JP2002139358A - Ultrasonic flowmeter - Google Patents
Ultrasonic flowmeterInfo
- Publication number
- JP2002139358A JP2002139358A JP2000334244A JP2000334244A JP2002139358A JP 2002139358 A JP2002139358 A JP 2002139358A JP 2000334244 A JP2000334244 A JP 2000334244A JP 2000334244 A JP2000334244 A JP 2000334244A JP 2002139358 A JP2002139358 A JP 2002139358A
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- flow
- pipe
- sheet
- ultrasonic flowmeter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、管路内を流れる
流体の流速または流量を測定する超音波流量計の改良に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of an ultrasonic flowmeter for measuring a flow rate or a flow rate of a fluid flowing in a pipeline.
【0002】[0002]
【従来の技術】図4は従来例を説明するためのもので、
音波流量計管路部の断面図を示す。2. Description of the Related Art FIG. 4 is for explaining a conventional example.
FIG. 2 shows a cross-sectional view of a sonic flowmeter pipe section.
【0003】すなわち、管路1の上流側と下流側に、圧
電セラミック等の圧電素子PZTによる電気/機械エネ
ルギー変換効果を利用して、超音波を送受信する1対の
超音波振動子2と3を、音線(超音波振動子2,3の振
動面中心どうしを結ぶ線)4が流れの方向に斜交するよ
うに設置し、一方で超音波を送信して他方で超音波を受
信する動作を交互に行ない、それぞれの伝播時間を測定
してその時間差から流速を求め、さらに既知である管路
断面積から流量に換算するものである。That is, a pair of ultrasonic transducers 2 and 3 for transmitting and receiving ultrasonic waves by utilizing the electric / mechanical energy conversion effect of a piezoelectric element PZT such as a piezoelectric ceramic are provided upstream and downstream of a pipeline 1. Are installed such that sound rays (lines connecting the centers of the vibrating surfaces of the ultrasonic vibrators 2 and 3) are oblique to the direction of flow, and transmit ultrasonic waves on the one hand and receive ultrasonic waves on the other hand. The operation is performed alternately, the respective propagation times are measured, the flow velocity is obtained from the time difference, and the flow rate is converted from the known pipe cross-sectional area.
【0004】数式を用いて説明すると、以下のようにな
る。[0004] The following is a description using mathematical expressions.
【0005】上流側の超音波振動子2から超音波を送信
し、下流側の超音波振動子3で受信するまでの伝播時間
をτ1 、下流側の超音波振動子3から超音波を送信し、
上流側の超音波振動子2で受信するまでの伝播時間をτ
2 とすると、上記τ1 は流れのある管路1内を超音波が
伝播する音線長さL(図4参照)を、流速vの音線方向
成分vcosθだけ増加した超音波の音速c+vcos
θで除して、下記(1)式のように計算され、同様にτ
2 は音線長さLを流速vの音線方向成分vcosθだけ
減少した超音波の音速c−vcosθで除して、下記
(2)式のように計算される。ここで、θは図4にも示
すように、流れ方向と音線がなす角(超音波打込み角)
を示している。An ultrasonic wave is transmitted from the ultrasonic oscillator 2 on the upstream side, a propagation time until reception by the ultrasonic oscillator 3 on the downstream side is τ 1 , and an ultrasonic wave is transmitted from the ultrasonic oscillator 3 on the downstream side. And
The propagation time until reception by the ultrasonic transducer 2 on the upstream side is τ
Assuming that 2 , τ 1 is the sound speed c + vcos of the ultrasonic wave obtained by increasing the sound ray length L (see FIG. 4) through which the ultrasonic wave propagates in the flow pipe 1 by the sound ray direction component vcos θ of the flow velocity v.
Divided by θ, it is calculated as the following equation (1), and similarly, τ
2 is calculated by the following equation (2) by dividing the sound ray length L by the sound velocity c-vcos θ of the ultrasonic wave reduced by the sound ray direction component vcos θ of the flow velocity v. Here, as shown in FIG. 4, θ is the angle between the flow direction and the sound ray (ultrasonic driving angle).
Is shown.
【0006】 τ1 =L/(c+vcosθ) …(1) τ2 =L/(c−vcosθ) …(2) ここで、τ2 −τ1 を求めると、 τ2 −τ1 =L/(c−vcosθ)−L/(c+vcosθ) =2Lvcosθ/(c2 −v2 cos2 θ) ≒2Lvcosθ/c2 …(3) となり、流速vは下記(4)式より求めることができ
る。Τ 1 = L / (c + vcos θ) (1) τ 2 = L / (c−vcos θ) (2) Here, when τ 2 −τ 1 is obtained, τ 2 −τ 1 = L / ( c−vcos θ) −L / (c + vcos θ) = 2Lvcos θ / (c 2 −v 2 cos 2 θ) ≒ 2Lvcos θ / c 2 (3), and the flow velocity v can be obtained from the following equation (4).
【0007】 v=c2 (τ2 −τ1 )/2Lcosθ …(4)V = c 2 (τ 2 −τ 1 ) / 2Lcos θ (4)
【0008】[0008]
【発明が解決しようとする課題】このように、超音波流
量計では、超音波が超音波振動子間を伝播する時間
τ1,τ2 の測定値より流速を換算するため、回路の時
間計測分解能や周囲ノイズ等の影響による時間の計測誤
差が、測定精度を悪化させる原因となる。τ1 ,τ2の
伝播時間測定に、それぞれΔτ1 ,Δτ2 の誤差が存在
する場合、流速vは下記(5)式のように表わされる。 v=c2 {(τ2 +Δτ2 )−(τ1 +Δτ1 )}/2Lcosθ =c2 (τ2 −τ1 )/2Lcosθ +c2 (Δτ2 −Δτ1 )/2Lcosθ …(5) 上記(5)式の第1項が流速の真値を表わす式であり、
第2項が誤差を表わす式である。これより明らかなよう
に、誤差成分(Δτ2 −Δτ1 )が流速(または流量)
によって変化しない場合、低流速(低流量)になるほど
流速の真値を示す(τ2 −τ1 )が小さいため、誤差の
影響が大きく計測精度が悪化する傾向がある。As described above, in the ultrasonic flowmeter, since the flow velocity is converted from the measured values of the times τ 1 and τ 2 in which the ultrasonic waves propagate between the ultrasonic transducers, the time measurement of the circuit is performed. Time measurement errors due to the effects of resolution, ambient noise, and the like cause deterioration in measurement accuracy. When there are errors of Δτ 1 and Δτ 2 in the measurement of the propagation times of τ 1 and τ 2 , respectively, the flow velocity v is expressed by the following equation (5). v = c 2 {(τ 2 + Δτ 2 ) − (τ 1 + Δτ 1 )} / 2L cos θ = c 2 (τ 2 −τ 1 ) / 2L cos θ + c 2 (Δτ 2 −Δτ 1 ) / 2L cos θ (5) The first term of the expression 5) is an expression representing a true value of the flow velocity,
The second term is an expression representing an error. As is clear from this, the error component (Δτ 2 −Δτ 1 ) is the flow velocity (or flow rate)
When the flow rate does not change, the lower the flow velocity (low flow rate), the smaller the true value of the flow velocity (τ 2 −τ 1 ), and the greater the influence of the error, the lower the measurement accuracy.
【0009】誤差成分を低減させる手段の1つに、(Δ
τ2 −Δτ1 )に比較して伝播時間差(τ2 −τ1 )を
大きくする方法がある。(Δτ2 −Δτ1 )の大きさが
一定の場合は、上記(3)式より音線流れ方向成分の長
さLcosθを大きくすれば、伝播時間差(τ2 −
τ1 )に比較して誤差の割合が小さくなるため、測定精
度を向上させることができる。ただし、音線流れ方向成
分の長さLcosθを大きくすると、以下のような問題
が生じる。One of the means for reducing the error component is (Δ
There is a method of increasing the propagation time difference (τ 2 −τ 1 ) compared to (τ 2 −Δτ 1 ). In the case where the magnitude of (Δτ 2 −Δτ 1 ) is constant, if the length Lcosθ of the sound ray flow direction component is increased from the above equation (3), the propagation time difference (τ 2 −
Since the ratio of the error is smaller than τ 1 ), the measurement accuracy can be improved. However, if the length Lcosθ of the sound ray flow direction component is increased, the following problem occurs.
【0010】管路が流れ方向に長くなり、流量計検出
部が大きくなる。[0010] The pipe becomes longer in the flow direction, and the flow meter detector becomes larger.
【0011】超音波が伝播する距離が長く、信号減衰
によるS/Nの低下により誤差成分(Δτ2 −Δτ1 )
が増大する。The distance over which the ultrasonic wave propagates is long, and the error component (Δτ 2 −Δτ 1 ) due to the decrease in S / N due to signal attenuation.
Increase.
【0012】したがって、この発明の課題は、超音波流
量計の管路長さを変更せず、流量計検出部の大きさを大
きくすることなくS/Nの低減を抑えることにより、高
精度の測定を可能にすることにある。Therefore, an object of the present invention is to provide a high-precision ultrasonic flowmeter by suppressing the reduction of S / N without changing the length of the conduit and without increasing the size of the flowmeter detector. It is to enable measurement.
【0013】[0013]
【課題を解決するための手段】このような課題を解決す
るため、請求項1の発明では、配管内を流れる流体の流
速または流量を測定する超音波流量計において、流れの
ある主管路と流れのない副管路とから構成され、管路の
上,下流側にそれぞれ配置された少なくとも1対以上の
超音波振動子の一方から送信された超音波を、前記流れ
のある主管路を通過したのちに、前記流れのない副管路
を通過し、再度流れのある主管路を通過して他方の超音
波振動子に到達する動作を、上,下流側の超音波振動子
に互いに繰り返し行なわせて測定を実行することを特徴
とする。上記請求項1の発明においては、前記流れのな
い管路は、流体抵抗が大きく流体は通さないが超音波は
通過させるシート状部材で仕切って形成することができ
る(請求項2の発明)。In order to solve such a problem, according to the first aspect of the present invention, an ultrasonic flowmeter for measuring a flow velocity or a flow rate of a fluid flowing in a pipe is provided with a main pipe having a flow and a flow path. The ultrasonic wave transmitted from one of at least one pair of ultrasonic vibrators arranged at the upper side and the downstream side of the pipeline, respectively, passes through the main pipeline having the flow. Thereafter, the upper and downstream ultrasonic vibrators are caused to repeatedly perform the operation of passing through the sub flow path without flow, passing through the main flow path with flow again, and reaching the other ultrasonic vibrator. And performing the measurement. In the first aspect of the present invention, the flow path without flow can be formed by partitioning with a sheet-like member which has a high fluid resistance and does not allow fluid to pass therethrough but allows ultrasonic waves to pass therethrough (the second aspect of the invention).
【0014】この請求項2の発明においては、前記シー
ト状部材は網目状のシート状部材であるか(請求項3の
発明)、または、前記シート状部材は前記主管路と副管
路との仕切り部分に、前記超音波の伝播方向に平行に配
置された羽根からなることができる(請求項4の発
明)。請求項1から4のいずれかの発明においては、前
記超音波を流れのある管路から流れのない管路へ導く反
射部と、流れのない管路から流れのある管路へ導く反射
部とをそれぞれ有することができる(請求項5の発
明)。According to the second aspect of the present invention, the sheet-like member is a mesh-like sheet-like member (the invention of the third aspect), or the sheet-like member is provided between the main conduit and the sub conduit. The partition portion may be composed of a blade arranged in parallel with the propagation direction of the ultrasonic wave (the invention of claim 4). In any one of the first to fourth aspects of the present invention, a reflecting portion that guides the ultrasonic waves from a flowing line to a flowing line, and a reflecting portion that guides the ultrasonic wave from a flowing line to a flowing line. (Invention of claim 5).
【0015】この請求項5の発明においては、前記反射
部は、その反射面形状が平面であり、1対の超音波振動
子と一方から送信された超音波の音線が、複数回の反射
後に他方の超音波振動子の中心に到達するよう、音線に
対して傾きを持った反射面を有するか(請求項6の発
明)、または、前記反射部は、その反射面形状が凹面で
あり、その断面形状が超音波振動子の振動中心と、流れ
のない副管路内の反射面間中心点を焦点とする楕円弧状
であることができる(請求項7の発明)。According to the fifth aspect of the present invention, the reflecting portion has a flat reflecting surface shape, and a pair of ultrasonic vibrators and the sound ray of the ultrasonic wave transmitted from one side are reflected a plurality of times. The reflecting portion may have a reflecting surface inclined with respect to the sound ray so as to reach the center of the other ultrasonic transducer later (the invention of claim 6), or the reflecting portion has a concave reflecting surface shape. In addition, the cross-sectional shape can be an elliptical arc whose focal point is the center of vibration of the ultrasonic vibrator and the center point between the reflection surfaces in the sub-channel where there is no flow (the invention of claim 7).
【0016】[0016]
【発明の実施の形態】図1はこの発明の第1の実施の形
態を示し、図4と同じく超音波流量計管路部の断面図で
ある。FIG. 1 shows a first embodiment of the present invention, and is a cross-sectional view of an ultrasonic flowmeter pipe section as in FIG.
【0017】ここでは、管路1は流体が流れる主管路1
aと、超音波は透過するが流体は通さない流体抵抗の大
きいシート5a,5bで仕切られた副管路1bとから構
成され、副管路1bには超音波を反射させその方向を変
化させる超音波反射部6a,6bが設けられている。Here, the pipeline 1 is a main pipeline 1 through which a fluid flows.
a and a sub-channel 1b partitioned by sheets 5a and 5b having high fluid resistance that transmits ultrasonic waves but does not allow fluid to pass through. The ultrasonic waves are reflected by the sub-channel 1b to change its direction. Ultrasonic reflecting portions 6a and 6b are provided.
【0018】流速,流量測定は従来と同様、上流側の超
音波振動子2から送信された超音波を下流側の超音波振
動子3で受信するまでの伝播時間τ1 と、下流側の超音
波振動子3から送信された超音波を上流側の超音波振動
子2で受信するまでの伝播時間τ2 を測定することで、
流速,流量を求める。図1において、上流側の超音波振
動子2から送信された超音波は主管路1aを通り、上流
側の超音波振動子2に対面し流れ方向に平行に設置され
た下流側の超音波透過シート5bを通過する。この下流
側の超音波透過シート5bを通過した超音波は副管路1
b内に入り、副管路1b内に設置された下流側の反射部
6bで反射され、上流方向に超音波が戻される。副管路
1b内を下流側から上流側に戻ってきた超音波は反射部
6aで反射され、管路の上流側に設置された主管路1a
と副管路1bとを仕切る超音波透過シート5a内に入
り、その音線上に設置された超音波振動子3で受信され
る。管路長を従来のままで高精度の測定を可能にするに
は、超音波振動子2,3から超音波透過シート5a,5
bまでの音線長さLを従来の音線長さLと同等にすると
ともに、超音波打込み角θも従来と同等にする。The flow velocity and the flow rate are measured in the same manner as in the prior art. The propagation time τ 1 until the ultrasonic wave transmitted from the upstream ultrasonic vibrator 2 is received by the downstream ultrasonic vibrator 3, and the downstream ultrasonic wave By measuring the propagation time τ 2 until the ultrasonic wave transmitted from the ultrasonic transducer 3 is received by the ultrasonic transducer 2 on the upstream side,
Find the flow velocity and flow rate. In FIG. 1, the ultrasonic wave transmitted from the ultrasonic transducer 2 on the upstream side passes through the main pipeline 1a, and faces the ultrasonic transducer 2 on the upstream side, and the ultrasonic transmission on the downstream side installed in parallel with the flow direction. The sheet passes through the sheet 5b. The ultrasonic wave that has passed through the ultrasonic wave transmitting sheet 5b on the downstream side is
b, and is reflected by the downstream reflecting portion 6b installed in the sub conduit 1b, and the ultrasonic wave is returned in the upstream direction. The ultrasonic wave returning from the downstream side to the upstream side in the sub-line 1b is reflected by the reflecting portion 6a, and the main line 1a installed on the upstream side of the line.
And enters the ultrasonic transmission sheet 5a that separates the sub-channel 1b from the sub-channel 1b, and is received by the ultrasonic transducer 3 installed on the sound ray. In order to enable high-precision measurement while keeping the pipe length unchanged, it is necessary to use the ultrasonic vibrators 2 and 3 to transmit the ultrasonic transmission sheets 5a and 5a.
The sound ray length L up to b is equal to the conventional sound ray length L, and the ultrasonic wave incidence angle θ is also equal to the conventional one.
【0019】また、超音波透過シート5a,5bとして
は、流量計内を通過する流体が例えば空気で、その周波
数を100〜1MHzとすると、線径18〜30μm,
ピッチ32〜54μm,空間率42%程度の金網、また
は、図2に示すような、ピッチ0.5〜1.5mm程度
でアルミ箔のように薄い金属羽根7を並べたシートで形
成したもの等が考えられる。なお、図2は薄い金属羽根
7を並べた超音波透過シートの具体例を示し、同(a)
は管路に沿う断面図、同(b)は主管路方向から見た正
面図である。さらに、反射部6b,6aは、主管路1a
内を通過する超音波振動子2,3の振動中心2a,3a
と反射部6b,6aをそれぞれ結ぶ音線4a,4cと、
音線4a,4cがそれぞれ反射部6b,6aと交わる点
6b1,6a1を結ぶ音線4bとがなす角を2等分する
線に垂直な平面とする。For the ultrasonic transmission sheets 5a and 5b, if the fluid passing through the flow meter is air, for example, and the frequency is 100 to 1 MHz, the wire diameter is 18 to 30 μm.
A wire mesh having a pitch of 32 to 54 μm and a porosity of about 42%, or a sheet formed by arranging thin metal blades 7 like aluminum foil at a pitch of about 0.5 to 1.5 mm as shown in FIG. Can be considered. FIG. 2 shows a specific example of an ultrasonic transmission sheet in which thin metal blades 7 are arranged, and FIG.
Is a cross-sectional view along the pipeline, and (b) is a front view as viewed from the main pipeline direction. Further, the reflecting portions 6b and 6a are connected to the main pipeline 1a.
Centers 2a, 3a of ultrasonic transducers 2, 3 passing through the inside
Sound lines 4a and 4c respectively connecting the reflection parts 6b and 6a,
A plane perpendicular to a line bisecting the angle formed by the sound ray 4b connecting the points 6b1 and 6a1 where the sound rays 4a and 4c intersect with the reflecting portions 6b and 6a, respectively.
【0020】このようにすると、上流側の超音波振動子
2から超音波を送信し、下流側の超音波振動子3で受信
するまでの時間τ1 は、音線4aを通過する時間τ1a、
音線4bを通過する時間τ1b、音線4cを通過する時間
τ1cの和である。In this way, the time τ 1 from when the ultrasonic wave is transmitted from the ultrasonic transducer 2 on the upstream side to when it is received by the ultrasonic transducer 3 on the downstream side is τ 1a which passes through the sound ray 4 a. ,
This is the sum of the time τ 1b passing through the sound ray 4b and the time τ 1c passing through the sound ray 4c.
【0021】 τ1 =τ1a+τ1b+τ1c …(6) 音線4a,4cを通過する時間τ1a,τ1cは、超音波の
音速が音線方向の流速成分vcosθだけ速くなってい
るため、下記(7),(8)式のようになる。Τ 1 = τ 1a + τ 1b + τ 1c (6) The time τ 1a and τ 1c passing through the sound rays 4a and 4c is because the sound velocity of the ultrasonic wave is faster by the flow velocity component vcos θ in the sound ray direction. , And the following equations (7) and (8).
【0022】 τ1a=L/(c+vcosθ) τ1c=L/(c+vcosθ) …(7) また、副管路1bは超音波透過シート5a,5bで仕切
られて、流速はほぼ零の状態で超音波の音速の影響は受
けないため、音線4bを通過する時間τ1bは、副管路1
bの長さをL’として、下記(8)式のようになる。Τ 1a = L / (c + vcos θ) τ 1c = L / (c + vcos θ) (7) Further, the sub conduit 1b is partitioned by the ultrasonic transmission sheets 5a and 5b, and the flow velocity is almost zero. The time τ 1b passing through the sound ray 4b is not affected by the sound speed of the sound wave,
Assuming that the length of b is L ′, the following equation (8) is obtained.
【0023】 τ1b=L’/c …(8) (6)〜(8)式から、(9)式が得られる。Τ 1b = L ′ / c (8) From equations (6) to (8), equation (9) is obtained.
【0024】 τ1 =2L/(c+vcosθ)+L’/c …(9) 同様に、下流側の超音波振動子3から超音波を送信し、
上流側の超音波振動子2で受信するまでの時間τ2 は、
音線4aを通過する時間τ2a、音線4bを通過する時間
τ2b、音線4cを通過する時間τ2cの和として表わされ
る。Τ 1 = 2L / (c + vcos θ) + L ′ / c (9) Similarly, an ultrasonic wave is transmitted from the ultrasonic transducer 3 on the downstream side,
The time τ 2 until reception by the ultrasonic transducer 2 on the upstream side is
It is expressed as the sum of the time τ 2a passing through the sound ray 4a, the time τ 2b passing through the sound ray 4b, and the time τ 2c passing through the sound ray 4c.
【0025】 τ2 =τ2a+τ2b+τ2c …(10) 音線4a,4cを通過する時間τ2a,τ2cと、音線4b
を通過する時間τ2bは下記(11)式となるので、時間
τ2 は下式(12)となる。Τ 2 = τ 2a + τ 2b + τ 2c (10) Times τ 2a and τ 2c passing through the sound rays 4a and 4c, and the sound ray 4b
Since the time tau 2b passing through the following equation (11) the time tau 2 is the following formula (12).
【0026】 τ2a=L/(c−vcosθ) τ2c=L/(c−vcosθ) τ2b=L’/c …(11) τ2 =2L/(c−vcosθ)+L’/c …(12) 以上より、発生する時間差は、(9),(12)式より
下記(13)式のようになり、従来と同様の管路長さで
伝播時間差が2倍となり、誤差の影響を低減した高精度
の測定が可能となる。Τ 2a = L / (c−vcos θ) τ 2c = L / (c−vcos θ) τ 2b = L ′ / c (11) τ 2 = 2L / (c−vcos θ) + L ′ / c ( 12) From the above, the generated time difference is as shown in the following expression (13) from the expressions (9) and (12). The propagation time difference is doubled with the same pipe length as the conventional one, and the influence of the error is reduced. Measurement with high accuracy.
【0027】 τ2 −τ1 ={2L/(c+vcosθ)+L’/c} −{2L/(c−vcosθ)+L’/c} =4Lvcosθ/(c2 −v2 cos2 θ) ≒4Lvcosθ/c2 …(13) また、伝播時間差の測定で、音速が温度により変化する
影響を低減するため、伝播時間τ1 ,τ2 の和を求める
ことで換算し補正を行なう。その換算式は下記の通りで
ある。[0027] τ 2 -τ 1 = {2L / (c + vcosθ) + L '/ c} - {2L / (c-vcosθ) + L' / c} = 4Lvcosθ / (c 2 -v 2 cos 2 θ) ≒ 4Lvcosθ / c 2 (13) Further, in the measurement of the propagation time difference, in order to reduce the influence of the change in sound speed due to the temperature, the correction is performed by calculating the sum of the propagation times τ 1 and τ 2 . The conversion formula is as follows.
【0028】 τ2 +τ1 ={2L/(c+vcosθ)+L’/c} +{2L/(c−vcosθ)+L’/c} =2Lc/(c2 −v2 cos2 θ)+2L’/c ≒2(L+L’)/c よって、次の(14)式となる。Τ 2 + τ 1 = {2L / (c + vcos θ) + L ′ / c} + {2L / (c−vcos θ) + L ′ / c} = 2Lc / (c 2 −v 2 cos 2 θ) + 2L ′ / c ≒ 2 (L + L ′) / c Therefore, the following equation (14) is obtained.
【0029】 c=2(L+L’)/(τ2 +τ1 ) …(14) 図3はこの発明の第2の実施の形態を示し、図4と同じ
く超音波流量計管路部の断面図である。C = 2 (L + L ′) / (τ 2 + τ 1 ) (14) FIG. 3 shows a second embodiment of the present invention, and is a cross-sectional view of an ultrasonic flowmeter pipe section as in FIG. It is.
【0030】第1の例では、超音波が伝播する距離が長
くなっているため、伝播による信号減衰の影響により、
誤差成分Δτ2 −Δτ1 が増大するおそれがある。そこ
で、このような信号減衰を低減するため、ここでは図示
のように反射部6a,6bを凹面とし、その断面形状を
超音波を収束させ拡散による減衰を低減する楕円弧形状
としている。楕円弧6a,6bの焦点は、超音波振動子
の振動中心2a,3aと、副管路内の管路の中心点1b
1とする。平面での反射に比較して、断面が楕円弧形状
の凹面である場合は、超音波振動子の指向性に依存する
ほぼ1回の反射で受信感度が約1.3〜1.5倍増加す
るため、反射による信号の増加が見込まれ、これにより
距離減衰による信号低下の影響を低減できることにな
る。In the first example, since the distance over which the ultrasonic wave propagates is long, the influence of signal attenuation due to the propagation causes
The error component Δτ 2 −Δτ 1 may increase. Therefore, in order to reduce such signal attenuation, the reflecting portions 6a and 6b are concave surfaces as shown in the figure, and the cross-sectional shape thereof is an elliptic arc shape that converges ultrasonic waves and reduces attenuation due to diffusion. The focal points of the elliptical arcs 6a and 6b are the vibration centers 2a and 3a of the ultrasonic transducer and the center point 1b of the pipeline in the sub pipeline.
Let it be 1. When the cross section is a concave surface having an elliptical arc shape as compared with the reflection on a plane, the reception sensitivity increases by about 1.3 to 1.5 times with almost one reflection depending on the directivity of the ultrasonic transducer. Therefore, it is expected that the signal will increase due to reflection, thereby reducing the influence of signal reduction due to distance attenuation.
【0031】[0031]
【発明の効果】この発明によれば、下記のような効果を
期待できる。According to the present invention, the following effects can be expected.
【0032】1)超音波流量計の管路の長さを変更せず
に有効な音線長さを長くとることができるため、発生す
る伝播時間差が大きくなり、時間差誤差の影響が少なく
高精度な流速,流量測定が可能となる。1) Since the effective sound ray length can be increased without changing the length of the pipeline of the ultrasonic flow meter, the generated propagation time difference increases, and the effect of the time difference error is small and high accuracy is achieved. Measurement of flow velocity and flow rate becomes possible.
【0033】2)断面形状が楕円弧状の凹面反射部を設
けることにより、超音波を収束させ拡散減衰を低減する
ことができる。2) By providing a concave reflecting portion having an elliptical arc cross section, it is possible to converge ultrasonic waves and reduce diffusion attenuation.
【図1】この発明の第1の実施の形態を示す構成図であ
る。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.
【図2】超音波透過シートの具体例を説明する説明図で
ある。FIG. 2 is an explanatory diagram illustrating a specific example of an ultrasonic transmission sheet.
【図3】この発明の第2の実施の形態を示す構成図であ
る。FIG. 3 is a configuration diagram showing a second embodiment of the present invention.
【図4】従来例を示す構成断面図である。FIG. 4 is a configuration sectional view showing a conventional example.
1…管路、1a…主管路、1b…副管路、2…上流側超
音波振動子、3…下流側超音波振動子、4,4a,4b
…音線、5a ,5b…超音波透過シート、6a,6b
…反射部、7…羽根。DESCRIPTION OF SYMBOLS 1 ... pipeline, 1a ... main pipeline, 1b ... sub pipeline, 2 ... upstream ultrasonic oscillator, 3 ... downstream ultrasonic oscillator, 4, 4a, 4b
... Sound rays, 5a, 5b ... Ultrasonic transmission sheets, 6a, 6b
... reflecting part, 7 ... feather.
Claims (7)
測定する超音波流量計において、 流れのある主管路と流れのない副管路とから構成され、 管路の上,下流側にそれぞれ配置された少なくとも1対
以上の超音波振動子の一方から送信された超音波を、前
記流れのある主管路を通過したのちに、前記流れのない
副管路を通過し、再度流れのある主管路を通過して他方
の超音波振動子に到達する動作を、上,下流側の超音波
振動子に互いに繰り返し行なわせて測定を実行すること
を特徴とする超音波流量計。1. An ultrasonic flowmeter for measuring a flow velocity or a flow rate of a fluid flowing in a pipe, comprising: a main pipe having a flow and a sub-channel having no flow, which are respectively disposed above and downstream of the pipe. The ultrasonic wave transmitted from one of the at least one pair of ultrasonic vibrators passed through the main line with the flow, then passed through the sub-line without the flow, and again the main line with the flow. An ultrasonic flowmeter characterized in that the upper and lower ultrasonic vibrators repeatedly perform the operation of passing through the second ultrasonic vibrator and reaching the other ultrasonic vibrator, thereby performing measurement.
く流体は通さないが超音波は通過させるシート状部材で
仕切って形成することを特徴とする請求項1に記載の超
音波流量計。2. The ultrasonic flowmeter according to claim 1, wherein the non-flowing pipe is formed by a sheet-like member having a large fluid resistance and impervious to fluid but transmitting ultrasonic waves. .
材であることを特徴とする請求項2に記載の超音波流量
計。3. The ultrasonic flowmeter according to claim 2, wherein the sheet-like member is a mesh-like sheet-like member.
との仕切り部分に、前記超音波の伝播方向に平行に配置
された羽根からなることを特徴とする請求項2に記載の
超音波流量計。4. The ultra-thin sheet according to claim 2, wherein the sheet-like member is composed of vanes arranged at a partition between the main pipe and the sub-pipe in parallel with the propagation direction of the ultrasonic wave. Sound flow meter.
ない管路へ導く反射部と、流れのない管路から流れのあ
る管路へ導く反射部とをそれぞれ有することを特徴とす
る請求項1から4のいずれかに記載の超音波流量計。5. A reflector which guides the ultrasonic wave from a pipe having a flow to a pipe having no flow, and a reflector which guides the ultrasonic wave from a pipe having no flow to a pipe having a flow. The ultrasonic flowmeter according to claim 1.
あり、1対の超音波振動子と一方から送信された超音波
の音線が、複数回の反射後に他方の超音波振動子の中心
に到達するよう、音線に対して傾きを持った反射面を有
することを特徴とする請求項5に記載の超音波流量計。6. The reflecting section has a flat reflecting surface shape, and a pair of ultrasonic transducers and a sound ray of an ultrasonic wave transmitted from one of the ultrasonic transducers are reflected by the other ultrasonic transducer after a plurality of reflections. The ultrasonic flowmeter according to claim 5, further comprising a reflecting surface inclined with respect to the sound ray so as to reach a center of the ultrasonic flowmeter.
あり、その断面形状が超音波振動子の振動中心と、流れ
のない副管路内の反射面間中心点を焦点とする楕円弧状
であることを特徴とする請求項5に記載の超音波流量
計。7. The reflecting section has a concave reflecting surface shape, and its cross-sectional shape is an elliptic arc whose focal point is the vibration center of the ultrasonic vibrator and the center point between the reflecting surfaces in the sub-flow passage without flow. The ultrasonic flowmeter according to claim 5, wherein the ultrasonic flowmeter has a shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000334244A JP2002139358A (en) | 2000-11-01 | 2000-11-01 | Ultrasonic flowmeter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000334244A JP2002139358A (en) | 2000-11-01 | 2000-11-01 | Ultrasonic flowmeter |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002139358A true JP2002139358A (en) | 2002-05-17 |
Family
ID=18810199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000334244A Pending JP2002139358A (en) | 2000-11-01 | 2000-11-01 | Ultrasonic flowmeter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002139358A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008122317A (en) * | 2006-11-15 | 2008-05-29 | Tokyo Keiso Co Ltd | Ultrasonic flow meter for gas |
-
2000
- 2000-11-01 JP JP2000334244A patent/JP2002139358A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008122317A (en) * | 2006-11-15 | 2008-05-29 | Tokyo Keiso Co Ltd | Ultrasonic flow meter for gas |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7373840B2 (en) | Ultrasonic flowmeter having a transmitting body fixed on the outer peripheral surface of the pipe | |
JPH10122923A (en) | Ultrasonic flow meter | |
US9279708B2 (en) | Ultrasonic flowmeter | |
CN103477194A (en) | Coupling element of an ultrasonic transducer for an ultrasonic flow meter | |
JP2895704B2 (en) | Ultrasonic flow meter | |
WO2005083371A1 (en) | Doppler type ultrasonic flowmeter | |
JP2004157101A (en) | Ultrasonic flowmeter | |
JP3328505B2 (en) | Ultrasonic flow meter | |
JP2002139358A (en) | Ultrasonic flowmeter | |
JP4368591B2 (en) | Ultrasonic flow meter | |
JP7151311B2 (en) | ultrasonic flow meter | |
JPH09287989A (en) | Ultrasonic flowmeter | |
JP3535625B2 (en) | Ultrasonic current meter | |
JPH09189589A (en) | Flow rate measuring apparatus | |
JP4827008B2 (en) | Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter | |
JP3583114B2 (en) | Ultrasonic flow velocity measuring device | |
JP3013596B2 (en) | Transmission ultrasonic flowmeter | |
JPH0915012A (en) | Ultrasonic wave flowmeter | |
JP3194270B2 (en) | Ultrasonic flow meter | |
JP2008014833A (en) | Ultrasonic flowmeter | |
JP3497279B2 (en) | Ultrasonic flow meter | |
JPH11237263A (en) | Ultrasonic flowmeter | |
JPH0933307A (en) | Ultrasonic transceiver | |
JP2022109347A (en) | Ultrasonic flowmeter | |
JPH0921665A (en) | Ultrasonic flow meter |