JP3481739B2 - High heat resistant bonded magnet - Google Patents

High heat resistant bonded magnet

Info

Publication number
JP3481739B2
JP3481739B2 JP21261695A JP21261695A JP3481739B2 JP 3481739 B2 JP3481739 B2 JP 3481739B2 JP 21261695 A JP21261695 A JP 21261695A JP 21261695 A JP21261695 A JP 21261695A JP 3481739 B2 JP3481739 B2 JP 3481739B2
Authority
JP
Japan
Prior art keywords
magnetic
magnet
powder
phase
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21261695A
Other languages
Japanese (ja)
Other versions
JPH08335508A (en
Inventor
哲 広沢
誠一 細川
裕和 金清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP21261695A priority Critical patent/JP3481739B2/en
Publication of JPH08335508A publication Critical patent/JPH08335508A/en
Application granted granted Critical
Publication of JP3481739B2 publication Critical patent/JP3481739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0306Metals or alloys, e.g. LAVES phase alloys of the MgCu2-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0579Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B with exchange spin coupling between hard and soft nanophases, e.g. nanocomposite spring magnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Continuous Casting (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、自動車や家庭電
化製品の用途のように使用環境並びに製造環境で高い耐
熱性が要求される高耐熱性ボンド磁石に係り、特定の多
相からなる硬質磁性体としての金属組織を有する耐熱性
のすぐれたのナノコンポジット磁性体と、結合剤として
融点が250℃以上の熱可塑性樹脂からなることを特徴
とし、射出成形が可能な高耐熱性ボンド磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high heat resistant bonded magnet which is required to have high heat resistance in the use environment and the manufacturing environment such as the use of automobiles and home electric appliances, and has a hard magnetic property of a specific multiphase. The present invention relates to a highly heat-resistant bond magnet capable of injection molding, which is characterized by comprising a nano-composite magnetic material having a metal structure as a body and having excellent heat resistance and a thermoplastic resin having a melting point of 250 ° C. or more as a binder.

【0002】[0002]

【従来の技術】電子機器デバイスの静磁界源として、例
えば小型モーター用界磁磁石やブザーなど音響部品に組
み込まれる永久磁石は、組立工程の簡素化によるデバイ
スの製造コスト低減の要求から、研磨加工などの後加工
が不要な樹脂ボンド磁石が使われる傾向が近年ますます
高まっている。なかでも樹脂として、熱可塑性のあるポ
リイミドなどを使用して射出成形法により製造される磁
石は、生産性の高さと寸法精度の高さ、さらに複雑形状
にも対応できる特徴などのため広く用いられている。
2. Description of the Related Art As a static magnetic field source for electronic devices, permanent magnets incorporated in acoustic parts such as field magnets for small motors and buzzers have been polished to meet the demand for device manufacturing cost reduction by simplifying the assembly process. In recent years, there has been an increasing tendency to use resin-bonded magnets that do not require post-processing. Among them, magnets manufactured by injection molding using thermoplastic polyimide as resin are widely used because of their high productivity, high dimensional accuracy, and the ability to handle complex shapes. ing.

【0003】しかし、前記ポリイミドを用いた場合、樹
脂の軟化温度が低いため、耐熱温度が低いという問題点
があり、使用環境温度が高い自動車用部品や製造工程に
おいてデバイスの電子回路基板への半田づけがリフロー
炉によりなされる一般消費者用電子機器などには適用で
きない問題点がある。そのため、磁石粉末としてハード
フェライト粉末を用い、結合剤として軟化温度が高いP
PS樹脂や耐熱性ポリイミド(66ナイロンなど)を用
いたフェライトボンド磁石が高耐熱性の射出成形ボンド
磁石用コンパウンドとして実用化されている。
However, when the above-mentioned polyimide is used, there is a problem that the heat resistance temperature is low because the softening temperature of the resin is low, and soldering to the electronic circuit board of the device in automobile parts and manufacturing processes where the use environment temperature is high. There is a problem that it cannot be applied to general consumer electronic devices, etc., which are manufactured by a reflow furnace. Therefore, hard ferrite powder is used as the magnet powder, and P having a high softening temperature is used as the binder.
Ferrite-bonded magnets using PS resin or heat-resistant polyimide (66 nylon, etc.) have been put to practical use as a compound for highly heat-resistant injection-molded bond magnets.

【0004】一方、電子機器の小型軽量化と高性能化の
要求から、磁石材料の磁気特性の向上が必要となり、磁
石粉末として希土類磁石粉末を用いた射出成形ボンド磁
石も開発されている。すなわち、希土類磁石粉末とし
て、サマリウムコバルト磁石粉末が用いられてきたが、
最近原料コストが高いサマリウムやコバルトをほとんど
含有せず、サマリウムコバルト磁石粉末より低価格で供
給されるネオジム鉄系の超急冷磁石粉末を用いた射出成
形磁石用コンパウンドが開発されている。
On the other hand, in order to reduce the size and weight of electronic devices and to improve their performance, it is necessary to improve the magnetic properties of magnet materials, and injection-molded bond magnets using rare earth magnet powder as magnet powder have also been developed. That is, samarium cobalt magnet powder has been used as the rare earth magnet powder,
Recently, a compound for injection-molded magnets has been developed that uses neodymium iron-based ultra-quenched magnet powder that contains almost no samarium or cobalt, which has a high raw material cost, and is supplied at a lower price than samarium-cobalt magnet powder.

【0005】しかしながら、上述の超急冷法による希土
類鉄系磁石粉末は、ハードフェライトやサマリウムコバ
ルト磁粉に比べて酸化され易く、微粉末にした場合、発
火などの危険性があるうえ、上記高軟化温度の耐熱性熱
可塑性樹脂と混練する場合の温度が、通常射出成形ボン
ド磁石に使用される軟化温度の低いポリイミド(ナイロ
ン6など)に比べて高くなるため、混練時に磁粉の酸化
に起因する特性劣化が著しく、よって、ネオジム鉄系超
急冷磁石粉末を用いた高耐熱性の射出成形ボンド磁石用
コンパウンドは実用化されていない。
However, the rare earth iron-based magnet powder obtained by the above-mentioned ultra-quenching method is more easily oxidized than hard ferrite or samarium-cobalt magnetic powder. Since the temperature when kneading with the heat-resistant thermoplastic resin is higher than that of polyimide (nylon 6 etc.) which has a low softening temperature that is usually used for injection-molded bonded magnets, deterioration of properties due to oxidation of magnetic powder during kneading. Therefore, a compound for injection-molded bond magnet with high heat resistance using neodymium iron-based ultra-quenched magnet powder has not been put to practical use.

【0006】[0006]

【発明が解決しようとする課題】従って、高耐熱性の射
出成形ボンド磁石の開発のために、原料コストの低い鉄
を主成分とする高性能で耐酸化性の高い磁石材料の開発
が待たれていた。現在射出成形ボンド磁石に用いられて
いる樹脂は、主として軟化温度が低く、耐熱温度の低い
ポリアミドであり、混練温度、射出成形温度、磁石粉末
との適合性等の観点からナイロン6ないしナイロン12
が用いられる。
Therefore, in order to develop a highly heat-resistant injection-molded bonded magnet, the development of a high-performance and highly-oxidation-resistant magnet material containing iron as a main component with a low raw material cost is awaited. Was there. The resin currently used for the injection-molded bond magnet is mainly a polyamide having a low softening temperature and a low heat-resistant temperature. From the viewpoint of kneading temperature, injection molding temperature, compatibility with magnet powder, etc., nylon 6 or nylon 12 is used.
Is used.

【0007】これらポリアミド樹脂の耐熱性を荷重変形
温度で表現するならば、荷重0.45MPaの時、ガラ
ス繊維で強化されないナイロン6は175℃、ナイロン
12は145℃程度である。これに対し、一部のフェラ
イトボンド磁石などで実用化されている高耐熱樹脂であ
る高融点熱可塑樹脂のポリアミドとして、ナイロン46
(熱変形温度285℃)、ナイロン66(熱変形温度2
40℃)、結晶性ポリマーとしてポリフェニレンサルフ
ァイド(PPS)樹脂(熱変形温度約260℃)等があ
る。
To express the heat resistance of these polyamide resins in terms of load deformation temperature, when the load is 0.45 MPa, nylon 6 which is not reinforced with glass fiber is 175 ° C. and nylon 12 is about 145 ° C. On the other hand, nylon 46 is used as a polyamide of a high melting point thermoplastic resin that is a high heat resistant resin that is practically used in some ferrite bonded magnets.
(Heat distortion temperature 285 ° C), nylon 66 (heat distortion temperature 2
40 ° C.), and a crystalline polymer such as polyphenylene sulfide (PPS) resin (heat distortion temperature of about 260 ° C.).

【0008】一般にコンパウンドの製造に際しては、同
程度の粒度の樹脂粉末と磁石粉末とを予め混合した後、
加熱して樹脂を溶融し、充分な剪断応力を加えながら混
練する。この時の温度はナイロン6および12の場合で
約200〜250℃、ナイロン46ないし66やPPS
などの高融点樹脂の場合約300℃以上である。さら
に、射出成形時にコンパウンドは高流動性を持つ必要か
ら、ナイロン6ないしナイロン12で270℃から30
0℃、高融点樹脂では300℃以上に加熱される。
Generally, in manufacturing a compound, after resin powder and magnet powder of similar particle size are mixed in advance,
The resin is heated to melt and kneaded while applying sufficient shear stress. The temperature at this time is about 200 to 250 ° C for nylon 6 and 12 and nylon 46 to 66 and PPS.
In the case of a high melting point resin such as, the temperature is about 300 ° C or higher. Furthermore, since the compound must have high fluidity during injection molding, nylon 6 or nylon 12 should be used at 270 ° C to 30 ° C.
It is heated to 0 ° C, and to 300 ° C or higher for high melting point resin.

【0009】しかし、従来のネオジム鉄系の超急冷磁石
の微粉末は高温では酸化のため磁気特性が急激に劣化
し、300℃以上の混練温度が要求される高融点樹脂を
用いた射出成形ボンド磁石の製造は工業的には成功して
いなかった。
However, the conventional fine powder of neodymium iron-based ultra-quenched magnet deteriorates in magnetic properties rapidly at high temperature due to oxidation, and an injection molding bond using a high melting point resin which requires a kneading temperature of 300 ° C. or higher. The manufacture of magnets has not been industrially successful.

【0010】この発明は、使用環境並びに製造環境で高
い耐熱性が要求される自動車並びに家庭電化製品用ボン
ド磁石において、多相の金属組織を有する耐熱性のすぐ
れたナノコンポジット磁性体からなる磁石合金微粉末に
高融点樹脂を用いて射出成形した高耐熱性ボンド磁石の
提供を目的としている。
The present invention relates to a bonded magnet for automobiles and home electric appliances, which is required to have high heat resistance in use environment and manufacturing environment, and is a magnet alloy composed of a nanocomposite magnetic material having a multiphase metal structure and excellent heat resistance. It is an object of the present invention to provide a highly heat-resistant bonded magnet which is injection-molded by using a high melting point resin in fine powder.

【0011】[0011]

【課題を解決するための手段】本発明者は先に、特願平
3-323778号、特願平3-323779号、特願平4-93780号、特
願平4-93781号、特願平4-93782号、特願平4-124180号、
特願平4-124181号、特願平4-130139号、特願平4-130140
号、特願平4-130141号、特願平4-174767号、特願平4-17
4768号、特願平4-176197号、特願平4-176198号、特願平
4-176199号、特願平4-176200号、特願平4-209771号、特
願平4-209772号、特願平4-209773号、特願平4-209774
号、特願平5-31326号、特願平5-59524号、特願平5-1137
31号、特願平5-294769号、特願平5-294770号、特願平5-
341646号、特願平5-314647号、特願平5-341648号、特願
平5-341649号、特願平5-341650号、特願平5-343903号、
特願平5-343575号、特願平5-343904号、特願平6-060324
号、特願平6-060325号、特願平6-074465号、特願平6-07
6543号にて、軟質磁性相と硬質磁性相とによって構成さ
れるナノコポジット磁性体である低希土類含有の鉄基
永久磁石材料を提案した。
Means for Solving the Problems
3-323778, Japanese Patent Application No. 3-323779, Japanese Patent Application No. 4-93780, Japanese Patent Application No. 4-93781, Japanese Patent Application No. 4-93782, Japanese Patent Application No. 4-124180,
Japanese Patent Application No. 4-124181, Japanese Patent Application No. 4-130139, Japanese Patent Application No. 4-130140
Japanese Patent Application No. 4-130141, Japanese Patent Application No. 4-174767, Japanese Patent Application No. 4-17
4768, Japanese Patent Application 4-176197, Japanese Patent Application 4-176198, Japanese Patent Application
4-176199, Japanese Patent Application No. 4-176200, Japanese Patent Application No. 4-209771, Japanese Patent Application No. 4-209772, Japanese Patent Application No. 4-209773, Japanese Patent Application No. 4-209774
Japanese Patent Application No. 5-31326, Japanese Patent Application No. 5-59524, Japanese Patent Application No. 5-1137
No. 31, Japanese Patent Application No. 5-294769, Japanese Patent Application No. 5-294770, Japanese Patent Application No. 5-
341646, Japanese Patent Application No. 5-314647, Japanese Patent Application No. 5-341648, Japanese Patent Application No. 5-341649, Japanese Patent Application No. 5-341650, Japanese Patent Application No. 5-343903,
Japanese Patent Application No. 5-343575, Japanese Patent Application No. 5-343904, Japanese Patent Application No. 6-060324
No. 6-060325, No. 6-074465, No. 6-07
At No. 6543, it has proposed a ferrous permanent magnet material having a low rare earth containing a Nanoko down Pojitto magnetic constituted by a soft magnetic phase and a hard magnetic phase.

【0012】この前記鉄基永久磁石材料は、軟磁性相の
磁化が硬磁性相の磁化と交換相互作用により結合して、
コンポジット全体としてあたかも単一の磁性相で構成さ
れた従来の永久磁石のように振る舞うというものであ
り、一般に「交換スプリング磁石」あるいは「Exch
ange Spring Magnet」とも呼ばれ
る。この全く新しいタイプの永久磁石材料は、この発明
の実現に対して極めて重要な下記の特徴を兼ね備えてい
る。
In this iron-based permanent magnet material, the magnetization of the soft magnetic phase is coupled with the magnetization of the hard magnetic phase by exchange interaction,
The composite as a whole behaves as if it were a conventional permanent magnet composed of a single magnetic phase, and is generally called an "exchange spring magnet" or "Exch."
It is also referred to as an "ang Spring Magnet". This all-new type of permanent magnet material has the following features which are very important for realizing the present invention.

【0013】図1はこの発明のナノコンポジット磁性体
(実線で示す)と従来のネオジム鉄系超急冷磁石(マグ
ネクウェンチ社製MQP−B、破線で示す)の、大気中
での酸化による重量変化を試料温度の関数として比較し
たものであり、この発明の磁性体は300℃近傍でも極
めて高い安定性を示すのに対して、従来の磁性体は30
0℃近傍以上で急激な酸化を被ることを示している。
FIG. 1 shows changes in weight of the nanocomposite magnetic material of the present invention (shown by a solid line) and a conventional neodymium iron-based ultra-quench magnet (MQP-B manufactured by Magnechwench, shown by a broken line) due to oxidation in the atmosphere. The comparison is made as a function of the sample temperature, and the magnetic material of the present invention exhibits extremely high stability even in the vicinity of 300 ° C.
It shows that it undergoes rapid oxidation above about 0 ° C.

【0014】発明者らは、上記ナノコポジット磁石
は、単独で存在すれば酸化傾向が強い希土類化合物相
(コンポジット硬磁性相成分)が、酸化傾向の低いCr含有
の鉄基合金相(コンポジットの軟磁性相成分)で取り囲ま
れたミクロ組織を有しているため、酸化に対して従来の
ネオジム鉄系超急冷磁石よりも感受性が格段に低く、従
って、発火温度も高く、微粉末に粉砕しても着火性が低
く安全性が高いため、工業生産に適していることに着目
し、磁性体粉末を特定の組成、組織とすることにより耐
熱性を高め、さらに高耐熱熱可塑性樹脂と混合する過程
でも、混練工程の安全性が工業的規模で確保でき、しか
も混練時の酸化に起因する磁気特性の劣化を無視できる
程度に低減できることを知見した。さらに、特定量のCr
を含有する場合に、上記ナノコンポジットの組織が微細
化し、保磁力が向上するとともに、200℃以上の高温に
加熱した場合でも、不可逆熱減磁率が従来の磁石より大
幅に低下することを知見し、この発明を完成した。
[0014] We, the Nanoko down Pojitto magnets oxidation tendency is strong rare earth compound phase if present by itself
(Composite hard magnetic phase component) has a microstructure surrounded by an iron-based alloy phase containing Cr (soft magnetic phase component of the composite), which has a low oxidation tendency. It is much less sensitive than ultra-quench magnets, and therefore has a high ignition temperature, low ignitability even when pulverized into fine powder, and high safety. The heat resistance is increased by making it a specific composition and structure, and even in the process of mixing with a high heat resistant thermoplastic resin, the safety of the kneading process can be ensured on an industrial scale, and the magnetic properties due to oxidation during kneading It was found that the deterioration can be reduced to a negligible level. In addition, a certain amount of Cr
It has been found that the structure of the nanocomposite becomes finer, the coercive force is improved, and the irreversible thermal demagnetization rate is significantly lower than that of the conventional magnet even when it is heated to a high temperature of 200 ° C. or higher. , Completed this invention.

【0015】 すなわち、この発明は、組成式がR
(Fe1―uCo100―x―y―z
、(R:Pr,Nd,Dyの1種又は2種以上)で
表され、x(at%)、y(at%)、z(at%)及
びuが下記の値を満足し、かつCrとCoの含有比率が
原子濃度比で0.5〜2.0であり、NdFe14
型結晶構造を有する硬磁性相と、体心立方鉄および鉄ホ
ウ化物の軟磁性相からなり、各相の平均結晶粒径が50
nm以下であるナノコンポジット組織を有し、直径30
0μm以下の硬質磁性体粉末を50vol%以上含み、
融点が250℃以上の熱可塑性樹脂を結合剤として成形
された高耐熱性ボンド磁石である。 4.5≦x≦6.0、15≦y≦20、3≦z≦7、
0.04≦u≦0.10
That is, in the present invention, the composition formula is R
x (Fe 1-u Co u ) 100-x-y-z B y C
r z , (R: one or more of Pr, Nd and Dy), x (at%), y (at%), z (at%) and u satisfy the following values, And the content ratio of Cr and Co
The atomic concentration ratio is 0.5 to 2.0, and Nd 2 Fe 14 B
It is composed of a hard magnetic phase having a type crystal structure and a soft magnetic phase of body-centered cubic iron and iron boride, and the average crystal grain size of each phase is 50.
having a nanocomposite structure that is less than or equal to nm and a diameter of 30
Including 50 vol% or more of hard magnetic powder of 0 μm or less,
It is a high heat resistant bonded magnet formed by using a thermoplastic resin having a melting point of 250 ° C. or more as a binder. 4.5 ≦ x ≦ 6.0, 15 ≦ y ≦ 20, 3 ≦ z ≦ 7,
0.04 ≦ u ≦ 0.10

【0016】また、この発明は、上記の構成の高耐熱性
ボンド磁石において硬質磁性体粉末の直径が75μm
以下であること、平均のパーミアンス係数が1.0以上
の磁気回路において、200℃以下の温度に加熱して、
室温にもどした場合の不可逆熱減磁率が10%以下であ
ることをそれぞ特徴とする高耐熱性ボンド磁石を併せ
て提案する。
Further, according to the present invention, in the high heat resistant bonded magnet having the above structure, the hard magnetic powder has a diameter of 75 μm.
Below, in a magnetic circuit having an average permeance coefficient of 1.0 or more, by heating to a temperature of 200 ° C. or less,
Suggest together high heat resistance bonded magnet and, respectively therewith, wherein the irreversible heat demagnetization rate when returned to room temperature is 10% or less.

【0017】[0017]

【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION

磁石製造方法と組織 この発明のナノコンポジット磁性体は、非晶質化が容易
な鉄−ホウ素合金に若干の希土類とクロムを添加した合
金を、溶融状態から超急冷凝固法により一旦非晶質金属
を得た後、熱処理により結晶化して得られ、さらにこれ
を粉砕して粉末とした後、樹脂と混合、成形して樹脂結
合磁石として利用できる。発明者らは、工業的に製造可
能で磁気的に高い特性を持ち、さらに耐酸化性が高く、
発火性の低い鉄基の磁性体として、ナノコンポジット磁
性体を構成する軟磁性相が体心立方鉄およびホウ化鉄化
合物を含み、硬磁性相がNd2Fe14B型結晶構造を有
して、前記軟磁性相により取り囲まれたミクロ組織であ
り、かつ、特定量のCrを添加することにより保磁力を
高め、不可逆熱減磁率を軽減し、更に酸化傾向が従来の
超急冷磁石よりも低い、耐熱性のすぐれた鉄基低希土類
磁石合金を開発し、これを微粉砕して高耐熱熱可塑性樹
脂とその樹脂の融点以上の温度で混練し、耐熱性に優れ
200℃以上での使用に耐えるボンド磁石を開発した。
Magnet Manufacturing Method and Structure The nanocomposite magnetic material of the present invention is an alloy of iron-boron alloy, which is easily amorphized, to which some rare earth and chromium are added. After being obtained, it can be obtained by crystallization by heat treatment, further pulverized into powder, and then mixed with a resin and molded to be used as a resin-bonded magnet. The inventors of the present invention have industrially manufacturable properties, high magnetic properties, and high oxidation resistance.
As an iron-based magnetic material with low ignition property, the soft magnetic phase constituting the nanocomposite magnetic material contains body-centered cubic iron and iron boride compound, and the hard magnetic phase has an Nd 2 Fe 14 B type crystal structure. , Having a microstructure surrounded by the soft magnetic phase, and increasing the coercive force by adding a specific amount of Cr, reducing the irreversible heat demagnetization rate, and further having a lower oxidation tendency than the conventional ultra-quenched magnet , Developed an iron-based low rare earth magnet alloy with excellent heat resistance, pulverized it and kneaded it with a high heat resistant thermoplastic resin and at a temperature above the melting point of that resin, and it has excellent heat resistance and is suitable for use at 200 ° C or higher. We have developed a bond magnet that can withstand.

【0018】上述のように軟磁性相と硬磁性相との少な
くとも2相からなる多相組織体が、異なる保磁力を持っ
た強磁性体の単なる混合物に特有な2段階の減磁挙動を
示さずに、あたかも単一の硬磁性相からなる磁性体のよ
うな滑らかな減磁曲線を有するためには、原子磁気モー
メントの向きが揃った領域の大きさの指標である交換結
合距離(Lex)の程度にそれぞれの相の結晶粒径を小さ
く、しかも軟磁性相と硬磁性相との間の交換結合を確保
するために、非磁性の粒界相を挟まない結晶粒界を持っ
た金属組織を作る必要がある。
As described above, the multi-phase structure composed of at least two phases of the soft magnetic phase and the hard magnetic phase exhibits the two-stage demagnetization behavior peculiar to a simple mixture of ferromagnetic materials having different coercive forces. Instead, in order to have a smooth demagnetization curve as if it were a magnetic material composed of a single hard magnetic phase, the exchange coupling distance (L ex) which is an index of the size of the region where the directions of atomic magnetic moments are aligned. ), The crystal grain size of each phase is as small as possible, and in order to secure the exchange coupling between the soft magnetic phase and the hard magnetic phase, a metal having crystal grain boundaries that do not sandwich a non-magnetic grain boundary phase. We need to create an organization.

【0019】この発明のナノコンポジット磁性体は、超
急冷法により製造される前記組成の非晶質合金を熱処理
して結晶化させることが製法上の特徴であり、超急冷に
より直接結晶相を得る従来のネオジム鉄系超急冷磁石と
は製法が全く異なる。また、従来のネオジム鉄系超急冷
磁石では、非晶質合金を一旦作製した後にこれに結晶化
熱処理を施す製法も可能であるが、その場合、最高特性
が得られるミクロ組織は、相構成も含めて、直接に結晶
化組織を溶融金属から得た場合と同一でなければならな
い。
The nanocomposite magnetic material of the present invention is characterized in that the amorphous alloy having the above composition produced by the ultra-quenching method is heat-treated to crystallize, and the crystal phase is directly obtained by the ultra-quenching method. The manufacturing method is completely different from the conventional neodymium iron-based ultra-quench magnet. Further, in the conventional neodymium iron rapidly quenched magnet, but preparation is possible to perform the crystallization heat treatment thereto after once prepared amorphous alloy, in which case the microstructure best characteristics are obtained, the phase structure Including the above, it must be the same as when the crystallized structure is directly obtained from the molten metal.

【0020】これに対しこの発明では、非晶質から準安
定相が析出すること、およびその結晶粒径が数十ナノメ
ートル以下であることが重要な特徴であり、溶融金属の
急冷速度を遅くして直接結晶化組織を得た場合とは、ミ
クロ組織が完全に異なる。すなわち、後者の工程を取る
と準安定相でなく安定相が析出してしまう上、結晶粒径
も特に体心立方鉄相が粗大化してナノメートルサイズに
ならず、所期の磁気特性が得られない。また、非晶質合
金を得た場合でも結晶化熱処理を施す工程での加熱昇温
速度が重要な製造上のパラメータであり、結晶化が開始
される500℃以上の温度範囲で1秒間当たり10℃か
ら50℃の範囲が好ましい。
On the other hand, in the present invention, it is an important feature that the metastable phase is precipitated from the amorphous state and the crystal grain size thereof is several tens of nanometers or less, and the quenching rate of the molten metal is slowed down. The microstructure is completely different from that obtained by directly obtaining the crystallized structure. In other words, if the latter step is taken, not a metastable phase but a stable phase precipitates, and the grain size does not become nanometer size due to coarsening of the body-centered cubic iron phase. I can't. In addition, even when an amorphous alloy is obtained, the heating rate of heating in the step of performing the crystallization heat treatment is an important manufacturing parameter, and is 10 per second in the temperature range of 500 ° C. or higher at which crystallization is started. The range from 0 ° C to 50 ° C is preferred.

【0021】ボンド磁石の製法、限定理由 この発明によるボンド磁石はCrの含有により耐酸化性
が極めて良好なうえ、高い保磁力が得られて磁粉の磁気
特性の熱的安定性も優れているので、実使用状態での環
境温度が200℃程度の高温でも長時間の使用が可能で
ある。この発明の磁石粉末は適正な条件で製造された場
合、25μm以下の微粉でも着火性がなく、200℃以
上まで使用しても不可逆熱減磁並びに永久劣化が無視で
きる程度であり、従来のネオジム鉄系超急冷磁石に優る
耐熱性を有する。
Manufacturing Method of Bonded Magnet, Reason for Limitation Since the bonded magnet according to the present invention has very good oxidation resistance due to the inclusion of Cr, a high coercive force is obtained and the thermal stability of magnetic properties of the magnetic powder is excellent. Even when the ambient temperature in actual use is as high as 200 ° C., it can be used for a long time. When manufactured under appropriate conditions, the magnet powder of the present invention has no ignitability even with fine powder of 25 μm or less, and irreversible thermal demagnetization and permanent deterioration are negligible even when used up to 200 ° C. or higher. Has heat resistance superior to iron-based ultra-quench magnets.

【0022】この発明で得られる磁石合金は、厚さが2
0〜50μm程度の薄片状フレーク形状であり、通常の
粉砕機で数百μmの大きさに粉砕できる。最大粒径を微
細粉の長さで表すと、300μmが射出成形に適した上
限であり、これを越えても射出成形用原料として使用可
能であるが、適用範囲が限定され、樹脂混練の際の磁粉
割れによりコンパウンド中の磁粉粒径は多くの場合、3
00μm程度以下となり、しかも、磁気特性は150μ
m以上では粒度依存性がないので最大300μmとす
る。
The magnet alloy obtained according to the present invention has a thickness of 2
It has a flaky flake shape of about 0 to 50 μm and can be crushed to a size of several hundred μm by an ordinary crusher. When the maximum particle size is expressed by the length of fine powder, 300 μm is the upper limit suitable for injection molding, and even if it exceeds this limit, it can be used as a raw material for injection molding, but its application range is limited, In many cases, the particle size of the magnetic powder in the compound due to the magnetic powder cracking of 3
It is less than about 00 μm, and the magnetic characteristics are 150 μm.
If it is m or more, there is no grain size dependency, so the maximum is 300 μm.

【0023】磁粉の比率が大きいほどBrは大きいが、
磁粉の比率と磁粉粒度に関しては、磁粉粒度が小さいほ
ど充填可能な磁粉比率も低下する傾向があり、磁粉の比
率が一定でも磁粉粒度100μm以下で磁石特性の磁紛
粒度依存性が認められる。
The larger the ratio of the magnetic powder is, the larger Br is.
Regarding the ratio of the magnetic powder and the particle size of the magnetic powder, the smaller the particle size of the magnetic powder, the lower the ratio of the magnetic powder that can be filled, and even if the ratio of the magnetic powder is constant, the magnetic particle size dependence of the magnetic powder is recognized when the magnetic particle size is 100 μm or less.

【0024】一方、成形性に関しては、射出成形後の製
品の後加工を完全に無くするかあるいは大幅に軽減する
ためには、極めて細いゲートを通して射出成形すること
が必要であり、良好な流動性と寸法精度を両立する必要
から、磁粉の直径は300μm以下が良く、好ましくは
100μm以下に、さらには75μm以下が好ましい。
多くの場合、射出成形機のゲート口径により使用可能な
磁粉の最大粒度が決定され、10〜75μmの範囲で最
大粒度が制約されることもあるので、要求に合わせて粒
度範囲を適時選択する必要がある。
On the other hand, regarding the moldability, in order to completely eliminate or significantly reduce the post-processing of the product after injection molding, it is necessary to perform injection molding through an extremely thin gate, and good fluidity is obtained. Therefore, the diameter of the magnetic powder is preferably 300 μm or less, more preferably 100 μm or less, and further preferably 75 μm or less.
In many cases, the maximum particle size of the magnetic powder that can be used is determined by the gate diameter of the injection molding machine, and the maximum particle size may be restricted within the range of 10 to 75 μm. Therefore, it is necessary to select the particle size range in time to meet the requirements. There is.

【0025】従来のネオジム鉄系超急冷磁石磁粉は、微
粉末に粉砕すると磁粉表層部の結晶粒の酸化により磁気
特性が顕著に低下し、しかも経時変化が大きくなるとい
う問題点があった。しかし、この発明の磁石粉末は酸化
され難く、しかも結晶粒径が従来のネオジム鉄系超急冷
磁石よりもさらに小さいので、磁粉表層部の結晶粒がた
とえ酸化されたとしても、その影響が軽微ですみ経時変
化も小さい。
The conventional neodymium iron-based ultra-quenched magnet magnetic powder has a problem that when it is pulverized into fine powder, the magnetic properties are remarkably deteriorated due to the oxidation of the crystal grains in the surface layer of the magnetic powder, and the change over time becomes large. However, the magnet powder of the present invention is hard to be oxidized, and the crystal grain size is smaller than that of the conventional neodymium iron-based ultra-quenched magnet, so even if the crystal grains in the surface layer of the magnetic powder are oxidized, the effect is slight. The change over time is also small.

【0026】この発明の硬質磁性体は、融点が250℃
以上のPPSや高融点のポリイミド樹脂、あるいは靭性
を高めるためこれらの高融点樹脂と他の樹脂とをアロイ
化したエンジニアリングプラスチックスなどと混合、混
練して射出成形法により直接磁気部品として製造される
が、その場合、磁気回路の構造部品として、磁気ギャッ
プに蓄えられる静磁エネルギーにより発生する構成部品
間の吸引力を同時に機能させる、磁気兼構造部品として
設計することができ、あるいは単に起磁源としてのみの
機能を負わせて、他に支持構造部品を設ける設計も可能
である。
The hard magnetic material of the present invention has a melting point of 250 ° C.
Produced as a magnetic component directly by injection molding method by mixing and kneading the above PPS or high melting point polyimide resin, or these high melting point resin and other resins with alloyed engineering plastics or the like in order to enhance toughness. However, in that case, it can be designed as a structural part of the magnetic circuit as a magnetic and structural part that simultaneously causes the attraction force between the structural parts generated by the magnetostatic energy stored in the magnetic gap to function, or simply as a magnetomotive force source. It is also possible to design the support structure component to be provided in addition to the above-mentioned function.

【0027】この発明に使用する樹脂は高融点の熱可塑
性樹脂に限定され、融点が290℃のナイロン46、2
60℃のナイロン66、280℃のPPS樹脂などの熱
可塑性樹脂を使用する。そこで、この発明の高融点樹脂
の融点を従来樹脂と区別するため250℃以上に限定す
るが、樹脂の種類は明細書中に例示したものに限定され
るものではなく、強靭化のためにより他の樹脂と混合、
すなわちアロイ化するなどの種々設計が可能である。
The resin used in the present invention is limited to a high melting point thermoplastic resin, and nylon 46, 2 having a melting point of 290 ° C.
A thermoplastic resin such as nylon 66 at 60 ° C. or PPS resin at 280 ° C. is used. Therefore, the melting point of the high melting point resin of the present invention is limited to 250 ° C. or higher in order to distinguish it from the conventional resin, but the kind of the resin is not limited to the one exemplified in the specification and may be changed to other ones for strengthening. Mixed with resin,
That is, various designs such as alloying are possible.

【0028】現在用いられている異方性射出成形ハード
フェライトボンド磁石の典型的な特性はBr=2.2〜
3.0テスラ、HcJ=180〜240kA/m、(B
H)max=9〜18kJ/m3の程度である。これに対
し、本発明は更に高特性のボンド磁石を提供することが
目的であり、磁粉の充填体積率は50%よりも高くない
と、現在用いられている異方性ハードフェライト射出成
形ボンド磁石に比べて高い磁化が得られない。従って、
磁粉充填量の下限は体積率で50%とする。
The typical properties of the anisotropic injection-molded hard ferrite bonded magnets currently used are Br = 2.2.
3.0 Tesla, HcJ = 180 to 240 kA / m, (B
H) max = about 9 to 18 kJ / m 3 . On the other hand, an object of the present invention is to provide a bond magnet having higher characteristics, and if the filling volume ratio of the magnetic powder is not higher than 50%, the anisotropic hard ferrite injection-molded bond magnet currently used is used. Higher magnetization cannot be obtained compared to. Therefore,
The lower limit of the magnetic powder filling amount is 50% by volume.

【0029】一方、上限は特に限定する必要がない。し
かしながら、磁粉充填量を多くし過ぎると射出成形時の
溶融コンパウンドの流動性が低下し成形不可能となるの
で、個々の目的とする形状及び射出成形機の特性を考慮
して、溶融時の流動性により磁粉充填率の上限が自ずと
決定される。一般的には体積比率で52%〜62%前後
が好ましい。
On the other hand, the upper limit is not particularly limited. However, if the magnetic powder filling amount is too large, the fluidity of the melt compound during injection molding will decrease and molding will not be possible.Therefore, consider the individual target shape and the characteristics of the injection molding machine, and The upper limit of the magnetic powder filling rate is naturally determined by the property. Generally, the volume ratio is preferably about 52% to 62%.

【0030】磁粉の充填率を高くする必要がない場合
は、非磁性化合物などの粉末をフィラーとして混合する
ことにより、高価な樹脂及び磁粉の使用比率を下げるこ
とができ、製造コストを下げることができる。最も好ま
しい実施形態においては、(BH)max=30〜48
kJ/m3の極めて高性能な射出成形ボンド磁石を得る
ことができる。
When it is not necessary to increase the filling rate of the magnetic powder, by mixing a powder such as a non-magnetic compound as a filler, the usage ratio of the expensive resin and the magnetic powder can be reduced, and the manufacturing cost can be reduced. it can. In the most preferred embodiment, (BH) max = 30-48.
It is possible to obtain an extremely high-performance injection-molded bonded magnet with kJ / m 3 .

【0031】前記した如く磁石粉末と高融点樹脂と混練
する場合は、従来のネオジム鉄系超急冷磁石粉末では酸
化され易いため高温での混練に耐えないが、この発明の
磁石粉末としては、少量の希土類を含有する硬磁性相が
体心立方鉄や希土類元素を含まない鉄のホウ化物の軟磁
性相により取り囲まれたミクロ組織を有し、特定量のC
rを添加するることにより組織を微細化して、保磁力を
高めて、不可逆熱減磁率を低減し、耐酸化性に優れたナ
ノコンポジット磁石粉末を使用することにより、高融点
樹脂と混練することが可能になる。
When the magnet powder and the high melting point resin are kneaded as described above, the conventional neodymium iron-based ultra-quenched magnet powder is easily oxidized and cannot withstand the kneading at a high temperature, but as a magnet powder of the present invention, a small amount is required. Has a microstructure surrounded by a soft magnetic phase of body-centered cubic iron or an iron boride containing no rare earth element, and has a specific amount of C
Kneading with a high melting point resin by adding nanoparticle size by adding r to increase the coercive force, reduce the irreversible thermal demagnetization rate, and use the nanocomposite magnet powder with excellent oxidation resistance. Will be possible.

【0032】組織の限定理由 この発明において、軟磁性相の粒径はナノコンポジット
磁石中の構成相の特性長さである交換結合距離Lexの
大きさ程度に小さいことが必要であり、平均粒径が50
nm程度の場合に、目的とする磁気回路に適合するリコ
イル透磁率と保磁力が得られるので、平均結晶粒径を5
0nm以下に限定する。
Reason for limiting the structure In the present invention, the particle size of the soft magnetic phase must be as small as the size of the exchange coupling distance Lex, which is the characteristic length of the constituent phases in the nanocomposite magnet, and the average particle size. Is 50
In the case of about nm, since the recoil magnetic permeability and coercive force suitable for the target magnetic circuit can be obtained, the average crystal grain size is 5
It is limited to 0 nm or less.

【0033】この発明の磁石はナノメートルサイズの微
細金属組織を工業的に安定して製造する過程において、
それを構成する軟磁性相並びに硬磁性相の共存が、重要
な技術課題となる。すなわち、両相は熱平衡的ないしは
準平衡的に共存し得る関系になければならず、しかも結
晶粒成長を起こし難いことが必要である。軟磁性相と共
存し得る硬磁性相としては、Nd2Fe14B型化合物な
いしSm2Fe17Nが考えられるが、後者は窒化処理と
いう工程が必要であり、原料もSmがNdに対して高価
であるほか蒸気圧が高温で高くなり、溶解時の組成の制
御がより煩雑になるなどの問題点を含むので好ましくな
い。
The magnet of the present invention is used in the process of industrially producing a fine metal structure of nanometer size,
The coexistence of the soft magnetic phase and the hard magnetic phase constituting it is an important technical issue. That is, both phases must be in a relationship capable of coexisting in a thermal equilibrium or quasi-equilibrium state, and further, it is necessary that crystal grain growth does not easily occur. As a hard magnetic phase that can coexist with the soft magnetic phase, Nd 2 Fe 14 B type compound or Sm 2 Fe 17 N can be considered, but the latter requires a step of nitriding treatment and the raw material is Sm with respect to Nd. In addition to being expensive, the vapor pressure becomes high at high temperature, and control of the composition during dissolution becomes more complicated, which is not preferable.

【0034】また、前記Sm2Fe17Nは、Smが高温
で蒸発するため、機械的合金化(メカニカルアロイン
グ)法により鉄とサマリウムとを超微細に混合、合金化
する方法が提案されるが、大量の非常に活性な超微細金
属粉末を貯蔵し取り扱うことが必要で、この貯蔵し取り
扱うことに伴う危険性を回避するために厳密な雰囲気制
御を課する必要性があるが、現状では工業的製法として
は確立されていない。従って、この発明で用いる硬磁性
ナノコンポジット材料の相構成は、軟磁性相として体心
立方鉄および鉄ホウ化物を含み、硬磁性相としてNd2
Fe14B型化合物の組み合わせを基本とする系に限定す
る。
Since Sm 2 Fe 17 N vaporizes Sm at a high temperature, a method of superfinely mixing and alloying iron and samarium by a mechanical alloying method is proposed. However, it is necessary to store and handle a large amount of very active ultrafine metal powder, and it is necessary to impose strict atmosphere control to avoid the risks associated with this storage and handling. It is not established as an industrial manufacturing method. Therefore, the phase composition of the hard magnetic nanocomposite material used in the present invention includes body-centered cubic iron and iron boride as the soft magnetic phase and Nd 2 as the hard magnetic phase.
The system is limited to a combination of Fe 14 B type compounds.

【0035】組成と限定理由 組成は原料金属の価格の観点から、鉄を多く含み、大き
なシングルイオン結晶磁気異方性を有する希土類元素を
含むものが望ましい。ところが、鉄基の低希土類合金
は、希土類を多く含有する合金に比べて非晶質化するこ
とがはるかに困難であり、非晶質化を促進するためには
ホウ素、炭素、リンなどの非晶質形成促進元素を添加す
る必要がある。
Composition and Reason for Limitation From the viewpoint of the price of the raw material metal, the composition preferably contains a large amount of iron and a rare earth element having a large single-ion crystal magnetic anisotropy. However, iron-based low rare earth alloys are much more difficult to be amorphized than alloys containing a large amount of rare earths, and in order to promote the amorphization, it is necessary to use a non-containing material such as boron, carbon, or phosphorus. It is necessary to add a crystal formation promoting element.

【0036】この発明において、希土類RとしてNdま
たはPrを主体とする場合に、希土類4.5〜6原子パ
ーセント(at%)の範囲でホウ素を15〜20at%
添加すると、目的とする磁石材料が、超急冷法とそれに
続く結晶熱処理とを経由することによって安定的に得ら
れ、さらに、Rの構成成分としてDyを含む場合に真性
保磁力の効果的な増加が可能である。
In the present invention, when Nd or Pr is mainly used as the rare earth R, the rare earth R is contained in the range of 4.5 to 6 atomic percent (at%) and 15 to 20 at% of boron.
When added, the target magnet material can be stably obtained by passing through the ultra-quenching method and the subsequent crystal heat treatment, and further, when Dy is contained as a constituent component of R, the effective coercive force is effectively increased. Is possible.

【0037】さらに、特定量のCrを出発合金中に含有
させておくと、結晶化熱処理の際に軟磁性相の結晶粒成
長が効果的に抑制され、目的とする50nm以下、特に
好ましい組成範囲では20nm以下に微細化され、これ
にともなって保磁力が向上し、さらに、リコイル率が著
しく増強され、同時にHCJの温度依存性が小さくなる。
ここで、リコイル率とは、ヒステリシス曲線上のマイナ
ーループ、すなわちリコイル曲線のB−H線図におい
て、保磁力HCJに等しい減磁界を印加して取り除いた場
合の磁束密度と、飽和着磁後の残留磁束密度に対する比
で表される。
Further, when a specific amount of Cr is contained in the starting alloy, the crystal grain growth of the soft magnetic phase is effectively suppressed during the crystallization heat treatment, and the target 50 nm or less, particularly the preferable composition range. In this case, the size is reduced to 20 nm or less, the coercive force is improved accordingly, and the recoil rate is remarkably enhanced, and at the same time, the temperature dependence of H CJ is reduced.
Here, the recoil rate is the minor loop on the hysteresis curve, that is, the magnetic flux density when removed by applying a demagnetizing field equal to the coercive force H CJ in the BH diagram of the recoil curve, and after saturation magnetization. Is expressed as the ratio of the residual magnetic flux density to the residual magnetic flux density.

【0038】従来の磁石材料では、アルニコ磁石のよう
にHCJが極端に小さな材料を除き、リコイル率はおよそ
0〜0.2の程度で、スプリング磁石と呼ばれるナノコ
ンポジット磁石でも、0.5〜0.7の程度である。C
rを添加した場合、リコイル率は0.7以上、特に優れ
た場合では0.9程度に達する。Cr含有材のこの特徴
は、温度を上げた場合でもほぼそのまま保たれ、保磁力
の温度依存性の減少と相まって、不可逆減磁が抑制され
る。これらの結果、平均のパーミアンス係数が1.0以
上の磁気回路において、200℃以下の温度に加熱して
室温にもどした場合の不可逆熱減磁率が、従来のNd−
Fe−B系超急冷磁石やナノコンポジット磁石の14%
に比較して、著しく低減し、例えば200℃に加熱して
も不可逆熱減磁率が10%以下の極めて熱安定性に優れ
た磁石材料となる。また、Crを含有させると、構成相
中にCrが含有され、特に体心立方鉄相の耐湿性および
耐酸化性が大幅に改善されるため、ナノコンポジット自
体の耐酸化性も向上する。
With conventional magnet materials, the recoil ratio is about 0 to 0.2, except for materials with extremely small H CJ , such as alnico magnets, and even nanocomposite magnets called spring magnets have a recoil ratio of 0.5 to 0.5. It is about 0.7. C
When r is added, the recoil rate reaches 0.7 or more, and reaches 0.9 when it is particularly excellent. This characteristic of the Cr-containing material is maintained almost as it is even when the temperature is raised, and the irreversible demagnetization is suppressed together with the decrease in the temperature dependence of the coercive force. As a result, in a magnetic circuit having an average permeance coefficient of 1.0 or more, the irreversible thermal demagnetization rate when heated to a temperature of 200 ° C. or less and returned to room temperature is Nd-
14% of Fe-B based ultra-quench magnets and nanocomposite magnets
Compared with the above, the magnetic material is remarkably reduced, and the irreversible thermal demagnetization rate is 10% or less even when heated to 200 ° C., and the magnetic material has excellent thermal stability. Further, when Cr is contained, Cr is contained in the constituent phase, and particularly, the moisture resistance and the oxidation resistance of the body-centered cubic iron phase are significantly improved, so that the oxidation resistance of the nanocomposite itself is also improved.

【0039】上述の種々の効果を有するCrの含有は、
保磁力を高めるためには多いほど良いが、磁化はCr含
有量の増加とともに減少し、7at%を越えると磁化の
低下が加速度的に著しくなり、ボンド磁石とした場合の
磁化が低下して他の材料との競争力がなくなるので、上
限は7at%とするのが適当である。Cr含有量を少な
くすると保磁力およびリコイル率改善効果が小さくな
り、3at%を下回ると不可逆熱減磁率が増大して耐熱
性ボンド磁石としての特徴が失われるので、Cr含有量
の下限は3at%とする。
The content of Cr having the above-mentioned various effects is
It is better to increase the coercive force, but the magnetization decreases with an increase in the Cr content, and when it exceeds 7 at%, the decrease in the magnetization becomes remarkably accelerated and the magnetization in the case of a bonded magnet decreases. It is appropriate to set the upper limit to 7 at% because it loses the competitiveness with the material. If the Cr content is reduced, the effect of improving the coercive force and the recoil rate becomes small, and if it is less than 3 at%, the irreversible thermal demagnetization rate increases and the characteristics as a heat resistant bonded magnet are lost, so the lower limit of the Cr content is 3 at%. And

【0040】構成相中にCrを含有させると上述のよう
に耐酸化性が向上するが、構成相の磁化の温度依存性が
大きくなる傾向があり、磁束密度の可逆温度係数はかえ
って絶対値において増加してしまう。Coを含有させる
とこの減少を低減もしくは相殺することができる。特
に、鉄系合金のキューリー温度に対するCrとCoの寄
与率は、効果が(+)と(−)で絶対値がほぼ等しいた
め、両者を等量含有させると不可逆熱減磁率と可逆熱減
磁率のバランスの良い永久磁石材料が得られる。この特
に好ましいCrとCoとの含有比率の範囲は両者の原子
濃度の比率で表すことができ、この値が0.5を下回る
とCo添加による可逆熱減磁率の回復効果が充分でな
く、2.0を上回るとCoが過剰に入り保磁力が減少し
て不可逆熱減磁率が増大してしまうので好ましくないの
で、0.5〜2.0に限定する。
When Cr is contained in the constituent phase, the oxidation resistance is improved as described above, but the temperature dependence of the magnetization of the constituent phase tends to be large, and the reversible temperature coefficient of the magnetic flux density is rather an absolute value. Will increase. Inclusion of Co can reduce or offset this decrease. In particular, the contribution ratios of Cr and Co to the Curie temperature of the iron-based alloy are almost the same in absolute value when the effects are (+) and (-), so if both are contained in equal amounts, the irreversible heat demagnetization ratio and the reversible heat demagnetization ratio are A well-balanced permanent magnet material can be obtained. The particularly preferable range of the content ratio of Cr and Co can be expressed by the ratio of the atomic concentrations of both, and if this value is less than 0.5, the effect of recovering the reversible thermal demagnetization rate due to the addition of Co is not sufficient and 2 If it exceeds 0.0, Co is excessive and the coercive force is reduced to increase the irreversible thermal demagnetization rate, which is not preferable. Therefore, it is limited to 0.5 to 2.0.

【0041】RとしてLaおよびCeは磁性を担わない
ので好ましくなく、重希土類は磁気モーメントがNdと
は逆方向に向く性質から、磁化を著しく減少させる傾向
があるのでその使用を限定する必要がある。重希土類元
素のうちTbとHoはDyと同じく真性保磁力を増大さ
せる効果があるが、自然存在比が少なく生産量も僅かで
あり、高価であるため選択しない。また、Sm,Er,
Tm,Ybは2次のスティーブンス因子がPr,Nd,
Tb,Dy,Hoなどとは逆符号であるため、シングル
イオン結晶磁気異方性が逆符号となり、Nd2Fe14
型化合物の結晶磁気異方性への寄与がNd等とは逆効果
となり互いに相殺するので、これらの希土類の添加は好
ましくない。従ってRとしてはPr,Nd,Dyに限定
する。
La and Ce as R do not play a role in magnetism, which is not preferable, and heavy rare earths tend to remarkably reduce the magnetization due to the property that the magnetic moment is directed in the direction opposite to Nd, and therefore their use must be limited. . Of the heavy rare earth elements, Tb and Ho have the same effect of increasing the intrinsic coercive force as Dy, but they are not selected because they have a low natural abundance ratio, a small production amount, and are expensive. In addition, Sm, Er,
The second-order Stevens factors of Tm and Yb are Pr, Nd,
Since it has the opposite sign to Tb, Dy, Ho, etc., the single-ion magnetocrystalline anisotropy has the opposite sign, and Nd 2 Fe 14 B
The addition of these rare earths is not preferable, because the contribution of the type compounds to the magnetocrystalline anisotropy has the opposite effect of Nd and the like and cancels each other out. Therefore, R is limited to Pr, Nd, and Dy.

【0042】希土類RとしてPr,Nd,Dyの少なく
とも1種を選択し、その範囲を4.5〜6at%に限定
する。R濃度が4.5at%未満の場合には4kOeよ
りも高いHCJが得られず、6at%を越えると構成相が
変化して,上記の体心立方鉄、ホウ化鉄、Nd2Fe14
B型化合物の組み合わせによるナノコンポジット磁石の
製造が困難になるので、R濃度の上限を6at%に限定
する。
At least one of Pr, Nd and Dy is selected as the rare earth R, and the range is limited to 4.5 to 6 at%. When the R concentration is less than 4.5 at%, H CJ higher than 4 kOe cannot be obtained, and when it exceeds 6 at%, the constituent phase changes and the above-mentioned body-centered cubic iron, iron boride, Nd 2 Fe 14
Since it becomes difficult to manufacture a nanocomposite magnet by combining B-type compounds, the upper limit of the R concentration is limited to 6 at%.

【0043】ホウ素を15〜20at%添加すると、結
晶化の際に体心立方鉄の他に鉄のホウ化物が生成する
が、後者は良好な軟磁性相として許容できる磁気的性質
を有している。硬磁性相としてはNd2Fe14B型化合
物が析出する。従って、この発明では構成相を体心立方
鉄とホウ化鉄並びにNd2Fe14B型化合物に限定す
る。
When boron is added in an amount of 15 to 20 at%, not only body-centered cubic iron but also boride of iron is formed during crystallization. The latter has magnetic properties that are acceptable as a good soft magnetic phase. There is. A Nd 2 Fe 14 B type compound is precipitated as a hard magnetic phase. Therefore, in the present invention, the constitutive phases are limited to body-centered cubic iron, iron boride and Nd 2 Fe 14 B type compounds.

【0044】[0044]

【実施例】実施例1 化学式がNd5.5Fe66B18.5Cr5Co5組成のアモルファス合金
を超急冷により得た後、640℃のアルゴン雰囲気の炉中
を15℃/分の昇温速度となるように通過させることによ
り結晶化し、得られた結晶質合金を大気中でピンミルに
より粉砕して最大粒度63μmのナノコンポジット磁性粉
末を得たこの発明のナノコンポジット磁粉の結晶粒径
を透過型電子顕微鏡を用いて観察したところ、約20nmで
あった。このナノコンポジット磁紛の磁気特性はBr=0.8
6T、HCJ=0.61MA/mであった。
Example 1 After obtaining an amorphous alloy having a chemical formula of Nd 5.5 Fe 66 B 18.5 Cr 5 Co 5 composition by ultraquenching, the temperature rise rate is 15 ° C./min in a furnace at 640 ° C. in an argon atmosphere. The resulting crystalline alloy was crushed by a pin mill in the air to obtain a nanocomposite magnetic powder with a maximum particle size of 63 μm . When the crystal grain size of the nanocomposite magnetic powder of the present invention was observed using a transmission electron microscope, it was about 20 nm. The magnetic properties of this nanocomposite magnetic powder are Br = 0.8
6T, H CJ = 0.61 MA / m.

【0045】また、比較例として、組成(wt%)が2
6.9Nd−0.3Pr−67.3Fe−1.0B−
4.5Co(商品名MQP−B,GM社製)を磁紛の粉
塵爆発を避けるため、Ar雰囲気中に設置したピンミル
により粉砕して最大粒度63μmの磁紛を得た。得られ
た磁紛の磁気特性B=0.87T、(BH)max=1
00kJ/m3であった。
As a comparative example, the composition (wt%) is 2
6.9Nd-0.3Pr-67.3Fe-1.0B-
In order to avoid dust explosion of magnetic powder, 4.5Co (trade name MQP-B, manufactured by GM) was ground by a pin mill installed in an Ar atmosphere to obtain a magnetic powder having a maximum particle size of 63 μm. Magnetic properties of the obtained magnetic powder B = 0.87T, (BH) max = 1
It was 00 kJ / m 3 .

【0046】この発明のナノコンポジット磁紛は空気中
においても極めて安定で酸化による発熱は小さく、粉体
の大気中での取扱いには何等問題はなかったが、MQP
−B粉末はAr中でも堆積すると体感できる程度の発熱
があり、不活性雰囲気中での取扱いが必須であった。特
に高温に余熱した混練機への投入には細心の注意を要
し、発火事故もたびたび発生した。
The nanocomposite magnetic powder of the present invention is extremely stable even in the air and generates little heat due to oxidation, and there was no problem in handling the powder in the air, but MQP
The -B powder generates heat that can be felt even when deposited in Ar, and it was essential to handle it in an inert atmosphere. In particular, it was necessary to pay close attention to the kneader when it was preheated to a high temperature, and fire accidents frequently occurred.

【0047】これらの磁石粉末を表1に表すごとく種々
の比率でナイロン46、ナイロン66及びPPS樹脂の
粉末と混合した後、小型2軸混合機を用いて330℃で
15分間混練したのち、冷却しコンパウンドを得た。こ
のコンパウンドを射出成形試験機の中で再度310℃に
加熱して溶融させ、120℃に加熱した成形金型内に射
出して冷却し、10mm×10mm×3.5mmのテス
トピースを得た。これらのテストピースの磁気特性を表
1に示す。
As shown in Table 1, these magnet powders were mixed with nylon 46, nylon 66 and PPS resin powders at various ratios, then kneaded at 330 ° C. for 15 minutes using a small biaxial mixer and then cooled. I got a compound. This compound was heated again to 310 ° C. in an injection molding tester to melt it, and was injected into a molding die heated to 120 ° C. and cooled to obtain a test piece of 10 mm × 10 mm × 3.5 mm. Table 1 shows the magnetic properties of these test pieces.

【0048】実施例2 表2に表す磁紛組成のこの発明のナノコンポジット磁紛
(No.11,14,15,16)およびこの発明の組
成範囲外のナノコンポジット磁紛No.12,13を実
施例1と同様の方法で作成し、最大径150μm以下の
粉体を得た。また、表2のNo.17,18に表示の超
急冷粉末(商品名MQP−B,GM社製)を櫛を通過し
て最大粒径150μm以下の粉末を得た。表2に組成を
表したNo.11〜No.18粉末をPPS樹脂を体積
比で磁石粉末:樹脂比が53:47になるよう混練し、
実施例1と同様に射出成形して10×10×3.5mm
のテストピースを得、着磁後200℃に加熱して室温に
冷却し、不可逆熱減磁率および磁気特性を測定し、その
結果を表2に表す。
Example 2 The nanocomposite magnetic powder of the present invention (No. 11, 14, 15, 16) having the magnetic powder composition shown in Table 2 and the nanocomposite magnetic powder No. outside the composition range of the present invention. 12 and 13 were prepared in the same manner as in Example 1 to obtain powder having a maximum diameter of 150 μm or less. Moreover, No. Ultra-quenched powders (trade name: MQP-B, manufactured by GM) labeled 17 and 18 were passed through a comb to obtain powders having a maximum particle size of 150 μm or less. No. 1 whose composition is shown in Table 2 11-No. 18 powders were kneaded with PPS resin in a volume ratio of magnet powder: resin ratio of 53:47,
Injection-molded in the same manner as in Example 1 to 10 × 10 × 3.5 mm
After being magnetized, it was heated to 200 ° C. and cooled to room temperature, and the irreversible thermal demagnetization rate and magnetic characteristics were measured. The results are shown in Table 2.

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【表2】 [Table 2]

【0051】[0051]

【発明の効果】この発明は、実施例に明らかなように、
従来のネオジム鉄系超急冷磁石磁粉では易酸化傾向のた
めに製造困難であった、耐熱温度200℃以上の射出成
形樹脂ボンド磁石を製造でき、磁気特性はフェライト射
出成形ボンド磁石の上限を越えるものを提供でき、ボン
ド磁石の寸法精度や複雑形状対応性、他のパーツとの一
体成形容易性と供に、高温での磁石特性と機械強度の安
定性が要求される自動車部品などの用途に利用でき、工
業的利用価値の大きい磁石材料を供給できる。
The present invention, as is apparent from the examples,
Conventional neodymium iron-based ultra-quench magnet magnet powder was difficult to manufacture due to its tendency to easily oxidize. It is possible to manufacture injection-molded resin-bonded magnets with a heat-resistant temperature of 200 ° C or higher, and the magnetic characteristics exceed the upper limit of ferrite injection-molded bonded magnets. It can be used for applications such as automobile parts that require stability of magnet characteristics and mechanical strength at high temperature in addition to dimensional accuracy of bonded magnets, compatibility with complex shapes, and ease of integral molding with other parts. Therefore, it is possible to supply a magnetic material having high industrial utility value.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明のナノコンポジット磁性体(実線)と
従来のネオジム鉄系超急冷磁性体(破線)の、大気中で
の酸化による重量変化を試料温度の関数として比較す
る、温度と重量のグラフである。
FIG. 1 compares the weight change due to oxidation in air as a function of sample temperature between the nanocomposite magnetic material of the present invention (solid line) and the conventional neodymium iron-based superquenched magnetic material (dashed line). It is a graph.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−54106(JP,A) 特開 平6−61025(JP,A) 特開 平6−251919(JP,A) 特開 平6−283317(JP,A) 特開 平1−125906(JP,A) 特開 平6−36915(JP,A) 特開 平1−251704(JP,A) 特開 平1−219142(JP,A) 特表 平6−505366(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 1/00 - 1/375 C22C 38/00 303 ─────────────────────────────────────────────────── --- Continuation of front page (56) Reference JP-A-7-54106 (JP, A) JP-A-6-61025 (JP, A) JP-A-6-251919 (JP, A) JP-A-6- 283317 (JP, A) JP-A 1-125906 (JP, A) JP-A 6-36915 (JP, A) JP-A 1-251704 (JP, A) JP-A 1-219142 (JP, A) Tokuhyo Hira 6-505366 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01F 1/00-1/375 C22C 38/00 303

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 組成式がR(Fe1―uCo
100―x―y―zCr、(R:Pr,Nd,D
yの1種又は2種以上)で表され、x(at%)、y
(at%)、z(at%)及びuが下記の値を満足し、
かつCrとCoの含有比率が原子濃度比で0.5〜2.
0であり、NdFe14B型結晶構造を有する硬磁性
相と、体心立方鉄および鉄ホウ化物の軟磁性相からな
り、各相の平均結晶粒径が50nm以下であるナノコン
ポジット組織を有し、直径300μm以下の硬質磁性体
粉末を50vol%以上含み、融点が250℃以上の熱
可塑性樹脂を結合剤として成形された高耐熱性ボンド磁
石。 4.5≦x≦6.0、15≦y≦20、3≦z≦7、
0.04≦u≦0.10
1. The composition formula is R x (Fe 1 -u Co u ).
100-x-y-z B y Cr z, (R: Pr, Nd, D
one or more of y), x (at%), y
(At%), z (at%) and u satisfy the following values,
Moreover, the content ratio of Cr and Co is 0.5 to 2 in terms of atomic concentration ratio.
0, a nanocomposite structure composed of a hard magnetic phase having a Nd 2 Fe 14 B type crystal structure and a soft magnetic phase of body-centered cubic iron and iron boride and having an average crystal grain size of 50 nm or less in each phase A high heat-resistant bond magnet having a hard magnetic powder having a diameter of 300 μm or less and 50 vol% or more and having a melting point of 250 ° C. or more as a binder. 4.5 ≦ x ≦ 6.0, 15 ≦ y ≦ 20, 3 ≦ z ≦ 7,
0.04 ≦ u ≦ 0.10
【請求項2】 請求項1において、硬質磁性体粉末の直
径が75μm以下である高耐熱性ボンド磁石。
2. A high heat-resistant bonded magnets Oite to claim 1, the diameter of the hard magnetic powder is 75μm or less.
【請求項3】 請求項1、請求項2において、平均のパ
ーミアンス係数が1.0以上の磁気回路で、200℃以
下の温度に加熱して室温にもどした場合の不可逆熱減磁
率が10%以下である高耐熱性ボンド磁石。
3. The method of claim 1, Oite to claim 2, in the magnetic circuit permeance coefficient of 1.0 or more in average, are irreversible heat demagnetization rate when returned to room temperature and heated to a temperature of 200 ° C. or less A highly heat resistant bonded magnet having a content of 10% or less.
JP21261695A 1995-04-01 1995-07-28 High heat resistant bonded magnet Expired - Lifetime JP3481739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21261695A JP3481739B2 (en) 1995-04-01 1995-07-28 High heat resistant bonded magnet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10078795 1995-04-01
JP7-100787 1995-04-01
JP21261695A JP3481739B2 (en) 1995-04-01 1995-07-28 High heat resistant bonded magnet

Publications (2)

Publication Number Publication Date
JPH08335508A JPH08335508A (en) 1996-12-17
JP3481739B2 true JP3481739B2 (en) 2003-12-22

Family

ID=26441747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21261695A Expired - Lifetime JP3481739B2 (en) 1995-04-01 1995-07-28 High heat resistant bonded magnet

Country Status (1)

Country Link
JP (1) JP3481739B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6332933B1 (en) * 1997-10-22 2001-12-25 Santoku Corporation Iron-rare earth-boron-refractory metal magnetic nanocomposites
US6302972B1 (en) * 1998-12-07 2001-10-16 Sumitomo Special Metals Co., Ltd Nanocomposite magnet material and method for producing nanocomposite magnet
CN1162872C (en) 1999-12-27 2004-08-18 住友特殊金属株式会社 Manufacturing method of ferrous magnetic material alloy powder
JP2002353018A (en) * 2001-05-30 2002-12-06 Nichia Chem Ind Ltd Resin magnet
CN104376947B (en) * 2014-12-13 2016-08-17 东阳市亿力磁业有限公司 A kind of heat-resisting sintered Nd-Fe-B permanent magnetic material and preparation method
WO2018111188A1 (en) * 2016-12-16 2018-06-21 Neo Performance Materials (Singapore) Pte Ltd Alloy compositions, magnetic materials, bonded magnets and methods for producing the same

Also Published As

Publication number Publication date
JPH08335508A (en) 1996-12-17

Similar Documents

Publication Publication Date Title
JP3741597B2 (en) Multi-element rare earth-iron lattice intrusion-type permanent magnet material, permanent magnet comprising the same, and method for producing them
TW493185B (en) High performance iron-rare earth-boron-refractory-cobalt nanocomposites
JP2000508476A (en) Low loss easy-saturated adhesive magnet
JPH0319296B2 (en)
Coey et al. New bonded magnet materials
JPH0316761B2 (en)
JP3481739B2 (en) High heat resistant bonded magnet
JP4834869B2 (en) Permanent magnet material, permanent magnet using the same, and manufacturing method thereof
JPS62198103A (en) Rare earth-iron permanent magnet
JP2005093729A (en) Anisotropic magnet, its manufacturing method, and motor using it
JP2016066675A (en) Rare earth isotropic bond magnet
JPH0474426B2 (en)
JP3519443B2 (en) Permanent magnet alloy powder and method for producing the same
JP3641021B2 (en) High coercive force iron-based permanent magnet and bonded magnet
CN110211759A (en) Sm-Fe-N magnet material and Sm-Fe-N bonded permanent magnet
JP4934787B2 (en) Magnetic alloys and bonded magnets
JPS60187662A (en) Ferromagnetic alloy
JPH052735B2 (en)
JP4329595B2 (en) Rare earth magnet powder, compound using the same, and bonded magnet using the same
JPH04308062A (en) Magnet alloy containing rare earth element and permanent magnet containing rare earth element
JPH0474425B2 (en)
JPH0562815A (en) Permanent magnet and manufacturing method thereof
JP4451628B2 (en) Alloy for permanent magnet
KR20240080662A (en) Method of fabricating soft magnetic core mixed Fe-based amorphous powder and crystalline powder
JPH03192703A (en) Rare-earth alloy powder for bonding magnet and bonded magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

EXPY Cancellation because of completion of term