JPH0933307A - Ultrasonic transceiver - Google Patents

Ultrasonic transceiver

Info

Publication number
JPH0933307A
JPH0933307A JP18532195A JP18532195A JPH0933307A JP H0933307 A JPH0933307 A JP H0933307A JP 18532195 A JP18532195 A JP 18532195A JP 18532195 A JP18532195 A JP 18532195A JP H0933307 A JPH0933307 A JP H0933307A
Authority
JP
Japan
Prior art keywords
ultrasonic
medium
guides
ultrasonic wave
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18532195A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakurai
洋 桜井
Original Assignee
Fuji Electric Co Ltd
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, 富士電機株式会社 filed Critical Fuji Electric Co Ltd
Priority to JP18532195A priority Critical patent/JPH0933307A/en
Publication of JPH0933307A publication Critical patent/JPH0933307A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the directivity and make a high-accuracy measurement by burying guides made of a medium having a relatively low ultrasonic wave propagation velocity into frame bodies made of a medium having a relatively high propagation velocity. SOLUTION: Guides 3a , 3b , made of a member such as a plastic acoustically softer than the member of frame bodies 2a , 2b are buried into through holes bored with the same sizes as the cross sectional sizes of ultrasonic vibrators 1a , 1b on the frame bodies 2a , 2b , made of a medium such as an acoustically hard metal. Ultrasonic waves are propagated in the acoustically hard frame bodies 2a , 2b , at a velocity higher than that in the guides 3a , 3b , made of the soft medium, and the refraction of the ultrasonic waves occurs based on the Snell's law when the ultrasonic waves enter the boundary surface of both mediums. The ultrasonic waves propagated from the guides 3a , 3b , toward the frame bodies 2a , 2b , are refracted and propagated in the separating direction from the guides 3a , 3b on the boundary surface, and only the ultrasonic waves propagated in the axial direction of the guides 3a , 3b , are transmitted and received between ultrasonic transceivers 10a , 10b . The received wave-form is not collapsed, and the received signal having a good S-N ratio is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【産業上の利用分野】本発明は媒体中の音波の伝播時間
を検出して超音波が伝播する媒体の流速や、超音波を反
射する物体までの距離などを測定する超音波計測装置に
用いる超音波を発生して受信する超音波送受波器に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in an ultrasonic measuring device for detecting the propagation time of a sound wave in a medium and measuring the flow velocity of the medium in which the ultrasonic wave propagates and the distance to an object reflecting the ultrasonic wave. The present invention relates to an ultrasonic wave transmitter / receiver that generates and receives ultrasonic waves.
【0002】[0002]
【従来の技術】超音波が流れのある流体中を伝播すると
き、上流から下流に向かう場合と下流から上流に向かう
場合では伝播速度が異なる。この伝播速度の速度差が流
体の流速に比例関係になることを利用して流速を測定す
る従来技術による透過形超音波流量計の原理構成を図3
に示し、この図によって従来技術を説明する。
2. Description of the Related Art When an ultrasonic wave propagates in a flowing fluid, the propagation speed differs depending on whether it travels from upstream to downstream or from downstream to upstream. The principle configuration of a transmission type ultrasonic flowmeter according to the prior art that measures the flow velocity by utilizing the fact that the velocity difference of the propagation velocity has a proportional relationship with the flow velocity of the fluid is shown in FIG.
The conventional technique will be described with reference to FIG.
【0003】図3の超音波流量計において、1aと1b
とは超音波振動子であり、4aと4bとは配管5の中の
流体6と超音波振動子1a,1bとを音響的に結合する
斜角楔であり、超音波振動子と斜角楔は音響的に結合し
て超音波送受波器10a,10bを構成している。図3の超
音波流量計の上流の超音波送受波器10aに励振パルスを
印加して励振すると超音波が射出され、射出された超音
波は斜角楔4aを経て配管5から配管内の流体6へと伝
播する。そうして、配管内の流体6へと伝搬した超音波
は配管の対向面に到着し、斜角楔4bに案内されて受波
モードとなっている超音波送受波器10bに導かれて受信
される。この上流の超音波送受波器10aから下流の超音
波送受波器10bに到着するまでの音波の伝搬時間をT12
とし、逆に下流の超音波送受波器10bを励振して上流の
超音波送受波器10aで音波を受信する場合の伝播時間を
21とすると、それぞれの伝播時間T12とT21とは、下
記の式(1)および式(2)で表される。
In the ultrasonic flowmeter of FIG. 3, 1a and 1b
Is an ultrasonic transducer, and 4a and 4b are oblique wedges that acoustically couple the fluid 6 in the pipe 5 and the ultrasonic transducers 1a and 1b. Are acoustically coupled to form ultrasonic wave transmitters / receivers 10a and 10b. When an excitation pulse is applied to the ultrasonic transducer 10a upstream of the ultrasonic flowmeter of FIG. 3 to excite it, ultrasonic waves are emitted, and the emitted ultrasonic waves pass from the pipe 5 to the fluid inside the pipe via the bevel wedge 4a. Propagate to 6. Then, the ultrasonic wave propagated to the fluid 6 in the pipe arrives at the opposite surface of the pipe, is guided by the bevel wedge 4b and is guided to the ultrasonic transmitter / receiver 10b in the receiving mode, and is received. To be done. The propagation time of the sound wave from the upstream ultrasonic wave transmitter / receiver 10a to the downstream ultrasonic wave transmitter / receiver 10b is T 12
If, on the contrary, the propagation time when the downstream ultrasonic transducer 10b is excited and the sound wave is received by the upstream ultrasonic transducer 10a is T 21 , the respective propagation times T 12 and T 21 are Are expressed by the following equations (1) and (2).
【0004】[0004]
【数1】 [Equation 1]
【0005】[0005]
【数2】 [Equation 2]
【0006】ここにD;配管の内径 τ;配管、斜角楔での伝搬時間 C;流体中での音速 V;流体の流速 θ;流体中への超音波の入射角 超音波流量計では、式(1)で与えられる流れに沿う方
向の超音波の伝播時間T12と、式(2)で与えられる流
れに逆方向の超音波の伝播時間T21を計測して連立方程
式に代入、流速Vを演算によって求めている。
Where D is the inner diameter of the pipe, τ is the propagation time in the pipe and the oblique wedge, C is the speed of sound in the fluid, V is the flow velocity of the fluid, and θ is the incident angle of the ultrasonic wave in the fluid. The propagation time T 12 of the ultrasonic wave in the direction along the flow given by the equation (1) and the propagation time T 21 of the ultrasonic wave in the direction opposite to the flow given by the equation (2) are measured and substituted into the simultaneous equations, and the flow velocity is calculated. V is calculated.
【0007】上記の構成の超音波流量計において超音波
振動子1a,1bと配管5内の流体6とを音響的に結合
する斜角楔4a,4bとしては、従来プラスチック、金
属などの均一部材を超音波振動子と配管のそれぞれに密
着する形状に成形加工したものが用いられている。とこ
ろで、超音波振動子1としては、斜角楔4に対する取付
寸法とコスト上の制約から放射する超音波の波長に対比
して放射面の寸法が有限の振動子が使用されるので、超
音波振動子1が放射する超音波は単一の指向性を備えた
完全な平面波にはならず、波面の縁部での波動の性質が
残る多少の拡散性を内在していることとなる。
In the ultrasonic flowmeter having the above structure, the beveled wedges 4a and 4b for acoustically coupling the ultrasonic transducers 1a and 1b and the fluid 6 in the pipe 5 are conventionally made of a uniform material such as plastic or metal. It is used that is processed into a shape in which the ultrasonic transducer and the pipe are brought into close contact with each other. By the way, as the ultrasonic transducer 1, since the size of the emitting surface is finite in comparison with the wavelength of the ultrasonic wave to be radiated due to the mounting size to the bevel wedge 4 and the cost limitation, the ultrasonic wave is used. The ultrasonic wave radiated by the oscillator 1 does not become a complete plane wave having a single directivity, but has a slight diffusivity inherent in the wave nature at the edge of the wavefront.
【0008】上記のように、超音波振動子1が放射する
超音波が多少の拡散性を内在しているので、斜角楔4を
経て超音波振動子1から配管中の流体に向けて放射され
る超音波は、図4に例示のように太い2点鎖線で示され
た主音波に対し多少の広がりをもつ細い2点鎖線で示さ
れる方向にも伝播することとなり、その結果、受波モー
ドにある超音波送受波器10bの超音波振動子1bには図
3中で点線で例示のような多少異なる伝播経路を経た超
音波が入射して受波信号を与えることとなる。
As described above, since the ultrasonic wave radiated by the ultrasonic vibrator 1 has some diffusivity, the ultrasonic wave is radiated from the ultrasonic vibrator 1 toward the fluid in the pipe through the bevel wedge 4. The generated ultrasonic wave also propagates in the direction indicated by the thin two-dot chain line, which has a little spread, with respect to the main acoustic wave indicated by the thick two-dot chain line as illustrated in FIG. In the ultrasonic transducer 1b of the ultrasonic transmitter / receiver 10b in the mode, ultrasonic waves having a slightly different propagation path as illustrated by a dotted line in FIG. 3 are incident to give a received signal.
【0009】伝播経路が異なれば、その分伝播時間も異
なるので、送信モードにある超音波振動子1aから鋭い
立上りの超音波が放射されたとしても受信モードにある
超音波振動子1bには伝波経路に応じた伝播遅れをもつ
超音波が入射し、これらが重ね合された結果が受波信号
として出力されるので、立上りの鈍いノイズ成分からの
分離が明瞭でない信号が得られることとなり、高精度の
測定を妨げる要因となる。また、音響媒質中の音速は媒
質の温度に依存するので超音波送受器が鋭い指方向性を
備えていない場合、温度によって超音波伝播経路にゆら
ぎを生じて測定結果に温度の影響が現れることとなる。
Since different propagation paths cause different propagation times accordingly, even if an ultrasonic wave having a sharp rising edge is emitted from the ultrasonic transducer 1a in the transmission mode, it is transmitted to the ultrasonic transducer 1b in the reception mode. An ultrasonic wave with a propagation delay according to the wave path is incident, and the result of superposition of these is output as a received signal, so a signal whose separation from the rising noise component is not clear is obtained, It becomes a factor that hinders highly accurate measurement. Also, because the speed of sound in an acoustic medium depends on the temperature of the medium, if the ultrasonic handset does not have sharp finger directionality, fluctuations in the ultrasonic propagation path due to temperature may cause temperature effects in the measurement results. Becomes
【0010】以上に説明の超音波流量計のみならず、超
音波を物体に向けて放射し該物体による反射波の伝達時
間を検出することによって物体までの距離を測定する超
音波レベル計においても、超音波送受器が鋭い指方向性
を備えていない場合、異なる伝播経路を経た伝播時間も
異なる超音波が受信モードの超音波送受波器に入射して
ノイズ成分からの分離が明瞭でない受波信号が与えられ
るので高精度の測定を妨げる要因となる。
Not only the ultrasonic flowmeter described above, but also an ultrasonic level meter for measuring the distance to an object by radiating ultrasonic waves to an object and detecting the propagation time of a reflected wave by the object. , If the ultrasonic transducer does not have sharp finger directionality, the ultrasonic waves with different propagation times through different propagation paths enter the ultrasonic transducer in reception mode and the separation from the noise component is not clear. Since a signal is given, it becomes a factor that hinders highly accurate measurement.
【0011】[0011]
【発明が解決しようとする課題】本発明は従来技術にも
とづく超音波流量計や超音波レベルけいなどの超音波計
測装置における上記の問題点を解決すべく鋭い指向性を
備えた超音波送受波器を提供し、超音波計測装置による
測定の精度を向上させることを課題とする。
SUMMARY OF THE INVENTION The present invention is directed to an ultrasonic wave transmitting / receiving apparatus having a sharp directivity in order to solve the above-mentioned problems in an ultrasonic measuring device such as an ultrasonic flowmeter and an ultrasonic level gauge based on the prior art. It is an object of the present invention to provide a measuring instrument and improve the accuracy of measurement by an ultrasonic measuring device.
【0012】[0012]
【課題を解決するための手段】上記の課題達成のため、
本発明においては超音波送受波器を超音波振動子と、こ
の超音波振動子の断面寸法に相当の貫通孔が穿設された
くさび形をなす忰体と、忰体に穿設された貫通孔に埋込
まれる超音波の伝播速度が忰体中での伝播速度より遅い
部材からなるガイドとを音響的に密に接合して構成す
る。
[Means for Solving the Problems] To achieve the above objects,
In the present invention, the ultrasonic transducer is an ultrasonic transducer, a wedge-shaped body with a through hole corresponding to the cross-sectional size of the ultrasonic transducer, and a penetrating body. The ultrasonic wave embedded in the hole is acoustically densely joined to a guide made of a member whose propagation velocity is slower than that in the body.
【0013】[0013]
【作用】超音波の伝播速度が異なる媒体が接合する境界
面では、超音波の伝播方向はスネルの法則にもとづいて
伝播速度が速い媒体の側へ向く屈折が起こるので、超音
波伝播速度が遅い媒体でなるガイドから伝播速度が速い
媒体でなる忰体にむけて伝播する超音波は、ガイドと忰
体の境界面でガイドから遠ざかる方向に屈折して伝播
し、結局ガイドの軸方向に伝播する超音波のみが本発明
に基づいて構成された超音波送受波器間で送受される。
[Operation] At the boundary surface where the mediums with different ultrasonic wave propagation speeds are joined, the ultrasonic wave propagation direction is slow because the ultrasonic wave propagation direction is based on Snell's law and refraction occurs toward the medium with the faster propagation speed. The ultrasonic wave that propagates from the medium guide to the medium body with a high propagation speed is refracted and propagates in the direction away from the guide at the boundary surface between the guide and the body, and eventually propagates in the axial direction of the guide. Only ultrasonic waves are transmitted and received between the ultrasonic transducers constructed according to the present invention.
【0014】[0014]
【実施例】本発明にもとづく超音波送受波器の一実施例
の構成を図1に例示して本発明を説明する。なお、図1
において(a)は送信モードを、(b)は受信モードに
ある超音波送受波器を示している。図1に例示の超音波
送受波器10a,10bにおいて、1a,1bは圧電素子P
ZTなどでなる超音波振動子であり、忰体2a,2bお
よびガイド3a,3bによって斜角楔が構成されてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to FIG. 1 which illustrates the configuration of an embodiment of an ultrasonic wave transmitter / receiver according to the present invention. FIG.
2A shows the transmission mode and FIG. 3B shows the ultrasonic transducer in the reception mode. In the ultrasonic transducers 10a and 10b illustrated in FIG. 1, 1a and 1b are piezoelectric elements P.
This is an ultrasonic transducer made of ZT or the like, and the beveled wedges are formed by the bodies 2a and 2b and the guides 3a and 3b.
【0015】忰体2a,2bはガイド3a,3bより音
響的に硬い媒体たとえば金属からなり、この忰体2a,
2bに超音波振動子1a,1bの断面寸法と同等の寸法
で穿った貫通穴部に忰体2a,2bの部材より音響的に
軟らかい、たとえばプラスチックなどの部材が音響的に
密に結合するように埋込まれている。超音波は、音響的
に硬い媒体中では軟らかい媒体中でより高速度で伝播
し、異なる媒体の境界面に超音波が入射するとスネルの
法則にもとづく超音波の屈折が起こる。
The bodies 2a, 2b are made of a medium acoustically harder than the guides 3a, 3b, such as a metal.
2b has a through hole formed in the same size as the cross-sectional dimensions of the ultrasonic transducers 1a, 1b so as to be acoustically softer than the members of the bodies 2a, 2b, for example, a member such as plastic may be acoustically tightly coupled. Embedded in. The ultrasonic wave propagates at a higher speed in the soft medium in the acoustically hard medium, and when the ultrasonic wave is incident on the boundary surface of the different medium, refraction of the ultrasonic wave based on Snell's law occurs.
【0016】音響的に軟らかい媒質1から硬い媒質2へ
超音波が入射するときの超音波のスネルの法則にもとづ
く屈折の様子を図2に示し、この場合に成立するスネル
の法則を式(3)に示す。
FIG. 2 shows the state of refraction of an ultrasonic wave based on Snell's law when an ultrasonic wave is incident from an acoustically soft medium 1 to a hard medium 2, and Snell's law that holds in this case is expressed by equation (3). ).
【0017】[0017]
【数3】 (Equation 3)
【0018】ここに θ1 ;媒体1から媒体2への入射角度 θ2 ;媒体1から媒体2への屈折角度 C1 ;媒体1中での超音波伝播速度 C2 ;媒体2中での超音波伝播速度 図2および式(1)から読み取られるように、超音波の
伝播速度が遅い媒体1から速い媒体2へ超音波が入射す
ると、その伝播方向が伝播速度が速い媒体の側へ屈折す
る現象が起こることとなる。
[0018] theta 1 herein; ultrasonic propagation velocity C 2 of the in medium 1; refraction angle C 1 to the medium 1 from the medium 2; from the medium 1 the incident angle theta 2 to the medium 2 in the medium 2 Ultra Sound Wave Propagation Velocity As can be seen from FIG. 2 and Expression (1), when an ultrasonic wave is incident on the medium 2 having a low ultrasonic wave propagation speed to the medium 2 having a high ultrasonic wave propagation speed, its propagation direction is refracted toward the medium having a high propagation speed. A phenomenon will occur.
【0019】超音波の伝播速度が異なる媒体が接合する
境界で上記のような超音波の伝播方向の屈折が起こるの
で、図1に例示のような超音波伝播速度が遅い媒体から
なるガイド3aを伝播速度が速い媒体からなる忰体2a
に埋込んだ構成の超音波送受波器10aにおいては、超音
波振動子1aからガイド2aに向けて放射された超音波
の実線で示されている放射軸から外れた成分は、2点鎖
線で例示のようにガイド3aと忰体2aとの境界で忰体
2aに侵入する方向に屈折され、結局受波モードにある
送受波器10bの配置方向とは大きく異なる方向に伝播す
ることなる。
Since the refraction in the ultrasonic wave propagation direction as described above occurs at the boundary where the mediums having different ultrasonic wave propagation speeds are joined, the guide 3a made of a medium having a low ultrasonic wave propagation speed as shown in FIG. 1 is used. Body 2a made of medium with high propagation speed
In the ultrasonic wave transmitter / receiver 10a having a configuration embedded in, the component off the radiation axis indicated by the solid line of the ultrasonic wave emitted from the ultrasonic transducer 1a toward the guide 2a is indicated by a two-dot chain line. As illustrated, at the boundary between the guide 3a and the body 2a, the light is refracted in the direction of entering the body 2a, and eventually propagates in a direction greatly different from the arrangement direction of the transducer 10b in the wave receiving mode.
【0020】一方受波モードにある超音波送受波器10b
に入射する超音波のうち、実線で示されたガイド2bの
軸方向沿って入射する超音波は超音波振動子1bへ導か
れて受波信号を与えるが、ガイドの軸方向に沿わない2
点鎖線で例示の方向に入射した超音波は、ガイド2bと
忰体1bの境界面でより忰体の方向へ屈折されて伝播し
て超音波振動子1bへは入射しなくなる。
On the other hand, the ultrasonic transmitter / receiver 10b in the receiving mode
Among the ultrasonic waves incident on, the ultrasonic waves incident along the axial direction of the guide 2b indicated by the solid line are guided to the ultrasonic transducer 1b and give a received signal, but do not follow the axial direction of the guide 2b.
The ultrasonic wave incident in the direction illustrated by the dotted line is further refracted and propagated in the direction of the body at the boundary surface between the guide 2b and the body 1b and does not enter the ultrasonic transducer 1b.
【0021】以上に説明のように、本発明にもとづいて
構成された超音波送受波器を用いると、ガイド2a,2
bの軸方向に沿って伝播する超音波のみが送受され、ガ
イド軸の方向と異なる経路を経た超音波が受波されなく
なり、位相の異なる受波成分の重ね合わせによって生じ
る受波信号のくずれはなくなり送波と同等の鋭い立上り
のS/N比のよい受波信号が得られることとなる。
As described above, when the ultrasonic wave transmitter / receiver constructed according to the present invention is used, the guides 2a, 2
Only ultrasonic waves propagating along the axial direction of b are transmitted and received, ultrasonic waves passing through a path different from the direction of the guide axis are not received, and the collapse of the received signal caused by the superposition of received components with different phases Therefore, a received signal with a sharp rising edge and a good S / N ratio equivalent to the transmitted wave can be obtained.
【0022】[0022]
【発明の効果】超音波伝播速度が相対的に遅い媒体から
なるガイドを伝播速度が相対に速い媒体でなる忰体に埋
込で構成した本発明にもとづく超音波送受波器では、ガ
イドの軸方向をはずれた方向に伝播する超音波成分は、
ガイドと忰体の境界に達したとき、ガイド軸の方向から
よりはずれる方向伝播するように屈折されるので、送受
波器間ではガイドの軸方向に伝播する超音波成分のみが
送受され、異なる経路を伝播した位相差を生じた超音波
成分の重ね合わせにもとづく受信信号の波形のくずれは
なくなりS/N比のよい受信信号が得られて、より高精
度の測定が可能になるという効果が得られる。
According to the present invention, in the ultrasonic transducer according to the present invention, a guide made of a medium having a relatively low propagation speed is embedded in a body made of a medium having a relatively high propagation speed. The ultrasonic component that propagates out of the direction is
When it reaches the boundary between the guide and the body, it is refracted so that it propagates away from the direction of the guide axis, so only the ultrasonic component propagating in the axial direction of the guide is transmitted and received between the transducers, and the different paths The effect that the waveform of the received signal based on the superposition of the ultrasonic wave components that propagated the phase difference is not distorted and the received signal with a good S / N ratio can be obtained, and more accurate measurement can be obtained. To be
【0023】また、本発明にもとづく超音波送受波器を
設けた超音波流量計では、超音波送受波器に設けたガイ
ドの軸に沿って伝播する超音波成分のみが送受波され、
超音波送受波器は、これを設ける配管に関して対象性を
保つように配置されるので流量計設置場所の温度あるい
は流体の温度が変動して、それぞれの媒体中での音速が
変動して媒体の境界面での超音波屈折方向に多少の変動
を生ずる場合であっても、この変動は送波側と受波側に
関し同等に表われるので互に相殺され、測定をみだすこ
とがないので、本発明による超音波送受波器を用いた超
音波流量計では測定に対する温度変動の影響が小さくな
るという効果も得られる。
Further, in the ultrasonic flowmeter provided with the ultrasonic wave transmitter / receiver according to the present invention, only the ultrasonic wave component propagating along the axis of the guide provided in the ultrasonic wave transmitter / receiver is transmitted / received,
The ultrasonic wave transmitter / receiver is arranged so as to maintain symmetry with respect to the pipe in which it is installed, so the temperature of the flowmeter installation location or the temperature of the fluid fluctuates, and the speed of sound in each medium fluctuates, causing Even if some fluctuations occur in the ultrasonic refraction direction at the boundary surface, these fluctuations appear equally on the transmitting side and the receiving side, so they cancel each other out and do not cause measurement. The ultrasonic flowmeter using the ultrasonic wave transmitter / receiver according to the present invention also has an effect of reducing the influence of temperature fluctuation on the measurement.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明にもとづく超音波送受波器の構成図FIG. 1 is a configuration diagram of an ultrasonic wave transceiver according to the present invention.
【図2】超音波屈にかかわるフレネ法則説明図[Fig.2] Illustration of Frenet's law related to ultrasonic bending
【図3】超音波流量計原理説明図[Figure 3] Principles of ultrasonic flow meter
【図4】従来技術による超音波送受波器における超音波
伝播状況説明図
FIG. 4 is an explanatory view of an ultrasonic wave propagation state in an ultrasonic wave transmitter / receiver according to a conventional technique.
【符号の説明】[Explanation of symbols]
1a,1b 超音波振動子 2a,2b 忰体 3a,3b ガイド 4a,4b 斜角楔 5 配管 6 流体 10a,10b 超音波送受波器 1a, 1b Ultrasonic transducer 2a, 2b Body 3a, 3b Guide 4a, 4b Beveled wedge 5 Piping 6 Fluid 10a, 10b Ultrasonic transducer

Claims (1)

    【特許請求の範囲】[Claims]
  1. 【請求項1】超音波振動子と、この超音波振動子の断面
    寸法に相当の貫通孔が穿設されたくさび形をなす忰体
    と、忰体に穿設された貫通孔に埋込まれる超音波の伝播
    速度が忰体中での伝播速度より遅い部材からなるガイド
    と、が音響的に密に接合して構成されたことを特徴とす
    る超音波送受波器。
    1. An ultrasonic transducer, a wedge-shaped body having a through-hole corresponding to the cross-sectional dimension of the ultrasonic transducer, and a through-hole formed in the body. An ultrasonic transducer, wherein a guide made of a member having a propagation speed of ultrasonic waves slower than the propagation speed in the body is acoustically densely joined to each other.
JP18532195A 1995-07-21 1995-07-21 Ultrasonic transceiver Pending JPH0933307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18532195A JPH0933307A (en) 1995-07-21 1995-07-21 Ultrasonic transceiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18532195A JPH0933307A (en) 1995-07-21 1995-07-21 Ultrasonic transceiver

Publications (1)

Publication Number Publication Date
JPH0933307A true JPH0933307A (en) 1997-02-07

Family

ID=16168794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18532195A Pending JPH0933307A (en) 1995-07-21 1995-07-21 Ultrasonic transceiver

Country Status (1)

Country Link
JP (1) JPH0933307A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004098234A1 (en) * 2003-04-28 2004-11-11 Matsushita Electric Industrial Co., Ltd. Ultrasonic sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004098234A1 (en) * 2003-04-28 2004-11-11 Matsushita Electric Industrial Co., Ltd. Ultrasonic sensor
US7162930B2 (en) 2003-04-28 2007-01-16 Matsushita Electric Industrial Co., Ltd. Ultrasonic sensor

Similar Documents

Publication Publication Date Title
US4930358A (en) Method of and apparatus for measuring flow velocity by using ultrasonic waves
US7373840B2 (en) Ultrasonic flowmeter having a transmitting body fixed on the outer peripheral surface of the pipe
US10036763B2 (en) Beam shaping acoustic signal travel time flow meter
JP5629265B2 (en) Ultrasonic flow meter
JP2003075219A (en) Clamp-on ultrasonic flowmeter
US4462256A (en) Lightweight, broadband Rayleigh wave transducer
US4967873A (en) Acoustic lens apparatus
KR101513697B1 (en) Ultrasonic transducing apparatus for measuring pipe thickness and apparatus for measuring flow velocity using the same
JPH05223608A (en) Ultrasonic flowmeter
JPH0933307A (en) Ultrasonic transceiver
JP2005180988A (en) Ultrasonic flowmeter
JP3535612B2 (en) Ultrasound transceiver
JP3711885B2 (en) Pipe internal pressure measuring device and pipe internal pressure measuring method
JP2004045425A (en) Flow rate measuring device
JP3328505B2 (en) Ultrasonic flow meter
JP3013596B2 (en) Transmission ultrasonic flowmeter
JPH09287989A (en) Ultrasonic flowmeter
JPH06103206B2 (en) Ultrasonic velocity measuring method and apparatus
JP6674252B2 (en) Clamp-on ultrasonic flowmeter
JPH0989615A (en) Ultrasonic flowmeter
JP2002139358A (en) Ultrasonic flowmeter
JP2002250644A (en) Ultrasound transmitter/receiver for clamp-on type ultrasonic flowmeter
JPH11237263A (en) Ultrasonic flowmeter
JP5827809B2 (en) Ultrasonic probe and method for measuring circumference of tubular object
JP2005195374A (en) Ultrasonic flowmeter, and wedge used therefor