JP2002124673A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2002124673A
JP2002124673A JP2001230407A JP2001230407A JP2002124673A JP 2002124673 A JP2002124673 A JP 2002124673A JP 2001230407 A JP2001230407 A JP 2001230407A JP 2001230407 A JP2001230407 A JP 2001230407A JP 2002124673 A JP2002124673 A JP 2002124673A
Authority
JP
Japan
Prior art keywords
film
oxide film
silicon oxide
semiconductor device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001230407A
Other languages
Japanese (ja)
Inventor
Yukio Morozumi
幸男 両角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2001230407A priority Critical patent/JP2002124673A/en
Publication of JP2002124673A publication Critical patent/JP2002124673A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve reliability and yield about the electric characteristics and the quality to contribute to a stable supply of more fined and multi-function semiconductor devices, by laminating plasma-reacted organic silane NSG and PSG films on a silicide electrode wiring or an impurity layer in a MOSLSI, etc., and forming a layer insulation film planarized with coat glass. SOLUTION: A plasma-reacted NSG film 20 and PSG film 21 with TEOS are formed on a gate electrode wiring 14 having a Ti silicide surface and an impurity layer 17. Cost glass 22 is spin-coated on the films 20, 21 and annealed at 800 deg.C. Contact holes are formed by wet etching with an HF-containing water solution and anisotropical etching by a reactive ion etcher, and then a metal wiring 23 is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
に関し、特に表面がシリイド構造のゲート電極配線や不
純物層上に形成する層間絶縁膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to an interlayer insulating film formed on a gate electrode wiring or an impurity layer having a silidic surface.

【0002】[0002]

【従来の技術】従来、微細,高速化を図る目的で、Po
ly−Siのゲート電極配線あるいはSi基板の不純物
層の各表面をTi,W,Mo等のシリサイド(硅素化
物)構造とし配線抵抗やコンタクト抵抗を下げた半導体
装置が提案されており、これらの製造方法は図2の様
に、例えばSi基板11にフィールド絶縁膜12を選択
酸化で形成し、そのアクティブ領域にゲート酸化膜13
を形成後Poly−Siを気相成長させフォトリソ工程
で選択エッチングしゲート電極配線14形成後、ソー
ス,ドレインの低濃度不純物層16にリン等の不純物を
イオン注入した後、シリコン酸化膜の側壁スぺーサー1
5を介しソース,ドレインの高濃度不純物層17にヒ素
等をイオン注入してLDD(lightly dope
d drain)構造とする。次にゲート電極配線14
や不純物層17のSi面を露出後、Tiを約500Åス
パッタ成長させ700℃前後のハロゲンランプで瞬時ア
ニールを行ない、水酸化アンモニウムと過酸化水素の混
合水溶液中に浸漬すると選択エッチングされてSi表面
のみにTiのモノシリサイド層19が残り、これを更に
約800℃のランプアニールを行いダイシリサイド化さ
せ、この結果ゲート電極配線14や不純物層17は、側
壁スペーサー15やフィールド絶縁膜12を介して自己
整合的にシリサイドが形成されたサリサイド(self
−aliginedsilicide)構造となる。次
に層間絶縁膜として、例えば特公昭51ー21753の
如くSiH4にO2やN2O等の酸化性気体を気相反応さ
せたシリコン酸化膜31を約6000Åを積層後、平坦
化の為に塗布ガラス22をスピンコートしてN2雰囲気
中でアニールを行う。続けてコンタクトホールを開孔
後、1.0μm程度のAl合金をスパッタさせパターニ
ングした金属配線23を施し、最後にパッシベーション
膜を積層し外部電極取り出し用のボンディングパッド部
を開孔している。
2. Description of the Related Art Conventionally, for the purpose of miniaturization and high speed, Po
A semiconductor device has been proposed in which each surface of a ly-Si gate electrode wiring or an impurity layer of a Si substrate has a silicide (silicide) structure of Ti, W, Mo or the like to reduce wiring resistance and contact resistance. As shown in FIG. 2, for example, a field insulating film 12 is formed on a Si substrate 11 by selective oxidation, and a gate oxide film 13 is formed on its active region.
After poly-Si is vapor-phase grown and selectively etched by a photolithography process to form a gate electrode wiring 14, impurities such as phosphorus are ion-implanted into the low-concentration impurity layers 16 of the source and drain, and then the side wall of the silicon oxide film is formed. Spacer 1
Arsenic or the like is ion-implanted into the high-concentration impurity layers 17 of the source and the drain through the LDD 5 to form an LDD (lightly dope).
d drain) structure. Next, the gate electrode wiring 14
After the Si surface of the impurity layer 17 is exposed, Ti is sputter-grown at about 500 °, instantaneously annealed with a halogen lamp at about 700 ° C., and immersed in a mixed aqueous solution of ammonium hydroxide and hydrogen peroxide to selectively etch the Si surface. Only the monosilicide layer 19 of Ti remains, which is further subjected to lamp annealing at about 800 ° C. to form a disilicide. As a result, the gate electrode wiring 14 and the impurity layer 17 are separated via the side wall spacer 15 and the field insulating film 12. Salicide with self-aligned silicide (self
-Alignedsilicide) structure. Next, as an interlayer insulating film, for example, a silicon oxide film 31 obtained by subjecting an oxidizing gas such as O2 or N2O to a gas phase reaction with SiH4 as shown in Japanese Patent Publication No. 51-21753 is laminated for about 6000.degree. And annealed in an N2 atmosphere. Subsequently, after a contact hole is opened, an Al alloy of about 1.0 μm is sputtered to form a patterned metal wiring 23. Finally, a passivation film is laminated to open a bonding pad portion for taking out an external electrode.

【0003】[0003]

【発明が解決しようとする課題】しかしながら従来技術
に於いては、Tiシリサイド層19の表面は酸化され易
すい為、直接450℃以上でシリコン酸化膜31を気相
成長させるとO2等により、シリコン酸化膜を成長させ
るまでの初期段階でTiの酸化物層が形成され、後工程
等で層間絶縁膜の密着不良やクラックが発生したり、金
属配線23とシリサイド層19間のコンタクト抵抗不安
定原因となっていた。特にシリコン酸化膜31の気相成
長装置として、常圧加熱方式を用いた場合は、基板ウェ
ハーを装置内にロードした時巻き込んだ空気が停滞し昇
温までに表面の酸化をうながし、叉減圧加熱でSiH4
を450℃以下で気相反応させたシリコン酸化膜31は
下側配線のスペースが狭くなるとカスピングが生じやす
く、ここに塗布ガラス22が溜り易く、後工程のアニー
ルでクラックが発生することや段差側壁部の致密性や膜
耐圧が悪いのでサブミクロン以下の微細化には適さな
い。叉、塗布ガラス22はアニールを600℃以上で行
わないと膜中にOH基や水分が多く残留し絶縁性が悪
い。ところがアニールを600℃以上高温で行うと、下
地のシリコン酸化膜31を通してしシリサイド層の表面
が酸化されコンタクト抵抗が高くなってしまう問題もあ
り、500℃程度の低温でアニールを行うことと、酸化
剤の進入を防ぐ為に気相成長シリコン酸化膜31は極力
厚くする必要がある。しかるに本発明は、かかる問題点
を解決するもので、半導体装置の特にシリサイド層を持
つ配線上の層間絶縁膜に、有機シランをプラズマ反応さ
せたシリコン酸化膜と該酸化膜のリンガラス膜及び塗布
ガラスの積層構造とし、シリサイド層表面の酸化を防
ぎ、更に層間膜の平坦性を向上させることにより、微細
多機能半導体装置の安定供給を図ると共に、電気特性や
信頼性に伴う品質の向上を図ることを目的としたもので
ある。
In the prior art, however, the surface of the Ti silicide layer 19 is easily oxidized. An oxide layer of Ti is formed at an initial stage until an oxide film is grown, and poor adhesion and cracks of the interlayer insulating film occur in a later process or the like, and cause of unstable contact resistance between the metal wiring 23 and the silicide layer 19. Had become. In particular, when a normal pressure heating method is used as the vapor phase growth apparatus for the silicon oxide film 31, when the substrate wafer is loaded into the apparatus, the entrapped air stagnates and the surface is oxidized until the temperature rises. With SiH4
The silicon oxide film 31 which has been subjected to a gas phase reaction at 450 ° C. or less tends to cause casping when the space of the lower wiring is narrowed, and the applied glass 22 easily accumulates therein. It is not suitable for miniaturization to sub-micron or less due to poor closeness of parts and poor film breakdown voltage. On the other hand, if the annealing is not performed at 600 ° C. or more, a large amount of OH groups and moisture remain in the coating glass 22 and the insulating property is poor. However, if the annealing is performed at a high temperature of 600 ° C. or higher, there is a problem that the surface of the silicide layer is oxidized through the underlying silicon oxide film 31 and the contact resistance increases, so that annealing at a low temperature of about 500 ° C. The vapor-grown silicon oxide film 31 needs to be as thick as possible in order to prevent the agent from entering. However, the present invention solves such a problem. In particular, a silicon oxide film obtained by subjecting an organic silane to a plasma reaction, a phosphorus glass film of the oxide film, and a coating are applied to an interlayer insulating film on a wiring of a semiconductor device, particularly, a wiring having a silicide layer. By using a laminated glass structure to prevent oxidation of the silicide layer surface and improve the flatness of the interlayer film, the stable supply of fine multifunctional semiconductor devices is achieved, and the quality associated with electrical characteristics and reliability is improved. It is intended for that purpose.

【0004】[0004]

【課題を解決するための手段】本発明の半導体装置は、
MOSトランジスタのゲート電極やソース,ドレイン等
の不純物層の表面に高融点金属のシリサイド層が形成さ
れ、該シリサイド層と金属配線の層間絶縁膜として少な
くとも、プラズマ反応させた第1のシリコン酸化膜と不
純物としてリンを含むプラズマ反応による第2のシリコ
ン酸化膜と塗布ガラスが積層されていることを特徴とす
る。
According to the present invention, there is provided a semiconductor device comprising:
A silicide layer of a refractory metal is formed on the surface of an impurity layer such as a gate electrode or a source or a drain of a MOS transistor, and at least a first silicon oxide film subjected to plasma reaction is formed as an interlayer insulating film between the silicide layer and the metal wiring. A second silicon oxide film formed by a plasma reaction containing phosphorus as an impurity and a coating glass are stacked.

【0005】叉本発明の半導体装置の製造方法は、少な
くとも、MOSトランジスタのゲート電極配線やソー
ス,ドレイン等の不純物層の表面に高融点金属のシリサ
イド層を形成する工程、有機シランと酸化性ガスをプラ
ズマ反応させた第1のシリコン酸化膜を形成する工程、
有機シランと酸化性気体にリンを含む不純物を添加させ
てプラズマ反応させた第2のシリコン酸化膜を形成する
工程、塗布ガラスをスピンコートし熱処理する工程、素
子からのコンタクトホールを開孔し金属配線を施す工程
を具備したを特徴とする。
The method of manufacturing a semiconductor device according to the present invention comprises a step of forming a silicide layer of a refractory metal at least on a surface of an impurity layer such as a gate electrode wiring and a source and a drain of a MOS transistor; Forming a first silicon oxide film by plasma reaction of
A step of forming a second silicon oxide film obtained by adding an impurity containing phosphorus to an organic silane and an oxidizing gas to cause a plasma reaction, a step of spin-coating a coated glass and performing a heat treatment, and a step of opening a contact hole from the element to form a metal. The method is characterized by including a step of wiring.

【0006】[0006]

【実施例】以下本発明の実施例を、図1(a)〜(c)
を用いて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS. 1 (a) to 1 (c).
This will be described in detail with reference to FIG.

【0007】サブミクロンルールのSiゲートCMOS
半導体装置の製造に適用した場合に於いて、Si基板1
1にフィールド絶縁膜12を選択酸化で形成しそのアク
ティブ領域にゲート酸化膜13を150Å形成しチャン
ネル注入によりしきい値電圧を調整後、SiH4 を熱
分解したPoly−Siを4000Å成長させ所定パタ
ーンにエッチングしたゲート電極配線14を形成後、ソ
ース,ドレインの低濃度不純物層16のNchにリン,
Pchにボロンを2×1013cmー2程度イオン注入した
後、ゲート電極配線14脇にシリコン酸化膜の側壁スペ
ーサー15を形成し、続いてソース,ドレインの高濃度
不純物層17にヒ素やBF2を5×101 5cmー2程度イ
オン注入した。いずれのイオン注入の時も、結晶欠陥の
発生を防ぐ目的でを薄いシリコン酸化膜を介して行っ
た。次にゲート電極配線14や不純物層17のSi面を
薄いHF水溶液でライトエッチし露出後、Ti18を約
600Åスパッタする(図1(a))。続いて、O2を
20ppm以下に制御したN2雰囲気中710℃のハロ
ゲンランプで30秒間の瞬時アニールを行なうと、前記
Si表面にTiのモノシリサイド層,シリコン酸化膜上
にはTiリッチのTiN層が形成され、続いて水酸化ア
ンモニウムと過酸化水素の混合水溶液中に浸漬すると、
TiN層はエッチング除去されて、該Si表面のみにT
iのモノシリサイド層19が残り、更に800℃のラン
プアニールを行いダイシリサイド化させ、ゲート電極配
線14や不純物層17には、自己整合的にシリサイド層
19を形成した。次に層間絶縁膜として、まずTEOS
〔Si(OC2H5)4〕と02を380℃,9torrの
平行平板枚様式のプラズマ反応装置でシリコン酸化(N
SG)膜20を2500Å成長させた。このNSG膜2
0は、成長速度が8000Å/分と高い上にシリサイド
層の酸化やカスピングがなく、SiH4から成長した膜
より絶縁性も高くHF水溶液に対するエッチ速度も遅
く、致密な膜が形成された。続けて、P(OCH3)3を
添加して前記シリコン酸化膜とほぼ同じ条件で2000
Åのリンガラス(PSG)膜21を堆積させた。このP
SG膜21は、約3.5mol%のP2O5濃度とし、工
程中のアルカリ汚染に対するゲッタ膜として積層した
が、NSG膜と同様カスピングはなく、膜成長条件もN
SG膜の条件にP(OCH3)3を単純に添加するだけ
で、成長速度や均一性も大差無いので、同一反応チャン
バーで連続成長が容易であり、逆にSiH4を用いた場
合は、PSGとNSG膜の成長条件の温度,圧力等を各
々調整しなければならないので連続成長が簡単でない。
次に平坦化の為、エタノールと酢酸エチルにシラノール
とP2O5を溶いた塗布ガラス22をスピンコートし、更
に800℃のN2雰囲気中でアニールを行った(図1
(b))。続いて、フォトレジストでコンタクト領域を
パターニング後、まずHFとNH4Fの混合水溶液で塗
布ガラス22とPSG膜21を等方性のウェットエッチ
ングしホールのテーパー化を行った。この時PSG膜2
1は、NSG膜20に比べてウェットエッチ速度が3〜
4倍大きく、塗布ガラス22は更に数倍大きい結果、層
間膜がNSG単層に比べエッチングのスループットだけ
でなくホールのテーパー形状も金属配線のカバレージに
対して好ましい形状となった。逆に、該NSG膜20
は、ウェットのエッチ速度が非常に遅いので、PSG膜
21をウェットエッチングした後のNSGの膜残りの再
現性が良く、この後のドライエッチングのエッチ量コン
トロールが容易である。続けて、CHF3とCF4をメイ
ンガスとした反応性イオンエッチャーで残ったNSG膜
20を異方性エッチングしコンタクトホールを開孔後フ
ォトレジストを剥離した。次にバリア及びキャップ材と
して約0.8μmのAl−CuをTiNで挟んでスパッ
タし、この積層膜をパターニングして金属配線23とし
た後(図1(c))、パッシベーション膜としプラズマ
反応によるシリコン窒化膜を堆積させ、所望領域に外部
電極取り出し用のボンディングパッド部を開孔した。前
工程のフォトレジストの剥離は、ドライエッチングによ
る表面変質層をO2プラズマで除去し、更に加熱した硫
酸と過酸化水素水の混合液で全剥離したが、ホール部の
Tiシリサイド層19の表面が軽く酸化されてしまう
為、コンタクト抵抗をより安定化させるには、4mto
rr程度のAr高周波スパッタエッチングを200wで
20秒以上行なってから真空を破らないでバリア材のT
iNを含め金属配線材を連続スパッタすることが有効あ
った。このスパッタエッチングは、コンタクトホール端
のラウンドも取れるので、配線カバレージ性の向上にも
効果がある。この様にしてなる半導体装置は、塗布ガラ
スアニールを従来よりも高温で出来る上、クラック等の
問題も発生しなくなたった。又、層間絶縁膜の厚みやホ
ールの形状からコンタクトホール部での金属配線のカバ
レージ改善やサリサイド層の表面に出来易い酸化膜の制
御もなされ、コンタクト抵抗も0.6〜0.8ミクロン
のホール径で3Ω程度に安定し歩留りや信頼性の向上が
図れた。一方、プラズマによるシリコン酸化膜の成長初
期に電荷チャージによって従来の様なゲート膜破壊等の
問題が懸念されたものの、本発明による構造では問題が
無かった。これは低抵抗のシリサイド層を介してSi基
板側に電荷が逃げて行き易くなった為と思われる。他の
実施例として、Al合金を用いた2層金属配線構造のロ
ジックLSI製品にも適用したが従来に比べ課題改善さ
れ、電気特性や信頼性、及び歩留りの向上が図れた。
[0007] Sub-micron rule Si gate CMOS
When applied to the manufacture of a semiconductor device, the Si substrate 1
In FIG. 1, a field insulating film 12 is formed by selective oxidation, a gate oxide film 13 is formed in an active region by 150.degree., A threshold voltage is adjusted by channel injection, and Poly-Si obtained by thermally decomposing SiH4 is grown to 4000.degree. After the etched gate electrode wiring 14 is formed, phosphorus and phosphorus are added to Nch of the low concentration impurity layer 16 of source and drain.
After ion implantation of boron into Pch at about 2 × 10 13 cm −2, a sidewall spacer 15 of a silicon oxide film is formed beside the gate electrode wiring 14, and then arsenic or BF 2 is deposited on the high-concentration impurity layers 17 of the source and drain. 5 × 10 1 5 and cm -2 order of ion implantation. In each case of ion implantation, the purpose was to prevent generation of crystal defects through a thin silicon oxide film. Next, the Si surface of the gate electrode wiring 14 and the impurity layer 17 is light-etched with a thin HF aqueous solution and exposed, and then Ti18 is sputtered at about 600 ° (FIG. 1A). Subsequently, instantaneous annealing is performed for 30 seconds with a halogen lamp at 710 ° C. in an N 2 atmosphere in which O 2 is controlled to 20 ppm or less, whereby a Ti monosilicide layer is formed on the Si surface, and a Ti-rich TiN layer is formed on the silicon oxide film. Formed and subsequently immersed in a mixed aqueous solution of ammonium hydroxide and hydrogen peroxide,
The TiN layer is removed by etching so that T
The monosilicide layer 19 of i was left, and a further 800 ° C. lamp annealing was performed to form a silicide layer 19 on the gate electrode wiring 14 and the impurity layer 17 in a self-aligned manner. Next, as an interlayer insulating film, first, TEOS
[Si (OC2H5) 4] and O2 were oxidized with silicon (N) at 380 ° C., 9 torr in a parallel plate type plasma reactor.
SG) The film 20 was grown at 2500 °. This NSG film 2
In the case of No. 0, the growth rate was as high as 8000 ° / min, there was no oxidation or cuffing of the silicide layer, the insulating property was higher than that of the film grown from SiH4, the etch rate with respect to the HF aqueous solution was lower, and a dense film was formed. Subsequently, P (OCH3) 3 is added and the same conditions as those of the silicon oxide film are applied for 2000 hours.
The phosphor glass (PSG) film 21 of 堆積 was deposited. This P
The SG film 21 had a P2O5 concentration of about 3.5 mol% and was laminated as a getter film against alkali contamination during the process. However, like the NSG film, there was no casping and the film growth conditions were N.
Simply adding P (OCH3) 3 to the conditions of the SG film does not greatly affect the growth rate and uniformity. Therefore, continuous growth is easy in the same reaction chamber. Conversely, when SiH4 is used, PSG and PSG are used. Since it is necessary to adjust the temperature, pressure, and the like of the growth conditions of the NSG film, continuous growth is not easy.
Next, for flattening, a coating glass 22 in which silanol and P2O5 were dissolved in ethanol and ethyl acetate was spin-coated, and further annealed at 800 DEG C. in an N2 atmosphere (FIG. 1).
(B)). Subsequently, after patterning the contact region with a photoresist, the coated glass 22 and the PSG film 21 were first subjected to isotropic wet etching with a mixed aqueous solution of HF and NH4F to taper the holes. At this time, PSG film 2
1 indicates that the wet etching speed is 3 to
As a result of being four times larger and the coating glass 22 being several times larger, the interlayer film has not only an etching throughput but also a tapered hole shape that is preferable for the coverage of the metal wiring as compared with the NSG single layer. Conversely, the NSG film 20
Since the wet etching rate is very low, the reproducibility of the NSG film residue after the PSG film 21 is wet-etched is good, and the control of the etching amount in the subsequent dry etching is easy. Subsequently, the remaining NSG film 20 was anisotropically etched with a reactive ion etcher using CHF3 and CF4 as main gases, contact holes were formed, and the photoresist was peeled off. Next, about 0.8 μm of Al—Cu is sputtered between TiN as a barrier and a cap material, and the laminated film is patterned into a metal wiring 23 (FIG. 1C). A silicon nitride film was deposited, and a bonding pad portion for taking out an external electrode was opened in a desired region. In the removal of the photoresist in the previous step, the surface altered layer by dry etching was removed by O2 plasma, and the entire surface was removed by a mixed solution of heated sulfuric acid and hydrogen peroxide solution. Since it is lightly oxidized, 4mto
After performing Ar high frequency sputter etching of about rr at 200 w for 20 seconds or more, the T
It was effective to continuously sputter the metal wiring material including iN. Since this sputter etching can remove the round at the end of the contact hole, it is also effective in improving the wiring coverage. In the semiconductor device thus configured, the coating glass annealing can be performed at a higher temperature than in the past, and the problems such as cracks do not occur. In addition, the thickness of the interlayer insulating film and the shape of the hole are used to improve the coverage of the metal wiring in the contact hole portion, to control the oxide film that is easily formed on the surface of the salicide layer, and to reduce the contact resistance to 0.6 to 0.8 micron. The diameter was stabilized at about 3Ω, and the yield and reliability were improved. On the other hand, although there was a concern about the conventional gate film destruction due to charge charge at the initial stage of the growth of the silicon oxide film by plasma, the structure according to the present invention did not have any problem. This is presumably because the charge easily escaped to the Si substrate side via the low-resistance silicide layer. As another embodiment, the present invention was applied to a logic LSI product having a two-layer metal wiring structure using an Al alloy. However, the problem was improved as compared with the related art, and the electrical characteristics, reliability, and yield were improved.

【0008】本発明の実施例では、Tiシリサイドを用
いたサリサイド構造のMOS−LSIの製造について示
したが、ゲート電極配線とSi不純物層を別々にシリサ
イド化、あるいはいずれかがシリサイド構造であっても
良く、叉PolySiやシリサイドの多層構造であって
も適用できるものである。一方、シリサイドはTiに限
らずW,Mo,CoやCrの様な高融点金属でも応用で
き、又高融点金属とSiをアニールでシリサイド化させ
たものの他に、予めシリサイド膜を単独、あるいはPo
ly−Si膜にスパッタ等で積層させたポリサイドゲー
ト電極配線構造にも有効である。一方、シリコン酸化膜
として、TEOSの代わりにC4H16Si4O4やSi4O
4C8H24の様な有機シランをプラズマ反応させたシリコ
ン酸化膜、あるいはこれら有機シランにP(OCH3)3
やPH3 等を導入しリンを含んだPSG膜の使用や、更
に酸化性気体としてO2の代わりにN2O,CO2,CO
やO3の応用も可能である。
In the embodiment of the present invention, the manufacture of a MOS-LSI having a salicide structure using Ti silicide has been described. However, the gate electrode wiring and the Si impurity layer are separately silicided, or one of them has a silicide structure. It is also applicable to a multilayer structure of PolySi or silicide. On the other hand, silicide is not limited to Ti, and can be applied to a high melting point metal such as W, Mo, Co or Cr. In addition to silicidation of the high melting point metal and Si by annealing, a silicide film may be used alone or in advance.
It is also effective for a polycide gate electrode wiring structure in which a ly-Si film is laminated by sputtering or the like. On the other hand, as a silicon oxide film, C4H16Si4O4 or Si4O
Silicon oxide film obtained by plasma reaction of organic silane such as 4C8H24, or P (OCH3) 3
Use of a PSG film containing phosphorus by introducing oxygen or PH3, and N2O, CO2, CO2 instead of O2 as an oxidizing gas
And O3 applications are also possible.

【0009】[0009]

【発明の効果】以上の様に本発明によれば、MOSLS
I等に於けるシリサイド電極配線や不純物層上に有機シ
ランを用いプラズマ反応のNSGとPSG膜を積層さ
せ、更に塗布ガラスで平坦化された層間絶縁膜を形成す
ることにより、電気特性や品質に係わる信頼性や歩留り
の向上がなされ、より微細化,多機能化された半導体装
置の安定供給に寄与出来るものである。
As described above, according to the present invention, the MOSLS
By stacking NSG and PSG films of plasma reaction using organic silane on silicide electrode wiring and impurity layer in I etc., and forming an interlayer insulating film flattened with coated glass, electrical characteristics and quality are improved. The related reliability and yield are improved, and it is possible to contribute to the stable supply of finer and multifunctional semiconductor devices.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)〜(c)は本発明による半導体装置の製
造方法を示す概略断面図である。
FIGS. 1A to 1C are schematic sectional views showing a method for manufacturing a semiconductor device according to the present invention.

【図2】従来の半導体装置の製造方法に係わる概略断面
図である。
FIG. 2 is a schematic cross-sectional view related to a conventional method for manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

11 Si基板 12 フィールド絶縁膜 13 ゲート酸化膜 14 ゲート電極配線 15 側壁スペーサー 16 低濃度不純物層 17 高濃度不純物層 18 Ti 19 シリサイド層 20 NSG膜 21 PSG膜 22 塗布ガラス 23 金属配線 31 シリコン酸化膜 DESCRIPTION OF SYMBOLS 11 Si substrate 12 Field insulating film 13 Gate oxide film 14 Gate electrode wiring 15 Side wall spacer 16 Low concentration impurity layer 17 High concentration impurity layer 18 Ti 19 Silicide layer 20 NSG film 21 PSG film 22 Coating glass 23 Metal wiring 31 Silicon oxide film

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年8月2日(2001.8.2)[Submission date] August 2, 2001 (2001.8.2)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】 明細書[Document Name] Statement

【発明の名称】 半導体装置[Title of the Invention] Semiconductor device

【特許請求の範囲】[Claims]

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置に関し、特
に、表面がシリイド構造のゲート電極配線や不純物層
上に形成する層間絶縁膜に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a semiconductor device, in particular, the surface is related to the interlayer insulating film formed on the gate electrode wiring and the impurity layer of silicon Sa id structure.

【0002】[0002]

【従来の技術】従来、微細,高速化を図る目的で、Po
ly−Siのゲート電極配線あるいはSi基板の不純物
層の各表面をTi,W,Mo等のシリサイド(硅素化
物)構造とし配線抵抗やコンタクト抵抗を下げた半導体
装置が提案されており、これらの製造方法は図2の様
に、例えばSi基板11にフィールド絶縁膜12を選択
酸化で形成し、そのアクティブ領域にゲート酸化膜13
を形成後Poly−Siを気相成長させフォトリソ工程
で選択エッチングしゲート電極配線14形成後、ソー
ス,ドレインの低濃度不純物層16にリン等の不純物を
イオン注入した後、シリコン酸化膜の側壁スぺーサー1
5を介しソース,ドレインの高濃度不純物層17にヒ素
等をイオン注入してLDD(lightly dope
d drain)構造とする。次にゲート電極配線14
や不純物層17のSi面を露出後、Tiを約500Åス
パッタ成長させ700℃前後のハロゲンランプで瞬時ア
ニールを行ない、水酸化アンモニウムと過酸化水素の混
合水溶液中に浸漬すると選択エッチングされてSi表面
のみにTiのモノシリサイド層19が残り、これを更に
約800℃のランプアニールを行いダイシリサイド化さ
せ、この結果ゲート電極配線14や不純物層17は、側
壁スペーサー15やフィールド絶縁膜12を介して自己
整合的にシリサイドが形成されたサリサイド(self
aligned silicide)構造となる。次
に層間絶縁膜として、例えば特公昭5121753の
如くSiH4にO2やN2等の酸化性気体を気相反応さ
せたシリコン酸化膜31を約6000Åを積層後、平坦
化の為に塗布ガラス22をスピンコートして2 雰囲気
中でアニールを行う。続けてコンタクトホールを開孔
後、1.0μm程度のAl合金をスパッタさせパターニ
ングした金属配線23を施し、最後にパッシベーション
膜を積層し外部電極取り出し用のボンディングパッド部
を開孔している。
2. Description of the Related Art Conventionally, for the purpose of miniaturization and high speed, Po
A semiconductor device has been proposed in which each surface of a ly-Si gate electrode wiring or an impurity layer of a Si substrate has a silicide (silicide) structure of Ti, W, Mo or the like to reduce wiring resistance and contact resistance. As shown in FIG. 2, for example, a field insulating film 12 is formed on a Si substrate 11 by selective oxidation, and a gate oxide film 13 is formed on its active region.
After poly-Si is vapor-phase grown and selectively etched by a photolithography process to form a gate electrode wiring 14, impurities such as phosphorus are ion-implanted into the low-concentration impurity layers 16 of the source and drain, and then the side wall of the silicon oxide film is formed. Spacer 1
Arsenic or the like is ion-implanted into the high-concentration impurity layers 17 of the source and the drain through the LDD 5 to form an LDD (lightly dope).
d drain) structure. Next, the gate electrode wiring 14
After the Si surface of the impurity layer 17 is exposed, Ti is sputter-grown at about 500 °, instantaneously annealed with a halogen lamp at about 700 ° C., and immersed in a mixed aqueous solution of ammonium hydroxide and hydrogen peroxide to selectively etch the Si surface. Only the monosilicide layer 19 of Ti remains, which is further subjected to lamp annealing at about 800 ° C. to form a disilicide. As a result, the gate electrode wiring 14 and the impurity layer 17 are separated via the side wall spacer 15 and the field insulating film 12. Salicide with self-aligned silicide (self
( Aligned silicide) structure. Next as an interlayer insulating film, for example, Japanese Patent Publication 51 - 21753 as the SiH 4 after lamination to O 2 and N 2 O or the like about 6000Å silicon oxide film 31 which the oxidizing gas was a gas phase reaction, for planarization Is coated with a coating glass 22 and annealed in an N 2 atmosphere. Subsequently, after a contact hole is opened, an Al alloy of about 1.0 μm is sputtered to form a patterned metal wiring 23. Finally, a passivation film is laminated to open a bonding pad portion for taking out an external electrode.

【0003】[0003]

【発明が解決しようとする課題】しかしながら従来技術
に於いては、Tiシリサイド層19の表面は酸化され
為、直接450℃以上でシリコン酸化膜31を気相成
長させると2 等により、シリコン酸化膜を成長させる
までの初期段階でTiの酸化物層が形成されてしまう。
その結果、後工程等で層間絶縁膜の密着不良やクラック
が発生したり、金属配線23とシリサイド層19間のコ
ンタクト抵抗不安定原因となっていた。
However, in the prior art, the surface of the Ti silicide layer 19 is easily oxidized.
There therefore, by the silicon oxide film 31 directly 450 ° C. or higher is grown in vapor phase O 2 or the like, an oxide layer of Ti in the initial stage up to grow a silicon oxide film is formed.
As a result, poor adhesion or cracking of the interlayer insulating film occurs in a later step or the like, and the contact resistance between the metal wiring 23 and the silicide layer 19 becomes unstable.

【0004】特にシリコン酸化膜31の気相成長装置と
して、常圧加熱方式を用いた場合は、基板ウェハーを装
置内にロードした時巻き込んだ空気が停滞し昇温までに
表面の酸化をうながしてしまう。
In particular, when a normal pressure heating system is used as a vapor phase growth apparatus for the silicon oxide film 31, when the substrate wafer is loaded into the apparatus, the air entangled therein stagnates and the surface is oxidized until the temperature rises. I will.

【0005】叉減圧加熱でSiH4 を450℃以下で気
相反応させたシリコン酸化膜31は下側配線のスペース
が狭くなるとカスピングが生じやすく、ここに塗布ガラ
ス22が溜り易い。その結果、後工程のアニールでクラ
ックが発生する。さらに段差側壁部の致密性や膜耐圧が
悪いのでサブミクロン以下の微細化には適さない。
[0005] Silicon oxide film 31 obtained by vapor phase reaction of SiH 4 at 450 ° C. or less or vacuum heating tends to occur Kasupingu the space of the lower wiring is narrowed, wherein the coating glass 22 is accumulated not easy. As a result, cracks are generated by annealing in a later step . Further, since the tightness of the step side wall portion and the film breakdown voltage are poor, it is not suitable for miniaturization of submicron or less.

【0006】叉、塗布ガラス22はアニールを600℃
以上で行わないと膜中にOH基や水分が多く残留し絶縁
性が悪い。ところがアニールを600℃以上高温で行う
と、下地のシリコン酸化膜31を通してシリサイド層
表面が酸化されコンタクト抵抗が高くなってしまう問題
もあり、500℃程度の低温でアニールを行うことと、
酸化剤の進入を防ぐ為に気相成長シリコン酸化膜31は
極力厚くする必要がある。
The coated glass 22 is annealed at 600 ° C.
Otherwise, a large amount of OH groups and moisture remain in the film, resulting in poor insulation. However, when carried out at a high temperature 600 ° C. or higher annealing, through a silicon oxide film 31 underlying be safely surface of the silicide layer becomes higher by contact resistance oxide, and annealing is performed at a low temperature of about 500 ° C.,
The vapor grown silicon oxide film 31 needs to be as thick as possible in order to prevent the oxidant from entering.

【0007】しかるに本発明は、かかる問題点を解決す
るもので、半導体装置の特にシリサイド層を持つ配線上
の層間絶縁膜、有機シランと酸化性気体とをプラズマ
反応させた第1のシリコン酸化膜と、有機シランと酸化
性気体とリンを含む化合物とをプラズマ反応させた第2
の酸化膜と、塗布ガラス膜との積層構造とし、シリサイ
ド層表面の酸化を防ぎ、更に層間膜の平坦性を向上させ
ることにより、微細多機能半導体装置の安定供給を図る
と共に、電気特性や信頼性に伴う品質の向上を図ること
を目的としたものである。
[0007] However the present invention, these problems solves the interlayer insulating film on the wiring in particular with a silicide layer of a semiconductor device, a first silicon oxide with an organic silane and an oxidizing gas to the plasma reaction Film , organic silane and oxidation
Second reaction in which a reactive gas is reacted with a compound containing phosphorus
A stacked structure of an oxide film and a coated glass film prevents oxidation of the surface of the silicide layer and further improves the flatness of the interlayer film. The purpose is to improve the quality with the property.

【0008】[0008]

【課題を解決するための手段】本発明の半導体装置は、
MOSトランジスタのソース領域およびドレイン領域の
表面に形成された高融点金属のシリサイド層と、前記高
融点金属のシリサイド層上に有機シランと酸化性気体と
をプラズマ反応させ形成された第1のシリコン酸化膜
と、前記第1のシリコン酸化膜上に有機シランと酸化性
気体とリンを含む化合物とをプラズマ反応させ形成され
た第2のシリコン酸化膜と、前記第2のシリコン酸化膜
上に形成された塗布ガラス膜と、前記第1のシリコン酸
化膜と前記第2のシリコン酸化膜と前記塗布ガラス膜と
を含む層間絶縁膜内に形成され、上部がテーパー化され
た接続孔と、を含むことを特徴とする。
According to the present invention, there is provided a semiconductor device comprising:
MOS transistor source and drain regions
A refractory metal silicide layer formed on the surface;
Organosilane and oxidizing gas on silicide layer of melting point metal
Silicon oxide film formed by plasma reaction of
Organic silane and oxidizing agent on the first silicon oxide film.
It is formed by a plasma reaction between a gas and a compound containing phosphorus.
Second silicon oxide film, and the second silicon oxide film
A coated glass film formed on the first silicon acid;
Oxide film, the second silicon oxide film, and the coated glass film
Formed in the interlayer insulating film containing
And a connection hole.

【0009】[0009]

【実施例】以下本発明の実施例を、図1(a)〜(c)
を用いて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS. 1 (a) to 1 (c).
This will be described in detail with reference to FIG.

【0010】サブミクロンルールのSiゲートCMOS
半導体装置の製造に適用した場合に於いて、Si基板1
1にフィールド絶縁膜12を選択酸化で形成しそのアク
ティブ領域にゲート酸化膜13を150Å形成しチャン
ネル注入によりしきい値電圧を調整後、SiH4 を熱分
解したPoly−Siを4000Å成長させ所定パター
ンにエッチングしたゲート電極配線14を形成後、ソー
ス,ドレインの低濃度不純物層16のNchにリン,P
chにボロンを2×1013cm-2程度イオン注入した
後、ゲート電極配線14脇にシリコン酸化膜の側壁スペ
ーサー15を形成し、続いてソース,ドレインの高濃度
不純物層17にヒ素やBF2 を5×1015cm-2程度イ
オン注入した。いずれのイオン注入の時も、結晶欠陥の
発生を防ぐ目的薄いシリコン酸化膜を介して行った。
次にゲート電極配線14や不純物層17のSi面を薄い
HF水溶液でライトエッチし露出後、Ti18を約60
0Åスパッタする(図1(a))。続いて、2 を20
ppm以下に制御した2 雰囲気中710℃のハロゲン
ランプで30秒間の瞬時アニールを行なうと、前記Si
表面にTiのモノシリサイド層,シリコン酸化膜上には
TiリッチのTiN層が形成され、続いて水酸化アンモ
ニウムと過酸化水素の混合水溶液中に浸漬すると、Ti
N層はエッチング除去されて、該Si表面のみにTiの
モノシリサイド層19が残り、更に800℃のランプア
ニールを行いダイシリサイド化させ、ゲート電極配線1
4や不純物層17には、自己整合的にシリサイド層19
を形成した。次に層間絶縁膜として、まずTEOS〔
i(OC254 〕と2 を380℃,9torrの平行
平板枚様式のプラズマ反応装置でシリコン酸化膜(NS
G:Nondoped Silicate Glass)20を2500Å成長
させた。このNSG膜20は、成長速度が8000Å/
分と高い上にシリサイド層の酸化やカスピングがなく、
SiH4 から成長した膜より絶縁性も高くHF水溶液に
対するエッチ速度も遅く、致密な膜が形成された。続け
て、P(OCH33 を添加して前記シリコン酸化膜とほ
ぼ同じ条件で2000Åのリンガラス(PSG)膜21
を堆積させた。このPSG膜21は、約3.5mol%
25 濃度とし、工程中のアルカリ汚染に対するゲッ
タ膜として積層したが、NSG膜と同様カスピングはな
く、膜成長条件もNSG膜の条件にP(OCH33 を単
純に添加するだけで、成長速度や均一性も大差無いの
で、同一反応チャンバーで連続成長が容易であり、逆に
SiH4 を用いた場合は、PSGとNSG膜の成長条件
の温度,圧力等を各々調整しなければならないので連続
成長が簡単でない。次に平坦化の為、エタノールと酢酸
エチルにシラノールと25 を溶いた塗布ガラス22を
スピンコートし、更に800℃の2 雰囲気中でアニー
ルを行った(図1(b))。続いて、フォトレジストで
コンタクト領域をパターニング後、まずHFとNH4
の混合水溶液で塗布ガラス22とPSG膜21を等方性
のウェットエッチングしホールのテーパー化を行った。
この時PSG膜21は、NSG膜20に比べてウェット
エッチ速度が3〜4倍大きく、塗布ガラス22は更に数
倍大きい結果、層間膜がNSG単層に比べエッチングの
スループットだけでなくホールのテーパー形状も金属配
線のカバレージに対して好ましい形状となった。逆に、
該NSG膜20は、ウェットのエッチ速度が非常に遅い
ので、PSG膜21をウェットエッチングした後のNS
Gの膜残りの再現性が良く、この後のドライエッチング
のエッチ量コントロールが容易である。続けて、CHF
3 CF4 をメインガスとした反応性イオンエッチャーで
残ったNSG膜20を異方性エッチングしコンタクトホ
ールを開孔後フォトレジストを剥離した。次にバリア及
びキャップ材として約0.8μmのAl−CuをTiN
で挟んでスパッタし、この積層膜をパターニングして金
属配線23とした後(図1(c))、パッシベーション
膜としプラズマ反応によるシリコン窒化膜を堆積させ、
所望領域に外部電極取り出し用のボンディングパッド部
を開孔した。前工程のフォトレジストの剥離は、ドライ
エッチングによる表面変質層を2 プラズマで除去し、
更に加熱した硫酸と過酸化水素水の混合液で全剥離した
が、ホール部のTiシリサイド層19の表面が軽く酸化
されてしまう為、コンタクト抵抗をより安定化させるに
は、4mtorr程度のAr高周波スパッタエッチング
を200wで20秒以上行なってから真空を破らないで
バリア材のTiNを含め金属配線材を連続スパッタする
ことが有効あった。このスパッタエッチングは、コンタ
クトホール端のラウンドも取れるので、配線カバレージ
性の向上にも効果がある。この様にしてなる半導体装置
は、塗布ガラスアニールを従来よりも高温で出来る上、
クラック等の問題も発生しなくなたった。又、層間絶縁
膜の厚みやホールの形状からコンタクトホール部での金
属配線のカバレージ改善やサリサイド層の表面に出来易
い酸化膜の制御もなされ、コンタクト抵抗も0.6〜
0.8ミクロンのホール径で3Ω程度に安定し歩留りや
信頼性の向上が図れた。一方、プラズマによるシリコン
酸化膜の成長初期に電荷チャージによって従来の様なゲ
ート膜破壊等の問題が懸念されたものの、本発明による
構造では問題が無かった。これは低抵抗のシリサイド層
を介してSi基板側に電荷が逃げて行き易くなった為と
思われる。他の実施例として、Al合金を用いた2層金
属配線構造のロジックLSI製品にも適用したが従来に
比べ課題改善され、電気特性や信頼性、及び歩留りの向
上が図れた。
[0010] Sub-micron rule Si gate CMOS
When applied to the manufacture of a semiconductor device, the Si substrate 1
After adjusting one to form a field insulating film 12 in the selective oxidation threshold voltage by the channel implanted 150Å form a gate oxide film 13 on the active region, the predetermined pattern of SiH 4 to 4000Å grow Poly-Si pyrolyzed After the gate electrode wiring 14 is formed by etching, phosphorus, P is added to Nch of the low concentration impurity layer 16 of the source and the drain.
After ion implantation of about 2 × 10 13 cm −2 of boron into the channel, a sidewall spacer 15 of a silicon oxide film is formed beside the gate electrode wiring 14, and then arsenic or BF 2 is added to the high-concentration impurity layers 17 of the source and drain. Was ion-implanted at about 5 × 10 15 cm −2 . Each ion implantation was performed through a thin silicon oxide film for the purpose of preventing generation of crystal defects.
Next, after the gate electrode wiring 14 and the Si surface of the impurity layer 17 are light-etched with a thin HF aqueous solution and exposed,
Sputter 0 ° (FIG. 1A). Subsequently, O 2 was added to 20
The instantaneous annealing for 30 seconds with a halogen lamp at 710 ° C. in an N 2 atmosphere controlled to not more than
A monosilicide layer of Ti is formed on the surface, and a TiN layer rich in Ti is formed on the silicon oxide film. Then, when immersed in a mixed aqueous solution of ammonium hydroxide and hydrogen peroxide, Ti
The N layer is removed by etching, leaving a monosilicide layer 19 of Ti only on the surface of the Si.
4 and the impurity layer 17 are self-aligned with the silicide layer 19.
Was formed. Next, as an interlayer insulating film, first, TEOS [ S
i (OC 2 H 5 ) 4 ] and O 2 in a parallel plate type plasma reactor at 380 ° C. and 9 torr at a silicon oxide film (NS
G: Nondoped Silicate Glass) 20 was grown at 2500 ° C. This NSG film 20 has a growth rate of 8000Å /
In addition to being high enough, there is no oxidation or casping of the silicide layer,
The insulating film had a higher insulating property than the film grown from SiH 4, and the etching rate with respect to the HF aqueous solution was lower, so that a dense film was formed. Subsequently , P (OCH 3 ) 3 is added, and a phosphorus glass (PSG) film 21 of 2000 ° is formed under substantially the same conditions as the silicon oxide film.
Was deposited. This PSG film 21 is about 3.5 mol%
And P 2 O 5 concentration, was laminated as a getter film in an alkali contamination during the process, rather than NSG film similar Kasupingu, even film growth conditions to the condition of the NSG film by simply adding P (OCH 3) 3 Since the growth rate and uniformity are not much different, continuous growth is easy in the same reaction chamber.
When SiH 4 is used, continuous growth is not easy because the growth conditions such as temperature and pressure of the PSG and NSG films must be adjusted. Next, for flattening, a coating glass 22 in which silanol and P 2 O 5 were dissolved in ethanol and ethyl acetate was spin-coated, and further annealed in a N 2 atmosphere at 800 ° C. (FIG. 1B). Subsequently, after patterning the contact region with a photoresist, first, HF and NH 4 F
The coating glass 22 and the PSG film 21 were isotropically wet-etched with a mixed aqueous solution of the above to taper the holes.
At this time, the PSG film 21 has a wet etching speed 3 to 4 times higher than the NSG film 20 and the coating glass 22 is several times higher than the NSG film 20. As a result, the interlayer film has not only a higher etching throughput but also a smaller hole taper than the NSG single layer. The shape also became a preferable shape for the coverage of the metal wiring. vice versa,
Since the NSG film 20 has a very low wet etching rate, the NSG film 20 after the PSG film 21 is wet-etched is removed.
The reproducibility of the film residue of G is good, and the control of the etching amount in the subsequent dry etching is easy. Continue , CHF
The remaining NSG film 20 was anisotropically etched with a reactive ion etcher using 3 and CF 4 as main gases, contact holes were formed, and the photoresist was peeled off. Next, about 0.8 μm of Al—Cu
The laminated film is patterned to form a metal wiring 23 (FIG. 1C), and a silicon nitride film is deposited as a passivation film by a plasma reaction.
A bonding pad portion for taking out an external electrode was opened in a desired region. In the removal of the photoresist in the previous process, the surface altered layer by dry etching is removed by O 2 plasma,
Further, the entire surface was peeled off with a heated mixture of sulfuric acid and hydrogen peroxide, but the surface of the Ti silicide layer 19 in the hole was lightly oxidized. It has been effective to continuously sputter the metal wiring material including the barrier material TiN without breaking the vacuum after performing the sputter etching at 200 w for 20 seconds or more. Since this sputter etching can remove the round at the end of the contact hole, it is also effective in improving the wiring coverage. The semiconductor device thus configured can perform the coating glass annealing at a higher temperature than before, and
Problems such as cracks no longer occur. In addition, from the thickness of the interlayer insulating film and the shape of the hole, the coverage of the metal wiring in the contact hole part is improved, and the oxide film which is easily formed on the surface of the salicide layer is controlled.
The hole diameter of 0.8 micron was stabilized to about 3Ω and the yield and reliability were improved. On the other hand, although the conventional problem of gate film destruction due to charge charge in the initial stage of the growth of the silicon oxide film by plasma was concerned, there was no problem in the structure according to the present invention. This is presumably because the charge easily escaped to the Si substrate side via the low-resistance silicide layer. As another embodiment, the present invention was applied to a logic LSI product having a two-layer metal wiring structure using an Al alloy, but the problem was improved as compared with the prior art, and the electrical characteristics, reliability, and yield were improved.

【0011】本発明の実施例では、Tiシリサイドを用
いたサリサイド構造のMOS−LSIの製造について示
したが、ゲート電極配線とSi不純物層を別々にシリサ
イド化、あるいはいずれかがシリサイド構造であっても
良く、叉PolySiやシリサイドの多層構造であっ
ても適用できるものである。一方、シリサイドはTiに
限らずW,Mo,CoやCrの様な高融点金属でも応用
でき、又高融点金属とSiをアニールでシリサイド化さ
せたものの他に、予めシリサイド膜を単独、あるいはP
oly−Si膜にスパッタ等で積層させたポリサイドゲ
ート電極配線構造にも有効である。一方、シリコン酸化
膜として、TEOSの代わりに416Si44 Si4
4824 の様な有機シランをプラズマ反応させたシリ
コン酸化膜、あるいはこれら有機シランにP(OC
33 PH3 等を導入しリンを含んだPSG膜の使用
や、更に酸化性気体として2 の代わりに2
2 ,COや3 の応用も可能である。
In the embodiment of the present invention, the manufacture of a MOS-LSI having a salicide structure using Ti silicide has been described. However, the gate electrode wiring and the Si impurity layer are separately silicided, or either of them has a silicide structure. The present invention can be applied to a multilayer structure of Poly - Si or silicide. On the other hand, the silicide is not limited to Ti, but can be applied to a high melting point metal such as W, Mo, Co or Cr. In addition to the silicidation of the high melting point metal and Si by annealing, a silicide film may be used alone or in advance.
It is also effective for a polycide gate electrode wiring structure in which an poly-Si film is laminated by sputtering or the like. On the other hand, instead of TEOS, C 4 H 16 Si 4 O 4 or Si 4
A silicon oxide film obtained by subjecting an organic silane such as O 4 C 8 H 24 to a plasma reaction, or P (OC
Use of a PSG film containing phosphorus by introducing H 3 ) 3 or PH 3 or the like; and N 2 O , C instead of O 2 as an oxidizing gas
Applications of O 2 , CO and O 3 are also possible.

【0012】[0012]

【発明の効果】以上の様に本発明によれば、半導体装置
の特にシリサイド層を持つ配線上の層間絶縁膜は、有機
シランと酸化性気体とをプラズマ反応させた第1のシリ
コン酸化膜と、有機シランと酸化性気体とリンを含む化
合物とをプラズマ反応させた第2の酸化膜と、塗布ガラ
ス膜との積層構造とすることにより、電気特性や品質に
係わる信頼性や歩留りの向上がなされ、より微細化,多
機能化された半導体装置の安定供給に寄与出来るもので
ある。
As described above, according to the present invention, a semiconductor device
In particular, the interlayer insulating film on the wiring with silicide layer
A first silicide obtained by a plasma reaction between silane and an oxidizing gas;
Con oxide film, containing organic silane, oxidizing gas and phosphorus
A second oxide film obtained by subjecting the compound to a plasma reaction;
By adopting a laminated structure with a semiconductor film, reliability and yield related to electric characteristics and quality are improved, and it is possible to contribute to a stable supply of finer and multifunctional semiconductor devices.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)〜(c)は本発明による半導体装置の製
造方法を示す概略断面図である。
FIGS. 1A to 1C are schematic sectional views showing a method for manufacturing a semiconductor device according to the present invention.

【図2】従来の半導体装置の製造方法に係わる概略断面
図である。
FIG. 2 is a schematic cross-sectional view related to a conventional method for manufacturing a semiconductor device.

【符号の説明】 11 Si基板 12 フィールド絶縁膜 13 ゲート酸化膜 14 ゲート電極配線 15 側壁スペーサー 16 低濃度不純物層 17 高濃度不純物層 18 Ti 19 シリサイド層 20 NSG膜 21 PSG膜 22 塗布ガラス 23 金属配線 31 シリコン酸化膜DESCRIPTION OF SYMBOLS 11 Si substrate 12 field insulating film 13 gate oxide film 14 gate electrode wiring 15 side wall spacer 16 low concentration impurity layer 17 high concentration impurity layer 18 Ti 19 silicide layer 20 NSG film 21 PSG film 22 coating glass 23 metal wiring 31 Silicon oxide film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 27/092 H01L 27/08 321D 5F140 // C23C 16/40 Fターム(参考) 4K030 AA06 AA09 BA44 CA04 CA12 FA01 HA03 4M104 AA01 BB01 BB20 BB24 BB25 BB26 BB28 BB30 CC01 CC05 DD08 DD09 DD16 DD19 DD37 DD45 DD84 EE12 EE14 EE15 FF14 FF18 FF22 GG09 GG10 GG14 HH08 5F033 HH04 HH08 HH25 HH26 HH27 HH28 HH29 HH33 JJ01 JJ08 JJ33 KK01 KK25 KK26 KK27 KK28 KK29 MM07 MM08 MM13 NN06 NN07 NN32 PP03 PP06 PP15 QQ09 QQ10 QQ16 QQ19 QQ21 QQ22 QQ37 QQ70 RR04 RR09 RR14 SS04 SS15 SS22 TT02 VV06 XX01 XX13 XX17 5F048 AA01 AA07 AC03 BB05 BB08 BB09 BB12 BD04 BF06 BF07 BF11 BF15 DA25 5F058 BA09 BD02 BD04 BD06 BD07 BF07 BF25 BF29 BF33 BF46 BH04 BJ02 5F140 AA15 AA39 AB03 BA01 BC06 BD05 BF04 BF11 BF18 BG08 BG12 BG28 BG30 BG34 BG37 BG44 BG45 BG56 BH15 BJ01 BJ08 BJ11 BJ16 BJ20 BK02 BK13 BK26 BK29 BK34 BK38 BK39 CA02 CA03 CB01 CC01 CC02 CC03 CC05 CC08 CC13 CC15 CC16 CC19 CE10 CF04──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 27/092 H01L 27/08 321D 5F140 // C23C 16/40 F term (Reference) 4K030 AA06 AA09 BA44 CA04 CA12 FA01 HA03 4M104 AA01 BB01 BB20 BB24 BB25 BB26 BB28 BB30 CC01 CC05 DD08 DD09 DD16 DD19 DD37 DD45 DD84 EE12 EE14 EE15 FF14 FF18 FF22 GG09 GG10 GG14 HH08 5F033 HH04 HH08 KKH29 KK29 H27H01 KKH MM13 NN06 NN07 NN32 PP03 PP06 PP15 QQ09 QQ10 QQ16 QQ19 QQ21 QQ22 QQ37 QQ70 RR04 RR09 RR14 SS04 SS15 SS22 TT02 VV06 XX01 XX13 XX17 5F048 BDAA01 BF05 BF46 BH04 BJ02 5F140 AA15 AA39 AB03 BA01 BC06 BD05 BF04 BF11 BF18 BG08 BG12 BG28 BG30 BG34 BG37 BG44 BG45 BG56 BH15 BJ01 BJ08 BJ11 BJ16 BJ20 BK02 BK13 BK26 BK29 BK34 BK38 BK39 CA02 CA03 CB01 CC01 CC02 CC03 CC05 CC08 CC13 CC15 CC16 CC19 CE10 CF04

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 MOSトランジスタのゲート電極やソー
ス,ドレイン等の不純物層の表面に高融点金属のシリサ
イド層が形成され、該シリサイド層と金属配線の層間絶
縁膜として少なくとも、プラズマ反応させた第1のシリ
コン酸化膜と不純物としてリンを含むプラズマ反応によ
る第2のシリコン酸化膜と塗布ガラスが積層されている
ことを特徴とする半導体装置。
1. A refractory metal silicide layer is formed on the surface of an impurity layer such as a gate electrode and a source and a drain of a MOS transistor, and at least a first plasma-reacted interlayer insulating film between the silicide layer and the metal wiring is formed. A semiconductor device comprising: a silicon oxide film; a second silicon oxide film formed by a plasma reaction containing phosphorus as an impurity; and a coating glass.
【請求項2】 少なくとも、MOSトランジスタのゲー
ト電極やソース,ドレイン等の不純物層の表面に高融点
金属のシリサイド層を形成する工程、有機シランと酸化
性ガスをプラズマ反応させた第1のシリコン酸化膜を形
成する工程、有機シランと酸化性気体にリンを含む不純
物を添加させてプラズマ反応させた第2のシリコン酸化
膜を形成する工程、塗布ガラスをスピンコートし熱処理
する工程、素子からのコンタクトホールを開孔し金属配
線を施す工程を具備したことを特徴とする半導体装置の
製造方法。
A step of forming a silicide layer of a refractory metal on at least a surface of an impurity layer such as a gate electrode and a source and a drain of a MOS transistor; A step of forming a film, a step of forming a second silicon oxide film obtained by adding an impurity containing phosphorus to an organic silane and an oxidizing gas to cause a plasma reaction, a step of spin-coating a coated glass and heat-treating, a contact from an element A method for manufacturing a semiconductor device, comprising a step of forming a hole and providing a metal wiring.
【請求項3】 請求項2記載のコンタクトホールは、少
なくとも塗布ガラスと第2シリコン酸化膜の所望量を等
方性エッチングでテーパー化した後、更に異方性エッチ
ングにより開孔されていることを特徴とする半導体装置
の製造方法。
3. The contact hole according to claim 2, wherein at least a desired amount of the coating glass and the second silicon oxide film is tapered by isotropic etching, and further opened by anisotropic etching. A method for manufacturing a semiconductor device.
【請求項4】 請求項2記載の金属配線の成長は、少な
くとも、フォトレジストをマスクに素子からのコンタク
トホールを開孔し、該フォトレジストを剥離した後、真
空下で高周波スパッタエッチングを行い、更に連続して
スッパタ成長させれていることを特徴とする半導体装置
の製造方法。
4. The growth of the metal wiring according to claim 2, wherein at least a contact hole from the element is opened using a photoresist as a mask, the photoresist is peeled off, and then high-frequency sputter etching is performed under vacuum. A method for manufacturing a semiconductor device, wherein sputter growth is further continued.
【請求項5】 請求項1及び2記載のシリサイド層を形
成する高融点金属は、Tiであることを特徴とする半導
体装置及びその製造方法。
5. A semiconductor device and a method for manufacturing the same, wherein the refractory metal forming the silicide layer according to claim 1 is Ti.
JP2001230407A 2001-07-30 2001-07-30 Semiconductor device Pending JP2002124673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001230407A JP2002124673A (en) 2001-07-30 2001-07-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001230407A JP2002124673A (en) 2001-07-30 2001-07-30 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP00143992A Division JP3284415B2 (en) 1992-01-08 1992-01-08 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2002124673A true JP2002124673A (en) 2002-04-26

Family

ID=19062627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001230407A Pending JP2002124673A (en) 2001-07-30 2001-07-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2002124673A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100453909B1 (en) * 2002-10-23 2004-10-20 아남반도체 주식회사 Fabrication method of MOS transistor
KR100601954B1 (en) 2004-06-02 2006-07-14 삼성전자주식회사 A method of producing a substrate having a patterned organosilane layer and a method of using the substrate produced by the method
CN111785694A (en) * 2019-04-04 2020-10-16 三垦电气株式会社 Semiconductor device and electronic apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100453909B1 (en) * 2002-10-23 2004-10-20 아남반도체 주식회사 Fabrication method of MOS transistor
KR100601954B1 (en) 2004-06-02 2006-07-14 삼성전자주식회사 A method of producing a substrate having a patterned organosilane layer and a method of using the substrate produced by the method
CN111785694A (en) * 2019-04-04 2020-10-16 三垦电气株式会社 Semiconductor device and electronic apparatus
CN111785694B (en) * 2019-04-04 2024-04-26 三垦电气株式会社 Semiconductor device and electronic apparatus

Similar Documents

Publication Publication Date Title
US6642585B2 (en) Semiconductor device having gate electrode of stacked structure including polysilicon layer and metal layer and method of manufacturing the same
US6475888B1 (en) Method for forming ultra-shallow junctions using laser annealing
JP2002170954A (en) Method for forming gate electrode on semiconductor element
JPH10173179A (en) Semiconductor device and its manufacture
US7371646B2 (en) Manufacture of insulated gate type field effect transistor
JP2006522481A (en) Gate electrode for MOS transistor
JP3284415B2 (en) Method for manufacturing semiconductor device
JP2002124673A (en) Semiconductor device
JP2972687B2 (en) Method for manufacturing semiconductor device
EP1020922A2 (en) Insulated gate field effect transistor and method of manufacture thereof
KR100628225B1 (en) method for manufacturing of semiconductor device
JPH023244A (en) Manufacture of semiconductor device
JPH1126397A (en) Manufacture of semiconductor device
JP3601232B2 (en) Method for manufacturing semiconductor device
US7135407B2 (en) Method of manufacturing a semiconductor device
JP3543504B2 (en) Method for manufacturing semiconductor device
KR100353525B1 (en) Method for forming gate electrode in semiconductor device
JP2004119754A (en) Wire, manufacturing method of wire, semiconductor device, and manufacturing method thereof
JP3435943B2 (en) Semiconductor device and manufacturing method thereof
JP2003086673A (en) Manufacturing method for semiconductor device
JPH08339970A (en) Semiconductor device and manufacture thereof
JPH11204784A (en) Manufacture for semiconductor device
JPH03155641A (en) Manufacture of mos type semiconductor device
JPH08255766A (en) Manufacture of semiconductor device
JPH07183515A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031125