe/Co線径が大きくなるほど減磁曲線が2段化して行き、角型の指標であるSQ値(=Br×iHcとの第2象限の4πI−Hループの面積比)も大きく減少した。   In addition, the demagnetization curve becomes two steps as the Fe / Co wire diameter increases, and the SQ value (= Br × iHc, the area ratio of the 4πI-H loop in the second quadrant to Br × iHc) also decreases greatly. did.

Fe/Co線径200μmのワイヤーでは、BrがFeを加えない時(SmFe17Nx+Znのみ)を大きく下回り、磁気特性として優位性はなく、またiHcもFe/Co線径50μmの時に比べ大きく低下、またヒシテリシス曲線が大きく2段になり角型が劣化し、磁石としてFeを加えない時に比べ、優位性を見出せない。 In the case of a wire with an Fe / Co wire diameter of 200 μm, Br is much lower than when Fe is not added (only Sm 2 Fe 17 Nx + Zn), and there is no superior magnetic property, and iHc is also larger than when the Fe / Co wire diameter is 50 μm. Decrease, hysteresis curve becomes large and the square shape deteriorates, and no superiority can be found compared to when no Fe is added as a magnet.

以上の結果より、その平均線径(D50)が20nm〜50μmのワイヤーを添加した場合において、優れた磁石になる可能性があることが明らかになった。   From the above results, it was revealed that when a wire having an average wire diameter (D50) of 20 nm to 50 μm was added, an excellent magnet could be obtained.

Fe/Co線径はコスト、磁気特性、製品のパーミアンス係数などを考慮し、決定されるべきだと考えられる。   It is considered that the Fe / Co wire diameter should be determined in consideration of cost, magnetic characteristics, product permeance coefficient, and the like.

本実施例ではFe/Coワイヤーを用いたが、Fe−Co系合金ワイヤー、Fe−Co−Ni系合金針状粉末、Fe−Cr−Co−Mo−V合金針状粉末、Fe−Si−Al(センダスト)系合金扁平粉末、Fe−Si−Bアモルファス合金ワイヤー、Fe−Co−Zr−Ti−Nb−Si−Gaアモルファス合金ワイヤーなどの強磁性合金粉末・ワイヤーについても粒径依存性の実験を行ったが、同様に良好な特性を示すのを確認済みである。   In this example, Fe / Co wire was used, but Fe-Co alloy wire, Fe-Co-Ni alloy needle powder, Fe-Cr-Co-Mo-V alloy needle powder, Fe-Si-Al. (Sendust) Alloy flat powder, Fe-Si-B amorphous alloy wire, Fe-Co-Zr-Ti-Nb-Si-Ga amorphous alloy wire, etc. Although it was conducted, it has been confirmed that it exhibits good characteristics as well.

また、ワイヤーの平均長さが5mmを超えると、混合時に折れ曲がったり、絡まるなどして配向度が著しく低下するため、磁気特性が大きく劣化し、また形成能も低下することから、ワイヤーの平均長さは5mm以下が適当と考えられる。   In addition, if the average length of the wire exceeds 5 mm, the degree of orientation significantly decreases due to bending or entanglement at the time of mixing, so that the magnetic properties are greatly deteriorated, and the forming ability also decreases. A thickness of 5 mm or less is considered appropriate.

以上の説明の通り、本発明に係る永久磁石材料は、熱的に安定な永久磁石及びその製造方法に用いられる。   As described above, the permanent magnet material according to the present invention is used in a thermally stable permanent magnet and a manufacturing method thereof.

本発明の実施例1に係る永久磁石の各組成比における4πI−H曲線を示している。The 4 (pi) I-H curve in each composition ratio of the permanent magnet which concerns on Example 1 of this invention is shown. (a)は本発明の実施例2に係る永久磁石の磁気特性(Ms,Br,SQ)のFe粒径依存性を示す図、(b)は本発明の実施例2に係る永久磁石の磁気特性(iHc,SQ)のFe粒径依存性を示す図である。(A) is a figure which shows the Fe particle size dependence of the magnetic characteristic (Ms, Br, SQ) of the permanent magnet which concerns on Example 2 of this invention, (b) is the magnetism of the permanent magnet which concerns on Example 2 of this invention. It is a figure which shows the Fe particle size dependence of a characteristic (iHc, SQ). (a)は本発明の実施例3にかかる永久磁石の磁気特性(Ms,Br,SQ)のFe/Co線径依存性を示す図、(b)は本発明の実施例3にかかる永久磁石(iHc,SQ)の磁気特性のFe/Co線径依存性を示す図である。(A) is a figure which shows the Fe / Co wire diameter dependence of the magnetic characteristic (Ms, Br, SQ) of the permanent magnet concerning Example 3 of this invention, (b) is the permanent magnet concerning Example 3 of this invention. It is a figure which shows the Fe / Co wire diameter dependence of the magnetic characteristic of (iHc, SQ).

Claims (10)

SmFe17−x系磁石粉末(但し,MはMn,Co,Zr,Al,Ga,Ta,Nb,Tiから選ばれる少なくとも1種以上,x=0〜3,y=1〜4)を10〜95質量%含有し、かつ、飽和磁化の値が単体で1.4T以上を示す強磁性体を90〜5質量%含有することを特徴とする永久磁石材料。 Sm 2 Fe 17-x M x N y- based magnet powder (where M is at least one selected from Mn, Co, Zr, Al, Ga, Ta, Nb, Ti, x = 0 to 3, y = 1 A permanent magnet material comprising 10 to 95% by mass of -4) and 90 to 5% by mass of a ferromagnetic material having a saturation magnetization value of 1.4 T or more as a single substance. 請求項1に記載の永久磁石材料において、含有する前記強磁性体の組成が、Feを50質量%以上含有し、Co、Cr、Ni、V、Mo、Mn、W、Al、Zn、C、Si、B、及びYの内、少なくとも一種類以上の元素を0〜50質量%含有(0の場合はFeが100質量%)することを特徴とする永久磁石材料。   The permanent magnet material according to claim 1, wherein the composition of the ferromagnetic material to be contained contains 50 mass% or more of Fe, and Co, Cr, Ni, V, Mo, Mn, W, Al, Zn, C, A permanent magnet material comprising 0 to 50% by mass of at least one element of Si, B and Y (Fe is 100% by mass in the case of 0). 請求項1に記載の永久磁石材料において、含有する前記強磁性体の組成が、Coを50質量%以上含有し、Fe、Cr、Ni、V、Mo、Mn、W、Al、Zn、C、Si、B、Yの内、少なくとも一種類以上の元素を0〜50質量%含有(0の場合はCoが100質量%)することを特徴とする永久磁石材料。   The permanent magnet material according to claim 1, wherein the composition of the ferromagnetic material to be contained contains 50 mass% or more of Co, Fe, Cr, Ni, V, Mo, Mn, W, Al, Zn, C, A permanent magnet material containing 0 to 50% by mass of at least one element of Si, B and Y (Co is 100% by mass in the case of 0). 請求項2又は3に記載の永久磁石材料において、前記強磁性体は、その平均粒径(D50)が30nm〜150μmの範囲の磁性粉末であるか、または、その形状が細線もしくは針状を有し、その細線もしくは針状粉末の平均線径が20nm〜50μm、長さが5mm以下の範囲である磁性粉末の、少なくともいずれか一方を含むことを特徴とする永久磁石材料。   4. The permanent magnet material according to claim 2, wherein the ferromagnetic material is a magnetic powder having an average particle diameter (D50) in a range of 30 nm to 150 μm, or has a fine line or needle shape. And the permanent magnet material characterized by including at least any one of the magnetic powder whose average wire diameter of the fine wire or needle-like powder is 20 nm-50 micrometers and whose length is the range of 5 mm or less. 請求項1から4の内のいずれか一つに記載の永久磁石材料と5容量%〜40容量%の高分子結合剤とを有する混合物を、成形・固化してなることを特徴とする永久磁石。   A permanent magnet formed by molding and solidifying a mixture comprising the permanent magnet material according to any one of claims 1 to 4 and a polymer binder of 5% to 40% by volume. . 請求項1から4の内のいずれか一つに記載の永久磁石材料と、これらに融点が500℃以下の金属結合剤を5容量%〜40容量%含む混合物の成形体を、真空中、または非酸化性雰囲気で500℃以下で熱処理、固化してなることを特徴とする永久磁石。   A molded body of a mixture containing the permanent magnet material according to any one of claims 1 to 4 and a metal binder having a melting point of 500 ° C or lower in a range of 5% by volume to 40% by volume in a vacuum, or A permanent magnet obtained by heat treatment and solidification at 500 ° C. or less in a non-oxidizing atmosphere. 請求項1から4の内のいずれか一つに記載の永久磁石材料に、混合後の比率が5容量%〜40容量%となるように、高分子結合剤を添加・混合することにより混和物を得る混合工程と、その混合物を成形して成形体を得る成形工程と、その成形体を固化する固化工程を有することを特徴とする永久磁石の製造方法。   An admixture obtained by adding and mixing a polymer binder to the permanent magnet material according to any one of claims 1 to 4 so that a ratio after mixing is 5 vol% to 40 vol%. The manufacturing method of the permanent magnet characterized by having the mixing process which obtains, the shaping | molding process which shape | molds the mixture, and obtains a molded object, and the solidification process which solidifies the molded object. 請求項1から4の内のいずれか一つに記載の永久磁石材料に、融点が500℃以下の金属結合剤を5容量%〜40容量%となるように混合し、混和物を得る混合工程と、その混合物を成形して得る成形工程と、その成形体を500℃以下の温度域で熱処理する熱処理工程を有することを特徴とする永久磁石の製造方法。   A mixing step of mixing the permanent magnet material according to any one of claims 1 to 4 with a metal binder having a melting point of 500 ° C or lower so as to be 5% by volume to 40% by volume to obtain an admixture. And a molding process obtained by molding the mixture, and a heat treatment process in which the molded body is heat-treated in a temperature range of 500 ° C. or lower. 請求項1から4のいずれか一つに記載の永久磁石材料に、融点が500℃以下の金属結合剤を5容量%〜40容量%となるように混合し、混和物を得る混合工程と、その成形体を500℃以下の温度域で成形して成形体を得る工程を有することを特徴とする永久磁石の製造方法。   A mixing step of mixing the permanent magnet material according to any one of claims 1 to 4 with a metal binder having a melting point of 500 ° C. or less so as to be 5% by volume to 40% by volume to obtain an admixture; A method for producing a permanent magnet, comprising a step of forming the molded body in a temperature range of 500 ° C. or lower to obtain a molded body. 請求項7から9の内のいずれか一つに記載の永久磁石の製造方法において、前記成形体工程は、磁場中で行われることを特徴とする、永久磁石の製造方法。   The method for manufacturing a permanent magnet according to any one of claims 7 to 9, wherein the compacting step is performed in a magnetic field.
JP2007100132A 2007-04-06 2007-04-06 Permanent magnet material, permanent magnet using the same, and manufacturing method thereof Active JP4834869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007100132A JP4834869B2 (en) 2007-04-06 2007-04-06 Permanent magnet material, permanent magnet using the same, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007100132A JP4834869B2 (en) 2007-04-06 2007-04-06 Permanent magnet material, permanent magnet using the same, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008258463A true JP2008258463A (en) 2008-10-23
JP4834869B2 JP4834869B2 (en) 2011-12-14

Family

ID=39981723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007100132A Active JP4834869B2 (en) 2007-04-06 2007-04-06 Permanent magnet material, permanent magnet using the same, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4834869B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012032961A1 (en) * 2010-09-06 2012-03-15 ダイハツ工業株式会社 Magnetic material and method for producing same
JP2012080073A (en) * 2010-09-06 2012-04-19 Daihatsu Motor Co Ltd Magnetic material
WO2017170129A1 (en) * 2016-03-28 2017-10-05 Tdk株式会社 Permanent magnet manufacturing method
CN108015268A (en) * 2016-10-28 2018-05-11 龙岩紫荆创新研究院 The bonded permanent magnet that a kind of R-B-Ti-Fe alloy powders and preparation method thereof are prepared with the alloy powder
CN110211759A (en) * 2018-02-28 2019-09-06 大同特殊钢株式会社 Sm-Fe-N magnet material and Sm-Fe-N bonded permanent magnet

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175023A (en) * 1991-12-25 1993-07-13 Tdk Corp Magnet particle, magnet powder and bonded magnet
JPH0615907A (en) * 1992-07-02 1994-01-25 Sharp Corp Printer
JPH06330252A (en) * 1993-05-24 1994-11-29 Minebea Co Ltd Rare earth metal magnet material and rare earth metal bonded magnet
JPH10144509A (en) * 1996-11-06 1998-05-29 Santoku Kinzoku Kogyo Kk Powder for permanent magnet and its manufacture and anisotropic permanent magnet using the powder
JPH11340021A (en) * 1998-05-21 1999-12-10 Sumitomo Metal Mining Co Ltd Bonded magnet material and molded bonded magnet
JP2002198211A (en) * 2000-12-26 2002-07-12 Sumitomo Metal Mining Co Ltd Method of manufacturing high weather-resistant magnet powder, and product obtained by use of the same
JP2004253697A (en) * 2003-02-21 2004-09-09 Hitachi Metals Ltd Permanent magnet and material thereof
JP2005236132A (en) * 2004-02-20 2005-09-02 Sumitomo Metal Mining Co Ltd Composition of matter for rare earth hybrid bond magnet, and rare earth hybrid bond magnet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175023A (en) * 1991-12-25 1993-07-13 Tdk Corp Magnet particle, magnet powder and bonded magnet
JPH0615907A (en) * 1992-07-02 1994-01-25 Sharp Corp Printer
JPH06330252A (en) * 1993-05-24 1994-11-29 Minebea Co Ltd Rare earth metal magnet material and rare earth metal bonded magnet
JPH10144509A (en) * 1996-11-06 1998-05-29 Santoku Kinzoku Kogyo Kk Powder for permanent magnet and its manufacture and anisotropic permanent magnet using the powder
JPH11340021A (en) * 1998-05-21 1999-12-10 Sumitomo Metal Mining Co Ltd Bonded magnet material and molded bonded magnet
JP2002198211A (en) * 2000-12-26 2002-07-12 Sumitomo Metal Mining Co Ltd Method of manufacturing high weather-resistant magnet powder, and product obtained by use of the same
JP2004253697A (en) * 2003-02-21 2004-09-09 Hitachi Metals Ltd Permanent magnet and material thereof
JP2005236132A (en) * 2004-02-20 2005-09-02 Sumitomo Metal Mining Co Ltd Composition of matter for rare earth hybrid bond magnet, and rare earth hybrid bond magnet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012032961A1 (en) * 2010-09-06 2012-03-15 ダイハツ工業株式会社 Magnetic material and method for producing same
JP2012080073A (en) * 2010-09-06 2012-04-19 Daihatsu Motor Co Ltd Magnetic material
WO2017170129A1 (en) * 2016-03-28 2017-10-05 Tdk株式会社 Permanent magnet manufacturing method
CN108015268A (en) * 2016-10-28 2018-05-11 龙岩紫荆创新研究院 The bonded permanent magnet that a kind of R-B-Ti-Fe alloy powders and preparation method thereof are prepared with the alloy powder
CN110211759A (en) * 2018-02-28 2019-09-06 大同特殊钢株式会社 Sm-Fe-N magnet material and Sm-Fe-N bonded permanent magnet
CN110211759B (en) * 2018-02-28 2021-08-10 大同特殊钢株式会社 Sm-Fe-N magnet material and Sm-Fe-N bonded magnet
US11742121B2 (en) 2018-02-28 2023-08-29 Daido Steel Co., Ltd. Sm—Fe—N magnet material and Sm—Fe—N bonded magnet

Also Published As

Publication number Publication date
JP4834869B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
Sugimoto Current status and recent topics of rare-earth permanent magnets
CN101425355B (en) Pr/Nd based biphase composite permanent magnetic material and block body preparing method thereof
JP4968519B2 (en) Permanent magnet and method for manufacturing the same
WO1988006797A1 (en) Rare earth element-iron base permanent magnet and process for its production
CN107424695B (en) Double-alloy nanocrystalline rare earth permanent magnet and preparation method thereof
JP2014194958A (en) Sintered magnet
JP4834869B2 (en) Permanent magnet material, permanent magnet using the same, and manufacturing method thereof
US20150147217A1 (en) Nanocomposite permanent magnets and method of making
JPH01257308A (en) Magnet for voice coil motor
JPH1053844A (en) (rare earth)-iron-boron magnetic alloy and its production and bond magnet using the (rare earth)-iron-boron magnetic alloy
TW469450B (en) Magnet powders and isotropic rare-earth bonded magnets
JP6513623B2 (en) Method of manufacturing isotropic bulk magnet
JP2017135268A (en) Hybrid magnet
JP2016066675A (en) Rare earth isotropic bond magnet
KR101837279B1 (en) Method of controlling a growth of grains in a Rare Earth Permanent Magnet
JP3481739B2 (en) High heat resistant bonded magnet
JP2002015906A (en) Method for manufacturing magnet powder and bonded magnet, and the bonded magnet
JP3641021B2 (en) High coercive force iron-based permanent magnet and bonded magnet
JP3643215B2 (en) Method for producing laminated permanent magnet
JP2002015909A (en) Method for manufacturing magnet powder and bonded magnet, and the bonded magnet
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
CN112825280A (en) Composite magnet and method of manufacturing composite magnet
CN110211759A (en) Sm-Fe-N magnet material and Sm-Fe-N bonded permanent magnet
JP2018152526A (en) Method for manufacturing rare earth-iron-boron based sintered magnet
JP3710154B2 (en) Iron-based permanent magnet, method for producing the same, iron-based permanent magnet alloy powder for bonded magnet, and iron-based bonded magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4834869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531