JP2014194958A - Sintered magnet - Google Patents

Sintered magnet Download PDF

Info

Publication number
JP2014194958A
JP2014194958A JP2011136875A JP2011136875A JP2014194958A JP 2014194958 A JP2014194958 A JP 2014194958A JP 2011136875 A JP2011136875 A JP 2011136875A JP 2011136875 A JP2011136875 A JP 2011136875A JP 2014194958 A JP2014194958 A JP 2014194958A
Authority
JP
Japan
Prior art keywords
alloy
rare earth
crystal
powder
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011136875A
Other languages
Japanese (ja)
Inventor
Yuichi Satsu
祐一 佐通
Matahiro Komuro
又洋 小室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011136875A priority Critical patent/JP2014194958A/en
Priority to PCT/JP2012/064993 priority patent/WO2012176655A1/en
Publication of JP2014194958A publication Critical patent/JP2014194958A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0579Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B with exchange spin coupling between hard and soft nanophases, e.g. nanocomposite spring magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Abstract

PROBLEM TO BE SOLVED: To provide a sintered magnet that satisfies reduction of rare earth elements that are rare resources and increase of coercive force and a maximum energy product.SOLUTION: An Fe-based powder of high saturation magnetic flux density is mixed with a NdFeB-based magnetic powder. The Fe-based powder has shape anisotropy and a surface of which is coated with a fluoride containing heavy rare earth element by a solution treatment. An average particle diameter of the Fe-based powder is larger than an average particle diameter of the NdFeB-based magnetic powder.

Description

本発明は、高飽和磁束密度を示す結晶粒を含有し、希土類元素が偏在する焼結磁石に関する。   The present invention relates to a sintered magnet containing crystal grains exhibiting a high saturation magnetic flux density, in which rare earth elements are unevenly distributed.

特許文献1〜4にはFe系高飽和磁束密度材料とNdFeB系粉を用いた永久磁石の記載があり、特許文献1にはαFe相とNd2Fe14B相の結晶粒のサイズが5〜100nmである高性能希土類永久磁石用合金に関する記載がある。特許文献2には、R−Fe−B系異方性合金粉末とソフト磁性金属の粉末を混合後緻密化する手法が開示されている。特許文献3にはフッ素化合物中に鉄が含有していることが開示されている。また、特許文献4には主相結晶粒の周りを取り囲む結晶粒界部において、希土類元素に濃度分布が認められる保磁力0.5〜5kOeの永久磁石に関する記載がある。特許文献5には立方晶構造の酸フッ化物と正方晶のNd2Fe14Bに関する記載があり、特許文献6には、R2Fe14B相とMリッチ相,R酸化物相からなる組織の異方性希土類焼結磁石が開示され、特許文献7にはNd2Fe14B正方晶とNd23立方晶から構成された焼結サンプルに関する記載があり、特許文献8にはFeCo合金粗粉と希土類焼結用合金微粉を混合焼結した着磁性に優れた希土類焼結磁石に関する記載がある。 Patent Documents 1 to 4 describe a permanent magnet using an Fe-based high saturation magnetic flux density material and an NdFeB-based powder, and Patent Document 1 describes that the crystal grain size of the αFe phase and the Nd 2 Fe 14 B phase is 5 to 5. There is a description of a high performance rare earth permanent magnet alloy of 100 nm. Patent Document 2 discloses a technique in which R-Fe-B anisotropic alloy powder and soft magnetic metal powder are mixed and then densified. Patent Document 3 discloses that iron is contained in a fluorine compound. Further, Patent Document 4 describes a permanent magnet having a coercive force of 0.5 to 5 kOe in which a concentration distribution is recognized in a rare earth element at a grain boundary portion surrounding the main phase crystal grains. Patent Document 5 describes a cubic structure oxyfluoride and tetragonal Nd 2 Fe 14 B, and Patent Document 6 describes a structure composed of an R 2 Fe 14 B phase, an M-rich phase, and an R oxide phase. An anisotropic rare earth sintered magnet is disclosed, and Patent Document 7 discloses a sintered sample composed of Nd 2 Fe 14 B tetragonal crystal and Nd 2 O 3 cubic crystal, and Patent Document 8 describes an FeCo alloy. There is a description of a rare earth sintered magnet excellent in magnetism obtained by mixing and sintering coarse powder and alloy fine powder for rare earth sintering.

さらに、NdFeB系磁石において、重希土類元素を偏在化する手法では、希土類元素使用量の低減にはならない。また、軟磁性粉と混合焼結させた場合、保磁力が減少し磁石の耐熱性あるいは減磁耐力が著しく低下する。   Furthermore, in the NdFeB-based magnet, the method of unevenly distributing heavy rare earth elements does not reduce the amount of rare earth elements used. Further, when mixed and sintered with soft magnetic powder, the coercive force is reduced, and the heat resistance or demagnetization resistance of the magnet is significantly reduced.

特開2001−323343号公報JP 2001-323343 A 特開2009−260290号公報JP 2009-260290 A 特開2008−60183号公報JP 2008-60183 A 特開2010−74084号公報JP 2010-74084 A 特開2010−267637号公報JP 2010-267637 A 特開2002−25810号公報JP 2002-25810 A 特開2001−319806号公報Japanese Patent Laid-Open No. 2001-319806 特開2003−217918号公報JP 2003-217918 A

Nd2Fe14B系焼結磁石に代表される希土類鉄ホウ素系などの希土類元素を使用した永久磁石は、種々の磁気回路に使用されている。高温あるいは大きな減磁界環境で使用される永久磁石には、重希土類元素の添加が必須である。重希土類元素を含めた希土類元素の使用量を削減することは、地球資源保護の観点から極めて重要な課題である。従来技術では、希土類元素使用量を小さくすると、最大エネルギー積,保磁力のいずれかが低下し、応用することが困難であった。希土類元素使用量の低減,保磁力増加及び最大エネルギー積増加を満足させることが課題である。 Permanent magnets using rare earth elements such as rare earth iron boron, represented by Nd 2 Fe 14 B based sintered magnets, are used in various magnetic circuits. Addition of heavy rare earth elements is essential for permanent magnets used in high temperature or large demagnetizing field environments. Reducing the amount of rare earth elements including heavy rare earth elements is an extremely important issue from the viewpoint of protecting earth resources. In the prior art, when the amount of rare earth elements used is reduced, either the maximum energy product or the coercive force is lowered, and it has been difficult to apply. The challenge is to satisfy the reduction in the amount of rare earth elements used, the increase in coercive force, and the increase in maximum energy product.

上記問題点を解決するために、飽和磁束密度が高いFe系粉をNdFeB系磁粉と混合する。このFe系粉は形状異方性があり、重希土類元素を含有するフッ化物を溶液処理によってその表面が塗布されている。この時、Fe系粉の平均粒径はNdFeB系磁粉の平均粒径よりも大きいことが重要である。   In order to solve the above problems, an Fe-based powder having a high saturation magnetic flux density is mixed with an NdFeB-based magnetic powder. This Fe-based powder has shape anisotropy, and its surface is coated with a solution containing a heavy rare earth element by solution treatment. At this time, it is important that the average particle diameter of the Fe-based powder is larger than the average particle diameter of the NdFeB-based magnetic powder.

本発明によれば、希土類永久磁石の希土類元素使用量低減,保磁力増加及び最大エネルギー積増加を満足することが可能であり、磁石使用量を低減でき様々な磁石応用製品の小型軽量化に貢献する。   According to the present invention, it is possible to satisfy rare earth element usage reduction, coercive force increase and maximum energy product increase of rare earth permanent magnets, reducing magnet usage and contributing to reduction in size and weight of various magnet application products. To do.

残留磁束密度(Br)及び保磁力(Hc)と平均結晶粒径比(FeCo合金系/NdFeB系)の関係。Relationship between residual magnetic flux density (Br) and coercive force (Hc) and average grain size ratio (FeCo alloy system / NdFeB system). Hk/Hcと平均結晶粒径比(FeCo合金系/NdFeB系)の関係。Relationship between Hk / Hc and average crystal grain size ratio (FeCo alloy system / NdFeB system). 酸フッ化物体積と平均結晶粒径比(FeCo合金系/NdFeB系)の関係。Relationship between oxyfluoride volume and average crystal grain size ratio (FeCo alloy system / NdFeB system). 焼結磁石の組織図。The organization chart of a sintered magnet.

本発明に係る焼結磁石の製造にあたり、飽和磁束密度が高いFe系粉をNdFeB系磁粉と混合する。このFe系粉は形状異方性があり、重希土類元素を含有するフッ化物を溶液処理によってその表面が塗布されている。この時、Fe系粉の平均粒径はNdFeB系磁粉の平均粒径よりも大きいことが重要である。   In manufacturing the sintered magnet according to the present invention, Fe-based powder having a high saturation magnetic flux density is mixed with NdFeB-based magnetic powder. This Fe-based powder has shape anisotropy, and its surface is coated with a solution containing a heavy rare earth element by solution treatment. At this time, it is important that the average particle diameter of the Fe-based powder is larger than the average particle diameter of the NdFeB-based magnetic powder.

Fe系粉は一般にNdFeB系磁粉よりも保磁力が小さいため磁化反転し易く、Fe系磁粉とNdFeB系磁粉を混合焼結させると両者の界面においてNdFeB系結晶の粒界近傍の組成や構造が隣接するFe系結晶の影響により焼結過程で拡散し、希土類リッチ相が形成されにくい。希土類リッチ相の組成や構造は保磁力に影響するため、Fe系粒子近傍の粒界に重希土類元素を偏在させ、保磁力を増加させる。   Fe-based powders generally have a smaller coercive force than NdFeB-based magnetic powders, so magnetization reversal is easy. When Fe-based magnetic powders and NdFeB-based magnetic powders are mixed and sintered, the composition and structure near the grain boundaries of NdFeB-based crystals are adjacent at the interface between them. Due to the influence of the Fe-based crystals, the rare earth-rich phase is hardly formed due to diffusion during the sintering process. Since the composition and structure of the rare earth-rich phase affects the coercive force, heavy rare earth elements are unevenly distributed at the grain boundaries near the Fe-based particles, thereby increasing the coercive force.

高い飽和磁化を有するFe系結晶の平均粒径はNd2Fe14Bの平均粒径よりも大きくすることで、Fe系合金の結晶粒の凝集を防止し、焼結助材の添加体積を10%未満にすることができる。Fe系合金の平均粒径がNd2Fe14Bの平均粒径よりも大きいことで、Fe系合金間の界面積よりもNd2Fe14B間とFe系合金とNd2Fe14B間の界面積の和の方が大きく磁化反転しにくくなる。 By making the average grain size of the Fe-based crystal having high saturation magnetization larger than the average grain size of Nd 2 Fe 14 B, aggregation of crystal grains of the Fe-based alloy is prevented, and the additive volume of the sintering aid is set to 10 %. When the average particle diameter of the Fe-based alloy is larger than the average particle size of the Nd 2 Fe 14 B, Fe-based intermetallic alloy field between Nd 2 Fe 14 B than the area and Fe-based alloy and Nd between 2 Fe 14 B The sum of the interfacial areas is larger and the magnetization reversal is less likely.

本発明において、Nd2Fe14Bよりも高い飽和磁化を有するFe系合金とはFeCo系合金などの飽和磁化170emu/gとなる合金であり、この飽和磁化以上であればその組成に制限はなく、希土類元素や半金属元素,種々の金属元素を含有して良い。飽和磁化がNd2Fe14Bよりも高いため、Nd2Fe14Bの結晶粒と磁気的に結合することにより残留磁束密度を増加させることが可能となる。Fe系合金の結晶粒とNd2Fe14Bの結晶粒は重希土類元素偏在相と粒界を介して隣接している。この重希土類偏在相にはフッ素や酸素が含まれている。 In the present invention, an Fe-based alloy having a saturation magnetization higher than that of Nd 2 Fe 14 B is an alloy having a saturation magnetization of 170 emu / g, such as an FeCo-based alloy. In addition, rare earth elements, metalloid elements, and various metal elements may be contained. Since the saturation magnetization is higher than Nd 2 Fe 14 B, it is possible to increase the residual magnetic flux density by crystal grains and magnetically coupling Nd 2 Fe 14 B. The crystal grains of the Fe-based alloy and the crystal grains of Nd 2 Fe 14 B are adjacent to the heavy rare earth element uneven distribution phase through the grain boundary. This heavy rare earth unevenly distributed phase contains fluorine and oxygen.

また、焼結助材は、焼結温度において液相の量を十分にし、液相とFe系合金の結晶粒やNd2Fe14Bの結晶粒との濡れ性を高め、焼結後の密度を高くするために使用する。フッ素含有相は希土類元素濃度が高い相と容易に反応するため液相の量が減少する。このため焼結後の密度が低下し、保磁力も低下する。このような密度及び保磁力減少を抑制するために焼結助材としてFe−70%Nd合金粉などを添加している。 The sintering aid also increases the amount of liquid phase at the sintering temperature, improves the wettability between the liquid phase and Fe-based alloy crystal grains and Nd 2 Fe 14 B crystal grains, and the density after sintering. Used to raise the Since the fluorine-containing phase easily reacts with a phase having a high rare earth element concentration, the amount of the liquid phase is reduced. For this reason, the density after sintering falls and the coercive force also falls. In order to suppress such a decrease in density and coercive force, Fe-70% Nd alloy powder or the like is added as a sintering aid.

さらに、焼結時に成形磁場と垂直方向に磁場印加することにより、Fe系合金のみが磁化を有する温度範囲で磁場印加効果を実現でき、Fe系結晶に磁気異方性を付加する。また、時効急冷処理時に成形磁場と平行方向に磁場印加することにより、Fe系合金の結晶粒とNd2Fe14Bの結晶粒間の交換結合を高めることが可能であり、磁場印加は保磁力増加や角型性向上に寄与する。 Further, by applying a magnetic field perpendicular to the forming magnetic field during sintering, a magnetic field application effect can be realized in a temperature range in which only the Fe-based alloy has magnetization, and magnetic anisotropy is added to the Fe-based crystal. In addition, by applying a magnetic field in a direction parallel to the forming magnetic field during the aging and quenching treatment, it is possible to increase exchange coupling between the Fe-based alloy crystal grains and the Nd 2 Fe 14 B crystal grains. Contributes to increase and squareness improvement.

製造手法として重希土類元素を偏在化させるためにフッ化物溶液処理を使用する。フッ化物溶液処理に使用する溶液には100ppmオーダー以下の陰イオン成分が含有するため、希土類元素を多く含有する材料への処理において、被処理材料の表面の一部が腐食または酸化する。本発明では焼結磁石にNdFeB系合金とFe系合金の少なくとも二種類の強磁性合金を使用し、フッ化物溶液処理を施す材料を希土類元素含有量が少ない合金とし、フッ化物溶液処理による腐食や酸化を防止する。また希土類元素含有量が少ない合金は一般に保磁力が小さいので、希土類元素含有量が少ない合金の近傍に希土類元素、特に重希土類元素を偏在化させることが保磁力増加と希土類元素使用量低減に貢献する。   As a manufacturing method, fluoride solution treatment is used to make the heavy rare earth elements unevenly distributed. Since the solution used for the fluoride solution treatment contains an anion component of the order of 100 ppm or less, a part of the surface of the material to be treated is corroded or oxidized in the treatment to a material containing a large amount of rare earth elements. In the present invention, the sintered magnet uses at least two kinds of ferromagnetic alloys of NdFeB alloy and Fe alloy, and the material subjected to the fluoride solution treatment is an alloy having a low rare earth element content. Prevent oxidation. Alloys with a low rare earth element content generally have a low coercive force, so uneven distribution of rare earth elements, especially heavy rare earth elements, in the vicinity of alloys with a low rare earth element content contributes to an increase in coercive force and a reduction in the amount of rare earth elements used. To do.

70%Fe30%Co合金を真空溶解後、Ar+10%H2ガス雰囲気中で還元溶解し銅製回転ロール表面に溶解した金属溶湯を噴射させ、冷却速度100℃/秒から500℃/秒程度の速度で冷却後、不活性ガス中で粉砕し、扁平形状の70%Fe30%Co合金粉末を得た。70%Fe30%Co合金粉末の形状は扁平粉であり、リボン状に伸びた形状である。70%Fe30%Co合金粉末の粒径はジェットミル粉砕時間に依存して制御でき、0.1〜1000μmの範囲で扁平に伸びた長軸方向の平均粒径を制御可能である。70%Fe30%Co合金粉表面にフッ化物を被覆するために、TbF系アルコール溶液と70%Fe30%Co合金粉を混合し、アルコールを蒸発させることによりTbF系膜を70%Fe30%Co合金粉表面に作成する。平均膜厚2nmのTbF系膜で被覆された70%Fe30%Co合金粉とNd2Fe14B粉を70%Fe30%Co合金粉2:Nd2Fe14B粉8の混合比で混合する。Nd2Fe14B粉の平均粒径は4μmである。この混合粉に焼結性向上のために焼結助材としてNd2Fe14B粉の平均粒径よりも小さな平均粒径のFe−70%Nd合金粉を約1%添加した。磁場(10kOe)中成形により扁平な70%Fe30%Co合金粉末は長軸方向がほぼ磁場印加方向に揃い、1100℃で焼結させ液相形成時に磁場(10kOe)を磁場中成形の磁場と垂直方向に印加した。焼結後の時効熱処理は400〜700℃でNd2Fe14Bのキュリー点よりも高い温度に設定し、磁場中成形の磁場方向と同一方向に磁場(20kOe)を印加した。時効熱処理における急冷速度は10〜100℃/秒である。 After 70% Fe30% Co alloy is melted in vacuum, molten metal reduced and melted in an Ar + 10% H 2 gas atmosphere and melted on the surface of the copper rotating roll is injected, and the cooling rate is about 100 ° C./second to 500 ° C./second. After cooling, it was pulverized in an inert gas to obtain a flat 70% Fe30% Co alloy powder. The shape of the 70% Fe30% Co alloy powder is a flat powder and is a shape extending in a ribbon shape. The particle size of the 70% Fe30% Co alloy powder can be controlled depending on the jet mill pulverization time, and the average particle size in the long axis direction extending flatly in the range of 0.1 to 1000 μm can be controlled. In order to coat fluoride on the surface of 70% Fe 30% Co alloy powder, a TbF-based alcohol solution and 70% Fe 30% Co alloy powder are mixed, and the alcohol is evaporated to thereby convert the TbF-based film into 70% Fe 30% Co alloy powder. Create on the surface. 70% Fe 30% Co alloy powder and Nd 2 Fe 14 B powder coated with a TbF-based film having an average film thickness of 2 nm are mixed at a mixing ratio of 70% Fe 30% Co alloy powder 2: Nd 2 Fe 14 B powder 8. The average particle size of the Nd 2 Fe 14 B powder is 4 μm. About 1% of Fe-70% Nd alloy powder having an average particle size smaller than the average particle size of Nd 2 Fe 14 B powder was added to the mixed powder as a sintering aid to improve the sinterability. The flat 70% Fe30% Co alloy powder formed by forming in a magnetic field (10 kOe) is almost aligned with the magnetic field application direction in the major axis direction and sintered at 1100 ° C., and the magnetic field (10 kOe) is perpendicular to the forming magnetic field during liquid phase formation. Applied in the direction. The aging heat treatment after sintering was set to a temperature higher than the Curie point of Nd 2 Fe 14 B at 400 to 700 ° C., and a magnetic field (20 kOe) was applied in the same direction as the magnetic field direction of molding in the magnetic field. The rapid cooling rate in the aging heat treatment is 10 to 100 ° C./second.

70%Fe30%Co合金粉の平均粒径が10μmの時、磁場中焼結,磁場中時効処理後の成形体は、残留磁束密度(Br)が1.66T(16.6kG)であり、保磁力が17.5kOeであった。Brの値はNd2Fe14Bの理論値である1.61Tを超えており70%Fe30%Co合金粉は希土類元素を含有しないため、希土類元素使用量を削減可能である。このようなNd2Fe14Bの理論値を超えるBrの値を得るためには本実施例のように、次のような条件が必要となる。 When the average particle size of 70% Fe30% Co alloy powder is 10 μm, the compact after sintering in the magnetic field and after aging treatment in the magnetic field has a residual magnetic flux density (Br) of 1.66 T (16.6 kG). The magnetic force was 17.5 kOe. The value of Br exceeds 1.61 T which is the theoretical value of Nd 2 Fe 14 B, and the 70% Fe 30% Co alloy powder does not contain rare earth elements, so the amount of rare earth elements used can be reduced. In order to obtain a value of Br exceeding the theoretical value of Nd 2 Fe 14 B, the following conditions are required as in this embodiment.

[1]Nd2Fe14Bよりも高い飽和磁化を有するFe系合金を使用すること。
[2]Fe系合金などの希土類元素を含有しない合金は、焼結温度以下で液相を形成しないため、焼結助材を添加すること。
[3]焼結時に成形磁場と垂直方向に磁場印加すること。
[4]時効急冷処理時に成形磁場と平行方向に磁場印加すること。
[5]高い飽和磁化を有するFe系合金の平均粒径はNd2Fe14Bの平均粒径よりも大きいこと。
[1] Use an Fe-based alloy having a saturation magnetization higher than that of Nd 2 Fe 14 B.
[2] An alloy that does not contain a rare earth element, such as an Fe-based alloy, does not form a liquid phase below the sintering temperature, so a sintering aid should be added.
[3] Applying a magnetic field perpendicular to the forming magnetic field during sintering.
[4] Applying a magnetic field in a direction parallel to the forming magnetic field during the aging and quenching treatment.
[5] The average particle size of the Fe-based alloy having high saturation magnetization is larger than the average particle size of Nd 2 Fe 14 B.

条件[1]〜[5]について以下で詳細に説明する。
条件[1]:Nd2Fe14Bよりも高い飽和磁化を有するFe系合金とはFeCo系合金などの飽和磁化170emu/gとなる合金であり、この飽和磁化以上であればその組成に制限はなく、希土類元素や半金属元素,種々の金属元素を含有して良い。飽和磁化がNd2Fe14Bよりも高いため、Nd2Fe14Bの結晶粒と磁気的に結合することにより残留磁束密度を増加させることが可能となる。Fe系合金の結晶粒とNd2Fe14Bの結晶粒は直接接触しているかあるいはフッ素または酸素含有相を介して隣接している。本実施例のようなTbF系膜は焼結時のFe系合金の結晶粒とNd2Fe14Bの結晶粒間の反応を抑制して保磁力低下を防止する。焼結時に不安定な構造を有するFe系合金は飽和磁化が170emu/g以上であっても使用することは困難である。Fe162やFe8Nなどの純安定相は900℃の焼結温度で分解し易く、使用することはできない。規則相あるいは不規則相のFeCo合金は飽和磁化が220〜240emu/gでありNd2Fe14B系の167emu/gよりも高いため磁気結合により磁石特性を向上できる。170emu/g未満の飽和磁化をもったFe系合金ではNd2Fe14B系の飽和磁化と同等以下のため磁石性能の残留磁束密度の向上は期待できない。
The conditions [1] to [5] will be described in detail below.
Condition [1]: An Fe-based alloy having a saturation magnetization higher than that of Nd 2 Fe 14 B is an alloy having a saturation magnetization of 170 emu / g, such as an FeCo-based alloy. And may contain rare earth elements, metalloid elements, and various metal elements. Since the saturation magnetization is higher than Nd 2 Fe 14 B, it is possible to increase the residual flux density by crystal grains and magnetically coupling Nd 2 Fe 14 B. The crystal grains of the Fe-based alloy and the crystal grains of Nd 2 Fe 14 B are in direct contact with each other or are adjacent to each other through a fluorine or oxygen-containing phase. The TbF-based film as in this example suppresses the reaction between the Fe-based alloy crystal grains and the Nd 2 Fe 14 B crystal grains during sintering, thereby preventing a decrease in coercive force. An Fe-based alloy having an unstable structure during sintering is difficult to use even if the saturation magnetization is 170 emu / g or more. Pure stable phases such as Fe 16 N 2 and Fe 8 N are easily decomposed at a sintering temperature of 900 ° C. and cannot be used. The ordered or disordered FeCo alloy has a saturation magnetization of 220 to 240 emu / g, which is higher than 167 emu / g of the Nd 2 Fe 14 B system, so that the magnetic characteristics can be improved by magnetic coupling. An Fe-based alloy having a saturation magnetization of less than 170 emu / g cannot be expected to improve the residual magnetic flux density of the magnet performance because it is equal to or less than the saturation magnetization of the Nd 2 Fe 14 B system.

条件[2]:焼結助材は、焼結温度において液相の量を十分にし、液相とFe系合金の結晶粒やNd2Fe14Bの結晶粒との濡れ性を高め、焼結後の密度を高くするために使用する。フッ素含有相は希土類元素濃度が高い相と容易に反応するため液相の量が減少する。このため焼結後の密度が低下し、保磁力も低下する。このような密度及び保磁力減少を抑制するために焼結助材としてFe−70%Nd合金粉を添加している。添加量が0.1wt%未満であると本実施例では密度7g/cm3未満となり保磁力が10kOe未満となる。焼結助材の添加量が0.1%以上10%未満であれば密度7g/cm3以上の高密度焼結体が得られる。焼結助材は飽和磁化が小さいため添加量とともに飽和磁束密度が低下するため、最適な焼結助材添加量は0.2〜5%である。1.6T以上のBrを確保するためにはNd2Fe14Bよりも高い飽和磁化を有するFe系合金の添加量が焼結助材の添加量よりも多いことが必要である。 Condition [2]: The sintering aid increases the wettability between the liquid phase and the Fe-based alloy crystal grains and Nd 2 Fe 14 B crystal grains by sintering the liquid phase at the sintering temperature. Used to increase density later. Since the fluorine-containing phase easily reacts with a phase having a high rare earth element concentration, the amount of the liquid phase is reduced. For this reason, the density after sintering falls and the coercive force also falls. In order to suppress such a decrease in density and coercive force, Fe-70% Nd alloy powder is added as a sintering aid. When the addition amount is less than 0.1 wt%, the density is less than 7 g / cm 3 in this embodiment, and the coercive force is less than 10 kOe. If the amount of the sintering aid added is 0.1% or more and less than 10%, a high-density sintered body having a density of 7 g / cm 3 or more can be obtained. Since the sintering aid has a small saturation magnetization, the saturation magnetic flux density decreases with the addition amount. Therefore, the optimum addition amount of the sintering aid is 0.2 to 5%. In order to secure Br of 1.6 T or more, it is necessary that the addition amount of the Fe-based alloy having a saturation magnetization higher than that of Nd 2 Fe 14 B is larger than the addition amount of the sintering aid.

焼結助材には焼結温度以下の温度範囲で液相となる希土類含有合金やAl,Cu,Ga,Zr,Ti,Mn,Crなどの合金が使用できる。焼結助材や焼結助材と反応した酸フッ化物ならびに希土類酸化物の主な結晶構造は立方晶系である。添加した焼結助材の一部は焼結熱処理においてNd2Fe14Bの結晶粒あるいはフッ化物と反応する。反応した一部のフッ化物は立方晶構造の酸フッ化物を形成する。この酸フッ化物の格子定数はfcc構造のNdO系化合物の格子定数及びFe系合金の格子定数の2倍の値と±10%以内で一致し格子のミスマッチが小さく歪みを伴った整合関係が生じやすい。このため磁化反転が抑制される。 As the sintering aid, a rare earth-containing alloy that becomes a liquid phase in a temperature range below the sintering temperature, or an alloy such as Al, Cu, Ga, Zr, Ti, Mn, and Cr can be used. The main crystal structure of the sintering aid, the oxyfluoride reacted with the sintering aid, and the rare earth oxide is cubic. Part of the added sintering aid reacts with the crystal grains or fluoride of Nd 2 Fe 14 B in the sintering heat treatment. Some of the reacted fluoride forms a cubic structure oxyfluoride. The lattice constant of the oxyfluoride is within ± 10% of the lattice constant of the NdO-based compound having the fcc structure and the lattice constant of the Fe-based alloy, and the lattice mismatch is small and a matching relationship with distortion occurs. Cheap. For this reason, magnetization reversal is suppressed.

また焼結助材を構成する希土類元素やAl,Cu,Ga,Zr,Ti,Mn,Crなどの金属元素の一部が粒界に偏在化する。特にFe系合金の結晶粒の粒界近傍でかつFe系合金結晶粒内において希土類元素やAl,Cu,Ga,Zr,Ti,Mn,Crなどの金属元素が偏在化した時に保磁力増加効果が顕著である。この偏在化は粒界中心から0.5〜100nmの粒界に沿った帯状の範囲で、Fe系合金結晶粒の平均濃度よりも1.1〜100倍の濃度範囲で濃化しており、偏在化により一部の結晶構造は酸素や炭素またはフッ素を伴って変化する。1.1倍未満の濃化では偏在による保磁力増加はほとんど認められない。また100倍を超えると偏在化部分の磁化が大幅に減少するため残留磁束密度が減少する。したがってFe系合金結晶粒の金属元素の偏在濃度は平均濃度の1.1〜100倍が望ましい。粒界中心から5nmの範囲でGa,Cu及びTaが偏在する場合、平均濃度がそれぞれ0.1,0.3,0.2wt%の時、偏在化部分ではそれぞれ2,5,3wt%となる。この時、保磁力は偏在しない場合と比較して残留磁束密度の減少なしで10kOe増加する。   Further, rare earth elements constituting the sintering aid and some metal elements such as Al, Cu, Ga, Zr, Ti, Mn, and Cr are unevenly distributed at the grain boundaries. In particular, the effect of increasing the coercive force is present when rare earth elements and metallic elements such as Al, Cu, Ga, Zr, Ti, Mn, and Cr are unevenly distributed in the vicinity of grain boundaries of Fe-based alloy grains and within Fe-based alloy crystal grains. It is remarkable. This uneven distribution is in a band-like range along the grain boundary of 0.5 to 100 nm from the grain boundary center, and is concentrated in a concentration range 1.1 to 100 times higher than the average concentration of Fe-based alloy crystal grains. As a result, part of the crystal structure changes with oxygen, carbon, or fluorine. When the concentration is less than 1.1 times, almost no increase in coercive force due to uneven distribution is observed. On the other hand, when it exceeds 100 times, the magnetization of the unevenly distributed portion is greatly reduced, so that the residual magnetic flux density is reduced. Therefore, the uneven concentration of the metal element in the Fe alloy crystal grains is preferably 1.1 to 100 times the average concentration. When Ga, Cu, and Ta are unevenly distributed within a range of 5 nm from the grain boundary center, when the average concentration is 0.1, 0.3, and 0.2 wt%, respectively, the unevenly distributed portions are 2, 5, and 3 wt%, respectively. . At this time, the coercive force increases by 10 kOe without a decrease in the residual magnetic flux density as compared with the case where there is no uneven distribution.

条件[3]:焼結時に成形磁場と垂直方向に磁場印加することにより、Fe系合金のみが磁化を有する温度範囲で磁場印加効果を実現でき、Fe系合金の結晶粒が不定形の場合は磁場方向に平行につながりやすくなる。仮成形工程で印加した成形磁場方向は磁石の異方性方向であり、異方性方向に平行方向では不定形のFe系合金の結晶粒が分断され、異方性方向に垂直な方向では高温で磁場が成形磁場と垂直方向に印加されるため、不定形の場合Fe系合金の結晶粒がつながりやすい。Fe系合金の結晶粒が焼結体で形状あるいは界面構造またはNd2Fe14B結晶粒との異方的な磁気結合を有することにより保磁力増加や減磁曲線の角型性向上が実現できる。このような磁場印加効果はNd2Fe14Bのキュリー温度以上に焼結体を加熱して磁化曲線を測定することで確認でき、このような高温ではFe系合金の磁化曲線にNd2Fe14Bの着磁方向と垂直方向では磁化曲線に差が認められる。 Condition [3]: When a magnetic field is applied in the direction perpendicular to the forming magnetic field during sintering, the magnetic field application effect can be realized in a temperature range in which only the Fe-based alloy has magnetization, and the Fe-based alloy crystal grains are indefinite. It becomes easy to connect parallel to the magnetic field direction. The direction of the forming magnetic field applied in the temporary forming process is the anisotropic direction of the magnet. In parallel to the anisotropic direction, the amorphous Fe-based alloy crystal grains are divided, and in the direction perpendicular to the anisotropic direction, the temperature is high. Since the magnetic field is applied in a direction perpendicular to the forming magnetic field, the Fe-based alloy crystal grains are easily connected in the case of an indefinite shape. The Fe-based alloy crystal grains are sintered and have a shape, an interface structure, or anisotropic magnetic coupling with Nd 2 Fe 14 B crystal grains, so that the coercive force can be increased and the squareness of the demagnetization curve can be improved. . Such a magnetic field application effect can be confirmed by heating the sintered body to a temperature equal to or higher than the Curie temperature of Nd 2 Fe 14 B and measuring the magnetization curve. At such a high temperature, the magnetization curve of the Fe-based alloy shows Nd 2 Fe 14. There is a difference in the magnetization curve between the magnetization direction of B and the perpendicular direction.

本実施例において、焼結時の印加磁場と仮成形時の印加磁場の方向を5度から90度変えることでFe系合金の異方性方向とNd2Fe14B結晶粒の異方性方向に差が生じ、焼結後の磁石特性を向上できる。5度未満では磁場印加方向の差による効果は顕著ではない。これはFe系合金の磁化容易軸方向がNd2Fe14B結晶粒の磁化容易軸方向とほぼ平行なためである。角度差が90〜175度の範囲は5〜90度の範囲とほぼ等価である。 In this example, the anisotropy direction of the Fe-based alloy and the anisotropy direction of the Nd 2 Fe 14 B crystal grains are changed by changing the direction of the applied magnetic field during sintering and the applied magnetic field during temporary forming from 5 degrees to 90 degrees. Thus, the magnet characteristics after sintering can be improved. If it is less than 5 degrees, the effect due to the difference in magnetic field application direction is not remarkable. This is because the easy axis direction of the Fe-based alloy is substantially parallel to the easy axis direction of the Nd 2 Fe 14 B crystal grains. The range where the angle difference is 90 to 175 degrees is almost equivalent to the range of 5 to 90 degrees.

条件[4]:時効急冷処理時に成形磁場と平行方向に磁場印加することにより、Fe系合金の結晶粒とNd2Fe14Bの結晶粒間の交換結合を高めることが可能であり、磁場印加は保磁力増加や角型性向上に寄与する。残留磁束密度が1.5Tを超える焼結磁石では、Nd2Fe14B結晶のc軸方向は着磁する方向とほぼ一致し、Fe系合金の配向性よりもNd2Fe14B結晶の配向性は高い。Nd2Fe14B結晶のc軸方向に平行にFe結晶の(110),(100)あるいは(210)が成長していることが確認できる。これはFe系合金の異方性エネルギーがNd2Fe14Bの異方性エネルギーよりも小さいためNd2Fe14B結晶の方が磁場配向し易いことに起因している。 Condition [4]: By applying a magnetic field in a direction parallel to the forming magnetic field during the aging and quenching treatment, it is possible to increase exchange coupling between the Fe-based alloy crystal grains and the Nd 2 Fe 14 B crystal grains. Contributes to increased coercivity and improved squareness. In a sintered magnet having a residual magnetic flux density exceeding 1.5 T, the c-axis direction of the Nd 2 Fe 14 B crystal is almost the same as the magnetization direction, and the orientation of the Nd 2 Fe 14 B crystal is more than the orientation of the Fe-based alloy. The nature is high. It can be confirmed that (110), (100), or (210) of the Fe crystal grows in parallel to the c-axis direction of the Nd 2 Fe 14 B crystal. This is because the anisotropy energy of the Fe-based alloy is smaller than the anisotropy energy of Nd 2 Fe 14 B, so that the Nd 2 Fe 14 B crystal is more easily magnetically oriented.

Fe系合金の粒界近傍に異方性エネルギーの高い酸化物や炭化物,フッ化物,酸フッ化物窒化物が形成され、これらの化合物と隣接するbccあるいはbct構造のFeはFe以外の金属元素が一種または複数種偏在しており、これらの結晶磁気異方性エネルギーは、偏在していないbcc−Feの結晶磁気異方性エネルギーよりも高い。特にbct構造のFeあるいはFeCo合金がCuやGa,Mn,Ta,W,Ag,Al,Geを少なくとも1種含有した場合、結晶磁気異方性エネルギーは10〜50%増加する。さらにこれらのbct構造のFeあるいはFeCo合金に粒界を介して酸化物や炭化物,フッ化物,酸フッ化物あるいは窒化物が成長している場合、結晶磁気異方性エネルギーは20〜100%増加し、保磁力が10kOe増加する。   Oxides, carbides, fluorides, and oxyfluoride nitrides with high anisotropy energy are formed in the vicinity of the grain boundaries of the Fe-based alloy, and Fe of a bcc or bct structure adjacent to these compounds contains metal elements other than Fe. One or more species are unevenly distributed, and their magnetocrystalline anisotropy energy is higher than that of non-localized bcc-Fe. In particular, when the bct structure Fe or FeCo alloy contains at least one of Cu, Ga, Mn, Ta, W, Ag, Al, and Ge, the magnetocrystalline anisotropy energy increases by 10 to 50%. Furthermore, when oxides, carbides, fluorides, oxyfluorides, or nitrides grow on these bct structure Fe or FeCo alloys via grain boundaries, the magnetocrystalline anisotropy energy increases by 20 to 100%. , The coercive force is increased by 10 kOe.

条件[5]:高い飽和磁化を有するFe系合金の平均粒径はNd2Fe14Bの平均粒径よりも大きくすることで、Fe系合金の結晶粒の凝集を防止し、焼結助材の添加体積を10%未満にすることができる。Fe系合金の平均粒径がNd2Fe14Bの平均粒径以下の場合、Fe系合金の結晶粒の表面積はNd2Fe14Bの結晶粒の表面積よりも大きくなり、Fe系合金結晶粒の表面に被覆するフッ化物またはフッ素含有膜の体積が増加する。このため焼結助材の添加量を1%以上にして高密度と高保磁力にすることが可能であるが残留磁束密度が低下する。このためFe系合金の平均粒径はNd2Fe14Bの平均粒径よりも大きくすることが望ましい。Fe系合金の平均粒径がNd2Fe14Bの平均粒径よりも大きいことで、Fe系合金間の界面積よりもNd2Fe14B間とFe系合金とNd2Fe14B間の界面積の和の方が大きい。Fe系合金間の界面積よりもNd2Fe14B間とFe系合金とNd2Fe14B間の界面積の和の方が小さい場合、Fe系合金の磁気的結合が弱く、Fe系合金の磁化反転が生じやすい。 Condition [5]: By making the average particle size of the Fe-based alloy having high saturation magnetization larger than the average particle size of Nd 2 Fe 14 B, the aggregation of crystal grains of the Fe-based alloy is prevented, and the sintering aid The added volume of can be less than 10%. When the average grain size of the Fe-based alloy is less than or equal to the average grain size of Nd 2 Fe 14 B, the surface area of the crystal grains of the Fe-based alloy is larger than the surface area of the crystal grains of Nd 2 Fe 14 B, and the Fe-based alloy crystal grains The volume of the fluoride or fluorine-containing film coated on the surface of the film increases. For this reason, it is possible to increase the addition amount of the sintering aid to 1% or more to obtain a high density and a high coercive force, but the residual magnetic flux density is lowered. For this reason, it is desirable that the average particle size of the Fe-based alloy be larger than the average particle size of Nd 2 Fe 14 B. When the average particle diameter of the Fe-based alloy is larger than the average particle size of the Nd 2 Fe 14 B, Fe-based intermetallic alloy field between Nd 2 Fe 14 B than the area and Fe-based alloy and Nd between 2 Fe 14 B The sum of the interfacial areas is larger. If towards the sum of the interfacial area between between Nd 2 Fe 14 B than the interfacial area and Fe-based alloy and Nd 2 Fe 14 B between the Fe-based alloy is small, weak magnetic coupling Fe alloy, Fe-based alloys The magnetization reversal is likely to occur.

上記平均粒径の評価は以下の手法を採用した。焼結体や成形体の断面を仮成形体の磁場印加方向に平行及び垂直な断面を切断し鏡面加工後、光学顕微鏡または走査型電子顕微鏡で粒界が判定できる視野を得る。粒界を鮮明にするために酸性液を使用してエッチング処理をすることが望ましい。一つの視野に対して複数の直線を引き粒界と交わる点と直線の距離から粒径を算出し、複数の直線から求めた粒径から平均値を求め平均粒径とする。直線の距離は粒界が5個以上交わる長さが望ましい。走査型電子顕微鏡観察において組成分析により、Fe系合金とNdFeB系の区別がつき、それぞれの平均粒径が求められる。なお、この平均粒径の評価方法は他の実施例でも利用可能である。   The average particle size was evaluated by the following method. After the cross section of the sintered body or the molded body is cut in parallel and perpendicular to the magnetic field application direction of the temporary molded body and mirror-finished, a field of view in which the grain boundary can be determined with an optical microscope or a scanning electron microscope is obtained. In order to make the grain boundary clear, it is desirable to perform etching using an acidic solution. The particle diameter is calculated from the distance between the line and the point where a plurality of straight lines intersect with the grain boundary for one field of view, and the average value is obtained from the particle diameters determined from the plurality of straight lines. The distance between the straight lines is preferably a length at which five or more grain boundaries intersect. The compositional analysis in the scanning electron microscope observation makes it possible to distinguish between the Fe-based alloy and the NdFeB-based, and the average particle diameter of each is determined. It should be noted that this average particle diameter evaluation method can be used in other examples.

図1は、Br(残留磁束密度)やHc(保磁力)とFeCo系合金の平均粒径/NdFeB系合金の平均粒径比(以下粒径比と略す)との関係を示す。粒径比が1を超えるとBrが1.6Tを超える。Brが1.6Tを超える粒径比は1〜100の範囲である。粒径比が100を超えるとNd2Fe14B結晶粒の配向性が乱れ、一軸異方性が低下する。また粒径比が100を超えるとFeCo系合金の磁化反転を磁気的な結合で抑制することが困難となり保磁力が減少する傾向を示す。使用温度が100℃以上の温度で使用するためには高保磁力が求められるため、粒径比は100以下が望ましい。 FIG. 1 shows the relationship between Br (residual magnetic flux density) and Hc (coercive force) and the average particle diameter of FeCo alloy / average particle diameter ratio of NdFeB alloy (hereinafter abbreviated as particle diameter ratio). When the particle size ratio exceeds 1, Br exceeds 1.6T. The particle size ratio with Br exceeding 1.6T is in the range of 1-100. When the particle size ratio exceeds 100, the orientation of the Nd 2 Fe 14 B crystal grains is disturbed, and the uniaxial anisotropy is lowered. On the other hand, when the particle size ratio exceeds 100, it is difficult to suppress the magnetization reversal of the FeCo alloy by magnetic coupling, and the coercive force tends to decrease. Since a high coercive force is required for use at a temperature of 100 ° C. or higher, the particle size ratio is preferably 100 or less.

図2に酸フッ化物体積率と粒径比の関係を示す。粒径比が1よりも小さい範囲では酸フッ化物体積率が0.5%を超え、磁化の小さい二粒界相あるいは粒界三重点相が増加することからBrが減少しているものと推定される。   FIG. 2 shows the relationship between the oxyfluoride volume fraction and the particle size ratio. In the range where the particle size ratio is smaller than 1, the volume fraction of oxyfluoride exceeds 0.5%, and it is presumed that Br decreases because the two-grain boundary phase or the grain boundary triple point phase with small magnetization increases. Is done.

図3にHk/Hc(HkはBrの90%の磁束密度となる磁界、Hcは保磁力)の値と粒径比の関係を示す。粒径比が100以下ではHk/Hcが0.7を超えており高い配向性と一軸異方性を有している。平均粒径が100を超えるとHk/Hcが低下するのはNd2Fe14B結晶粒の配向性が乱れるためである。 FIG. 3 shows the relationship between the value of Hk / Hc (Hk is a magnetic field having a magnetic flux density of 90% of Br and Hc is a coercive force) and the particle size ratio. When the particle size ratio is 100 or less, Hk / Hc exceeds 0.7, and it has high orientation and uniaxial anisotropy. The reason why Hk / Hc decreases when the average particle size exceeds 100 is that the orientation of Nd 2 Fe 14 B crystal grains is disturbed.

図4に本実施例の典型的な焼結磁石組織に関する模式図を示す。Nd2Fe14B結晶粒1とFeCo系合金の結晶粒5及び酸フッ化物3が形成され、FeCo系合金の結晶粒5の近傍には重希土類元素含有FeCo系合金6が認められ、粒界や粒界三重点の一部に重希土類元素含有酸化物2が成長する。またNd2Fe14B結晶粒1の外周にはNdを主に含有する希土類リッチ粒界相4が形成される。偏在化する重希土類元素の濃度が増加するとともに(1)から(2),(3),(4)のように組織が変わり、FeCo系合金の結晶粒5の外周側に重希土類元素含有FeCo系合金6が成長し、重希土類元素含有酸化物2がFeCo合金の結晶粒5の近傍に成長する。いずれの組織においても重希土類元素はFeCo系合金の結晶粒5の近傍での濃度が焼結磁石の平均濃度よりも高くなる。 FIG. 4 shows a schematic diagram relating to a typical sintered magnet structure of this example. Nd 2 Fe 14 B crystal grains 1, FeCo alloy crystal grains 5 and oxyfluoride 3 are formed, and a heavy rare earth element-containing FeCo alloy 6 is observed in the vicinity of the FeCo alloy crystal grains 5. The heavy rare earth element-containing oxide 2 grows at a part of the triple point of the grain boundary. A rare earth-rich grain boundary phase 4 mainly containing Nd is formed on the outer periphery of the Nd 2 Fe 14 B crystal grains 1. As the concentration of unevenly distributed heavy rare earth elements increases, the structure changes from (1) to (2), (3), (4), and the FeCo-based alloy crystal grains 5 have heavy rare earth element-containing FeCo. The system alloy 6 grows, and the heavy rare earth element-containing oxide 2 grows in the vicinity of the crystal grains 5 of the FeCo alloy. In any structure, the concentration of heavy rare earth elements in the vicinity of the crystal grains 5 of the FeCo alloy is higher than the average concentration of the sintered magnet.

本実施例の焼結磁石には希土類元素を含有する酸化物,酸フッ化物,bcc構造のFe系合金,bct構造のNdFeB系合金が形成され、粒界近傍にTbやDyなどの重希土類元素が偏在化している。典型的な偏在幅は粒界中心から1から200nmである。また、bcc構造のFe系合金とbct構造のNdFeB系合金との間には磁気的結合が生じ、bccやbct構造のFe系合金にも異方性が付加されている。この異方性はNdFeB系合金のキュリー点よりも高温で印加した磁界の方向と大きさに依存する。NdFeB系合金のキュリー点よりも高温側かつ焼結温度以下の温度範囲、特にFe系合金のキュリー点を含む温度以下で磁化曲線の角度依存性を測定することにより磁化容易軸方向を確認することができる。Fe系合金の容易磁化方向はNdFeB系合金の容易磁化方向と5〜90度の角度差がある。角度差が5度未満の場合、5〜90度である場合よりも減磁曲線の角型性が低下する。90〜175度の角度差は5〜90度の角度差とほぼ等価である。   The sintered magnet of this example is formed with oxides containing rare earth elements, oxyfluorides, bcc-structure Fe-based alloys, bct-structured NdFeB-based alloys, and heavy rare earth elements such as Tb and Dy in the vicinity of the grain boundaries. Is unevenly distributed. A typical uneven width is 1 to 200 nm from the center of the grain boundary. Further, a magnetic coupling occurs between the bcc-structured Fe-based alloy and the bct-structured NdFeB-based alloy, and anisotropy is also added to the bcc- and bct-structured Fe-based alloys. This anisotropy depends on the direction and magnitude of the magnetic field applied at a temperature higher than the Curie point of the NdFeB alloy. Confirm the easy axis direction of magnetization by measuring the angular dependence of the magnetization curve in the temperature range higher than the Curie point of the NdFeB alloy and below the sintering temperature, particularly below the temperature including the Curie point of the Fe alloy. Can do. The easy magnetization direction of the Fe-based alloy has an angle difference of 5 to 90 degrees from the easy magnetization direction of the NdFeB-based alloy. When the angle difference is less than 5 degrees, the squareness of the demagnetization curve is lower than when the angle difference is 5 to 90 degrees. An angle difference of 90 to 175 degrees is almost equivalent to an angle difference of 5 to 90 degrees.

本実施例のような残留磁束密度増加と希土類使用量削減の両立とは別に、残留磁束密度が同等で希土類使用量削減を目的とする場合は、Fe系合金の飽和磁化が170〜240emu/gの範囲で達成でき、コスト低減を実現できる。Fe系合金の飽和磁化が170emu/g未満の場合、残留磁束密度の増加効果は1%未満であり非常に小さい。また240emu/gを超えるFe系合金の作成は酸化防止工程と焼結時の熱安定性を考慮すると困難である。不可避的に混入する炭素,水素,窒素,酸素,硫黄,リンなどの不純物元素が粒界あるいは粒内に含有されていても基本的な構成が変わるものでなければ磁石特性は向上できる。   In the case where the residual magnetic flux density is equal and the purpose is to reduce the rare earth usage, apart from the compatibility of the increase in the residual magnetic flux density and the reduction of the rare earth usage as in this embodiment, the saturation magnetization of the Fe-based alloy is 170 to 240 emu / g. It can be achieved within the range, and cost reduction can be realized. When the saturation magnetization of the Fe-based alloy is less than 170 emu / g, the effect of increasing the residual magnetic flux density is less than 1%, which is very small. In addition, it is difficult to produce an Fe-based alloy exceeding 240 emu / g in consideration of the oxidation prevention step and the thermal stability during sintering. Even if impurity elements such as carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus which are inevitably mixed in are contained in the grain boundaries or grains, the magnet characteristics can be improved if the basic configuration does not change.

上述のような飽和磁化を示すFe系合金の粉は、本実施例のような粉砕法以外にも電界めっき法,イオン滴下などの湿式法やプラズマを利用した手法,真空蒸着などの各種噴霧法,生物や細菌を利用した手法が採用できる。   In addition to the pulverization method as in the present embodiment, the Fe-based alloy powder exhibiting saturation magnetization as described above can be electroplating, wet methods such as ion dropping, plasma-based methods, and various spraying methods such as vacuum deposition. , Techniques using organisms and bacteria can be adopted.

60%Fe35%Co5%Dy合金を真空溶解後、Ar+30%H2ガス雰囲気中で還元溶解し銅製回転ロール表面に溶解した金属溶湯を噴射させ、冷却速度100℃/秒から700℃/秒程度の速度で冷却後、不活性ガス中で粉砕し、扁平形状あるいは不定形の60%Fe35%Co5%Dy合金粉末を得た。60%Fe35%Co5%Dy合金粉末の粒径はジェットミル粉砕時間に依存して制御でき、0.1〜1000μmの範囲で平均粒径を制御可能である。飽和磁束密度が2.2Tの60%Fe35%Co5%Dy合金粉表面にフッ化物を被覆するために、TbF系アルコール溶液と60%Fe35%Co5%Dy合金粉を混合し、アルコールを蒸発させることによりTbF系膜を60%Fe35%Co5%Dy合金粉表面に作成する。平均膜厚2nmのTbF系膜で被覆された60%Fe35%Co5%Dy合金粉とNd2Fe14B粉を60%Fe35%Co5%Dy合金粉5:Nd2Fe14B粉5の混合比で混合する。Nd2Fe14B粉の平均粒径は1μmである。この混合粉に焼結性向上のために焼結助材としてNd2Fe14B粉の平均粒径よりも小さな平均粒径のFe−60%Nd−5%Co金粉を約2%添加した。磁場(20kOe)中成形後、1100℃で焼結させ液相形成時に磁場(10kOe)を磁場中成形の磁場と垂直方向に印加した。焼結後の時効熱処理は400〜700℃でNd2Fe14Bのキュリー点よりも高い温度に設定し、磁場中成形の磁場方向と同一方向に磁場(20kOe)を印加した。 After vacuum melting the 60% Fe35% Co5% Dy alloy, is injected the molten metal that is dissolved in copper rotating roll surface was reduced dissolved in Ar + 30% H 2 gas atmosphere, the cooling rate 100 ° C. / sec of about 700 ° C. / sec After cooling at a speed, it was pulverized in an inert gas to obtain a flat or amorphous 60% Fe35% Co5% Dy alloy powder. The particle size of the 60% Fe35% Co5% Dy alloy powder can be controlled depending on the jet mill grinding time, and the average particle size can be controlled in the range of 0.1 to 1000 μm. In order to coat fluoride on the surface of 60% Fe35% Co5% Dy alloy powder having a saturation magnetic flux density of 2.2T, a TbF alcohol solution and 60% Fe35% Co5% Dy alloy powder are mixed and the alcohol is evaporated. A TbF-based film is formed on the surface of 60% Fe35% Co5% Dy alloy powder. Mixing ratio of 60% Fe35% Co5% Dy alloy powder and Nd 2 Fe 14 B powder coated with a TbF-based film having an average film thickness of 2 nm to 60% Fe 35% Co 5% Dy alloy powder 5: Nd 2 Fe 14 B powder 5 Mix with. The average particle size of the Nd 2 Fe 14 B powder is 1 μm. To improve the sinterability, about 2% of Fe-60% Nd-5% Co gold powder having an average particle size smaller than the average particle size of Nd 2 Fe 14 B powder was added to the mixed powder as a sintering aid. After forming in a magnetic field (20 kOe), sintering was performed at 1100 ° C., and a magnetic field (10 kOe) was applied in a direction perpendicular to the forming magnetic field during liquid phase formation. The aging heat treatment after sintering was set to a temperature higher than the Curie point of Nd 2 Fe 14 B at 400 to 700 ° C., and a magnetic field (20 kOe) was applied in the same direction as the magnetic field direction of molding in the magnetic field.

60%Fe35%Co5%Dy合金粉の平均粒径が2μmの時、磁場中焼結、磁場中時効処理後の成形体は、残留磁束密度(Br)が1.64T(16.4kG)であり、保磁力が19.5kOeであった。Brの値はNd2Fe14Bの理論値である1.61Tを超えており60%Fe35%Co5%Dy合金粉は希土類元素濃度が小さいため、希土類元素使用量を削減可能である。このようなNd2Fe14Bの理論値を超えるBrの値を得るためには本実施例のように、次のような条件が必要となる。 When the average particle size of 60% Fe35% Co5% Dy alloy powder is 2 μm, the compact after sintering in magnetic field and aging treatment in magnetic field has a residual magnetic flux density (Br) of 1.64 T (16.4 kG). The coercive force was 19.5 kOe. The value of Br exceeds 1.61T which is the theoretical value of Nd 2 Fe 14 B, and the 60% Fe 35% Co 5% Dy alloy powder has a low rare earth element concentration, so the amount of rare earth element used can be reduced. In order to obtain a value of Br exceeding the theoretical value of Nd 2 Fe 14 B, the following conditions are required as in this embodiment.

[1]Nd2Fe14Bよりも高い飽和磁化を有する希土類元素含有Fe系合金を使用すること。
[2]Fe系合金は、焼結温度以下で液相を形成しにくいため、粒界近傍に希土類元素の一部が偏在化する焼結助材を添加すること。
[3]焼結時に成形磁場と垂直方向に磁場印加すること。
[4]時効急冷処理時に成形磁場と平行方向に磁場印加すること。
[5]高い飽和磁化を有するFe系合金の平均粒径はNd2Fe14Bの平均粒径よりも大きいこと。
[6]フッ化物や酸フッ化物が粒界三重点で確認できること。
[1] Use a rare earth element-containing Fe-based alloy having a saturation magnetization higher than that of Nd 2 Fe 14 B.
[2] Since Fe-based alloys are unlikely to form a liquid phase below the sintering temperature, a sintering aid in which a part of the rare earth element is unevenly distributed is added near the grain boundary.
[3] Applying a magnetic field perpendicular to the forming magnetic field during sintering.
[4] Applying a magnetic field in a direction parallel to the forming magnetic field during the aging and quenching treatment.
[5] The average particle size of the Fe-based alloy having high saturation magnetization is larger than the average particle size of Nd 2 Fe 14 B.
[6] Fluoride and oxyfluoride can be confirmed at the grain boundary triple point.

条件[1]〜[6]について以下で詳細に説明する。
条件[1]:Nd2Fe14Bよりも高い飽和磁化を有する希土類元素含有Fe系合金とはFeCo系合金など飽和磁束密度が1.6Tを超える材料である。Nd2Fe14Bに重希土類元素が添加されている場合は希土類元素含有Fe系合金の飽和磁束密度も重希土類元素添加による磁束密度減少分が低下しても良い。FeCo系以外にFeNi系,FeAl系,FeSi系,FeMn系,FeCr系など種々のFe−M系(MはFe以外の金属元素または半金属元素の一種または複数種)でも良い。
The conditions [1] to [6] will be described in detail below.
Condition [1]: A rare earth element-containing Fe-based alloy having a saturation magnetization higher than that of Nd 2 Fe 14 B is a material having a saturation magnetic flux density exceeding 1.6 T, such as an FeCo-based alloy. When a heavy rare earth element is added to Nd 2 Fe 14 B, the saturation magnetic flux density of the rare earth element-containing Fe-based alloy may also be reduced by the decrease in magnetic flux density due to the addition of the heavy rare earth element. In addition to the FeCo system, various Fe-M systems such as FeNi system, FeAl system, FeSi system, FeMn system, and FeCr system (M is one or a plurality of metal elements or metalloid elements other than Fe) may be used.

条件[2]:焼結助材には、1100℃以下の温度で液相となる合金を使用することが望ましい。希土類元素が30wt%から90wt%含有するFeまたはFeCo,Fe−M合金が使用できる。あるいは金属系バインダを使用する場合、低融点のZnやCuZn,Ga,Alなどの非磁性金属を使用できる。   Condition [2]: It is desirable to use an alloy that becomes a liquid phase at a temperature of 1100 ° C. or less as the sintering aid. Fe, FeCo, and Fe-M alloys containing 30 wt% to 90 wt% rare earth elements can be used. Alternatively, when a metal binder is used, a nonmagnetic metal such as low melting point Zn, CuZn, Ga, or Al can be used.

条件[3]:焼結時に成形磁場と垂直方向に磁場印加することは、焼結時にFeCoなどキュリー点の高い材料の連続性をNd2Fe14Bの配向方向とは異なる方向にそろえて連続性を高めることにより、連続性が高い方向を着磁方向と異なる方向にするためであり、5度から90度、成形磁場と異なる方向に磁場を印加して焼結熱処理を実施すれば良い。焼結時の磁場方向と成形時の磁場方向差が5度未満の場合、角型性の指標であるHk(Brの90%の値となる減磁界の値)が1から5kOe小さくなり、磁化反転し易くなる。 Condition [3]: Applying a magnetic field in a direction perpendicular to the forming magnetic field at the time of sintering continuously aligns the continuity of a material with a high Curie point such as FeCo in a direction different from the orientation direction of Nd 2 Fe 14 B. This is because the direction of high continuity is set to a direction different from the magnetization direction by enhancing the property, and the sintering heat treatment may be performed by applying a magnetic field in a direction different from the forming magnetic field at 5 to 90 degrees. When the difference between the magnetic field direction during sintering and the magnetic field direction during molding is less than 5 degrees, the squareness index Hk (the value of the demagnetizing field that is 90% of Br) is reduced by 1 to 5 kOe, and the magnetization It becomes easy to reverse.

条件[4]:時効急冷処理時に成形磁場と平行方向に磁場印加することにより、Nd2Fe14Bの粒界近傍の磁気異方性エネルギーを増加させる。急冷速度はNd2Fe14Bのキュリー点近傍の温度を50℃/min以上の冷却速度で冷却する。この冷却速度により酸フッ化物が室温で準安定相である立方晶が形成され、その一部はNd2Fe14BやFe系合金と整合界面を形成する。 Condition [4]: Magnetic anisotropy energy in the vicinity of the grain boundary of Nd 2 Fe 14 B is increased by applying a magnetic field in a direction parallel to the forming magnetic field during the aging and quenching treatment. The rapid cooling rate is to cool the temperature near the Curie point of Nd 2 Fe 14 B at a cooling rate of 50 ° C./min or more. With this cooling rate, cubic crystals in which the oxyfluoride is a metastable phase at room temperature are formed, and a part thereof forms a matching interface with Nd 2 Fe 14 B and Fe-based alloys.

条件[5]:高い飽和磁化を有するFe系合金の平均粒径がNd2Fe14Bの平均粒径よりも小さい場合、Fe系合金とNd2Fe14Bとの界面積が増加し、種々の方位に成長したFe系合金の結晶がそれぞれの容易磁化方向を有するため、磁化反転が起きやすく保磁力が著しく低下する。焼結磁石においてFe系合金とNd2Fe14Bの混合比が5:5あるいはこの比率よりもFe系合金の混合比が少ない場合、平均粒径Fe系合金の結晶粒の数は、Nd2Fe14Bの結晶粒の数以下となる。Fe系合金の粒径は平均粒径以上の大きさの粒が約50%、平均粒径未満の大きさの粒が約50%となっておりその分布の平均値がNd2Fe14Bの平均粒径以上の値であれば、Fe系合金とNd2Fe14Bの間には交換結合,静磁結合及び界面異方性,応力誘起異方性による磁化反転抑制効果または保磁力増加効果が確認できる。 Condition [5]: High if the average particle size of the Fe-based alloy having a saturation magnetization is smaller than the average particle size of the Nd 2 Fe 14 B, increases the interfacial area between the Fe-based alloy and Nd 2 Fe 14 B, various Since the crystals of the Fe-based alloy grown in the orientations have the respective easy magnetization directions, magnetization reversal is likely to occur and the coercive force is significantly reduced. When the mixing ratio of the Fe-based alloy and Nd 2 Fe 14 B in the sintered magnet is 5: 5 or the mixing ratio of the Fe-based alloy is smaller than this ratio, the number of crystal grains of the average grain size Fe-based alloy is Nd 2 The number is less than the number of Fe 14 B crystal grains. The grain size of the Fe-based alloy is about 50% of grains having an average grain size or larger, and about 50% of grains having a grain size less than the average grain size. The average value of the distribution is Nd 2 Fe 14 B. If the value is greater than the average particle size, the effect of magnetization reversal suppression or coercivity increase due to exchange coupling, magnetostatic coupling, interface anisotropy, and stress-induced anisotropy between the Fe-based alloy and Nd 2 Fe 14 B Can be confirmed.

条件[6]:Fe系合金がNd2Fe14Bと反応して磁気特性が低下することを防止するためにフッ化物が必要である。Fe系合金に塗布したフッ化物膜は、焼結時に一部凝集し、酸フッ化物となって粒界三重点や磁石表面に成長する。また一部の二相粒界にも認められる。フッ化物は焼結助材と一部反応し、さらに焼結時に形成される液相と一部が反応して希土類元素を含有する酸フッ化物を形成し、一部が凝集する。Fe系合金の平均結晶粒径がNd2Fe14Bの平均粒径より小さい場合、Fe系合金に塗布するフッ化物の量が多くなり、残留磁束密度が大きく低下する。これは焼結磁石においてフッ化物や酸フッ化物が磁石特性を有していないためフッ化物使用量が増加すると強磁性体の比率が低下するためである。 Condition [6]: Fluoride is required to prevent the Fe-based alloy from reacting with Nd 2 Fe 14 B and deteriorating the magnetic properties. The fluoride film applied to the Fe-based alloy partially agglomerates during sintering and becomes an oxyfluoride and grows on the grain boundary triple point or the magnet surface. It is also observed in some biphasic grain boundaries. Fluoride partially reacts with the sintering aid, and further reacts with the liquid phase formed during sintering to form an oxyfluoride containing a rare earth element, and a part thereof aggregates. When the average crystal grain size of the Fe-based alloy is smaller than the average grain size of Nd 2 Fe 14 B, the amount of fluoride applied to the Fe-based alloy increases, and the residual magnetic flux density greatly decreases. This is because in the sintered magnet, fluoride and oxyfluoride do not have magnet properties, and therefore the proportion of the ferromagnetic material decreases as the amount of fluoride used increases.

フッ素含有相であるフッ化物や酸フッ化物の体積は0.001〜2体積%が望ましい。体積率が0.001%未満ではFe系合金とNd2Fe14Bの焼結時における反応を抑制することが困難となり、保磁力が大きく減少し、0.0001%では保磁力が5kOe未満となる。また、2体積%を超えると焼結性が悪くなり、密度7g/cm3以上を確保するためには焼結助材の体積を5%以上にする必要があり、残留磁束密度が低下し始める。したがって、低融点の焼結助材を5%以上にしてフッ素含有物の体積率を0.001〜2体積%とすることが望ましい。 The volume of fluoride or oxyfluoride which is a fluorine-containing phase is preferably 0.001 to 2% by volume. If the volume fraction is less than 0.001%, it becomes difficult to suppress the reaction during sintering of the Fe-based alloy and Nd 2 Fe 14 B, and the coercive force is greatly reduced. If 0.0001%, the coercive force is less than 5 kOe. Become. On the other hand, if it exceeds 2% by volume, the sinterability deteriorates, and in order to ensure a density of 7 g / cm 3 or more, the volume of the sintering aid needs to be 5% or more, and the residual magnetic flux density starts to decrease. . Therefore, it is desirable that the low melting point sintering aid is 5% or more and the volume fraction of the fluorine-containing material is 0.001 to 2% by volume.

原料粉末や焼結工程までの工程において混入する酸素はできるだけ抑制する必要があり、Nd2Fe14B粉の製造工程では水素還元による酸素除去工程を採用する。またFe系合金の平均粒径がNd2Fe14B粉の平均粒径以下になるとFe系合金表面が酸化しやすくなり、Fe系合金の飽和磁化が減少する。この飽和磁化の減少はフッ化物膜の形成とその還元反応により抑制されるが、Fe系合金の平均粒径がNd2Fe14B粉の平均粒径以下の場合はフッ化物使用量を2から5wt%の範囲に増加させて還元させることが高飽和磁化確保には必要となり、焼結性向上のための焼結助材を5%使用することから、1.6T以上の残留磁束密度にすることは困難である。 It is necessary to suppress as much oxygen as possible in the raw material powder and the process up to the sintering process, and an Nd 2 Fe 14 B powder production process employs an oxygen removal process by hydrogen reduction. On the other hand, when the average particle size of the Fe-based alloy is equal to or smaller than the average particle size of the Nd 2 Fe 14 B powder, the Fe-based alloy surface is easily oxidized and the saturation magnetization of the Fe-based alloy is reduced. This decrease in saturation magnetization is suppressed by the formation of a fluoride film and its reduction reaction, but when the average particle size of the Fe-based alloy is less than the average particle size of the Nd 2 Fe 14 B powder, the amount of fluoride used is reduced from 2 Reduction to 5 wt% is necessary to ensure high saturation magnetization, and since 5% sintering aid is used to improve sinterability, the residual magnetic flux density is 1.6T or more. It is difficult.

酸素量が2000ppmよりも多くなると重希土類元素はNd2Fe14Bに偏在するよりも酸化物や酸フッ化物を形成し、保磁力が増加しない。また酸素量が300ppm未満では、酸フッ化物が成長困難となり、焼結時にFe系合金とNd2Fe14B粉が容易に反応しNd2Fe14Bの組成変動と希土類リッチ相の組成変動,希土類リッチ相の構造変化などにより保磁力が7kOe以下となる。従って、最適な酸素濃度は300〜2000ppmの範囲である。 When the oxygen amount exceeds 2000 ppm, the heavy rare earth element forms an oxide or an oxyfluoride rather than unevenly distributed in Nd 2 Fe 14 B, and the coercive force does not increase. If the oxygen content is less than 300 ppm, the oxyfluoride is difficult to grow, and the Fe-based alloy and Nd 2 Fe 14 B powder react easily during sintering, resulting in a composition variation of Nd 2 Fe 14 B and a composition variation of the rare earth-rich phase. The coercive force becomes 7 kOe or less due to the structural change of the rare earth-rich phase. Therefore, the optimum oxygen concentration is in the range of 300 to 2000 ppm.

本実施例ではFe系合金に希土類元素が添加されているため、Fe系合金及びNd2Fe14Bのいずれの結晶粒でも粒界の一部に希土類元素の偏在が確認でき、粒界の一部に希土類元素を含有する酸化物や酸フッ化物の成長が確認できる。Nd2Fe14Bの代わりに希土類元素(R)が複数含有されたR2Fe14BやR2Co17を使用でき、種々の鉄や希土類元素以外の金属元素が添加されていても同様の特性が確認できる。さらに軽希土類元素の化合物であるSm2Fe14Bの格子が変形した単斜晶や斜方晶系のSm2Fe14Bであっても良い。 In this example, since a rare earth element is added to the Fe-based alloy, it is possible to confirm the uneven distribution of the rare earth element in a part of the grain boundary in both the Fe-based alloy and Nd 2 Fe 14 B crystal grains. The growth of oxides and oxyfluorides containing rare earth elements in the part can be confirmed. R 2 Fe 14 B or R 2 Co 17 containing a plurality of rare earth elements (R) can be used in place of Nd 2 Fe 14 B, and the same applies even if various metal elements other than iron and rare earth elements are added. The characteristics can be confirmed. Furthermore, monoclinic or orthorhombic Sm 2 Fe 14 B in which the lattice of Sm 2 Fe 14 B, which is a compound of light rare earth elements, is deformed may be used.

Fe−10%Co及びFe−40%Co合金の二種類の組成が変調されたFe−Co合金は種々の微量金属元素を含有し、変調周期が1〜100nmである。この組成変調合金の平均結晶粒径は1μmであり、平均結晶粒径が1μm未満のNd2Fe14B系結晶と混合後、磁場中仮成形、磁場中焼結することにより作成できる。焼結熱処理における磁場印加方向はNd2Fe14B系結晶の容易磁化方向と平行な方向、すなわち組成変調方向に垂直な方向に平行に印加する。組成変調合金とNd2Fe14B系結晶の混合比率は9:1である。焼結助材としてFe−65%Nd合金を5%添加して焼結後の密度を7g/cm3以上にすると共に15kOe以上の保磁力を確保できる。組成変調方向と垂直方向がNd2Fe14B系結晶の容易磁化方向とほぼ平行であり、残留磁束密度1.5T〜1.7Tの焼結磁石が得られる。 The Fe-Co alloy in which two types of compositions of Fe-10% Co and Fe-40% Co are modulated contains various trace metal elements and has a modulation period of 1 to 100 nm. This composition-modulated alloy has an average crystal grain size of 1 μm and can be prepared by mixing with an Nd 2 Fe 14 B-based crystal having an average crystal grain size of less than 1 μm, followed by temporary molding in a magnetic field and sintering in a magnetic field. The magnetic field application direction in the sintering heat treatment is applied in parallel to the direction parallel to the easy magnetization direction of the Nd 2 Fe 14 B-based crystal, that is, the direction perpendicular to the composition modulation direction. The mixing ratio of the composition-modulated alloy and the Nd 2 Fe 14 B-based crystal is 9: 1. As a sintering aid, 5% Fe-65% Nd alloy is added to increase the density after sintering to 7 g / cm 3 or more and to ensure a coercive force of 15 kOe or more. A sintered magnet having a residual magnetic flux density of 1.5 T to 1.7 T is obtained in which the direction perpendicular to the composition modulation direction is substantially parallel to the easy magnetization direction of the Nd 2 Fe 14 B-based crystal.

組成変調合金にはFe−10%Co/Fe−40%Co以外に、FeCo系合金/FeAl系合金,FeCo系合金/NiAl系合金,FeCo系合金/MnAl系合金,FeCo系合金/MnGa系合金,FeCo系合金/FeCoO系合金,Fe系合金/FeCoNiTi系合金が適用できる。変調周期が100nm以下で、組成変調あるいは構造変調により界面近傍に、磁気歪みや形状記憶,格子歪み,積層欠陥などの各種欠陥,二次元準安定相などの導入による磁気異方性の増大が確認できる。これらの組み合わせにおいて変調周期が1nm以下にすることにより、保磁力の増大が認められ、変調周期0.1〜1nm,変調組成の濃度差が10〜90%において残留磁束密度が1.0T以上、保磁力10kOe以上の希土類不使用合金が提供できる。   In addition to Fe-10% Co / Fe-40% Co, the composition modulation alloy includes FeCo alloy / FeAl alloy, FeCo alloy / NiAl alloy, FeCo alloy / MnAl alloy, FeCo alloy / MnGa alloy FeCo alloy / FeCoO alloy, Fe alloy / FeCoNiTi alloy can be applied. Confirmed increase in magnetic anisotropy due to introduction of various defects such as magnetostriction, shape memory, lattice distortion, stacking fault, two-dimensional metastable phase, etc. near the interface due to composition modulation or structural modulation when the modulation period is 100 nm or less it can. In these combinations, when the modulation period is 1 nm or less, an increase in coercive force is recognized, the residual magnetic flux density is 1.0 T or more when the modulation period is 0.1 to 1 nm, the modulation composition concentration difference is 10 to 90%, A rare earth-free alloy having a coercive force of 10 kOe or more can be provided.

本実施例において、Nd2Fe14B系結晶の平均結晶粒径が1μm以上になるとNd2Fe14B系結晶粒の表面積が減少し、Nd2Fe14B系結晶と組成変調合金の結晶粒との界面積が減少するため、交換結合などの磁気的な結合が減少し、保磁力が低下する。このためNd2Fe14B系結晶の平均結晶粒径は、組成変調合金の結晶粒径よりも小さくする必要がある。 In this example, when the average crystal grain size of the Nd 2 Fe 14 B-based crystal is 1 μm or more, the surface area of the Nd 2 Fe 14 B-based crystal grain is decreased, and the crystal grains of the Nd 2 Fe 14 B-based crystal and the composition-modulated alloy are reduced. Therefore, the magnetic coupling such as exchange coupling is reduced, and the coercive force is reduced. For this reason, the average crystal grain size of the Nd 2 Fe 14 B-based crystal needs to be smaller than the crystal grain size of the composition-modulated alloy.

焼結助材としてNdF3などの希土類元素を含有するフッ化物を0.01〜2体積%添加することにより粒界近傍に希土類元素の偏在相を成長させ、フッ化物による還元効果による保磁力増加ならびに残留磁束密度増加効果が確認できる。この時、添加したフッ化物が酸素と結合し焼結後は酸フッ化物となる。酸フッ化物は焼結後徐冷すると菱面体晶や斜方晶となるが、Fe系合金のキュリー点近傍を100〜300℃/minの冷却速度で急速冷却することにより立方晶となる。立方晶の酸フッ化物の一部がFe系合金のbcc相と整合界面を形成することによりNd2Fe14B系結晶とFe系合金の反応を抑制する。NdOFのある結晶面(h,k,l)がbcc構造のFeの(n,m,l)と平行になる。ここでh,k,l,n,m,lは整数である。 Addition of 0.01 to 2% by volume of a fluoride containing a rare earth element such as NdF 3 as a sintering aid grows an unevenly distributed phase of the rare earth element in the vicinity of the grain boundary, thereby increasing the coercive force due to the reduction effect of fluoride. In addition, the effect of increasing the residual magnetic flux density can be confirmed. At this time, the added fluoride is combined with oxygen and becomes an oxyfluoride after sintering. When the oxyfluoride is gradually cooled after sintering, it becomes rhombohedral or orthorhombic, but it becomes cubic by rapidly cooling the vicinity of the Curie point of the Fe-based alloy at a cooling rate of 100 to 300 ° C./min. Part of the cubic oxyfluoride forms a matching interface with the bcc phase of the Fe-based alloy, thereby suppressing the reaction between the Nd 2 Fe 14 B-based crystal and the Fe-based alloy. The crystal plane (h, k, l) with NdOF is parallel to (n, m, l) of bcc structure Fe. Here, h, k, l, n, m, and l are integers.

添加するフッ化物の体積が2体積%を超えると焼結性が悪くなる。これは焼結温度である1000℃で一部の酸フッ化物が個相であり液相である希土類リッチ相と一部が反応するため液相を増加させないと焼結して7g/cm3以上の高密度とならない。このためフッ化物添加量は2体積%以下が望ましい。 When the volume of the fluoride added exceeds 2% by volume, the sinterability deteriorates. This is sintered when not increase the liquid phase for some rare earth-rich phase part of oxyfluoride at 1000 ° C. is sintering temperature is there liquid phase number phase is reacted 7 g / cm 3 or more It will not be high density. Therefore, the amount of fluoride added is preferably 2% by volume or less.

本実施例の組成変調合金には焼結過程において応力が印加され、その応力に誘導された異方性が生じ保磁力が増加する。特にNd2Fe14B系結晶が焼結時に結晶方位に依存した収縮を示すために、異方的な応力が組成変調合金にも加えられ、その結果応力に誘導された異方性が生まれ保磁力が増加する。 Stress is applied to the composition-modulated alloy of the present embodiment during the sintering process, and anisotropy induced by the stress is generated to increase the coercive force. In particular, since Nd 2 Fe 14 B-based crystals exhibit a shrinkage dependent on the crystal orientation during sintering, anisotropic stress is also applied to the composition-modulated alloy, resulting in stress-induced anisotropy. Magnetic force increases.

平均粒径1μmのNd2Fe14B系粉末と平均粒径1.5μmのFe系粉末を水素雰囲気中で還元後、TbF3ビーズにより混合する。混合中の温度は200℃であり、混合比率はNd2Fe14B系粉末:Fe系粉末が5:5である。ビーズ材料であるTbF3がNd2Fe14B系粉末やFe系粉末の最表面に部分的に付着拡散し、Nd2Fe14B系粉末の最表面にはフッ化物あるいは酸フッ化物が形成する。この後、焼結助材であるFe−70%Nd合金粉を添加して磁場中で混錬することにより、粉末に形状異方性を加えた後、磁場中仮成形と焼結・時効工程を経て焼結磁石を作成する。焼結温度は900℃であり、焼結時効熱処理中の400℃よりも高温側で磁場20kOeを印加することによりNd2Fe14B系結晶とFe系結晶間の磁気的な結合を強め、保磁力を増加させる。 An Nd 2 Fe 14 B-based powder having an average particle diameter of 1 μm and an Fe-based powder having an average particle diameter of 1.5 μm are reduced in a hydrogen atmosphere and then mixed with TbF 3 beads. The temperature during mixing is 200 ° C., and the mixing ratio is 5: 5 for Nd 2 Fe 14 B powder: Fe powder. The bead material TbF 3 partially adheres and diffuses on the outermost surface of the Nd 2 Fe 14 B-based powder or Fe-based powder, and fluoride or oxyfluoride is formed on the outermost surface of the Nd 2 Fe 14 B-based powder. . Then, after adding shape anisotropy to the powder by adding Fe-70% Nd alloy powder, which is a sintering aid, and kneading in a magnetic field, preliminary molding in a magnetic field and sintering / aging processes After that, a sintered magnet is created. The sintering temperature is 900 ° C., and by applying a magnetic field of 20 kOe at a temperature higher than 400 ° C. during the sintering aging heat treatment, the magnetic coupling between the Nd 2 Fe 14 B crystal and the Fe crystal is strengthened and maintained. Increase the magnetic force.

Fe系粉末の平均粒径がNd2Fe14B系粉末の平均粒径よりも小さい場合、Nd2Fe14B系粉末外周をFe系粉末が連続して被覆するようになり、保磁力が1〜5%減少する。したがってFe系粉末の平均粒径はNd2Fe14B系粉末の平均粒径と同等か大きいことが望ましい。一部のFe系粉末は凝集し、50〜100μmの凝集体となって焼結体中で確認され、その一部はFe系結晶と接触し、一部は希土類酸化物や希土類酸フッ化物と接触している。焼結温度以下の低温で液相を形成する焼結助材を1〜10%添加することで密度7g/cm3以上の焼結体を得ることが可能であり、Br(残留磁束密度)が1.65T,Hc(保磁力)が19kOeの焼結磁石が得られる。 When the average particle size of the Fe-based powder is smaller than the average particle size of the Nd 2 Fe 14 B-based powder consists of Nd 2 Fe 14 B-based powder periphery as Fe-based powder is coated continuously, the coercive force is 1 Decrease by ~ 5%. Therefore, it is desirable that the average particle size of the Fe-based powder is equal to or larger than the average particle size of the Nd 2 Fe 14 B-based powder. Part of the Fe-based powder aggregates to form an aggregate of 50 to 100 μm, which is confirmed in the sintered body, part of which comes into contact with the Fe-based crystal, and part of the rare earth oxide or rare earth oxyfluoride. In contact. It is possible to obtain a sintered body having a density of 7 g / cm 3 or more by adding 1 to 10% of a sintering aid that forms a liquid phase at a low temperature below the sintering temperature, and Br (residual magnetic flux density) is A sintered magnet with 1.65 T, Hc (coercive force) of 19 kOe is obtained.

本実施例の焼結体において、Fe系結晶の一部はNd2Fe14B系結晶の一部と接触し、両者の磁化は強磁性結合しているため、Fe系結晶のみの保磁力に相当する磁場でFe系粉結晶の磁化が反転しない。Fe系結晶の磁化反転は、Nd2Fe14B系結晶の保磁力の値に依存しており、Nd2Fe14B系結晶の保磁力が大きいほうが反転しにくい。したがって、Fe系結晶近傍のNd2Fe14B系結晶の保磁力を大きくする必要がある。TbF3の一部はNd2Fe14B系結晶の粒界近傍に拡散することで結晶磁気異方性エネルギーを増加させ、保磁力上昇に寄与する。したがってTb拡散によりFe系結晶の磁化反転も抑制され、Tb拡散による磁化減少を上回る磁化増加をFe系結晶で確保できれば、最大エネルギー積が増加できる。 In the sintered body of this example, a part of the Fe-based crystal is in contact with a part of the Nd 2 Fe 14 B-based crystal, and the magnetization of both is ferromagnetically coupled. The magnetization of the Fe-based powder crystal is not reversed by the corresponding magnetic field. Magnetization reversal of Fe-based crystal, Nd 2 Fe 14 B system depends on the value of the crystals of the coercive force, Nd 2 Fe 14 B system should hardly reversed crystal coercive force is large. Therefore, it is necessary to increase the coercivity of the Nd 2 Fe 14 B-based crystal in the vicinity of the Fe-based crystal. A part of TbF 3 diffuses in the vicinity of the grain boundary of the Nd 2 Fe 14 B-based crystal, thereby increasing the magnetocrystalline anisotropy energy and contributing to an increase in coercive force. Therefore, the magnetization reversal of the Fe-based crystal is also suppressed by Tb diffusion, and the maximum energy product can be increased if the magnetization increase exceeding the magnetization decrease by Tb diffusion can be secured in the Fe-based crystal.

本実施例においてNd2Fe14B系粉末にはNdの代わりに複数の希土類元素を使用でき、種々の金属元素や硼素以外の半金属元素が添加されていても良い。またFe系粉末には飽和磁化180emu/g以上のFe,Fe−M(MはFe以外の1種または複数の金属または半金属元素)が使用できる。Fe系粉末の結晶構造は純Feと同じ構造であるbccあるいはfcc,格子体積が膨張したbct,hcp構造のいずれかであるが、Nd2Fe14B系結晶や酸フッ化物とFe系結晶の界面には格子定数に0.1〜20%のミスフィットがあり、格子定数差に基づく格子歪みによる磁気異方性が発現する。M元素が50%〜99%含有するMリッチ相は粒界近傍に成長し、Mリッチ相は準安定なbccあるいはbct構造を有している。一部の粒界近傍にはFexMyOz(x,y,zは正数)あるいはFelMmOnFk(l,m,n,kは正数)が成長し保磁力増加に寄与する。結晶格子歪みの存在は、磁気異方性以外にも磁気モーメントやキュリー点に影響し、Fe−Fe原子間距離あるいはFe−MまたはM−M原子間距離が歪みの影響が小さい結晶粒中心部と比較して0.1%以上伸びることにより、飽和磁化及びキュリー点がそれぞれ5%,20℃上昇する。 In this embodiment, a plurality of rare earth elements can be used in place of Nd in the Nd 2 Fe 14 B-based powder, and various metal elements and metalloid elements other than boron may be added. In addition, Fe and Fe-M (M is one or more metals or metalloid elements other than Fe) having a saturation magnetization of 180 emu / g or more can be used for the Fe-based powder. The crystal structure of Fe-based powder is either bcc or fcc, which is the same structure as pure Fe, or bct or hcp structure with expanded lattice volume. Nd 2 Fe 14 B-based crystal or oxyfluoride and Fe-based crystal The interface has a misfit of 0.1 to 20% in the lattice constant, and magnetic anisotropy due to lattice distortion based on the difference in lattice constant appears. The M-rich phase containing 50% to 99% of the M element grows near the grain boundary, and the M-rich phase has a metastable bcc or bct structure. Near some grain boundaries, FexMyOz (x, y, z are positive numbers) or FelMmOnFk (l, m, n, k are positive numbers) grows and contributes to an increase in coercive force. The presence of crystal lattice strain affects the magnetic moment and Curie point in addition to magnetic anisotropy, and the Fe-Fe interatomic distance or Fe-M or MM interatomic distance has a small strain effect. As a result, the saturation magnetization and the Curie point increase by 5% and 20 ° C., respectively.

Fe系結晶はNd2Fe14B系結晶よりも格子が変形しやすい。しかし格子変形した準安定なFe系結晶は、その体積が少ない場合は安定相にもどりやすいため、準安定相を含む結晶粒の体積を増加させてNd2Fe14B系結晶とFe系結晶の界面近傍の格子歪みの安定性を高める必要がある。このため、Fe系結晶の平均結晶粒径をNd2Fe14B系結晶の平均結晶粒径よりも大きくする。本実施例においてFe系結晶の平均結晶粒径が1μm未満になるとFe系結晶中の格子歪みは緩和され易くなり結晶磁気異方性エネルギーの増加はみられず、飽和磁化やキュリー点の上昇効果はほとんどない。 The lattice of the Fe-based crystal is easier to deform than the Nd 2 Fe 14 B-based crystal. However, since the metastable Fe-based crystal deformed by lattice deformation easily returns to the stable phase when the volume is small, the volume of the crystal grains containing the metastable phase is increased to increase the Nd 2 Fe 14 B-based crystal and the Fe-based crystal. It is necessary to increase the stability of lattice distortion in the vicinity of the interface. For this reason, the average crystal grain size of the Fe-based crystal is set larger than the average crystal grain size of the Nd 2 Fe 14 B-based crystal. In this example, when the average crystal grain size of the Fe-based crystal is less than 1 μm, the lattice strain in the Fe-based crystal is easily relaxed, and no increase in magnetocrystalline anisotropy energy is observed, and the effect of increasing the saturation magnetization and the Curie point is observed. There is almost no.

溶液中高周波プラズマ法により作成した平均粒径50nmのNd2Fe14B系粉末と平均粒径60nmのFe粉末をNd2Fe14B系粉末:Fe粉末が5:5の比率で混合後、粒径20nmのFe−80%Nd合金を添加して磁場中仮成形後フッ化アンモニウムの分解ガスによる表面フッ化を進行させた後、仮成形体900℃で焼結させ、500〜900℃の温度範囲において磁場中仮成形で印加した磁場方向と直角方向に10〜100kOeの磁場を印加してFe粉末に異方性を加えた。溶液中高周波プラズマ法で使用した溶液はDyF3がアルコール溶媒中に溶解した透明液体である。保磁力がフッ化物を使用しない溶液の場合と比較して5kOe増加する。フッ素の量は焼結体に対して0.001〜1原子%の範囲であり、フッ素は粒界に偏在している。またフッ素の偏在場所近傍にDyが確認できる。 Solution frequency plasma Nd 2 Fe 14 B system and Fe powder having an average particle size of 60nm and Nd 2 Fe 14 B-based powder having an average particle diameter of 50nm was prepared by Method powder: Fe powder 5: After mixing in a ratio of 5, grain After adding a Fe-80% Nd alloy having a diameter of 20 nm and preliminarily forming in a magnetic field, the surface fluorination with the decomposition gas of ammonium fluoride proceeds, and then the sintered compact is sintered at 900 ° C., and the temperature is 500 to 900 ° C. Anisotropy was added to the Fe powder by applying a magnetic field of 10 to 100 kOe in a direction perpendicular to the magnetic field direction applied by temporary forming in the magnetic field. The solution used in the high-frequency plasma method in solution is a transparent liquid in which DyF 3 is dissolved in an alcohol solvent. The coercive force is increased by 5 kOe compared to the case of a solution not using fluoride. The amount of fluorine is in the range of 0.001 to 1 atomic% with respect to the sintered body, and fluorine is unevenly distributed at the grain boundaries. Moreover, Dy can be confirmed in the vicinity of the uneven distribution location of fluorine.

この手法で作成した焼結磁石の磁気特性はBrが1.6T,保磁力18kOeであり希土類元素使用量は6原子%であることから約50%の希土類元素が削減できる。このような希土類元素使用量削減には以下の条件が必要である。   The sintered magnets produced by this method have a magnetic property of Br of 1.6 T, a coercive force of 18 kOe, and the amount of rare earth elements used is 6 atomic%, so that about 50% of rare earth elements can be reduced. In order to reduce the amount of rare earth elements used, the following conditions are necessary.

条件[1]:焼結磁石にはNd2Fe14B系結晶以外にFeあるいはFe系結晶,ホウ化物,炭化物及びフッ化物または酸フッ化物が認められ、酸フッ化物は立方晶である。酸フッ化物は希土類元素や炭素を含有し、一部の結晶格子はFe系結晶と整合関係にある。 Condition [1]: In addition to the Nd 2 Fe 14 B crystal, Fe or Fe crystal, boride, carbide and fluoride or oxyfluoride are observed in the sintered magnet, and the oxyfluoride is cubic. The oxyfluoride contains rare earth elements and carbon, and a part of the crystal lattice is in a consistent relationship with the Fe-based crystal.

条件[2]:FeあるいはFe系結晶には異方性が認められ、焼結熱処理時の磁場印加方向に依存した磁気特性を示している。磁場中仮成形で印加した磁場方向と直角方向に10〜100kOeの磁場を焼結熱処理過程において印加した場合、Feの磁化が飽和し易い方向は、焼結過程のNd2Fe14B系結晶のキュリー点以上の温度域で印加した磁場方向にほぼ平行となる。焼結磁石の着磁方向とFeの容易磁化方向は5度から175度の角度差があることにより、Feの磁化反転を抑制している。 Condition [2]: Fe or Fe-based crystals have anisotropy, and show magnetic characteristics depending on the direction of magnetic field application during sintering heat treatment. When a magnetic field of 10 to 100 kOe is applied in the sintering heat treatment process in a direction perpendicular to the magnetic field direction applied in the temporary forming in the magnetic field, the direction in which the magnetization of Fe is likely to be saturated is the Nd 2 Fe 14 B-based crystal in the sintering process. It becomes almost parallel to the direction of the magnetic field applied in the temperature range above the Curie point. Since the magnetization direction of the sintered magnet and the easy magnetization direction of Fe have an angle difference of 5 degrees to 175 degrees, the magnetization reversal of Fe is suppressed.

条件[3]:FeあるいはFe系結晶の平均粒径はNd2Fe14B系結晶の平均粒径よりも大きい。DyF3の含浸によりNd2Fe14B系結晶の外周にDyを拡散させて結晶磁気異方性エネルギーを増加させるため、Nd2Fe14B系結晶の外周面積が大きい方が保磁力の増加が著しい。したがってNd2Fe14B系結晶の結晶粒径を細かくして、FeあるいはFe系結晶の平均粒径はNd2Fe14B系結晶の平均粒径よりも大きくすることが高保磁力の条件となる。 Condition [3]: The average particle size of Fe or Fe-based crystals is larger than the average particle size of Nd 2 Fe 14 B-based crystals. In order to increase the magnetocrystalline anisotropy energy by diffusing Dy around the periphery of the Nd 2 Fe 14 B-based crystal by impregnation with DyF 3, the larger the outer peripheral area of the Nd 2 Fe 14 B-based crystal, the greater the coercive force. It is remarkable. Therefore, any finer grain size of the Nd 2 Fe 14 B-based crystal, average particle size of Fe or Fe-based crystal can be larger than the average particle diameter of the Nd 2 Fe 14 B-based crystal becomes a condition of high coercivity .

条件[4]:重希土類元素がNd2Fe14B系結晶の粒界近傍に偏在している。重希土類元素の代わりにbcc構造でかつFeやCo以外のCu,Ga,Nb,Zr,Mn,Al,Ti,Ta,Ag,Biなどの金属元素を偏在化させることで、FeあるいはFe系結晶の結晶安定性を高め、整合性のある界面を形成することにより保磁力を増加させる。bcc構造でかつFeやCo以外の金属元素を偏在幅は粒界中心から2〜10nmが望ましい。 Condition [4]: Heavy rare earth elements are unevenly distributed near the grain boundaries of the Nd 2 Fe 14 B-based crystal. Instead of heavy rare earth elements, Fe or Fe-based crystals are formed by unevenly distributing metal elements such as Cu, Ga, Nb, Zr, Mn, Al, Ti, Ta, Ag, and Bi other than Fe and Co. The coercive force is increased by increasing the crystal stability and forming a coherent interface. The uneven distribution width of metal elements other than Fe and Co having a bcc structure is preferably 2 to 10 nm from the center of the grain boundary.

条件[5]:Fe系結晶の一部は凝集して焼結した500nm以上の粗大粒径の結晶を形成している。凝集した結晶の一部には希土類元素の酸化物や酸フッ化物が形成され、粒界三重点の一部にはFehCoiMjOkFl(MはFeやCo以外の金属元素、h,i,j,k,lは正数)が成長しこの酸フッ化物が層状に成長することにより保磁力が増大する。この酸フッ化物は強磁性あるいは反強磁性,フェリ磁性のいずれかであり、粒界に沿って成長し、粒界三重点にも成長する。酸フッ化物の粒界被覆率が0.1%以上で保磁力増大効果が確認でき、1%で保磁力が1kOe増加する。この酸フッ化物が層状に粒界に沿って成長することにより、Nd2Fe14B系結晶の粒界近傍の磁化反転を抑制でき、FeあるいはFe系結晶の粒界近傍の磁気異方性エネルギーが増加する。酸フッ化物の最適な粒界被覆率は1から50%であり、80%を超えると磁石の磁化が減少する。 Condition [5]: A part of the Fe-based crystal is aggregated and sintered to form a crystal having a coarse particle diameter of 500 nm or more. Oxides and oxyfluorides of rare earth elements are formed in part of the aggregated crystals, and FehCoiMjOkFl (M is a metal element other than Fe or Co, h, i, j, k, l is a positive number), and the oxyfluoride grows in a layered manner to increase the coercive force. This oxyfluoride is either ferromagnetic, antiferromagnetic, or ferrimagnetic, and grows along grain boundaries and also grows at grain boundary triple points. The effect of increasing the coercive force can be confirmed when the grain boundary coverage of the oxyfluoride is 0.1% or more, and the coercive force is increased by 1 kOe at 1%. This oxyfluoride grows in layers along the grain boundary, thereby suppressing magnetization reversal in the vicinity of the grain boundary of the Nd 2 Fe 14 B-based crystal and magnetic anisotropy energy in the vicinity of the grain boundary of the Fe or Fe-based crystal. Will increase. The optimum grain boundary coverage of oxyfluoride is 1 to 50%, and when it exceeds 80%, the magnetization of the magnet decreases.

条件[6]:Nd2Fe14B系結晶粒あるいはFe系結晶粒の一部は凝集し原料粉の10〜100倍の大きさの結晶粒が成長している。このような粗大結晶粒は結晶方位がほぼ一方向に揃っており、粒界近傍や各種粒内析出物などから磁化反転するため、FehCoiMjOkFl(MはFeやCo以外の金属元素、h,i,j,k,lは正数)を成長させることで磁化反転を抑制する。 Condition [6]: Nd 2 Fe 14 B-based crystal grains or part of Fe-based crystal grains are aggregated to grow crystal grains 10 to 100 times as large as the raw material powder. Such coarse crystal grains have crystal orientations that are substantially aligned in one direction, and magnetization reversal occurs in the vicinity of grain boundaries or various intragranular precipitates. Therefore, FehCoiMjOkFl (M is a metal element other than Fe or Co, h, i, j, k, and l are positive numbers) to suppress magnetization reversal.

本実施例において、DyF3の代わりに希土類元素やアルカリ金属を含有するフッ化物または窒化物,ホウ化物,酸化物,炭化物が使用できる。保磁力増加が3kOe以上となるフッ化物は重希土類元素を含有するフッ化物であり、焼結体においてフッ化物の体積率が酸フッ化物の体積率よりも小さい。 In this embodiment, fluoride or nitride, boride, oxide, or carbide containing rare earth elements or alkali metals can be used in place of DyF 3 . The fluoride whose coercive force increase is 3 kOe or more is a fluoride containing a heavy rare earth element, and the volume fraction of fluoride in the sintered body is smaller than the volume fraction of oxyfluoride.

本実施例において、Nd2Fe14B系結晶の代わりに、Sm2Fe14BやRnMmが使用できる。ここでRは希土類元素あるいは複数の希土類元素、MはFe,Co,Mn,Crの中の1種または複数種であり、n,mは正数である。Sm2Fe14Bが粒界近傍に形成され、a軸を配向磁場あるいは焼結中磁場方向に平行にすることでFe系合金との磁気的な結合が生じ保磁力を10〜30kOeにすることが可能である。一部のSm2Fe14Bが単斜晶あるいは斜方晶系の構造になることにより保磁力がさらに増大できる。 In this embodiment, Sm 2 Fe 14 B or RnMm can be used instead of the Nd 2 Fe 14 B-based crystal. Here, R is a rare earth element or a plurality of rare earth elements, M is one or more of Fe, Co, Mn, and Cr, and n and m are positive numbers. Sm 2 Fe 14 B is formed in the vicinity of the grain boundary, and by making the a axis parallel to the orientation magnetic field or the magnetic field direction during sintering, magnetic coupling with the Fe-based alloy occurs and the coercive force is set to 10 to 30 kOe. Is possible. When some Sm 2 Fe 14 B has a monoclinic or orthorhombic structure, the coercive force can be further increased.

高周波プラズマ法により作成した平均粒径30nmのFe−35%Co粉末の表面にNdF3膜を溶液処理により形成する。NdF3膜の平均膜厚は1nmである。このNdF3膜で表面積の80〜95%を被覆されたFe−35%Co粉末を500℃で5t/cm2の条件で加熱成形後、Nd2Fe14B系ナノ粒子と焼結助材ナノ粒子を含浸させる。Nd2Fe14B系ナノ粒子と焼結助材ナノ粒子の平均粒径は10nmであり、加熱成形したFe−35%Coの結晶粒隙間に含浸することによりNd2Fe14B系ナノ粒子が入り込み、800℃で焼結する。Nd2Fe14B系ナノ粒子:Fe−35%Co粉末が1:20の比率では、Brが1.9T,保磁力9kOeとなり保磁力の温度係数が−0.1%/℃の焼結磁石が得られる。 An NdF 3 film is formed by solution treatment on the surface of an Fe-35% Co powder having an average particle diameter of 30 nm prepared by a high frequency plasma method. The average film thickness of the NdF 3 film is 1 nm. Fe-35% Co powder coated with 80 to 95% of the surface area with this NdF 3 film was heat-molded at 500 ° C. under the condition of 5 t / cm 2 , and then Nd 2 Fe 14 B-based nanoparticles and sintering aid nano Impregnate the particles. The average particle diameter of the Nd 2 Fe 14 B-based nanoparticles and the sintering aid nanoparticles is 10 nm, and the Nd 2 Fe 14 B-based nanoparticles are impregnated by impregnating the crystal grain gap of the heat-molded Fe-35% Co. Enter and sinter at 800 ° C. When the ratio of Nd 2 Fe 14 B-based nanoparticles: Fe-35% Co powder is 1:20, the sintered magnet has Br of 1.9 T, coercive force of 9 kOe, and a coercive force temperature coefficient of −0.1% / ° C. Is obtained.

本実施例のように希土類元素含有合金の量が希土類元素を含有しない合金の量よりも少ない磁石は以下のような特徴を有している。1)希土類元素を含有しないFe系結晶粒の平均粒径は希土類元素を含有する結晶の平均粒径よりも大きい。2)焼結磁石に使用する希土類元素は5%以下0.1%以上である。0.1%未満では保磁力5kOe以上を確保することが困難である。3)粒界3重点の一部にフッ化物または酸フッ化物が認められる。4)Fe−Co系合金には不規則相以外に規則相や格子歪みが0.1〜10%の結晶が認められ、格子歪みが1%を超えると希土類元素を使用せずに保磁力が5から20kOeを実現できる。   A magnet in which the amount of the rare earth element-containing alloy is smaller than the amount of the alloy not containing the rare earth element as in this embodiment has the following characteristics. 1) The average grain size of Fe-based crystal grains not containing rare earth elements is larger than the average grain diameter of crystals containing rare earth elements. 2) The rare earth element used for the sintered magnet is 5% or less and 0.1% or more. If it is less than 0.1%, it is difficult to ensure a coercive force of 5 kOe or more. 3) Fluoride or oxyfluoride is observed at a part of the triple point of the grain boundary. 4) In addition to the disordered phase, Fe—Co alloys have crystals with an ordered phase and a lattice strain of 0.1 to 10%. When the lattice strain exceeds 1%, the coercive force is increased without using rare earth elements. 5 to 20 kOe can be realized.

本実施例ではNd2Fe14B系ナノ粒子を含浸させるため、その平均粒径はFe−35%Co粉末よりも小さくすることが必要であり、Nd2Fe14B系ナノ粒子の平均粒径がFe−35%Co粉末の平均粒径の2倍以上では含浸させることができない。Nd2Fe14B系ナノ粒子の代わりにSmCo系ナノ粒子,AlNiCo系ナノ粒子,MnGa系ナノ粒子,MnBi系ナノ粒子,MnAlC系ナノ粒子,FeCoCr系ナノ粒子が使用できる。また焼結法以外に熱間加熱成形,コールドスプレー法,衝撃波成形,通電プラズマ成形,電磁波加熱成形,攪拌摩擦成形,強磁場中成形などの成形法も使用できる。 In this example, since the Nd 2 Fe 14 B-based nanoparticles are impregnated, the average particle size needs to be smaller than that of the Fe-35% Co powder, and the average particle size of the Nd 2 Fe 14 B-based nanoparticles is required. However, impregnation cannot be carried out if the average particle diameter is twice or more of the Fe-35% Co powder. Instead of Nd 2 Fe 14 B-based nanoparticles, SmCo-based nanoparticles, AlNiCo-based nanoparticles, MnGa-based nanoparticles, MnBi-based nanoparticles, MnAlC-based nanoparticles, and FeCoCr-based nanoparticles can be used. In addition to the sintering method, molding methods such as hot thermoforming, cold spray method, shock wave molding, energized plasma molding, electromagnetic wave heating molding, stirring friction molding, and strong magnetic field molding can also be used.

高周波プラズマ法により作成した平均粒径10nmのFe−40%Co粉末の表面にNdF系膜を溶液処理により形成する。NdF系膜の平均膜厚は1nmである。NdF系膜にはNdF3以外にNdF2及びNdOFが認められる。このNdF系膜で表面積の80〜99%を被覆されたFe−40%Co粉末を1t/cm2の条件で成形後、電磁波を印加しNdF3を発熱させることにより焼結させる。電磁波印加中に一方向の磁場(20kOe)を印加することで、磁場方向に異方性を有するFeCo系焼結体が得られ、残留磁束密度1.2〜1.7T,保磁力5〜15kOeの焼結体が得られる。 An NdF-based film is formed by solution treatment on the surface of Fe-40% Co powder having an average particle diameter of 10 nm prepared by a high frequency plasma method. The average film thickness of the NdF-based film is 1 nm. NdF 2 and NdOF are recognized in addition to NdF 3 in the NdF-based film. An Fe-40% Co powder coated with 80 to 99% of the surface area with this NdF-based film is molded under the condition of 1 t / cm 2 , and then sintered by applying electromagnetic waves and causing NdF 3 to generate heat. By applying a unidirectional magnetic field (20 kOe) during application of electromagnetic waves, an FeCo-based sintered body having anisotropy in the magnetic field direction is obtained, and the residual magnetic flux density is 1.2 to 1.7 T, the coercive force is 5 to 15 kOe. Thus obtained sintered body is obtained.

上記のような磁石の保磁力をさらに増加させるために、電磁波加熱前にNd2Fe14B系ナノ粒子を1体積%含浸させ、焼結後の粒界三重点にNd2Fe14Bを残留させることができ、保磁力20〜25kOeを実現できる。焼結後の密度向上のために融点が900℃以下の低融点相をNd2Fe14B系ナノ粒子とともに添加することも保磁力増加に寄与する。含浸処理前に、各種還元性ガスに曝すことで表面を清浄化でき、含浸後の磁気特性を向上できる。尚、Nd2Fe14Bの代わりにSmCo系化合物やMnBi系,AlNiCo系,MnAl系などの合金系粒子を使用しても同様の効果が得られる。 In order to further increase the coercive force of the magnet as described above, 1% by volume of Nd 2 Fe 14 B-based nanoparticles are impregnated before heating the electromagnetic wave, and Nd 2 Fe 14 B remains at the grain boundary triple point after sintering. And a coercive force of 20 to 25 kOe can be realized. Adding a low melting point phase having a melting point of 900 ° C. or lower together with Nd 2 Fe 14 B-based nanoparticles to improve density after sintering also contributes to an increase in coercive force. Prior to the impregnation treatment, the surface can be cleaned by exposure to various reducing gases, and the magnetic properties after the impregnation can be improved. The same effect can be obtained by using SmCo-based compounds or MnBi-based, AlNiCo-based, or MnAl-based alloy particles instead of Nd 2 Fe 14 B.

本実施例のような磁石材料は、以下の[1]〜[6]の特徴を有する。
特徴[1]:希土類元素使用量が0.1〜5原子%である。希土類元素を含有しない結晶の体積率は希土類元素を含有する結晶の体積率よりも大きい。
The magnet material as in this example has the following features [1] to [6].
Characteristic [1]: The rare earth element usage is 0.1 to 5 atomic%. The volume fraction of crystals that do not contain rare earth elements is greater than the volume fraction of crystals that contain rare earth elements.

特徴[2]:FeCo系結晶粒には異方性が認められ、磁化曲線に異方性がある。希土類元素を含有する結晶のキュリー温度以上焼結温度以下の温度範囲に加熱した後、急冷することで磁石磁気特性は加熱前の磁気特性に回復し、キュリー温度以上の温度で磁化曲線を測定し、磁化曲線の磁界印加方向依存性があることが確認できる。   Feature [2]: Anisotropy is observed in the FeCo-based crystal grains, and the magnetization curve is anisotropic. After heating to a temperature range between the Curie temperature and the sintering temperature of crystals containing rare earth elements, the magnet magnetic properties are restored to the magnetic properties before heating by rapid cooling, and the magnetization curve is measured at a temperature above the Curie temperature. It can be confirmed that the magnetization curve is dependent on the magnetic field application direction.

特徴[3]:結晶粒界の一部にフッ化物及び酸フッ化物が認められる。酸フッ化物はFeCo結晶と結晶方位関係を有して整合界面を形成しておりFeCoの(a,b,c)と酸フッ化物の(l,m,n)結晶面は平行になる。ここでa,b,c,l,m,nは正数である。このような方位関係が成立するためには酸フッ化物の格子定数がFeCo結晶の2倍(1.8〜2.2倍)にほぼ一致するためであり、格子定数差による格子歪みがFeCo結晶に導入されることで結晶磁気異方性が増加する。FeCo結晶にはFeCo以外の金属元素や侵入位置に配置可能な元素を含有しても大きな変化はない。   Characteristic [3]: Fluoride and oxyfluoride are observed in part of the crystal grain boundary. The oxyfluoride has a crystal orientation relationship with the FeCo crystal to form a matching interface, and the (a, b, c) FeCo crystal and the (l, m, n) crystal plane of the oxyfluoride are parallel. Here, a, b, c, l, m, and n are positive numbers. This orientation relationship is established because the lattice constant of the oxyfluoride is almost equal to twice that of the FeCo crystal (1.8 to 2.2 times), and the lattice strain due to the difference in lattice constant is the FeCo crystal. When introduced into the crystal, the magnetocrystalline anisotropy increases. Even if the FeCo crystal contains a metal element other than FeCo or an element that can be arranged at the intrusion position, there is no significant change.

特徴[4]:FeCo系結晶の一部は凝集し最大で500〜1000nmの粗大結晶が形成されている。このような粗大結晶の成長を抑制するためにNdF系膜の平均膜厚を1.5〜2nmと厚くすることで粗大結晶粒径を100〜200nmとすることができる。   Characteristic [4]: A part of the FeCo-based crystal is aggregated to form a coarse crystal having a maximum size of 500 to 1000 nm. In order to suppress the growth of such a coarse crystal, the coarse crystal grain size can be set to 100 to 200 nm by increasing the average film thickness of the NdF-based film to 1.5 to 2 nm.

特徴[5]:FeCo系結晶の一部は格子歪みを有しその歪み量は0.1〜10%である。この格子歪みと結晶粒の形状異方性によりFeCo系結晶の異方性エネルギーを増加させている。格子歪みは磁場印加による結晶粒成長過程と関連しており磁場方向と磁場垂直方向では歪みに差が認められ、この差が磁気特性の異方性に影響する。   Feature [5]: A part of the FeCo-based crystal has a lattice strain, and the strain amount is 0.1 to 10%. The lattice energy and the crystal grain shape anisotropy increase the anisotropy energy of the FeCo-based crystal. Lattice strain is related to the grain growth process by applying a magnetic field, and there is a difference in strain between the magnetic field direction and the perpendicular direction of the magnetic field, and this difference affects the magnetic property anisotropy.

特徴[6]:キュリー点が700〜1000℃である。磁化の温度依存性には、Nd2Fe14BとFeCo結晶が焼結磁石に成長している場合、少なくとも二つの強磁性相のキュリー点に対応する磁化の温度変化が観測される。すなわち磁化と温度の関係において、少なくとも2つの変極点が20℃以上の温度で確認できる。磁気比熱の測定においても少なくとも2つのピークが確認できる。 Characteristic [6]: Curie point is 700-1000 degreeC. Regarding the temperature dependence of magnetization, when Nd 2 Fe 14 B and FeCo crystals are grown on a sintered magnet, a temperature change in magnetization corresponding to the Curie points of at least two ferromagnetic phases is observed. That is, in the relationship between magnetization and temperature, at least two inflection points can be confirmed at a temperature of 20 ° C. or higher. In the measurement of the magnetic specific heat, at least two peaks can be confirmed.

高周波プラズマ法により作成した平均粒径5nmのFe粉末及びFe−30%Co粉末の表面にNdF系膜を溶液処理により形成する。NdF系膜の平均膜厚は0.1nmである。NdF系膜にはNdF3以外にNdF2及びNdOFが認められる。このNdF系膜で表面積の80〜99%を被覆されたFe粉末及びFe−30%Co粉末を1:1の体積比で混合後、1t/cm2の条件で成形後、電磁波を印加しNdF3を発熱させることにより焼結させる。電磁波印加中に一方向の磁場(20kOe)を印加することで、磁場方向に異方性を有するFeCo系焼結体が得られ、残留磁束密度1.2〜1.7T,保磁力5〜15kOeの焼結体が得られる。 An NdF-based film is formed by solution treatment on the surface of an Fe powder having an average particle diameter of 5 nm and an Fe-30% Co powder prepared by a high frequency plasma method. The average film thickness of the NdF-based film is 0.1 nm. NdF 2 and NdOF are recognized in addition to NdF 3 in the NdF-based film. Fe powder coated with 80-99% of the surface area with this NdF-based film and Fe-30% Co powder were mixed at a volume ratio of 1: 1, molded under the condition of 1 t / cm 2 , and then applied with electromagnetic waves. Sinter 3 by generating heat. By applying a unidirectional magnetic field (20 kOe) during application of electromagnetic waves, an FeCo-based sintered body having anisotropy in the magnetic field direction is obtained, and the residual magnetic flux density is 1.2 to 1.7 T, the coercive force is 5 to 15 kOe. Thus obtained sintered body is obtained.

上記のような磁石の保磁力をさらに増加させるために、電磁波加熱前にNd2Fe14B系ナノ粒子を1体積%含浸させ、焼結後の粒界三重点にNd2Fe14Bを残留させることができ、保磁力20〜25kOeを実現できる。焼結後の密度向上のために融点が900℃以下の低融点相をNd2Fe14B系ナノ粒子とともに添加することも保磁力増加に寄与する。Nd2Fe14Bの代わりに(Nd,Dy)2(Fe,Co)14B,Sm2Fe14B,SmCo系化合物やMnBi系,AlNiCo系,MnAl系,MnGa系,MnGe系,スピネルフェライト系,CuFeF系などの合金系粒子を使用しても同様の効果が得られる。 In order to further increase the coercive force of the magnet as described above, 1% by volume of Nd 2 Fe 14 B-based nanoparticles are impregnated before heating the electromagnetic wave, and Nd 2 Fe 14 B remains at the grain boundary triple point after sintering. And a coercive force of 20 to 25 kOe can be realized. Adding a low melting point phase having a melting point of 900 ° C. or lower together with Nd 2 Fe 14 B-based nanoparticles to improve density after sintering also contributes to an increase in coercive force. Instead of Nd 2 Fe 14 B, (Nd, Dy) 2 (Fe, Co) 14 B, Sm 2 Fe 14 B, SmCo compounds, MnBi, AlNiCo, MnAl, MnGa, MnGe, spinel ferrite Similar effects can be obtained by using alloy particles such as CuFeF.

本実施例の磁石材料は、以下の[1]〜[6]の特徴を有する。
特徴[1]:希土類元素使用量が0.01〜1原子%である。希土類元素を含有しない結晶の体積率は希土類元素を含有する結晶の体積率よりも大きい。0.01%未満の希土類元素使用量では、密度が6g/cm3以上にすることが困難であり保磁力が5kOe未満となり磁気特性が低い。希土類元素使用量が1原子%を超えると残留磁束密度が減少し、保磁力の温度依存性が増加するため1原子%未満にすることが望ましい。
The magnet material of the present embodiment has the following features [1] to [6].
Characteristic [1]: The rare earth element usage is 0.01 to 1 atomic%. The volume fraction of crystals that do not contain rare earth elements is greater than the volume fraction of crystals that contain rare earth elements. When the rare earth element usage is less than 0.01%, it is difficult to make the density 6 g / cm 3 or more, the coercive force is less than 5 kOe, and the magnetic properties are low. If the amount of rare earth element used exceeds 1 atomic%, the residual magnetic flux density decreases and the temperature dependence of the coercive force increases, so it is desirable to make it less than 1 atomic%.

特徴[2]:FeCo系結晶粒には異方性及び組成変調または結晶構造が変調された構造が認められ、磁化曲線に異方性がある。組成変調周期の方向と垂直方向で飽和磁束密度が高く、20kOeの磁界において、組成変調周期と平行方向と垂直方向とでは10%以上の磁束密度差が認められる。また組成変調周期の方向に平行な方向で保磁力が5kOe以上となり組成変調周期の方向に垂直な方向で保磁力は小さい。FeCo系結晶粒に含有する金属元素の一部はクラスターを形成し、CuやAgなどのfcc構造をもった元素がbccまたはbct構造のクラスタを形成する。   Feature [2]: FeCo-based crystal grains have anisotropy and composition modulation or a structure in which the crystal structure is modulated, and the magnetization curve has anisotropy. The saturation magnetic flux density is high in the direction perpendicular to the composition modulation period. In a magnetic field of 20 kOe, a magnetic flux density difference of 10% or more is recognized between the composition modulation period, the parallel direction, and the perpendicular direction. Further, the coercive force is 5 kOe or more in the direction parallel to the direction of the composition modulation period, and the coercive force is small in the direction perpendicular to the direction of the composition modulation period. Some of the metal elements contained in the FeCo crystal grains form clusters, and elements having an fcc structure such as Cu and Ag form clusters of the bcc or bct structure.

特徴[3]:結晶粒界の一部にフッ化物及び酸フッ化物あるいは酸化物が認められる。これらのフッ素含有化合物には炭素,窒素,リン,ホウ素,硫黄,水素などの不純物が含有されていても同様の効果が得られる。フッ素を含有する化合物の体積よりも酸素を含有する化合物の方が多い場合でも大きな変化はない。   Characteristic [3]: Fluoride and oxyfluoride or oxide are observed in part of the crystal grain boundary. Even if these fluorine-containing compounds contain impurities such as carbon, nitrogen, phosphorus, boron, sulfur, and hydrogen, the same effect can be obtained. Even when there are more oxygen-containing compounds than fluorine-containing compounds, there is no significant change.

特徴[4]:FeCo系結晶の一部は凝集し最大で500〜1000nmの粗大結晶が形成されている。このような粗大結晶の成長を抑制するためにNdF系膜の平均膜厚を1.5〜2nmと厚くすることで粗大結晶粒径を10〜100nmとすることができる。粗大結晶の大きさが500nmを超えた場合、減磁曲線の角型性が低下する。このため粗大結晶は粒径100nm以下にすることが望ましい。   Characteristic [4]: A part of the FeCo-based crystal is aggregated to form a coarse crystal having a maximum size of 500 to 1000 nm. In order to suppress the growth of such a coarse crystal, the coarse crystal grain size can be set to 10 to 100 nm by increasing the average film thickness of the NdF-based film to 1.5 to 2 nm. When the size of the coarse crystal exceeds 500 nm, the squareness of the demagnetization curve is lowered. For this reason, it is desirable that coarse crystals have a particle size of 100 nm or less.

特徴[5]:FeCo系結晶の一部は格子歪みを有しその歪み量は0.01〜10%である。この格子歪みと結晶粒の形状異方性,組成変調あるいは規則度の変調による異方性増大によりFeCo系結晶の異方性エネルギーを増加させている。格子歪みは磁場印加による結晶粒成長過程と関連しており磁場方向と磁場垂直方向では歪みに差が認められ、この差が磁気特性の異方性に影響する。FeCo系結晶は平均して2種類の格子定数が認められ格子定数差に基づく格子歪みが整合界面あるいは非整合界面に局所的に認められる。またbcc以外の結晶としてbctや斜方晶,六方晶,単斜方晶,面心立方晶,菱面体晶の少なくとも1種の成長が認められる。bcc以外の結晶がbccと共に形成されることにより、格子歪みや界面磁気異方性が増加し保磁力が増加する。格子歪みが0.001%未満では保磁力増加効果が小さいが、0.01%以上で保磁力5kOe以上を確保できる。   Feature [5]: A part of the FeCo-based crystal has a lattice strain, and the strain amount is 0.01 to 10%. The anisotropy energy of the FeCo-based crystal is increased by increasing the anisotropy due to the lattice distortion and the crystal grain shape anisotropy, compositional modulation or regularity modulation. Lattice strain is related to the grain growth process by applying a magnetic field, and there is a difference in strain between the magnetic field direction and the perpendicular direction of the magnetic field, and this difference affects the magnetic property anisotropy. In the FeCo-based crystal, two types of lattice constants are recognized on average, and lattice strain based on the difference in lattice constant is locally recognized at the matching interface or the non-matching interface. Further, as a crystal other than bcc, at least one kind of growth of bct, orthorhombic, hexagonal, monoclinic, face-centered cubic, and rhombohedral is observed. When crystals other than bcc are formed together with bcc, lattice distortion and interfacial magnetic anisotropy increase and coercive force increases. If the lattice strain is less than 0.001%, the effect of increasing the coercive force is small, but if it is 0.01% or more, a coercive force of 5 kOe or more can be secured.

特徴[6]:キュリー点が700〜1000℃である。組成変調構造はこの温度範囲まで安定である。   Characteristic [6]: Curie point is 700-1000 degreeC. The composition modulation structure is stable up to this temperature range.

本実施例において、二種類の組成のFeCo系粒子の結晶粒径を5nm未満とすることで組成変調周期を10nm以下にすることが可能であり、その格子定数差による格子歪みに伴い磁気異方性エネルギーを増加させることが可能である。二種類の組成は上記のようにFe/Fe−30%Co以外に、Fe/Fe−5%Co,Fe/Fe−90%Co,Fe/Co,Fe/FeAl合金,Fe/FeMn合金,Fe/FeNi合金,Fe/FeSi合金などのFe/Fe−M(MはFe以外の金属または半金属元素)の組み合わせで組成変調と変調構造に伴う格子歪みが確認でき、形状異方性や結晶磁気異方性または界面磁気異方性の増加を実現でき、粒界の一部にフッ化物または酸フッ化物が認められる。特にFeCo合金とCoの組み合わせではFeCo合金の一部がhcp構造となりbcc構造である時よりも高い結晶磁気異方性を示し、結晶構造はhcpで組成が変調された構造を作成することができ、Coよりも高い残留磁束密度を示すようになる。上記二種類の組み合わせ以外に類似の3種類以上の組み合わせも実現可能であり、粒界三重点に希土類元素を含有するNdFeB系、SmCo系化合物が形成されていても良い。   In this example, it is possible to make the composition modulation period 10 nm or less by setting the crystal grain size of the FeCo-based particles having two kinds of compositions to less than 5 nm, and magnetic anisotropy accompanying lattice distortion due to the difference in lattice constant. It is possible to increase sexual energy. In addition to Fe / Fe-30% Co, the two types of compositions are Fe / Fe-5% Co, Fe / Fe-90% Co, Fe / Co, Fe / FeAl alloy, Fe / FeMn alloy, Fe / FeNi alloy, Fe / FeSi alloy, and other combinations of Fe / Fe-M (where M is a metal or metalloid element other than Fe) can confirm compositional modulation and lattice distortion associated with the modulation structure, and shape anisotropy and crystal magnetism An increase in anisotropy or interfacial magnetic anisotropy can be realized, and fluoride or oxyfluoride is observed in part of the grain boundary. In particular, in the combination of FeCo alloy and Co, a part of the FeCo alloy has an hcp structure and exhibits higher magnetocrystalline anisotropy than when it has a bcc structure, and the crystal structure can create a structure whose composition is modulated by hcp. The residual magnetic flux density is higher than that of Co. In addition to the above two types of combinations, three or more types of similar combinations can be realized, and NdFeB-based and SmCo-based compounds containing rare earth elements at the grain boundary triple points may be formed.

平均粒径5nmのCoナノ粒子を高周波プラズマ法により作成し、さらにこのCoナノ粒子の表面にFeCo合金を同一装置内で大気に曝すことなく形成する。外周側に厚さ1〜10nmのFe−Co合金が形成されたCoナノ粒子は、FeCo合金の結晶構造もhcp構造となり、c軸方向とc面内とでは磁気特性に差が生じている。このようなFeCo合金で被覆されたCo粒子(FeCo/Co)は、Coの結晶構造がFeCo合金でも維持されて組成と格子定数が中心部と外周側とで異なる粒子が形成でき、FeCo合金に一軸磁気異方性が生じる。このFeCo/Co粒子の外周側は酸化しやすいため、溶液処理によりフッ化物を膜厚1nm形成する。この粒子を磁場中で配向させた後加熱圧縮成形し、磁石成形体を得た。磁石の磁気特性は、残留磁束密度1.7T,保磁力20kOeであり、フッ化物に希土類元素を含有させない場合は、希土類元素を使用しない磁石が得られる。   Co nanoparticles having an average particle diameter of 5 nm are prepared by a high-frequency plasma method, and an FeCo alloy is formed on the surface of the Co nanoparticles without being exposed to the atmosphere in the same apparatus. In Co nanoparticles in which an Fe—Co alloy having a thickness of 1 to 10 nm is formed on the outer peripheral side, the crystal structure of the FeCo alloy also has an hcp structure, and there is a difference in magnetic properties between the c-axis direction and the c-plane. Co particles coated with such an FeCo alloy (FeCo / Co) maintain the Co crystal structure even in the FeCo alloy, and can form particles having different compositions and lattice constants at the central portion and the outer peripheral side. Uniaxial magnetic anisotropy occurs. Since the outer peripheral side of the FeCo / Co particles is easily oxidized, a fluoride is formed to a thickness of 1 nm by solution treatment. The particles were oriented in a magnetic field and then heat compression molded to obtain a magnet compact. The magnetic characteristics of the magnet are a residual magnetic flux density of 1.7 T and a coercive force of 20 kOe. When the rare earth element is not contained in the fluoride, a magnet not using the rare earth element is obtained.

本実施例においてFeCo合金の組成と厚さによりhcp構造がbcc構造に変化する。bcc構造が混合していても、bcc構造の体積率が50%以下であれば保磁力に大きな差は認められない。FeCo合金のCo濃度は0.1%以上60%以下である濃度範囲が望ましく、平均厚さは1〜50nm以下が望ましい。Co濃度が0.1%未満ではbcc構造が50%を超えるようになり保磁力が著しく低下する。また60%を超えると成形体の残留磁束密度を1.7Tとすることが困難となる。平均厚さが1nm未満では残留磁束密度を増加させることが困難となり、50nmを超えるとbcc相が安定となりbccの体積が60%を超えるため保磁力が小さい。FeCo合金のCo濃度は0.1%以上60%以下である濃度範囲で、平均厚さは1〜50nm以下であればCo粒子とFeCo合金の界面には整合歪みが導入され、界面近傍には結晶方位関係が成立する。このような整合界面近傍に第三元素であるFeやCo以外の金属元素や半金属元素を偏在化させて結晶磁気異方性エネルギーを増加させることによる保磁力増大を実現できる。   In this example, the hcp structure changes to the bcc structure depending on the composition and thickness of the FeCo alloy. Even if the bcc structure is mixed, if the volume ratio of the bcc structure is 50% or less, a large difference in coercive force is not recognized. The Co concentration of the FeCo alloy is preferably in the range of 0.1% to 60%, and the average thickness is preferably 1 to 50 nm or less. If the Co concentration is less than 0.1%, the bcc structure exceeds 50%, and the coercive force is significantly reduced. On the other hand, if it exceeds 60%, it becomes difficult to set the residual magnetic flux density of the compact to 1.7 T. If the average thickness is less than 1 nm, it is difficult to increase the residual magnetic flux density. If the average thickness exceeds 50 nm, the bcc phase becomes stable and the bcc volume exceeds 60%, and the coercive force is small. If the Co concentration of the FeCo alloy is in the concentration range of 0.1% to 60% and the average thickness is 1 to 50 nm or less, matching strain is introduced at the interface between the Co particles and the FeCo alloy, and in the vicinity of the interface. A crystal orientation relationship is established. The coercive force can be increased by increasing the magnetocrystalline anisotropy energy by unevenly distributing metal elements and metalloid elements other than Fe and Co, which are the third elements, in the vicinity of the matching interface.

フッ化物は溶液処理が可能なあらゆるフッ化物を使用することが可能であり、加熱成形時に酸フッ化物が形成される。また、成形温度が900℃を超えるとhcp構造のFeCo合金の一部がbcc構造に相転移するため、hcp構造を安定化する添加元素を添加するか成形温度を低温で実施する必要がある。   As the fluoride, any fluoride capable of solution processing can be used, and an oxyfluoride is formed at the time of thermoforming. Further, when the molding temperature exceeds 900 ° C., a part of the FeCo alloy having the hcp structure undergoes a phase transition to the bcc structure. Therefore, it is necessary to add an additional element that stabilizes the hcp structure or to perform the molding temperature at a low temperature.

CoあるいはFeCo合金の粒界あるいは粒界近傍にはFeaCobOcFd(a,b,c,dは正数)で示されるFe及びCoを含有する酸フッ化物が成長する。この酸フッ化物はFeやCo以外の金属元素を含有可能であり、酸フッ化物近傍に金属元素を偏在化させることも可能である。この酸フッ化物は層状または粒状に成長し、界面近傍のCoあるいはFeCo合金の結晶に格子歪みを導入することで保磁力増大に寄与している。   An oxyfluoride containing Fe and Co represented by FeaCobOcFd (a, b, c and d are positive numbers) grows at or near the grain boundary of Co or FeCo alloy. This oxyfluoride can contain a metal element other than Fe or Co, and the metal element can be unevenly distributed in the vicinity of the oxyfluoride. This oxyfluoride grows in a layered or granular form, and contributes to an increase in coercive force by introducing lattice strain into the crystal of Co or FeCo alloy near the interface.

本実施例において、hcp構造の一部がfccあるいはbct構造であっても良い。本実施例のCoの代わりに一軸異方性を有する強磁性合金や強磁性化合物が使用できる。   In this embodiment, part of the hcp structure may be an fcc or bct structure. A ferromagnetic alloy or a ferromagnetic compound having uniaxial anisotropy can be used in place of Co in this embodiment.

Coを含有するフッ化物溶液及びFeを含有するフッ化物溶液を混合したアルコール溶媒のフッ化物溶液を磁場10kOeにて溶媒を蒸発させ、溶液からFe及びCoを析出させる。350℃以上に加熱することにより磁場方向に連続したFeCo合金の結晶が形成される。FeCo結晶の外周にはフッ化物が成長し、FeCo結晶の酸化を抑制する。CoとFeの比率は任意に制御可能であり、Co:Fe=1:1の場合、平均粒子径が10nmのFeCo粒子を作成でき、磁場方向が容易磁化方向の磁石粉が作成できる。粒径10nmの粉の内部はCo周辺でhcp構造、Fe周辺でbcc構造となり両構造が確認され全体として一軸磁気異方性が認められる。磁場方向に平行な方向での磁粉連続性が高い磁粉の隙間に種々の希土類含有化合物やAlNiCo系合金,MnGa系,MnAl系合金などの各種高保磁力合金を配置させて磁場中圧縮することにより、保磁力が10kOe以上残留磁束密度1.6Tの磁石を得ることが可能であり、希土類使用量を削減できる。   An alcohol solvent fluoride solution obtained by mixing a fluoride solution containing Co and a fluoride solution containing Fe is evaporated in a magnetic field of 10 kOe to precipitate Fe and Co from the solution. By heating to 350 ° C. or higher, FeCo alloy crystals continuous in the magnetic field direction are formed. Fluoride grows on the outer periphery of the FeCo crystal and suppresses oxidation of the FeCo crystal. The ratio of Co and Fe can be arbitrarily controlled. When Co: Fe = 1: 1, FeCo particles having an average particle diameter of 10 nm can be created, and magnet powder having a magnetic field direction that can be easily magnetized can be created. The inside of the powder having a particle size of 10 nm has an hcp structure around Co and a bcc structure around Fe, and both structures are confirmed, and uniaxial magnetic anisotropy is recognized as a whole. By placing various high coercivity alloys such as various rare earth-containing compounds, AlNiCo alloys, MnGa alloys, MnAl alloys in the gaps between the magnetic particles having high continuity of the magnetic particles in the direction parallel to the magnetic field direction, A magnet having a coercive force of 10 kOe or more and a residual magnetic flux density of 1.6 T can be obtained, and the amount of rare earth used can be reduced.

本実施例において、磁場方向に平行方向に磁化容易方向が平行となり、FeCo合金の結晶構造はhcp,bcc以外にbct構造も認められる。さらにフッ素含有化合物にはFeまたはCoが含有した非晶質構造あるいは斜方晶,菱面体晶,六方晶,単斜晶,正方晶の結晶構造が確認できる。このように10nmの粒径において結晶中に複数の強磁性相が認められ、一軸磁気異方性を示す複数の強磁性相が形成された粉末または結晶は、本実施例のようにFeCo合金以外にFe−M系合金(MはFe以外の金属元素),Mn−M系合金(MはMn以外の金属元素),Co−M(MはCo以外の金属元素),Cr−M(MはCr以外の金属元素)のような合金系で溶液からの析出工程で実現でき、保磁力10kOeの磁石材料が作成できる。   In this example, the easy magnetization direction is parallel to the magnetic field direction, and the crystal structure of the FeCo alloy includes bct structure in addition to hcp and bcc. Further, in the fluorine-containing compound, an amorphous structure containing Fe or Co or a crystal structure of orthorhombic, rhombohedral, hexagonal, monoclinic and tetragonal can be confirmed. Thus, a powder or crystal in which a plurality of ferromagnetic phases are observed in the crystal at a particle size of 10 nm and a plurality of ferromagnetic phases exhibiting uniaxial magnetic anisotropy is formed is not FeCo alloy as in this example. Fe-M alloy (M is a metal element other than Fe), Mn-M alloy (M is a metal element other than Mn), Co-M (M is a metal element other than Co), Cr-M (M is An alloy system such as a metal element other than Cr can be realized by a precipitation process from a solution, and a magnet material having a coercive force of 10 kOe can be produced.

上記実施例において、平均粒子径が50nmを超えると安定なbcc構造が50%を超え、保磁力が1kOe以下に低下する。保磁力が5kOeを超える平均粒子径は20nm以下であり10nm以下で10kOeとなる。また2nm以下では保磁力が減少傾向を示す。このため平均粒子径は2〜20nmの範囲が望ましい。粒子形状は磁場印加方向に伸びた形状異方性をもつが不定形や球状形状,板状形状の粒子でも一軸異方性が付加できる。   In the said Example, when an average particle diameter exceeds 50 nm, a stable bcc structure will exceed 50%, and a coercive force will fall to 1 kOe or less. The average particle diameter with a coercive force exceeding 5 kOe is 20 nm or less, and becomes 10 kOe when it is 10 nm or less. In addition, the coercive force tends to decrease below 2 nm. For this reason, the average particle size is desirably in the range of 2 to 20 nm. The particle shape has a shape anisotropy extending in the direction of applying a magnetic field, but uniaxial anisotropy can be added even to particles having an indefinite shape, a spherical shape or a plate shape.

本実施例のような20nm以下の磁石用磁性粒子は、上記手法以外にゾルゲル法,共沈法,カーボンナノチューブを使用した析出法,生物(細菌)を利用した合成法など各種合成法を利用できる。   In addition to the above methods, the magnetic particles for magnets of 20 nm or less as in this example can use various synthesis methods such as sol-gel method, coprecipitation method, precipitation method using carbon nanotubes, and synthesis method using organisms (bacteria). .

純Fe(純度99.99%)と純Co(純度99.99%)を評量しAr+10%H2雰囲気中でFe−40%Co合金を作成した。この母合金を用いガスアトマイズ法により粉末を作成した。ガスアトマイズにはAr+10%H2ガスを使用し、15MPaの噴射圧力で作成後、分級して50μm以下の粉末径とした。平均粒径は30μmである。この粉末にTbF系溶液処理を施し、粉末表面に非晶質のフッ化物膜を膜厚2nmで形成後、加熱処理により溶媒を除去し飽和磁化210emu/gの磁性粉末とした。この粉末をWC製ダイスに挿入後交流磁場10kOeを印加し1t/cm2の荷重を加えた後、Nd2Fe14B微粉末(平均粒径0.1〜1μm)と溶媒からなるスラリーを含浸させこの磁場印加方向と直交する磁場20kOeを印加後2t/cm2の荷重を加え、放電プラズマ焼結により成形した。FeCo合金とNd2Fe14Bの比率は9:1である。昇温速度200℃/min,800℃保持後2t/cm2の荷重を加え、冷却速度300℃/minで冷却した。この成形体にTbCuAgF系処理液を塗布後700℃で拡散させ,粒界近傍にTb,Cu,Agを偏在化させた。この成形体の磁気特性はBrが1.7T,Hcが18kOeであった。 Pure Fe (purity 99.99%) and pure Co (purity 99.99%) were weighed and an Fe-40% Co alloy was prepared in an Ar + 10% H 2 atmosphere. Using this mother alloy, a powder was prepared by gas atomization. Ar + 10% H 2 gas was used for gas atomization, created at an injection pressure of 15 MPa, and classified to a powder diameter of 50 μm or less. The average particle size is 30 μm. This powder was subjected to a TbF-based solution treatment to form an amorphous fluoride film on the powder surface with a film thickness of 2 nm, and then the solvent was removed by heat treatment to obtain a magnetic powder having a saturation magnetization of 210 emu / g. After inserting this powder into a WC die, applying an alternating magnetic field of 10 kOe and applying a load of 1 t / cm 2 , impregnation with a slurry of Nd 2 Fe 14 B fine powder (average particle size 0.1 to 1 μm) and a solvent. Then, after applying a magnetic field of 20 kOe orthogonal to the magnetic field application direction, a load of 2 t / cm 2 was applied and the resultant was molded by discharge plasma sintering. The ratio of FeCo alloy to Nd 2 Fe 14 B is 9: 1. The temperature was increased at a rate of 200 ° C./min and maintained at 800 ° C., then a load of 2 t / cm 2 was applied, and the mixture was cooled at a cooling rate of 300 ° C./min. A TbCuAgF-based treatment liquid was applied to this molded body and then diffused at 700 ° C., so that Tb, Cu, and Ag were unevenly distributed in the vicinity of the grain boundaries. The magnetic properties of this molded body were Br of 1.7 T and Hc of 18 kOe.

本実施例のような1.6Tを超える残留磁束密度の磁石は、飽和磁化の大きなFeCo合金がNd2Fe14Bの磁化と磁気的に結合することにより実現でき、Nd2Fe14Bは含浸させて複合化させているため、Nd2Fe14Bの平均粒径はFeCo合金の平均粒径よりも小さくする必要がある。粒界三重点には酸フッ化物以外にNd2Fe14Bまたはホウ化物,希土類酸化物が認められる。FeCo合金以外に、飽和磁化170emu/g以上のFeM系合金(MはFe以外の金属または半金属元素の中の一種または複数種)が使用できる。また、Nd2Fe14B以外にSmCo系,AlNiCo系,FeCoCr系,CoPt系,FePt系,MnBi系,MnAs系,MnCo系,MnAlC系,MnN系,MnC系,MnF系,MnFe系,CrMn系,MnNiF系,MnGaF系などの合金系が使用できる。 A magnet having a residual magnetic flux density exceeding 1.6 T as in this embodiment can be realized by magnetically coupling an FeCo alloy having a large saturation magnetization with the magnetization of Nd 2 Fe 14 B, and Nd 2 Fe 14 B is impregnated. Therefore, the average particle size of Nd 2 Fe 14 B needs to be smaller than the average particle size of the FeCo alloy. At the grain boundary triple point, Nd 2 Fe 14 B, boride, or rare earth oxide is recognized in addition to the acid fluoride. In addition to the FeCo alloy, an FeM alloy having a saturation magnetization of 170 emu / g or more (M is one or more of metals or metalloid elements other than Fe) can be used. In addition to Nd 2 Fe 14 B, SmCo, AlNiCo, FeCoCr, CoPt, FePt, MnBi, MnAs, MnCo, MnAlC, MnN, MnC, MnF, MnFe, CrMn Alloy systems such as MnNiF and MnGaF can be used.

本実施例において含浸させる材料をTbF系アルコール溶液にした場合、TbF系膜が0.1wt%において成形後の保磁力が5〜10kOeの磁石が得られ、磁石が含有している希土類元素の量は0.1wt%未満である。この磁石は、FeCo合金がbcc構造であり、TbF系膜としてTbF3,TbF2,TbOF,Tb23が確認できる。また局所的にTbFe,TbCo系金属間化合物が形成される。加熱成形時の荷重が1t/cm2を超えると保磁力の増加及び残留磁束密度増加が顕著になり、1t/cm2から2t/cm2にすることで最大エネルギー積が10〜20%増加する。成形後の冷却速度は300℃/minであり、10kOe以上の磁場中冷却により無磁場よりも保磁力が10%増加する。磁場中冷却の磁場印加方向と着磁方向が等しい場合、磁極(S極とN極)を結ぶ方向は着磁方向とほぼ垂直な方向となる。 When the material to be impregnated in this example is a TbF-based alcohol solution, a magnet having a coercive force of 5 to 10 kOe after molding is obtained when the TbF-based film is 0.1 wt%, and the amount of rare earth elements contained in the magnet Is less than 0.1 wt%. In this magnet, the FeCo alloy has a bcc structure, and TbF 3 , TbF 2 , TbOF, and Tb 2 O 3 can be confirmed as the TbF-based film. Further, a TbFe, TbCo-based intermetallic compound is locally formed. When the load at the time of thermoforming exceeds 1 t / cm 2 , the increase in coercive force and the increase in residual magnetic flux density become remarkable, and the maximum energy product increases by 10 to 20% by changing from 1 t / cm 2 to 2 t / cm 2. . The cooling rate after molding is 300 ° C./min, and the coercive force is increased by 10% as compared with no magnetic field by cooling in a magnetic field of 10 kOe or more. When the magnetic field application direction and the magnetization direction for cooling in the magnetic field are the same, the direction connecting the magnetic poles (S pole and N pole) is substantially perpendicular to the magnetization direction.

FeCo合金の保磁力は、FeCo合金自身の結晶磁気異方性以外に、界面の磁気物性に影響される。界面の磁気物性は粒界や界面と接触している相手の材料とその近傍の結晶構造や原子配列に依存する。このような粒界や界面は二次元に近く、バルクの安定な三次元結晶と大きく異なる。このような低次元界面では、CoやFe,Tbの原子配列は異方的な配列となる。このような異方的原子配列や歪み(応力),格子整合性,界面の不連続性などが界面近傍の磁気構造に影響する。磁気構造の制御には、粒界相を人工的に設計,作成することが重要であり、界面にCoやFe,Tbの2次元構造,低次元(1次元,2次元)配列,低次元応力付加構造,界面を通した隣接主相との磁気結合構造,界面近傍のTb偏在構造の形成により、異方性エネルギーを増大させることができる。   The coercivity of the FeCo alloy is influenced by the magnetic properties of the interface, in addition to the magnetocrystalline anisotropy of the FeCo alloy itself. The magnetic properties of the interface depend on the partner material in contact with the grain boundary or interface and the crystal structure and atomic arrangement in the vicinity. Such grain boundaries and interfaces are nearly two-dimensional and are very different from bulk stable three-dimensional crystals. At such a low-dimensional interface, the atomic arrangement of Co, Fe, and Tb is anisotropic. Such anisotropic atomic arrangement, strain (stress), lattice matching, and interface discontinuity affect the magnetic structure near the interface. In order to control the magnetic structure, it is important to design and create the grain boundary phase artificially. Co, Fe, Tb two-dimensional structure, low-dimensional (one-dimensional, two-dimensional) arrangement, low-dimensional stress at the interface By forming the additional structure, the magnetic coupling structure with the adjacent main phase through the interface, and the Tb uneven structure near the interface, the anisotropic energy can be increased.

Co,FeあるいはTbなどの金属元素が、界面において界面の特定の方向に一次元構造を形成は、界面の準安定相を磁場中冷却によって達成できる。界面の準安定相は酸化物,フッ化物,炭化物,窒化物あるいはホウ化物などの化合物あるいは金属間化合物であり、金属ガラスや準結晶などの化合物や偏在相に隣接して成長する。すなわち二種類の準安定相が隣接して成長することにより、準安定相が安定化され、格子歪みや整合界面が高温まで安定に残留し磁気異方性エネルギーが増大し保磁力が増加する。   When a metal element such as Co, Fe or Tb forms a one-dimensional structure in a specific direction of the interface at the interface, the metastable phase of the interface can be achieved by cooling in a magnetic field. The metastable phase at the interface is a compound such as an oxide, fluoride, carbide, nitride or boride or an intermetallic compound, and grows adjacent to a compound such as metallic glass or quasicrystal or an unevenly distributed phase. That is, two types of metastable phases grow adjacent to each other, so that the metastable phase is stabilized, the lattice strain and the matching interface remain stably up to a high temperature, the magnetic anisotropy energy increases, and the coercive force increases.

また、格子状あるいは六角形状,ひし形状、または三角形状に二次元に配列した上記金属元素の構造は、界面に配置する酸素,炭素及びフッ素あるいはホウ素の濃度と配列位置(構造や方位),表面再構成,転位や欠陥の構造などに依存するため、これらの元素の濃度と構造を制御可能な作成条件を使用する必要がある。   In addition, the structure of the above metal elements arranged two-dimensionally in a lattice shape, hexagonal shape, rhombus shape, or triangular shape is the concentration and arrangement position (structure or orientation) of oxygen, carbon and fluorine or boron arranged at the interface, surface Since it depends on reconstruction, dislocations, defect structures, etc., it is necessary to use preparation conditions that can control the concentration and structure of these elements.

これらの構造制御には原子の移動や再配列を伴うため、移動させるために熱エネルギーを付加する必要がある。温度は100℃以上、できれば400℃以上が必要であり、構造制御には組成と粒径,粒形状などの粉末作製条件以外に外部磁場,外部応力とこれらの外部からの因子に反応する界面構造作成が必要である。   Since these structural controls involve movement and rearrangement of atoms, it is necessary to add thermal energy to move them. The temperature must be 100 ° C or higher, preferably 400 ° C or higher. The structure control is an interface structure that reacts to external magnetic fields, external stresses, and external factors in addition to powder production conditions such as composition, particle size, and grain shape. Must be created.

本実施例では界面にTbとFあるいはOを主とする二次元構造が形成され、その近傍にFeやCoが特定の隣接原子構造で結合しており、このFeやCoと主相のFeCo相が磁気的に結合して磁化反転が抑制されている。この隣接原子構造を有する局所的な粒界近傍では特定方向のFe−Fe,Fe−Co,Co−Co原子間距離がバルク安定状態の原子間距離よりも平均的に0.1%から20%長い。この低配位数原子の原子間位置の伸縮により粒界近傍の磁気異方性が増加する。   In this embodiment, a two-dimensional structure mainly composed of Tb and F or O is formed at the interface, and Fe or Co is bonded with a specific adjacent atomic structure in the vicinity thereof, and this Fe or Co and the main phase FeCo phase. Are magnetically coupled to suppress magnetization reversal. In the vicinity of the local grain boundary having this adjacent atomic structure, the distance between Fe-Fe, Fe-Co, and Co-Co atoms in a specific direction is 0.1% to 20% on average than the distance between atoms in the bulk stable state. long. The magnetic anisotropy in the vicinity of the grain boundary increases due to the expansion and contraction of interatomic positions of the low coordination number atoms.

上述のように粒界近傍の磁気異方性が増加した結果、粒界に接する単位格子の磁気異方性あるいは粒界に接する原子面の磁気異方性が粒内の平均的な結晶磁気異方性の値よりも2倍から100倍となる。また磁気異方性エネルギーが最大となる方向が粒内の磁気異方性エネルギーが最大となる方向と10度から90度回転する。この磁気異方性エネルギーが最大となる方向は粒内の方向との角度差が小さい方が磁化反転しにくいため、45度以下がのぞましいが、この磁気異方性エネルギーの比が5倍を超える場合には、粒界近傍の磁気異方性の影響を強く受けて粒内の磁化の異方性も粒界近傍の磁気異方性の方向にそろった方が系のエネルギーが低下するため、角度差が90度以内であれば特に制限はない。   As described above, as the magnetic anisotropy in the vicinity of the grain boundary increases, the magnetic anisotropy of the unit cell in contact with the grain boundary or the magnetic anisotropy of the atomic plane in contact with the grain boundary is different from the average crystal magnetic anisotropy in the grain. It becomes 2 to 100 times the value of the directionality. Further, the direction in which the magnetic anisotropy energy becomes maximum rotates by 10 to 90 degrees from the direction in which the magnetic anisotropy energy in the grains becomes maximum. The direction in which the magnetic anisotropy energy is maximized is less likely to cause magnetization reversal when the angle difference from the intra-granular direction is smaller, and is preferably 45 degrees or less, but the ratio of the magnetic anisotropy energy exceeds 5 times. In this case, the energy of the system is lowered when the magnetic anisotropy in the grain is strongly influenced by the magnetic anisotropy in the vicinity of the grain boundary and the magnetic anisotropy in the grain boundary is aligned in the direction of the magnetic anisotropy. There is no particular limitation as long as the angle difference is within 90 degrees.

塩化第一鉄(FeCl2・4H2O),塩化第二鉄(FeCl3・6H2O),塩化コバルト(CoCl2・6H2O)を使用しFe2+,Fe3+,Co2+の水溶液を作成後、アンモニア水を添加し、さらにフッ化物溶液を混合させ、FeCo系合金,(Fe,Co)34,(Fe,Co)F系化合物,(Fe,Co)OF系化合物からなるスラリーを得た。このスラリーにはFeCo系合金の粒子が2〜50nmの粒子径で混合されており、磁気分離することで50〜230emu/gの飽和磁化を有する強磁性粒子を分離抽出できる。抽出したスラリーを磁場配向させ電磁波による加熱を実施することで、酸化物,フッ化物あるいは酸フッ化物が選択的に発熱し焼結すると同時に残留応力を成形体に誘導できる。また粒子径が10nm以下になると粒子表面に配置する結晶格子の体積が全体の結晶格子の数に占める割合が約10%以上と多くなることから、界面の影響が構造や磁気物性に大きく影響する。 Fe 2+ , Fe 3+ , Co 2+ using ferrous chloride (FeCl 2 .4H 2 O), ferric chloride (FeCl 3 .6H 2 O), cobalt chloride (CoCl 2 .6H 2 O) After preparing an aqueous solution, ammonia water is added, and further a fluoride solution is mixed, and FeCo alloy, (Fe, Co) 3 O 4 , (Fe, Co) F compound, (Fe, Co) OF compound A slurry consisting of In this slurry, FeCo-based alloy particles are mixed with a particle diameter of 2 to 50 nm. By magnetic separation, ferromagnetic particles having a saturation magnetization of 50 to 230 emu / g can be separated and extracted. By subjecting the extracted slurry to magnetic field orientation and heating by electromagnetic waves, oxides, fluorides or oxyfluorides are selectively heated and sintered, and at the same time, residual stress can be induced in the compact. Further, when the particle diameter is 10 nm or less, the ratio of the volume of crystal lattices arranged on the particle surface to the total number of crystal lattices increases to about 10% or more, so the influence of the interface greatly affects the structure and magnetic properties. .

特に本実施例のように磁場中での電磁波加熱による磁歪ならびに熱応力による応力と形状異方性と界面異方性の発現、フッ素含有準安定相の成長とその界面に残留する格子歪みの発現により、界面近傍の結晶格子が局所的に歪み、結晶磁気異方性エネルギーが増大する。結晶磁気異方性の増大により、保磁力5〜10kOeのFeCo合金を主とする成形磁石が形成できる。高保磁力にはパルス状の電磁波加熱が有効であり、1m秒以下の時間電磁波を印加して高周波で印加、加熱することにより結晶粒の成長を抑制しながら焼結させることが可能であり、磁場印加により異方性の方向を制御可能である。   In particular, as in this example, magnetostriction due to electromagnetic wave heating in a magnetic field, manifestation of stress, shape anisotropy and interface anisotropy due to thermal stress, growth of fluorine-containing metastable phase and manifestation of lattice strain remaining at the interface As a result, the crystal lattice near the interface is locally distorted and the magnetocrystalline anisotropy energy is increased. By increasing the magnetocrystalline anisotropy, a molded magnet mainly composed of a FeCo alloy having a coercive force of 5 to 10 kOe can be formed. Pulsed electromagnetic heating is effective for high coercivity, and it is possible to sinter while suppressing the growth of crystal grains by applying electromagnetic waves for a time of 1 ms or less and applying and heating at high frequencies. The direction of anisotropy can be controlled by application.

本実施例では、FeCo系合金がFe50Co50の場合、Fe50Co50粒子の平均粒子径が5nmの時、界面から1nm以内の結晶格子の格子歪みと中心部の格子歪みには平均して1%以上の差が生じており粒子表面の一部は酸化物や酸フッ化物が成長している。一部のフッ素含有相は反強磁性を示す。また磁場印加方向と垂直方向とでは磁化曲線に差が認められ、磁場印加による歪みの発現により結晶磁気異方性エネルギーが増大し、保磁力も増加する。印加磁場が小さい時には十分な歪みが発現せず保磁力が増大しないことから、保磁力が必要な場合には一定値以上の磁場を印加することが必要となる。回転機などの磁気回路で本実施例の材料を使用する場合には一般的な永久磁石などを用いてバイアス磁場を印加することが望ましい。バイアス磁場の制御により永久磁石として保磁力が必要な場合と永久磁石特性が不必要な場合を同一の材料系で実現できるため、高トルク高効率が達成できる。 In this example, when the FeCo-based alloy is Fe 50 Co 50 , when the average particle size of the Fe 50 Co 50 particles is 5 nm, the lattice strain of the crystal lattice within 1 nm from the interface and the lattice strain at the center are averaged. Thus, a difference of 1% or more occurs, and oxides and oxyfluorides grow on a part of the particle surface. Some fluorine-containing phases exhibit antiferromagnetism. In addition, a difference is observed in the magnetization curve between the magnetic field application direction and the perpendicular direction, and the magnetocrystalline anisotropy energy increases and the coercive force increases due to the occurrence of strain due to the magnetic field application. When the applied magnetic field is small, sufficient distortion does not appear and the coercive force does not increase. Therefore, when a coercive force is required, it is necessary to apply a magnetic field of a certain value or more. When the material of this embodiment is used in a magnetic circuit such as a rotating machine, it is desirable to apply a bias magnetic field using a general permanent magnet or the like. By controlling the bias magnetic field, the case where coercive force is required as a permanent magnet and the case where the permanent magnet characteristic is unnecessary can be realized by the same material system, so that high torque and high efficiency can be achieved.

本実施例の磁石において、粒界あるいは粒界近傍には、酸化物や酸フッ化物が成長するが、特にCokFelOmFn(k,l,m,nは正数)の成長と酸フッ化物近傍の組成や構造(結晶構造や歪み)が保磁力に影響する。   In the magnet of this embodiment, oxides and oxyfluorides grow at the grain boundaries or in the vicinity of the grain boundaries. In particular, the growth of CokFelOmFn (k, l, m, and n are positive numbers) and the composition near the oxyfluoride. And the structure (crystal structure and strain) affect the coercive force.

本実施例において、磁界の印加方向に回転成分を加えることにより、らせん状やスクリュー状,バネ形状につながった粒子を作成でき、形状異方性を付加させることができる。   In this embodiment, by adding a rotational component in the direction of applying a magnetic field, particles connected in a spiral shape, screw shape, or spring shape can be created, and shape anisotropy can be added.

Fe−25原子%Co粒子は急冷法により、繊維形状の粉末を作成する。Arガス雰囲気中で高周波溶解したFeCo合金を水浴中に加圧して繊維状の粉末を得る。FeCo合金粉末は2〜200μm径,長さ5〜500μmである。この粉末にNdTbF系溶液処理を施し、FeCo合金粉末表面にNdTbF系膜を形成した後、平均粒径0.5〜5μmのNdFeB系焼結粉末と混合する。FeCo合金粉末とNdFeB系焼結粉末の混合比率は2:8である。混合後の仮成形工程において、NdFeB系焼結粉末は平均的にc軸方向が磁場印加方向と平行になり、FeCo合金粉末の長さ方向(前記5〜500μm方向)が磁場印加方向に平行となる。仮成形工程の条件は磁場10kOe,圧力1t/cm2である。この仮成形体を熱処理炉に入れて1050℃に加熱後、20kOeの磁場を仮成形体作成時の磁場印加方向と平行方向に印加し、1〜10℃/秒の冷却速度でFeCoとNdFeB系磁粉のキュリー温度を含む温度範囲(850℃から300℃)を冷却する。さらに300〜600℃の時効処理を経て密度7.0〜7.6g/cm3の焼結磁石が得られる。 Fe-25 atom% Co particles are made into a fiber-shaped powder by a rapid cooling method. A FeCo alloy melted at high frequency in an Ar gas atmosphere is pressed into a water bath to obtain a fibrous powder. The FeCo alloy powder has a diameter of 2 to 200 μm and a length of 5 to 500 μm. This powder is treated with an NdTbF-based solution to form an NdTbF-based film on the surface of the FeCo alloy powder, and then mixed with an NdFeB-based sintered powder having an average particle size of 0.5 to 5 μm. The mixing ratio of the FeCo alloy powder and the NdFeB-based sintered powder is 2: 8. In the temporary forming step after mixing, the NdFeB-based sintered powder has an average c-axis direction parallel to the magnetic field application direction, and the length direction of the FeCo alloy powder (the 5-500 μm direction) is parallel to the magnetic field application direction. Become. The conditions of the temporary forming process are a magnetic field of 10 kOe and a pressure of 1 t / cm 2 . This temporary molded body is put in a heat treatment furnace and heated to 1050 ° C., and then a magnetic field of 20 kOe is applied in a direction parallel to the magnetic field application direction at the time of forming the temporary molded body, and FeCo and NdFeB system at a cooling rate of 1 to 10 ° C./second. The temperature range including the Curie temperature of the magnetic powder (850 ° C. to 300 ° C.) is cooled. Furthermore, a sintered magnet having a density of 7.0 to 7.6 g / cm 3 is obtained through an aging treatment at 300 to 600 ° C.

本実施例で製造された焼結磁石材料の特徴を以下に記す。焼結体の磁束密度を担う強磁性相はFeCo合金及びNdFeB系合金であり、これらの強磁性相間には磁気的な結合あるいは歪みが作用している。FeCo合金はNdFeB系合金の飽和磁化よりも高い組成を選択し、さらに結晶磁気異方性増大のために種々の3dあるいは4d遷移金属元素または希土類元素を0.1から20原子%含有させる。   The characteristics of the sintered magnet material manufactured in this example will be described below. The ferromagnetic phases that bear the magnetic flux density of the sintered body are FeCo alloy and NdFeB alloy, and magnetic coupling or strain acts between these ferromagnetic phases. For the FeCo alloy, a composition higher than the saturation magnetization of the NdFeB alloy is selected, and various 3d or 4d transition metal elements or rare earth elements are contained in an amount of 0.1 to 20 atomic% in order to increase the magnetocrystalline anisotropy.

FeCo合金が1原子%のZrを含有するFe−25%−1%Zr合金の場合、FeCoZr合金粉末とNdFeB系焼結粉末との混合比が2:8,NdFeF系処理液使用により上記作成条件下で焼結させた磁石の磁気特性は最大エネルギー積67MGOe,保磁力2MA/mである。Zrなどの遷移金属元素を20原子%の値を超えて含有した場合、残留磁束密度の低下が著しい。また1%未満の場合には保磁力減少や角型性低下が顕著になる。   When the FeCo alloy is an Fe-25% -1% Zr alloy containing 1 atomic percent of Zr, the mixing ratio of the FeCoZr alloy powder and the NdFeB-based sintered powder is 2: 8, and the above-mentioned preparation conditions are obtained by using the NdFeF-based treatment liquid. The magnet characteristics of the magnet sintered below have a maximum energy product of 67 MGOe and a coercive force of 2 MA / m. When the transition metal element such as Zr is contained exceeding 20 atomic%, the residual magnetic flux density is remarkably lowered. On the other hand, when the content is less than 1%, the coercive force decrease and the squareness decrease remarkably.

本実施例の焼結磁石の特徴は以下の通りである。1)FeCo系合金の平均粒径はNdFeB系合金の平均結晶粒径よりも大きい。2)粒界の一部に添加した金属元素またはフッ化物処理膜の構成元素,酸素,炭素の偏在が確認できる。3)FeCo系合金の飽和磁化がNdFeB系焼結粉末の飽和磁化よりも大きい。4)FeCo系合金の粒の成長方向は等方的ではなく異方性がある。5)FeCo系合金内には規則度が異なる強磁性相が認められる。6)FeCo系合金の形状異方性はNdFeB系合金の形状異方性よりも大きい。   The features of the sintered magnet of this example are as follows. 1) The average grain size of the FeCo alloy is larger than the average crystal grain size of the NdFeB alloy. 2) The uneven distribution of metal elements added to part of the grain boundaries or constituent elements of the fluoride treatment film, oxygen, and carbon can be confirmed. 3) The saturation magnetization of the FeCo-based alloy is larger than the saturation magnetization of the NdFeB-based sintered powder. 4) The grain growth direction of the FeCo alloy is not isotropic and is anisotropic. 5) Ferromagnetic phases having different degrees of order are observed in the FeCo alloy. 6) The shape anisotropy of the FeCo alloy is larger than that of the NdFeB alloy.

本実施例において、FeCo系合金とNdFeB系合金の間には磁気的な結合が作用しており、その粒界には酸化物や酸フッ化物,硼化物,炭化物などのいずれかが確認でき、粒界中心よりも粒内の鉄含有量が高く、粒界と接する強磁性相結晶粒の端部で重希土類元素及び添加元素の濃度が高い傾向がある。特に粒界の一部に(Fe,Co)mCnや(Fe,Co)m(C,F)n,(Fe,Co,M)mCn,(Fe,Co,M)m(C,F)nあるいは(Fe,Co,M)m(C,F,O)nが成長することにより保磁力が1〜5kOe増加する(m,nは正数、MはFe,Co以外の遷移金属元素)。またFeCo系合金には結晶の一部に格子歪みが導入される。この格子歪みは焼結後の冷却過程においてFeCo系合金とNdFeB系合金とでは熱膨張係数が異なるために導入されたものである。格子歪みの導入により、FeCo系合金の結晶磁気異方性が増大し、保磁力が増加する。   In this example, a magnetic coupling acts between the FeCo-based alloy and the NdFeB-based alloy, and any of oxides, oxyfluorides, borides, carbides, etc. can be confirmed at the grain boundaries. The iron content in the grains is higher than the center of the grain boundary, and the concentrations of heavy rare earth elements and additive elements tend to be high at the ends of the ferromagnetic phase crystal grains in contact with the grain boundaries. In particular, (Fe, Co) mCn, (Fe, Co) m (C, F) n, (Fe, Co, M) mCn, (Fe, Co, M) m (C, F) n Or, (Fe, Co, M) m (C, F, O) n grows to increase the coercive force by 1 to 5 kOe (m and n are positive numbers, and M is a transition metal element other than Fe and Co). In addition, lattice strain is introduced into a part of the crystal in the FeCo alloy. This lattice strain is introduced because the thermal expansion coefficient differs between the FeCo-based alloy and the NdFeB-based alloy in the cooling process after sintering. By introducing lattice strain, the magnetocrystalline anisotropy of the FeCo alloy increases and the coercive force increases.

水アトマイズ法により作成したFe−30原子%Co粉をNd2Fe14B系粉末と混合し仮成形後熱間成形し焼結する。FeCo系粉末とNdFeB系粉末の混合比は4:6であり、それぞれの平均粒子径は10μm,4μmである。FeCo系粉末はNdF系溶液処理により焼結時の液相への拡散を防止する。FeCo系粉末には添加元素として種々の遷移金属元素(FeやCo以外の遷移金属元素)を0.1〜10原子%の範囲で添加し、焼結後結晶粒界近傍に偏在化させて磁石の耐熱性を高めることが可能である。仮成形は2t/cm2の荷重で10kOeの磁界中で実施し、仮成形体を300〜900℃の温度範囲で1〜10t/cm2の荷重で加熱成形後1000〜1100℃の温度範囲で焼結させる。焼結後時効処理を施し焼結磁石を得た。焼結前の加熱成形工程を採用しない場合には減磁曲線の角型性が低下するが、加熱成形工程を採用することで角型性が増加し最大エネルギー積が60〜80MGOeの特性が得られる。加熱成形時に10〜100kOeの磁場を印加することで配向度を増加させ角型性向上を実現できる。粒界の一部には炭化物,硼化物,酸化物あるいは酸フッ化物の成長が確認でき、これらの粒界生成物の近傍に上記遷移金属元素またはGa,Alなどの元素の偏在が確認できる。 Fe-30 atomic% Co powder prepared by the water atomization method is mixed with Nd 2 Fe 14 B-based powder, and after hot forming, hot-formed and sintered. The mixing ratio of the FeCo-based powder and the NdFeB-based powder is 4: 6, and the average particle diameter is 10 μm and 4 μm, respectively. The FeCo-based powder prevents diffusion into the liquid phase during sintering by NdF-based solution treatment. Various kinds of transition metal elements (transition metal elements other than Fe and Co) are added to the FeCo-based powder in the range of 0.1 to 10 atomic% as an additive element, and the magnets are unevenly distributed near the grain boundaries after sintering. It is possible to improve the heat resistance. Preformed in a temperature range performed in a magnetic field of 10kOe under a load of 2t / cm 2, heat molding after 1000 to 1100 ° C. the preformed body in the temperature range of 300 to 900 ° C. under a load of 1~10t / cm 2 Sinter. After sintering, an aging treatment was performed to obtain a sintered magnet. The squareness of the demagnetization curve is reduced when the pre-sintering heat forming process is not used, but by using the heat forming process, the squareness is increased and a maximum energy product of 60 to 80 MGOe is obtained. It is done. By applying a magnetic field of 10 to 100 kOe at the time of heat forming, the degree of orientation can be increased to improve the squareness. The growth of carbides, borides, oxides or oxyfluorides can be confirmed in part of the grain boundaries, and the uneven distribution of the transition metal elements or elements such as Ga and Al can be confirmed in the vicinity of these grain boundary products.

上記作成プロセスにおいて、焼結前の加熱成形工程を導入せずに焼結させた場合、最大エネルギー積が40〜55MGOeとなり、FeCo系粉末の添加効果は得られにくい。焼結し易くするために低融点の焼結助材を添加した場合でも50〜60MGOeであり最大エネルギー積の増加効果は小さい。前記加熱成形を300℃未満の低温で実施させた場合、粉末が割れ配向が乱れることから磁気特性は向上しない。また900℃を超える温度範囲での成形は金型の消耗が著しく、量産化困難である。またこのような高温域ではフッ化物膜が剥離し易くなり容易に相互拡散が起こり、磁気特性が低下する。   In the above production process, when sintering is performed without introducing the pre-sintering heat forming step, the maximum energy product is 40 to 55 MGOe, and the effect of adding the FeCo-based powder is difficult to obtain. Even when a low melting point sintering aid is added to facilitate sintering, it is 50-60 MGOe, and the effect of increasing the maximum energy product is small. When the thermoforming is performed at a low temperature of less than 300 ° C., the magnetic properties are not improved because the crack orientation of the powder is disturbed. Molding in the temperature range exceeding 900 ° C. is remarkably consumed by the mold and is difficult to mass-produce. Also, in such a high temperature range, the fluoride film is easily peeled off, and mutual diffusion occurs easily, resulting in deterioration of magnetic characteristics.

水アトマイズ法で作成したFeCo系粉末には酸素が1000ppm含有し、NdF系処理を施した後の粉末表面にはNdOFなどの酸フッ化物または酸化物が形成される。このような表面生成物は容易に拡散せず、焼結後もその一部が粒界に残留する。FeCo系粉末の酸素濃度を500ppm未満にすることでこのような酸素含有物の成長は抑制され、炭化物が成長する。炭化物の中で特に(Fe,Co)mCn,(Fe,Co,M)m(C,F)nの準安定相が粒界近傍に成長すると保磁力が増加する。上記でm,nは正数、MはFeとCo以外の遷移金属元素である。   The FeCo powder prepared by the water atomization method contains 1000 ppm of oxygen, and an oxyfluoride or oxide such as NdOF is formed on the powder surface after the NdF treatment. Such surface products do not diffuse easily and some of them remain at the grain boundaries after sintering. By making the oxygen concentration of the FeCo-based powder less than 500 ppm, the growth of such oxygen-containing materials is suppressed, and carbides grow. The coercive force increases when a metastable phase of (Fe, Co) mCn and (Fe, Co, M) m (C, F) n grows in the vicinity of the grain boundary among carbides. In the above, m and n are positive numbers, and M is a transition metal element other than Fe and Co.

1 Nd2Fe14B結晶粒
2 重希土類元素含有酸化物
3 酸フッ化物
4 希土類リッチ粒界相
5 FeCo系合金の結晶粒
6 重希土類元素含有FeCo系合金
1 Nd 2 Fe 14 B crystal grains 2 Heavy rare earth element-containing oxide 3 Oxide fluoride 4 Rare earth rich grain boundary phase 5 FeCo alloy crystal grains 6 Heavy rare earth element-containing FeCo alloy

Claims (8)

鉄系合金,希土類鉄ホウ素系合金及び酸フッ化物を含有する焼結磁石において、
前記鉄系合金は、飽和磁化が前記希土類鉄ホウ素系合金よりも大きく、
前記鉄系合金と前記希土類鉄ホウ素系合金と間の粒界近傍に重希土類元素が偏在し、
前記鉄系合金の平均結晶粒径を(a)、前記希土類鉄ホウ素系合金の平均結晶粒径を(b)、前記鉄系合金の前記希土類鉄ホウ素系合金に対する平均結晶粒径比を(a/b)としたとき、1<(a/b)<100の関係にあることを特徴とする焼結磁石。
In sintered magnets containing iron alloys, rare earth iron boron alloys and oxyfluorides,
The iron-based alloy has a saturation magnetization larger than that of the rare earth iron boron-based alloy,
Heavy rare earth elements are unevenly distributed in the vicinity of grain boundaries between the iron-based alloy and the rare-earth iron boron-based alloy,
The average crystal grain size of the iron-based alloy is (a), the average crystal grain size of the rare earth iron-boron alloy is (b), and the average crystal grain size ratio of the iron-based alloy to the rare earth iron-boron alloy is (a) / B), a sintered magnet having a relationship of 1 <(a / b) <100.
請求項1に記載の焼結磁石において、
前記鉄系合金の結晶構造がbccまたはbct構造であることを特徴とする焼結磁石。
The sintered magnet according to claim 1, wherein
A sintered magnet characterized in that the crystal structure of the iron-based alloy is a bcc or bct structure.
請求項1に記載の焼結磁石において、
前記鉄系合金の飽和磁束密度が前記希土類鉄ホウ素系合金の飽和磁束密度よりも高いことを特徴とする焼結磁石。
The sintered magnet according to claim 1, wherein
A sintered magnet characterized in that a saturation magnetic flux density of the iron-based alloy is higher than a saturation magnetic flux density of the rare earth iron boron-based alloy.
請求項1に記載の焼結磁石において、
前記鉄系合金と前記希土類鉄ホウ素系合金との間には磁気的結合が生じ、前記鉄系合金には形状または磁化曲線の異方性が付加されていることを特徴とする焼結磁石。
The sintered magnet according to claim 1, wherein
A sintered magnet, wherein a magnetic coupling occurs between the iron-based alloy and the rare earth iron boron-based alloy, and anisotropy of a shape or a magnetization curve is added to the iron-based alloy.
請求項1に記載の焼結磁石において、
前記酸フッ化物の結晶構造が立方晶構造であることを特徴とする焼結磁石。
The sintered magnet according to claim 1, wherein
A sintered magnet, wherein the crystal structure of the oxyfluoride is a cubic structure.
請求項1に記載の焼結磁石において、
前記希土類鉄ホウ素系合金と前記鉄系合金の結晶が粒界を介して隣接していることを特徴とする焼結磁石。
The sintered magnet according to claim 1, wherein
A sintered magnet, wherein the rare earth iron boron alloy and the iron alloy crystals are adjacent to each other through a grain boundary.
請求項1に記載の焼結磁石において、
前記希土類鉄ホウ素系合金の配向性が前記鉄系合金の配向性よりも高いことを特徴とする焼結磁石。
The sintered magnet according to claim 1, wherein
A sintered magnet, wherein the orientation of the rare earth iron boron alloy is higher than the orientation of the iron alloy.
請求項1に記載の焼結磁石において、
前記鉄系合金の飽和磁化が170emu/g〜240emu/gであることを特徴とする焼結磁石。
The sintered magnet according to claim 1, wherein
The sintered magnet characterized in that the saturation magnetization of the iron-based alloy is 170 emu / g to 240 emu / g.
JP2011136875A 2011-06-21 2011-06-21 Sintered magnet Withdrawn JP2014194958A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011136875A JP2014194958A (en) 2011-06-21 2011-06-21 Sintered magnet
PCT/JP2012/064993 WO2012176655A1 (en) 2011-06-21 2012-06-12 Sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011136875A JP2014194958A (en) 2011-06-21 2011-06-21 Sintered magnet

Publications (1)

Publication Number Publication Date
JP2014194958A true JP2014194958A (en) 2014-10-09

Family

ID=47422495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011136875A Withdrawn JP2014194958A (en) 2011-06-21 2011-06-21 Sintered magnet

Country Status (2)

Country Link
JP (1) JP2014194958A (en)
WO (1) WO2012176655A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207798A (en) * 2015-04-21 2016-12-08 Tdk株式会社 Permanent magnet and rotary machine including the same
CN108242334A (en) * 2016-12-27 2018-07-03 丰田自动车株式会社 The manufacturing method of rare-earth magnet
JP2019208050A (en) * 2015-07-06 2019-12-05 ダイソン・テクノロジー・リミテッド magnet
US11179856B2 (en) 2017-03-30 2021-11-23 Soft Robotics, Inc. User-assisted robotic control systems
EP3996115A4 (en) * 2019-07-02 2023-08-02 Industry-University Cooperation Foundation Hanyang University ERICA Campus Fibrous magnetic structure and manufacturing method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6314381B2 (en) * 2013-07-23 2018-04-25 Tdk株式会社 Rare earth magnet, electric motor, and device including electric motor
JP6255783B2 (en) * 2013-08-06 2018-01-10 日立化成株式会社 COMPOSITE MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, AND COMPOSITE MAGNETIC MATERIAL MATERIAL SET
KR102118955B1 (en) * 2018-11-26 2020-06-04 엘지전자 주식회사 Magnetic powder, compressed powder core and method of preparation thereof
CN111430143B (en) * 2020-04-22 2022-05-31 安徽吉华新材料有限公司 Preparation method of rare earth neodymium iron boron permanent magnet
CN115231916B (en) * 2022-07-13 2023-08-15 西安西工大思强科技股份有限公司 Magnesia-alumina spinel forming crucible and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217918A (en) * 2002-01-25 2003-07-31 Hitachi Metals Ltd Alloy powder for rare earth sintered magnet superior in magnetization, the rare earth sintered magnet and its manufacturing method
JP4564993B2 (en) * 2007-03-29 2010-10-20 株式会社日立製作所 Rare earth magnet and manufacturing method thereof
JP5330785B2 (en) * 2008-09-22 2013-10-30 トヨタ自動車株式会社 NdFeB / FeCo nanocomposite magnet
JP4961454B2 (en) * 2009-05-12 2012-06-27 株式会社日立製作所 Rare earth magnet and motor using the same
JP2012124189A (en) * 2010-12-06 2012-06-28 Hitachi Ltd Sintered magnet

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207798A (en) * 2015-04-21 2016-12-08 Tdk株式会社 Permanent magnet and rotary machine including the same
US10170225B2 (en) 2015-04-21 2019-01-01 Tdk Corporation Permanent magnet and rotating machine including the same
JP2019208050A (en) * 2015-07-06 2019-12-05 ダイソン・テクノロジー・リミテッド magnet
CN108242334A (en) * 2016-12-27 2018-07-03 丰田自动车株式会社 The manufacturing method of rare-earth magnet
JP2018107328A (en) * 2016-12-27 2018-07-05 トヨタ自動車株式会社 Manufacturing method of rare-earth magnet
US10546688B2 (en) 2016-12-27 2020-01-28 Toyota Jidosha Kabushiki Kaisha Method for producing rare-earth magnet
CN108242334B (en) * 2016-12-27 2020-04-28 丰田自动车株式会社 Method for manufacturing rare earth magnet
US11179856B2 (en) 2017-03-30 2021-11-23 Soft Robotics, Inc. User-assisted robotic control systems
EP3996115A4 (en) * 2019-07-02 2023-08-02 Industry-University Cooperation Foundation Hanyang University ERICA Campus Fibrous magnetic structure and manufacturing method thereof

Also Published As

Publication number Publication date
WO2012176655A1 (en) 2012-12-27

Similar Documents

Publication Publication Date Title
JP5247754B2 (en) Magnetic material and motor using the magnetic material
Cui et al. Current progress and future challenges in rare-earth-free permanent magnets
JP2014194958A (en) Sintered magnet
JP5948033B2 (en) Sintered magnet
JP4900121B2 (en) Fluoride coat film forming treatment liquid and fluoride coat film forming method
Sugimoto Current status and recent topics of rare-earth permanent magnets
EP2146357B1 (en) Magnetic material for high frequency wave, and method for production thereof
JP5708454B2 (en) Alcohol solution and sintered magnet
US20180114614A1 (en) Rare Earth-Free Permanent Magnetic Material
Li et al. Prospect and status of iron-based rare-earth-free permanent magnetic materials
JP2013135542A (en) Sintered magnet motor
US11732336B2 (en) Magnetic material and method for producing same
JP2012124189A (en) Sintered magnet
JP2013254756A (en) Sintered magnet
CN108695033B (en) R-T-B sintered magnet
EP3690071A1 (en) Magnetic material and method for producing same
Rai et al. Magnetically enhanced hard–soft SmCo5–FeNi composites obtained via high energy ball milling and heat treatment
JP6485066B2 (en) Iron nitride magnet
Jurczyk et al. Magnetic properties of nanocomposite and materials with an excess of Fe
Qian et al. Magnetic properties of Mn 54 Al 46 C 2.44/Sm 2 Fe 17 N 3 and Mn 54 Al 46 C 2.44/Fe 65 Co 35 composites
KR101837279B1 (en) Method of controlling a growth of grains in a Rare Earth Permanent Magnet
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
WO2017191790A1 (en) Rare-earth permanent magnet, and method for manufacturing same
JP6225440B2 (en) Magnetic material, method for producing the same, and coating liquid used for the production
McGrath et al. Nanoparticles and nanocomposites for new permanent magnets

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007