JP2002101753A - Soil greening/stabilizing material and construction method using the same - Google Patents

Soil greening/stabilizing material and construction method using the same

Info

Publication number
JP2002101753A
JP2002101753A JP2000294126A JP2000294126A JP2002101753A JP 2002101753 A JP2002101753 A JP 2002101753A JP 2000294126 A JP2000294126 A JP 2000294126A JP 2000294126 A JP2000294126 A JP 2000294126A JP 2002101753 A JP2002101753 A JP 2002101753A
Authority
JP
Japan
Prior art keywords
soil
greening
cement
bacteria
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000294126A
Other languages
Japanese (ja)
Other versions
JP3479505B2 (en
Inventor
Toshiharu Mizogami
俊治 溝上
Takuya Marumoto
卓哉 丸本
Toshihiro Fukunaga
敏宏 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORUTANA KK
SOGO RYOKKA KK
TAKINOU FILTER KK
YAMAGUCHI KOSAN KK
Original Assignee
ORUTANA KK
SOGO RYOKKA KK
TAKINOU FILTER KK
YAMAGUCHI KOSAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORUTANA KK, SOGO RYOKKA KK, TAKINOU FILTER KK, YAMAGUCHI KOSAN KK filed Critical ORUTANA KK
Priority to JP2000294126A priority Critical patent/JP3479505B2/en
Publication of JP2002101753A publication Critical patent/JP2002101753A/en
Application granted granted Critical
Publication of JP3479505B2 publication Critical patent/JP3479505B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a soil base lowering pH of a lime-based or cement-based solidification material to be admixed with a vegetation base material and making plant growth easy through using alkalophilic bacterium. SOLUTION: The objective soil greening/stabilizing material comprises a greening material as a mixture of a vegetation base material such as soil, a compound fertilizer, a bark compost and peat moss, and a lime-based or cement-based solidification material, and alkalophilic bacterium to be inoculated to the greening material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、土壌、化成肥
料、パーク堆肥、ピートモス等の植生基盤材に強度保持
材として添加混合した石灰またはセメント系固化材の呈
するアルカリ性を低減して、植物の発芽、生育に適した
土壌基盤を作ることができる土壌緑化・安定化資材及び
その施工方法に関するものである。
The present invention relates to a method for germinating plants by reducing the alkalinity of lime or cement-based solidified material added as a strength-retaining material to vegetation base materials such as soil, chemical fertilizer, park compost, peat moss, etc. The present invention relates to a soil greening / stabilizing material capable of forming a soil base suitable for growth and a construction method thereof.

【0002】[0002]

【従来の技術】切土または盛土の法面は、法面造成時に
は安定しているが、時間の経過とともに不安定となり、
侵食、落石、崩壊などが生じて、徐々にその規模が拡大
することがある。このため、法面の保護が必要である。
表面強度のある一般的な土質の場合は、簡便な種子吹き
付けが行われるが、表面強度が弱い場合は、法粋を構築
するか、法面全面にモルタルを吹き付けるかしている。
2. Description of the Related Art The slope of cut or embankment is stable at the time of slope creation, but becomes unstable over time.
Erosion, rock fall, collapse, etc. may occur and gradually increase in scale. For this reason, slope protection is necessary.
In the case of general soil with surface strength, simple seed spraying is performed, but in the case of low surface strength, a method is constructed or mortar is sprayed on the entire slope.

【0003】[0003]

【発明が解決しようとする課題】ところが、モルタルの
吹き付けは、法面表面が灰色となるから、景観上からあ
まり好ましくない。安価で強度のある地表面の被覆材と
しては、セメント系固化材に勝るものはない。セメント
系の固化材は、早期に安定し、水に強く、雨に流亡され
にくい利点を有するためである。しかし、その強アルカ
リ性は、ほとんどの植物の生育に適さず、自然保護の面
からも、好ましくない。
However, spraying mortar is not preferable from the viewpoint of the landscape because the slope surface becomes gray. As an inexpensive and strong ground surface covering material, there is no substitute for cement-based solidification material. This is because the cement-based solidifying material has advantages in that it is stable early, is resistant to water, and is not easily run off by rain. However, its strong alkalinity is not suitable for the growth of most plants, and is not preferable from the viewpoint of nature protection.

【0004】この対策としては、過リン酸石灰等のpH
緩衝剤や硫酸アルミニウム等の酸性物質の添加によるア
ルカリ性低減策が提言されている。しかし、セメントの
強度とアルカリ性の低減との相克状態をいまだ脱却しえ
ていない。
[0004] As a countermeasure against this, pH of superphosphate or the like is used.
A measure for reducing alkalinity by adding a buffer or an acidic substance such as aluminum sulfate has been proposed. However, the conflict between the strength of cement and the reduction in alkalinity has not yet escaped.

【0005】環境と調和した法面を造成するためには、
法面に敷設する植生基盤材の強度を上げ、植生基盤材を
植物の生育に適するように改善し、その基盤材に植物を
導入して法面の保護を行うことが望ましい。植生基盤材
の強化には、セメント系固化材を利用すればよいが、そ
の場合に植物の生育に問題となるのが、セメントによる
アルカリ障害である。
In order to create a slope that is in harmony with the environment,
It is desirable to increase the strength of the vegetation base material laid on the slope, improve the vegetation base material so as to be suitable for plant growth, and introduce plants to the base material to protect the slope. To strengthen the vegetation base material, a cement-based solidifying material may be used, but in this case, a problem with the growth of the plant is alkali damage caused by cement.

【0006】そこで、この発明においては、植物の生育
に問題となるセメント系固化材によるアルカリ障害の改
善を微生物の生態を利用して行うことを試みた。供試菌
株については、アルカリ性環境に生育する細菌を選抜す
ることとした。多くの細菌は、pHが9程度のアルカリ
性に対する耐性機構を有している。しかし、これらの細
菌は、中性の環境で生育しているものがほとんどであ
る。
Therefore, in the present invention, an attempt was made to improve the alkali damage caused by the cement-based solidifying material, which is a problem in the growth of plants, by utilizing the ecology of microorganisms. For the test strain, bacteria that grow in an alkaline environment were selected. Many bacteria have a mechanism of resistance to alkalinity at a pH of about 9. However, most of these bacteria grow in a neutral environment.

【0007】ところが、pH10以上で最も生育が良
く、pH11.5でも生育する細菌が存在しており、そ
れらは好アルカリ性細菌と呼ばれている。好アルカリ性
細菌は、pHが中性や極端に高い培地で培養すると、そ
れらの培地は、アルカリ化したり、酸性化したりして、
やがて、pH9付近の値に落ち着くことが観察されてい
る。
[0007] However, there is a bacterium that grows best at pH 10 or higher and grows even at pH 11.5, and these are called alkalophilic bacteria. When alkalophilic bacteria are cultured in a medium with a neutral or extremely high pH, those mediums become alkaline or acidified,
Eventually, it has been observed that it settles to a value near pH 9.

【0008】この発明は、このような技術的背景の下に
なされたもので、特に、好アルカリ性細菌を利用して、
植生基盤材に添加混合する石灰またはセメント系固化材
のpHを低下させ、植物の生育しやすい土壌基盤をつく
ることができる土壌緑化・安定化資材とその施行法を提
案することを目的としている。
The present invention has been made under such a technical background. In particular, the present invention utilizes alkalophilic bacteria,
An object of the present invention is to propose a soil revegetation and stabilization material capable of lowering the pH of lime or cement-based solidification material added to and mixed with a vegetation base material and creating a soil base on which plants can easily grow, and a method for implementing the same.

【0009】[0009]

【課題を解決するための手段】この発明が提供する土壌
緑化・安定化資材は、土壌、化成肥料、パーク堆肥、ピ
ートモス等の植生基盤材と石灰系またはセメント系固化
材との混合物である緑化資材と、この緑化資材に接種す
る好アルカリ性細菌とよりなるものである(以下、第1
の資材という)。
Means for Solving the Problems The soil revegetation and stabilization material provided by the present invention is a revegetation which is a mixture of a vegetation base material such as soil, chemical fertilizer, park compost, peat moss and a lime or cement solidification material. And a alkalophilic bacterium to inoculate the greening material (hereinafter referred to as the first material).
Material).

【0010】第1の資材における好アルカリ性細菌は、
Aeromonas hydrophila、Baci
llus alcalophilus、Bacillu
s thuringiensis、Clauibact
er michiganense、Bacillus
subtilis、のうちの少なくとも1種である。
[0010] The alkalophilic bacteria in the first material include:
Aeromonas hydrophila, Baci
lulus alcoholophilus, Bacillu
s thuringiensis, Clauibact
er michiganense, Bacillus
subtilis, at least one of the following:

【0011】また、この発明が提供する土壌緑化・安定
資材の施工法は、緑化資材に水を加えてスラリーとし、
このスラリーに凝固剤と好アルカリ性細菌を添加混合す
る施工法である。
[0011] In addition, a method for constructing a soil greening and stabilizing material provided by the present invention is as follows: water is added to the greening material to form a slurry;
This is a construction method in which a coagulant and an alkaliphilic bacterium are added to and mixed with this slurry.

【0012】この施行法において使用する好アルカリ性
細菌は、Aeromonas hydrophila、
Bacillus alcalophilus、Bac
illus thuringiensis、Claui
bacter michiganense、Bacil
lus subtilis、のうちの少なくとも1種で
ある。
The alkalophilic bacteria used in this method are Aeromonas hydrophila,
Bacillus alcalophilus, Bac
illus thuringiensis, Clauii
Bacter Michiganense, Bacil
at least one of R. subtilis.

【0013】上記セメント系固化材は、セメント、灰
分、硫酸礬土、土壌のうちの少なくともセメントを主成
分とするものである。
The cement-based solidifying material contains at least cement as a main component among cement, ash, sulphate, and soil.

【0014】[0014]

【作用】この発明の好アルカリ性細菌による石灰系また
はセメント系固化材のアルカリ性の低減機構、すなわ
ち、石灰系またはセメント系固化材の固化の進行に伴っ
て生成する遊離アルカリの低減機構は、今後の研究に待
たざるを得ない。しかし、遊離アルカリの低減は、恐ら
く、上記微生物の生態作用によって発生する有機酸の中
和効果によるものと考えられる。
The mechanism for reducing the alkalinity of a lime-based or cement-based solidified material by an alkaliphilic bacterium of the present invention, that is, the mechanism for reducing free alkali generated with the progress of solidification of a lime-based or cement-based solidified material, will be described in the future. I have to wait for my research. However, the reduction of free alkali is probably due to the neutralizing effect of organic acids generated by the ecological action of the microorganism.

【0015】従来のアルカリ性低減に使用される無機酸
性物質は、強酸性であり、その中和作用は、セメント自
体の中和にも消費され、場合によっては、セメントの強
度発現を阻害するような難点がある。これに対して、こ
の発明の好アルカリ細菌の生態作用によって発生すると
考えられる弱酸性の有機酸は、セメント本来の機能を害
うことなくセメントの強度発現物質である珪酸カルシウ
ム水和物ゲルの生成に伴って生じる遊離石灰のアルカリ
を中和すると考えられる。
The conventional inorganic acidic substance used for reducing alkalinity is strongly acidic, and its neutralizing action is also consumed in neutralizing the cement itself, and in some cases, inhibits the development of the strength of the cement. There are difficulties. On the other hand, the weakly acidic organic acid, which is considered to be generated by the ecological action of the alkalophilic bacterium of the present invention, forms calcium silicate hydrate gel, which is a cement strength developing substance, without impairing the original function of the cement. It is considered that the alkali of the free lime generated with the neutralization is neutralized.

【0016】[0016]

【発明の実施の形態】以下、この発明の実施の形態を実
施例によって説明する。
Embodiments of the present invention will be described below with reference to embodiments.

【0017】(実施例1)実施例1では、バーク堆肥、
ピートモス、化成肥料からなる植物基盤材にセメント系
固化材を添加混合して得られる緑化資材に、好アルカリ
性細菌を接種して、調製する土壌緑化・安定化資材につ
いて説明する。
(Example 1) In Example 1, bark compost,
A description will be given of a soil greening / stabilizing material prepared by inoculating a greening material obtained by adding and mixing a cement-based solidifying material to a plant base material made of peat moss and a chemical fertilizer with an alkaliphilic bacterium.

【0018】この資材は、前記固化資材のpHを低下さ
せ、植物の生育しやすい土壌基盤、特に、切土または盛
土の法面の保護に適した土壌基盤を作るのに有効であ
る。
This material is effective for lowering the pH of the solidified material and creating a soil base on which plants can easily grow, particularly a soil base suitable for protecting cut or embankment slopes.

【0019】法面の土壌浸食防止と緑化を行う方法とし
ては、その表面層を土壌にセメントを混合したソイルセ
メントで形成する方法、あるいは池沼からの浚渫土ある
いは汚泥などを含む土壌にセメント系固化材を混合した
もので形成する方法がある。
As a method of preventing soil erosion and revegetation on the slope, a method of forming the surface layer with soil cement in which cement is mixed with soil, or a method of solidifying cement with soil containing dredged soil or sludge from a pond or marsh. There is a method of forming by mixing materials.

【0020】しかし、いずれの方法もその強アルカリ性
のため、植物の生育には不適切である。そこで、まず始
めに、好アルカリ性細菌を利用して強アルカリ性セメン
ト系資材のpHを低下させ、植物が生育しやすい土壌基
盤をつくることを目的として、好アルカリ性細菌のスク
リーニングを行った。
However, any of these methods is unsuitable for growing plants because of their strong alkalinity. Therefore, first, alkalophilic bacteria were screened for the purpose of lowering the pH of the strongly alkaline cement-based material using alkalophilic bacteria and creating a soil base on which plants can easily grow.

【0021】我が国には、アルカリ性土壌は極めて少な
いが、それらの地域の土壌から好アルカリ性細菌のスク
リーニングを行うことにした。供試土壌の採取場所は、
山口県S市、山口県Y市、島根県M市の3ヵ所である。
その後、上記3ヵ所で採取した8つの試料を用いて、菌
株のスクリーニングを行った。各試料のpHは、6.3
〜8.7の範囲にあった。スクリーニングは、上記3ヵ
所の土壌から、34種類の好アルカリ性細菌を単離し
た。このうち生育日数の早い(1〜3日)好アルカリ性
細菌15株を寒天培地を用いた接種試験に供した。
Although Japan has very few alkaline soils, it has been decided to screen for alkaliphilic bacteria from soils in those areas. The sampling location of the test soil
There are three locations: S City in Yamaguchi Prefecture, Y City in Yamaguchi Prefecture, and M City in Shimane Prefecture.
Thereafter, strain screening was performed using the eight samples collected at the above three locations. The pH of each sample was 6.3
88.7. In the screening, 34 kinds of alkalophilic bacteria were isolated from the above three soils. Among them, 15 strains of alkalophilic bacteria having a fast growing period (1 to 3 days) were subjected to an inoculation test using an agar medium.

【0022】接種試験では、細菌の培地のpHは、いず
れも、約1〜3低下することが分かった。このことか
ら、セメント系固化材に、これらの菌株を接種した場
合、それらの増殖に伴って、同固化材中のpHは低下す
ると考えられた。
In the inoculation test, it was found that the pH of the bacterial medium decreased by about 1 to 3 in all cases. From this, it was considered that when these strains were inoculated to a cement-based solidified material, the pH in the solidified material was decreased with their growth.

【0023】(1)緑化資材に接種する好アルカリ性細
菌の選抜 好アルカリ性細菌の分離に用いた表1に示す組成の基本
培地から、寒天と炭酸ナトリウムを除いたものを、40
0mlのイオン交換水で溶解し、16本の100ml容
三角フラスコに20mlずつ分注するとともに、炭酸ナ
トリウムを100mlのイオン交換水で溶解し、それぞ
れ別々に、オートクレーブで120℃、20分間滅菌し
た。この後、クリーンベンチ内で無菌的に、上記16本
の三角フラスコの中に炭酸ナトリウムの溶液を5mlず
つ分注、混合した。
(1) Selection of alkalophilic bacteria to be inoculated to greening material From the basic medium having the composition shown in Table 1 used for the separation of alkalophilic bacteria, a medium obtained by removing agar and sodium carbonate from the basic medium was subjected to a treatment.
The mixture was dissolved in 0 ml of ion-exchanged water, dispensed in 20 ml portions into 16 100 ml Erlenmeyer flasks, and sodium carbonate was dissolved in 100 ml of ion-exchanged water, and each was separately sterilized in an autoclave at 120 ° C. for 20 minutes. Thereafter, 5 ml of the sodium carbonate solution was dispensed and mixed into the 16 Erlenmeyer flasks aseptically in a clean bench.

【0024】[0024]

【表1】 [Table 1]

【0025】この好アルカリ性細菌用の液体培地に、前
述の生育の早い15菌株をそれぞれ植菌した。これを2
5℃で振盪培養し、pHと吸光度の変化を測定した。
The above-mentioned fifteen rapidly growing strains were inoculated into the liquid medium for alkaliphilic bacteria. This is 2
After shaking culture at 5 ° C., changes in pH and absorbance were measured.

【0026】その結果を基に、後述する緑化資材に接種
する好アルカリ性細菌として、次の5種を選抜した。こ
れらの細菌A〜Eは、初期pH値10の液体培養におい
て、培養後急激に菌が増殖し、pH値も、それに伴って
低下し、最終pHは約7.5という望ましい値を示し
た。
Based on the results, the following five species were selected as the alkaliphilic bacteria to be inoculated to the greening material described below. In the liquid culture having an initial pH value of 10, these bacteria A to E rapidly proliferated after the culture, and the pH value also decreased accordingly, and the final pH showed a desirable value of about 7.5.

【0027】A:Aeromonas hydroph
ila(以下、細菌Aという) B:Bacillus alcalophilus(以
下、細菌Bという) C:Bacillus thuringiensis
(以下、細菌Cという) D:Clauibacter michiganens
e(以下、細菌Dという) E:Bacillus subtilis(以下、細菌
Eという) (2)選抜した好アルカリ性細菌による液体培地のpH
および吸光度の変化 pH5、7、10の液体培地に、後述する緑化資材に接
種する好アルカリ性細菌A〜Dを約1×105cell
ml-1となるように、それぞれpH10の液体培地に植
菌した。これを25℃で振盪培養し、pHと吸光度の変
化を経時的に測定した。
A: Aeromonas hydroph
ila (hereinafter referred to as bacteria A) B: Bacillus alcalophilus (hereinafter referred to as bacteria B) C: Bacillus thuringiensis
(Hereinafter referred to as bacterium C) D: Clauibacter michiganens
e (hereinafter, referred to as a bacterium D) E: Bacillus subtilis (hereinafter, referred to as a bacterium E) (2) pH of the liquid medium by the selected alkalophilic bacteria
And change in absorbance About 1 × 10 5 cells of the alkaliphilic bacteria A to D to be inoculated into a greening material to be described later are placed in a liquid medium at pH 5, 7, or 10.
Each was inoculated in a liquid medium of pH 10 so as to be ml −1 . This was cultured with shaking at 25 ° C., and changes in pH and absorbance were measured over time.

【0028】pH10の液体培地において、好アルカリ
性細菌の増殖に伴うpHの低下パターンは、2通りある
ことが分かった。1つは、徐々に菌が増殖し、pHもそ
れに伴って低下するが、その後再び上昇するパターンで
あり、もう1つは、培養後急激に菌が増殖し、pHもそ
れに伴って低下するパターンである。また、それぞれの
菌株について、pH5、7、10の液体培地におけるp
Hと吸光度の変化を測定した結果、細菌Aは、pH7で
の生育が最も早いが、最初の培地pHが5、7、10い
ずれの時も、pH9付近に落ち着いた。細菌Bは、pH
10での生育が最も早かった。細菌Cは、pH7での生
育が最も早く、pH5付近まで低下させるが、pH5お
よび10で培養開始したものは、pH9付近に落ち着い
た。細菌D、Eは、pH7での生育が最も早く、pH5
および7で培養開始したものは、pH4付近まで低下さ
せるが、pH10で開始したものは、pH9付近に落ち
着いた。
In the liquid medium at pH 10, it was found that there were two patterns of pH decrease accompanying the growth of alkalophilic bacteria. One is a pattern in which the bacteria gradually grow and the pH decreases with it, but then rises again. The other is a pattern in which the bacteria grow rapidly after the culture and the pH decreases accordingly. It is. Further, for each strain, p in a liquid medium at pH 5, 7, 10 was determined.
As a result of measuring changes in H and absorbance, bacteria A grew fastest at pH 7, but settled around pH 9 when the initial medium pH was 5, 7, or 10. Bacteria B has a pH
10 grew fastest. Bacterium C grew fastest at pH 7 and decreased to around pH 5, but those that started culturing at pH 5 and 10 settled around pH 9. Bacteria D and E grow the fastest at pH 7 and at pH 5
The cultures started at pH 7 and 7 dropped to around pH 4, while those started at pH 10 settled around pH 9.

【0029】(3)緑化資材への選抜した好アルカリ性
細菌の接種 植生基盤材(パーク堆肥、ピートモスの混合物)15g
と化成肥料0.11gをフラスコに入れ、シリコン栓を
した後、オートクレープで120℃、20分間滅菌し
た。セメント系固化材(表5の固化材)0.15gを薬
包紙に包んでシャーレに入れ、170℃で1時間滅菌し
た。これらをクリーンベンチ内で無菌的に混合して緑化
資材とした。
(3) Inoculation of selected alkalophilic bacteria on greening material 15 g of vegetation base material (mixture of park compost and peat moss)
And 0.11 g of the chemical fertilizer were placed in a flask, sealed with a silicon stopper, and then sterilized with an autoclave at 120 ° C. for 20 minutes. 0.15 g of the cement-based solidifying material (solidifying material in Table 5) was wrapped in a medicine wrapper, placed in a petri dish, and sterilized at 170 ° C. for 1 hour. These were aseptically mixed in a clean bench to produce greening materials.

【0030】一方、液体培地で生育させた細菌A〜Eの
数を測定し、それぞれの菌株をピペットで1mlずつ取
り、無菌水9mlに加えたものを1次希釈液とし(希釈
倍率10-1)、各1次希釈液を更に、それぞれ2×10
4cellml-1となるように調製した。得られた各希
釈液0.5mlを、それぞれ10本の三角フラスコに入
れた緑化資材に接種した。
On the other hand, the number of bacteria A to E grown on the liquid medium was measured, and 1 ml of each strain was taken with a pipette and added to 9 ml of sterile water to obtain a primary diluent (dilution factor 10 -1). ), Further add 2x10
It was adjusted to be 4 cell ml -1 . 0.5 ml of each of the obtained diluents was inoculated to a greening material placed in 10 Erlenmeyer flasks.

【0031】この操作は、いずれもクリーンベンチ内で
無菌的に行った。緑化資材のpHは、同資材25gに無
菌水50mlを加え、pHメーターにて測定した。緑化
資材中の生菌数は、希釈平板法(基本培地:表1)にて
測定した。
This operation was performed aseptically in a clean bench. The pH of the greening material was measured by adding 50 ml of sterile water to 25 g of the greening material and using a pH meter. The number of viable bacteria in the greening material was measured by a dilution plate method (basic medium: Table 1).

【0032】その結果、緑化資材へ選抜した細菌A〜E
を接種した際、殆どの菌株が培養7日目で、緑化資材の
pH値を約0.5〜1低下させていた。このことから、
当初の目的であった植物の生育初期でのアルカリ障害を
早い時期に改善できることが分かった。
As a result, bacteria A to E selected as greening materials
When most of the strains were inoculated, the pH value of the greening material was reduced by about 0.5 to 1 on the seventh day of culture. From this,
It was found that the initial purpose, alkaline damage at the early stage of plant growth, can be improved at an early stage.

【0033】植物の発芽・生育に必要な土壌の条件とし
て、一般的に、pH値が8.5以下、硬さが、中山式硬
度指数値で20以下が望ましいと言われている。本発明
者の経験によると、セメント系固化材による土壌pH値
の推移は、強度発現の進行に伴い生じる遊離石灰が、雨
水や、土壌中の酸性物質により中和されるか、そのまま
流出するかで、比較的早い時期にpH値は8.5内外に
達する。しかし、更にpH値を0.5〜1.0低下さ
せ、植物の発芽・生育により望ましいpH値の領域:
7.0〜7.5以下に到達させるには、可成りの日数を
要する。
It is generally said that the soil conditions required for germination and growth of plants are desirably a pH value of 8.5 or less and a hardness of 20 or less in Nakayama hardness index. According to the experience of the present inventor, the change in soil pH value due to cement-based solidifying material indicates whether free lime generated with the progress of strength development is neutralized by rainwater or acidic substances in soil, or flows out as it is. Thus, the pH value reaches about 8.5 at a relatively early stage. However, the pH value is further lowered by 0.5 to 1.0, and the range of the pH value more desirable for germination and growth of the plant is as follows:
It takes a considerable number of days to reach 7.0 to 7.5 or less.

【0034】この点、実施例3の緑化資材のpH値は、
一週間という初期の段階で、0.5〜1.0低下した。
この事実は、実施例の土壌緑化・安定化資材の実用化を
可能にするものと考えられる。
In this respect, the pH value of the greening material of Example 3 is as follows:
In the early stage of one week, it decreased by 0.5 to 1.0.
This fact is considered to enable the practical use of the soil greening / stabilizing material of the example.

【0035】(実施例2)実施例1に示した植生基盤材
100g、化成肥料0.75g、セメント系固化材2g
(20kg/m3相当)、種子として、トールフェスク
ファルコン0.1g(30粒)を良く混合して緑化資材
とした。
Example 2 100 g of the vegetation base material shown in Example 1, 0.75 g of chemical fertilizer, 2 g of cement-based solidified material
(Equivalent to 20 kg / m 3 ) and 0.1 g (30 grains) of tall fescufalcon as a seed were mixed well to obtain a greening material.

【0036】一方、液体培養で、望ましいpH値の低減
を示した細菌Aを実施例1と同じ2×104cellm
-1なる希釈液とし、この希釈液3.3mlを上記緑化
資材に加えて良く混合し、然る後、底にメッシュ網を敷
いた200mlの3号鉢に、充填し、良く押さえつけて
植生ポットとした。植生ポットは、各細菌Aを加えたも
のを4個作った。また、菌株を添加しないブランク試料
を入れた植生ポットも同様の方法で4個作成した。
On the other hand, in liquid culture, bacteria A showing a desirable decrease in pH were replaced with the same 2 × 10 4 cells as in Example 1.
l- 1 diluted solution, 3.3 ml of the diluted solution was added to the greening material and mixed well, and then filled into a 200 ml No. 3 bowl with a mesh net at the bottom, pressed well, and vegetated. Pot. Four vegetation pots were prepared by adding each of the bacteria A. In addition, four vegetation pots containing blank samples to which no strain was added were prepared in the same manner.

【0037】このようにして得られた植生ポットを、温
度条件20〜25℃の温室に配置した。表2は、3週後
の、発芽生育本数、ポット中の緑化資材のpH値と硬度
指数を示す。表2の試験結果より、菌株有りの方が、発
芽生育率が1.5倍高く、pH値は0.5低く、硬度指
数は、変わらず、好ましい値となっていた。
The vegetation pot thus obtained was placed in a greenhouse at a temperature of 20 to 25 ° C. Table 2 shows the number of germinated growths, the pH value of the greening material in the pot, and the hardness index after 3 weeks. From the test results shown in Table 2, the presence of the strain showed that the germination growth rate was 1.5 times higher, the pH value was lower by 0.5, and the hardness index was unchanged and a preferable value.

【0038】[0038]

【表2】 [Table 2]

【0039】(実施例3)実施例3では、まず、表3に
示す植生基盤材932gと実施例1のセメント系固化材
20gの混合物に水260gを加えて、移送可能なスラ
リーとし、これに凝固剤を加えた場合の性状について調
べた。本来ならば、このスラリーの吹き付けノズル出口
に、凝固剤を加え、吹き付け後のスラリーを一瞬にし
て、固形化させ、ダレないコンポジットを生成させるこ
とになるが、この実施例では、そのモデル実験として、
表4に示す各種凝固剤をスラリーに20gずつ添加し、
添加前後のスラリーの性状を調べた。表4はその性状を
示す。
(Example 3) In Example 3, first, 260 g of water was added to a mixture of 932 g of the vegetation base material shown in Table 3 and 20 g of the cement-based solidified material of Example 1 to obtain a transferable slurry. The properties when a coagulant was added were examined. Originally, a coagulant was added to the outlet of this slurry spray nozzle, and the slurry after spraying was instantaneously solidified to form a composite without dripping.However, in this example, as a model experiment, ,
Each coagulant shown in Table 4 was added to the slurry in an amount of 20 g,
The properties of the slurry before and after the addition were examined. Table 4 shows the properties.

【0040】いずれの場合も、準スランプ値は低下し、
ダレ難いコンポジットへ変化していた。
In each case, the quasi-slump value decreases,
It had changed to a composite that was difficult to sag.

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【表4】 [Table 4]

【0043】上記モデル実験で得られた各種凝固剤添加
後のダレ難いコンポジットを、素早く樋型耐散水試験器
具(自作品)の充填箱(125×125×45mm)3
個に分けて詰め、屋外に放置し、耐散水試験用試験体を
作成した。1日経過後、各充填箱から取り出した試験体
(コンポジット)をそれぞれ個別に8分勾配になるよう
にセットした木製箱型樋にのせ、各試験体に全自動噴霧
器により、約100mm/hr程度の散水強度で、水を
噴霧した。
The hard-to-sag composite obtained after the addition of various coagulants obtained in the above model experiment was quickly filled with a gutter type water-proofing test instrument (own work) into a filling box (125 × 125 × 45 mm) 3
The pieces were individually packed and left outdoors to prepare test pieces for a water resistance test. After one day, the test specimens (composites) taken out of the respective filling boxes are individually placed on wooden box-shaped gutters set so as to have a gradient of 8 minutes, and each test specimen is about 100 mm / hr by a fully automatic sprayer. Water was sprayed at a spraying intensity.

【0044】表5は、コンポジットの1日後の流出土量
の測定結果を示す。流出土量はコンポジット試験体3個
の平均値である。噴霧散水強度:100mm/hr前後
の流出土量は、いずれのセメント系固化材〜凝固剤の場
合も、ブランク(セメント系固化材及び凝固剤を添加せ
ず)の場合より、少なく、大幅な改善が認められた。
Table 5 shows the measurement results of the amount of soil discharged one day after the composite. The amount of soil discharged is the average of three composite specimens. Spray watering strength: The amount of soil discharged around 100 mm / hr is less than that of the blank (without adding the cement-based solidifying material and the coagulating agent) in each case of the cement-based solidifying material to the coagulating agent, and is significantly improved. Was observed.

【0045】[0045]

【表5】 [Table 5]

【0046】次に、表3に示す植生基盤材932gに、
化成肥料(スミカエース)5g、実施例1のセメント系
固化材20g、種子として、トールフェスクファルコン
1.0(300粒)を加え、良く混合して緑化資材とし
た。ついで、この資材に水260gを加えてスラリーと
し、これに凝固剤として、3号珪曹((株)トクヤマ社
製)(1+1)希釈水溶液20gと、実施例1で示した
細菌Aの2×104cellml-1の希釈液33mlを
加え良く混合した。
Next, 932 g of the vegetation base material shown in Table 3 was added to
5 g of a chemical fertilizer (Sumika Ace), 20 g of the cement-based solidifying material of Example 1, and 1.0 (300 grains) of tall fescufalcon as seeds were added and mixed well to obtain a greening material. Then, 260 g of water was added to this material to form a slurry, and as a coagulant, 20 g of a diluted aqueous solution of No. 3 silicate (manufactured by Tokuyama Co., Ltd.) (1 + 1), and 2 × of the bacteria A shown in Example 1 33 ml of a 10 4 cell ml -1 diluent was added and mixed well.

【0047】得られた土壌緑化・安定化資材を植生試験
用ポット5個に、150mlずつ充填した。また、菌株
を添加しないブランク試料についても同様な方法でポッ
ト5個を作成した。このようにして得られた植生ポット
を屋外に設置した。
The obtained soil greening / stabilizing material was filled into five vegetation test pots in an amount of 150 ml each. In addition, five pots were prepared in the same manner for a blank sample to which no strain was added. The vegetation pot thus obtained was placed outdoors.

【0048】表6は3週後の発芽成育本数、ポット中の
緑化資材のpH値と硬度指数を示す。表6の試験結果よ
り、菌株有りの方が、発芽生育率が1.3倍高く、pH
値は0.5低く、硬度指数も2低く、好ましい値を示し
ていることが分かった。
Table 6 shows the number of germinating and growing plants after 3 weeks, the pH value of the greening material in the pot, and the hardness index. From the test results in Table 6, the germination growth rate was 1.3 times higher in the presence of the strain, and the pH was higher.
It was found that the value was lower by 0.5 and the hardness index was lower by 2 as well, indicating a preferable value.

【0049】[0049]

【表6】 [Table 6]

【0050】[0050]

【発明の効果】以上説明したように、この発明によれ
ば、上述のような構成としたから、植生基盤材に添加混
合される石灰系またはセメント系固化材の固化に伴って
生成する遊離アルカリを低減し、植物の生育しやすい土
壌基盤をつくることができる。
As described above, according to the present invention, since the above-described structure is employed, free alkali generated as the lime-based or cement-based solidified material added to and mixed with the vegetation base material is solidified. And a soil base on which plants can easily grow can be created.

【手続補正書】[Procedure amendment]

【提出日】平成12年10月11日(2000.10.
11)
[Submission date] October 11, 2000 (2000.10.
11)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】 明細書[Document Name] Statement

【発明の名称】 土壌緑化・安定化資材及びその施工法[Title of the Invention] Soil revegetation and stabilization material and its construction method

【特許請求の範囲】[Claims]

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、土壌、化成肥
料、パーク堆肥、ピートモス等の植生基盤材に強度保持
材として添加混合した石灰またはセメント系固化材の呈
するアルカリ性を低減して、植物の発芽、生育に適した
土壌基盤を作ることができる土壌緑化・安定化資材及び
その施工方法に関するものである。
The present invention relates to a method for germinating plants by reducing the alkalinity of lime or cement-based solidified material added as a strength-retaining material to vegetation base materials such as soil, chemical fertilizer, park compost, peat moss, etc. The present invention relates to a soil greening / stabilizing material capable of forming a soil base suitable for growth and a construction method thereof.

【0002】[0002]

【従来の技術】切土または盛土の法面は、法面造成時に
は安定しているが、時間の経過とともに不安定となり、
侵食、落石、崩壊などが生じて、徐々にその規模が拡大
することがある。このため、法面の保護が必要である。
表面強度のある一般的な土質の場合は、簡便な種子吹き
付けが行われるが、表面強度が弱い場合は、法を構築
するか、法面全面にモルタルを吹き付けるかしている。
2. Description of the Related Art The slope of cut or embankment is stable at the time of slope creation, but becomes unstable over time.
Erosion, rock fall, collapse, etc. may occur and gradually increase in scale. For this reason, slope protection is necessary.
In the case of general soil having surface strength, simple seed spraying is performed. However, in the case of low surface strength, a law frame is constructed or mortar is sprayed on the entire slope.

【0003】[0003]

【発明が解決しようとする課題】ところが、モルタルの
吹き付けは、法面表面が灰色となるから、景観上からあ
まり好ましくない。安価で強度のある地表面の被覆材と
しては、セメント系固化材に勝るものはない。セメント
系の固化材は、早期に安定し、水に強く、雨に流亡され
にくい利点を有するためである。しかし、その強アルカ
リ性は、ほとんどの植物の生育に適さず、自然保護の面
からも、好ましくない。
However, spraying mortar is not preferable from the viewpoint of the landscape because the slope surface becomes gray. As an inexpensive and strong ground surface covering material, there is no substitute for cement-based solidification material. This is because the cement-based solidifying material has advantages in that it is stable early, is resistant to water, and is not easily run off by rain. However, its strong alkalinity is not suitable for the growth of most plants, and is not preferable from the viewpoint of nature protection.

【0004】この対策としては、過リン酸石灰等のpH
緩衝剤や硫酸アルミニウム等の酸性物質の添加によるア
ルカリ性低減策が提言されている。しかし、セメントの
強度とアルカリ性の低減との相克状態をいまだ脱却しえ
ていない。
[0004] As a countermeasure against this, pH of superphosphate or the like is used.
A measure for reducing alkalinity by adding a buffer or an acidic substance such as aluminum sulfate has been proposed. However, the conflict between the strength of cement and the reduction in alkalinity has not yet escaped.

【0005】環境と調和した法面を造成するためには、
法面に敷設する植生基盤材の強度を上げ、植生基盤材を
植物の生育に適するように改善し、その基盤材に植物を
導入して法面の保護を行うことが望ましい。植生基盤材
の強化には、セメント系固化材を利用すればよいが、そ
の場合に植物の生育に問題となるのが、セメントによる
アルカリ障害である。
In order to create a slope that is in harmony with the environment,
It is desirable to increase the strength of the vegetation base material laid on the slope, improve the vegetation base material so as to be suitable for plant growth, and introduce plants to the base material to protect the slope. To strengthen the vegetation base material, a cement-based solidifying material may be used, but in this case, a problem with the growth of the plant is alkali damage caused by cement.

【0006】そこで、この発明においては、植物の生育
に問題となるセメント系固化材によるアルカリ障害の改
善を微生物の生態を利用して行うことを試みた。供試菌
株については、アルカリ性環境に生育する細菌を選抜す
ることとした。多くの細菌は、pHが9程度のアルカリ
性に対する耐性機構を有している。しかし、これらの細
菌は、中性の環境で生育しているものがほとんどであ
る。
Therefore, in the present invention, an attempt was made to improve the alkali damage caused by the cement-based solidifying material, which is a problem in the growth of plants, by utilizing the ecology of microorganisms. For the test strain, bacteria that grow in an alkaline environment were selected. Many bacteria have a mechanism of resistance to alkalinity at a pH of about 9. However, most of these bacteria grow in a neutral environment.

【0007】ところが、pH10以上で最も生育が良
く、pH11.5でも生育する細菌が存在しており、そ
れらは好アルカリ性細菌と呼ばれている。好アルカリ性
細菌は、pHが中性や極端に高い培地で培養すると、そ
れらの培地は、アルカリ化したり、酸性化したりして、
やがて、pH9付近の値に落ち着くことが観察されてい
る。
[0007] However, there is a bacterium that grows best at pH 10 or higher and grows even at pH 11.5, and these are called alkalophilic bacteria. When alkalophilic bacteria are cultured in a medium with a neutral or extremely high pH, those mediums become alkaline or acidified,
Eventually, it has been observed that it settles to a value near pH 9.

【0008】この発明は、このような技術的背景の下に
なされたもので、特に、好アルカリ性細菌を利用して、
植生基盤材に添加混合する石灰またはセメント系固化材
のpHを低下させ、植物の生育しやすい土壌基盤をつく
ることができる土壌緑化・安定化資材とその施行法を提
案することを目的としている。
The present invention has been made under such a technical background. In particular, the present invention utilizes alkalophilic bacteria,
An object of the present invention is to propose a soil revegetation and stabilization material capable of lowering the pH of lime or cement-based solidification material added to and mixed with a vegetation base material and creating a soil base on which plants can easily grow, and a method for implementing the same.

【0009】[0009]

【課題を解決するための手段】この発明が提供する土壌
緑化・安定化資材は、土壌、化成肥料、ーク堆肥、ピ
ートモス等の植生基盤材と石灰系またはセメント系固化
材との混合物である緑化資材と、この緑化資材に接種す
る好アルカリ性細菌とよりなるものである(以下、第1
の資材という)。
Means for Solving the Problems] Soil greening and stabilization material to which this invention provides is soil, fertilizer, bar click compost, with a mixture of vegetation base material and the lime or cement solidifying material such as peat moss It is composed of a certain greening material and an alkaliphilic bacterium inoculated on the greening material (hereinafter referred to as the first type).
Material).

【0010】第1の資材における好アルカリ性細菌は、
Aeromonas hydrophila、Baci
llus alcalophilus、Bacillu
s thuringiensis、Claibact
er michiganense、Bacillus
subtilis、のうちの少なくとも1種である。
[0010] The alkalophilic bacteria in the first material include:
Aeromonas hydrophila, Baci
lulus alcoholophilus, Bacillu
s thuringiensis, Cla v ibact
er michiganense, Bacillus
subtilis, at least one of the following:

【0011】また、この発明が提供する土壌緑化・安定
資材の施工法は、緑化資材に水を加えてスラリーとし、
このスラリーに凝固剤と好アルカリ性細菌を添加混合す
る施工法である。
[0011] In addition, a method for constructing a soil greening and stabilizing material provided by the present invention is as follows: water is added to the greening material to form a slurry;
This is a construction method in which a coagulant and an alkaliphilic bacterium are added to and mixed with this slurry.

【0012】この施行法において使用する好アルカリ性
細菌は、Aeromonas hydrophila、
Bacillus alcalophilus、Bac
illus thuringiensis、Cla
bacter michiganense、Bacil
lus subtilis、のうちの少なくとも1種で
ある。
The alkalophilic bacteria used in this method are Aeromonas hydrophila,
Bacillus alcalophilus, Bac
illus thuringiensis, Cla v i
Bacter Michiganense, Bacil
at least one of R. subtilis.

【0013】上記セメント系固化材は、セメント、灰
分、硫酸礬土、土壌のうちの少なくともセメントを主成
分とするものである。
The cement-based solidifying material contains at least cement as a main component among cement, ash, sulphate, and soil.

【0014】[0014]

【作用】この発明の好アルカリ性細菌による石灰系また
はセメント系固化材のアルカリ性の低減機構、すなわ
ち、石灰系またはセメント系固化材の固化の進行に伴っ
て生成する遊離アルカリの低減機構は、今後の研究に待
たざるを得ない。しかし、遊離アルカリの低減は、恐ら
く、上記微生物の生態作用によって発生する有機酸の中
和効果によるものと考えられる。
The mechanism for reducing the alkalinity of a lime-based or cement-based solidified material by an alkaliphilic bacterium of the present invention, that is, the mechanism for reducing free alkali generated with the progress of solidification of a lime-based or cement-based solidified material, will be described in the future. I have to wait for my research. However, the reduction of free alkali is probably due to the neutralizing effect of organic acids generated by the ecological action of the microorganism.

【0015】従来のアルカリ性低減に使用される無機酸
性物質は、強酸性であり、その中和作用は、セメント自
体の中和にも消費され、場合によっては、セメントの強
度発現を阻害するような難点がある。これに対して、こ
の発明の好アルカリ細菌の生態作用によって発生する
と考えられる弱酸性の有機酸は、セメント本来の機能を
害うことなくセメントの強度発現物質である珪酸カルシ
ウム水和物ゲルの生成に伴って生じる遊離石灰のアルカ
リを中和すると考えられる。
The conventional inorganic acidic substance used for reducing alkalinity is strongly acidic, and its neutralizing action is also consumed in neutralizing the cement itself, and in some cases, inhibits the development of the strength of the cement. There are difficulties. In contrast, weakly acidic organic acids which are considered to be generated by the ecological effects of alkalophilic bacteria of the present invention, the calcium silicate hydrate gel is strength development material cement without intends harm the cement original function It is considered to neutralize the alkali of free lime generated during the formation.

【0016】[0016]

【発明の実施の形態】以下、この発明の実施の形態を実
施例によって説明する。
Embodiments of the present invention will be described below with reference to embodiments.

【0017】(実施例1)実施例1では、バーク堆肥、
ピートモス、化成肥料からなる植物基盤材にセメント系
固化材を添加混合して得られる緑化資材に、好アルカリ
性細菌を接種して、調製する土壌緑化・安定化資材につ
いて説明する。
(Example 1) In Example 1, bark compost,
A description will be given of a soil greening / stabilizing material prepared by inoculating a greening material obtained by adding and mixing a cement-based solidifying material to a plant base material made of peat moss and a chemical fertilizer with an alkaliphilic bacterium.

【0018】この資材は、前記固化資材のpHを低下さ
せ、植物の生育しやすい土壌基盤、特に、切土または盛
土の法面の保護に適した土壌基盤を作るのに有効であ
る。
This material is effective for lowering the pH of the solidified material and creating a soil base on which plants can easily grow, particularly a soil base suitable for protecting cut or embankment slopes.

【0019】法面の土壌浸食防止と緑化を行う方法とし
ては、その表面層を土壌にセメントを混合したソイルセ
メントで形成する方法、あるいは池沼からの浚渫土ある
いは汚泥などを含む土壌にセメント系固化材を混合した
もので形成する方法がある。
As a method of preventing soil erosion and revegetation on the slope, a method of forming the surface layer with soil cement in which cement is mixed with soil, or a method of solidifying cement with soil containing dredged soil or sludge from a pond or marsh. There is a method of forming by mixing materials.

【0020】しかし、いずれの方法もその強アルカリ性
のため、植物の生育には不適切である。そこで、まず始
めに、好アルカリ性細菌を利用して強アルカリ性セメン
ト系資材のpHを低下させ、植物が生育しやすい土壌基
盤をつくることを目的として、好アルカリ性細菌のスク
リーニングを行った。
However, any of these methods is unsuitable for growing plants because of their strong alkalinity. Therefore, first, alkalophilic bacteria were screened for the purpose of lowering the pH of the strongly alkaline cement-based material using alkalophilic bacteria and creating a soil base on which plants can easily grow.

【0021】我が国には、アルカリ性土壌は極めて少な
いが、それらの地域の土壌から好アルカリ性細菌のスク
リーニングを行うことにした。供試土壌の採取場所は、
山口県S市、山口県Y市、島根県M市の3ヵ所である。
その後、上記3ヵ所で採取した8つの試料を用いて、菌
株のスクリーニングを行った。各試料のpHは、6.3
〜8.7の範囲にあった。スクリーニングは、上記3ヵ
所の土壌から、34種類の好アルカリ性細菌を単離し
た。このうち生育日数の早い(1〜3日)好アルカリ性
細菌15株を寒天培地を用いた接種試験に供した。
Although Japan has very few alkaline soils, it has been decided to screen for alkaliphilic bacteria from soils in those areas. The sampling location of the test soil
There are three locations: S City in Yamaguchi Prefecture, Y City in Yamaguchi Prefecture, and M City in Shimane Prefecture.
Thereafter, strain screening was performed using the eight samples collected at the above three locations. The pH of each sample was 6.3
88.7. In the screening, 34 kinds of alkalophilic bacteria were isolated from the above three soils. Among them, 15 strains of alkalophilic bacteria having a fast growing period (1 to 3 days) were subjected to an inoculation test using an agar medium.

【0022】接種試験では、細菌の培地のpHは、いず
れも、約1〜3低下することが分かった。このことか
ら、セメント系固化材に、これらの菌株を接種した場
合、それらの増殖に伴って、同固化材中のpHは低下す
ると考えられた。
In the inoculation test, it was found that the pH of the bacterial medium decreased by about 1 to 3 in all cases. From this, it was considered that when these strains were inoculated to a cement-based solidified material, the pH in the solidified material was decreased with their growth.

【0023】(1)緑化資材に接種する好アルカリ性細
菌の選抜 好アルカリ性細菌の分離に用いた表1に示す組成の基本
培地から、寒天と炭酸ナトリウムを除いたものを、40
0mlのイオン交換水で溶解し、16本の100ml容
三角フラスコに20mlずつ分注するとともに、炭酸ナ
トリウムを100mlのイオン交換水で溶解し、それぞ
れ別々に、オートクレーブで120℃、20分間滅菌し
た。この後、クリーンベンチ内で無菌的に、上記16本
の三角フラスコの中に炭酸ナトリウムの溶液を5mlず
つ分注、混合した。
(1) Selection of alkalophilic bacteria to be inoculated to greening material From the basic medium having the composition shown in Table 1 used for the separation of alkalophilic bacteria, a medium obtained by removing agar and sodium carbonate from the basic medium was subjected to a treatment.
The mixture was dissolved in 0 ml of ion-exchanged water, dispensed in 20 ml portions into 16 100 ml Erlenmeyer flasks, and sodium carbonate was dissolved in 100 ml of ion-exchanged water, and each was separately sterilized in an autoclave at 120 ° C. for 20 minutes. Thereafter, 5 ml of the sodium carbonate solution was dispensed and mixed into the 16 Erlenmeyer flasks aseptically in a clean bench.

【0024】[0024]

【表1】 この好アルカリ性細菌用の液体培地に、前述の生育の早
い15菌株をそれぞれ植菌した。これを25℃で振盪培
養し、pHと吸光度の変化を測定した。
[Table 1] The above-mentioned fifteen fast-growing strains were inoculated into the liquid medium for alkaliphilic bacteria. This was cultured with shaking at 25 ° C., and changes in pH and absorbance were measured.

【0025】その結果を基に、後述する緑化資材に接種
する好アルカリ性細菌として、次の5種を選抜した。こ
れらの細菌A〜Eは、初期pH値10の液体培養におい
て、培養後急激に菌が増殖し、pH値も、それに伴って
低下し、最終pHは約7.5という望ましい値を示し
た。
Based on the results, the following five kinds were selected as the alkalophilic bacteria to be inoculated to the greening material described below. In the liquid culture having an initial pH value of 10, these bacteria A to E rapidly proliferated after the culture, and the pH value also decreased accordingly, and the final pH showed a desirable value of about 7.5.

【0026】A:Aeromnas hydrohpi
la(以下、細菌Aという) B:Bacillus alcalohpilus(以
下、細菌Bという) C:Bacillus thuringiensis
(以下、細菌Cという) D:Claibacter michiganens
e(以下、細菌Dという) E:Bacillus subtilis(以下、細菌
Eという) (2)選抜した好アルカリ性細菌による液体培地のpH
および吸光度の変化pH5、7、10の液体培地に、後
述する緑化資材に接種する好アルカリ性細菌A〜Dを約
1×105cellml-1となるように、それぞれpH
10の液体培地に植菌した。これを25℃で振盪培養
し、pHと吸光度の変化を経時的に測定した。
A: Aeronas hydrohpi
la (hereinafter referred to as bacteria A) B: Bacillus alcalohpilus (hereinafter referred to as bacteria B) C: Bacillus thuringiensis
(Hereinafter referred to as the bacteria C) D: Cla v ibacter michiganens
e (hereinafter, referred to as a bacterium D) E: Bacillus subtilis (hereinafter, referred to as a bacterium E) (2) pH of the liquid medium by the selected alkalophilic bacteria
And change in absorbance In a liquid medium having a pH of 5, 7, and 10, the alkaliphilic bacteria A to D to be inoculated into the greening material described below are adjusted to pH 1 so that the pH becomes about 1 × 10 5 cell ml −1.
10 liquid media were inoculated. This was cultured with shaking at 25 ° C., and changes in pH and absorbance were measured over time.

【0027】pH10の液体培地において、好アルカリ
性細菌の増殖に伴うpHの低下パターンは、2通りある
ことが分かった。1つは、徐々に菌が増殖し、pHもそ
れに伴って低下するが、その後再び上昇するパターンで
あり、もう1つは、培養後急激に菌が増殖し、pHもそ
れに伴って低下するパターンである。また、それぞれの
菌株について、pH5、7、10の液体培地におけるp
Hと吸光度の変化を測定した結果、細菌Aは、pH7で
の生育が最も早いが、最初の培地pHが5、7、10い
ずれの時も、pH9付近に落ち着いた。細菌Bは、pH
10での生育が最も早かった。細菌Cは、pH7での生
育が最も早く、pH5付近まで低下させるが、pH5お
よび10で培養開始したものは、pH9付近に落ち着い
た。細菌D、Eは、pH7での生育が最も早く、pH5
および7で培養開始したものは、pH4付近まで低下さ
せるが、pH10で開始したものは、pH9付近に落ち
着いた。
[0027] In the liquid medium of pH 10, it was found that there were two patterns of pH decrease accompanying the growth of alkalophilic bacteria. One is a pattern in which the bacteria gradually grow and the pH decreases with it, but then rises again. The other is a pattern in which the bacteria grow rapidly after the culture and the pH decreases accordingly. It is. Further, for each strain, p in a liquid medium at pH 5, 7, 10 was determined.
As a result of measuring changes in H and absorbance, bacteria A grew fastest at pH 7, but settled around pH 9 when the initial medium pH was 5, 7, or 10. Bacteria B has a pH
10 grew fastest. Bacterium C grew fastest at pH 7 and decreased to around pH 5, but those that started culturing at pH 5 and 10 settled around pH 9. Bacteria D and E grow the fastest at pH 7 and at pH 5
The cultures started at pH 7 and 7 dropped to around pH 4, while those started at pH 10 settled around pH 9.

【0028】(3)緑化資材への選抜した好アルカリ性
細菌の接種 植生基盤材(ーク堆肥、ピートモスの混合物)15g
と化成肥料0.11gをフラスコに入れ、シリコン栓を
した後、オートクレーで120℃、20分間滅菌し
た。セメント系固化材(表5の固化材)0.15gを薬
包紙に包んでシャーレに入れ、170℃で1時間滅菌し
た。これらをクリーンベンチ内で無菌的に混合して緑化
資材とした。
[0028] (3) inoculation vegetation base material of alkalophilic bacteria were selected to greening materials (bar click compost, a mixture of peat moss) 15 g
And put fertilizer 0.11g flask, after the silicone stopper, 120 ° C. in an autoclave, and sterilized 20 min. 0.15 g of the cement-based solidifying material (solidifying material in Table 5) was wrapped in a medicine wrapper, placed in a petri dish, and sterilized at 170 ° C. for 1 hour. These were aseptically mixed in a clean bench to produce greening materials.

【0029】一方、液体培地で生育させた細菌A〜Eの
数を測定し、それぞれの菌株をピペットで1mlずつ取
り、無菌水9mlに加えたものを1次希釈液とし(希釈
倍率10-1)、各1次希釈液を更に、それぞれ2×10
4 cellml-1となるように調製した。得られた各希
釈液0.5mlを、それぞれ10本の三角フラスコに入
れた緑化資材に接種した。
On the other hand, the number of bacteria A to E grown in a liquid medium was measured, and 1 ml of each strain was taken with a pipette and added to 9 ml of sterile water to obtain a primary diluent (dilution factor 10 -1). ), each primary dilution addition, each 2 × 10
It was adjusted to be 4 cellml -1 . 0.5 ml of each of the obtained diluents was inoculated to a greening material placed in 10 Erlenmeyer flasks.

【0030】この操作は、いずれもクリーンベンチ内で
無菌的に行った。緑化資材のpHは、同資材25gに無
菌水50mlを加え、pHメーターにて測定した。緑化
資材中の生菌数は、希釈平板法(基本培地:表1)にて
測定した。
This operation was performed aseptically in a clean bench. The pH of the greening material was measured by adding 50 ml of sterile water to 25 g of the greening material and using a pH meter. The number of viable bacteria in the greening material was measured by a dilution plate method (basic medium: Table 1).

【0031】その結果、緑化資材へ選抜した細菌A〜E
を接種した際、殆どの菌株が培養7日目で、緑化資材の
pH値を約0.5〜1低下させていた。このことから、
当初の目的であった植物の生育初期でのアルカリ障害を
早い時期に改善できることが分かった。
As a result, bacteria A to E selected as greening materials
When most of the strains were inoculated, the pH value of the greening material was reduced by about 0.5 to 1 on the seventh day of culture. From this,
It was found that the initial purpose, alkaline damage at the early stage of plant growth, can be improved at an early stage.

【0032】植物の発芽・生育に必要な土壌の条件とし
て、一般的に、pH値が8.5以下、硬さが、中山式硬
度指数値で20以下が望ましいと言われている。本発明
者の経験によると、セメント系固化材による土壌pH値
の推移は、強度発現の進行に伴い生じる遊離石灰が、雨
水や、土壌中の酸性物質により中和されるか、そのまま
流出するかで、比較的早い時期にpH値は8.5内外に
達する。しかし、更にpH値を0.5〜1.0低下さ
せ、植物の発芽・生育により望ましいpH値の領域:
7.0〜7.5以下に到達させるには、可成りの日数を
要する。
It is generally said that the soil conditions required for germination and growth of plants are desirably a pH value of 8.5 or less and a hardness of 20 or less as a Nakayama hardness index value. According to the experience of the present inventor, the change in soil pH value due to cement-based solidifying material indicates whether free lime generated with the progress of strength development is neutralized by rainwater or acidic substances in soil, or flows out as it is. Thus, the pH value reaches about 8.5 at a relatively early stage. However, the pH value is further lowered by 0.5 to 1.0, and the range of the pH value more desirable for germination and growth of the plant is as follows:
It takes a considerable number of days to reach 7.0 to 7.5 or less.

【0033】この点、実施例3の緑化資材のpH値は、
一週間という初期の段階で、0.5〜1.0低下した。
この事実は、実施例の土壌緑化・安定化資材の実用化を
可能にするものと考えられる。
In this respect, the pH value of the greening material of Example 3 is as follows:
In the early stage of one week, it decreased by 0.5 to 1.0.
This fact is considered to enable the practical use of the soil greening / stabilizing material of the example.

【0034】(実施例2)実施例1に示した植生基盤材
100g、化成肥料0.75g、セメント系固化材2g
(20kg/m3相当)、種子として、トールフェスク
ファルコン0.1g(30粒)を良く混合して緑化資材
とした。
Example 2 100 g of the vegetation base material shown in Example 1, 0.75 g of chemical fertilizer, 2 g of cement-based solidified material
(Equivalent to 20 kg / m 3 ) and 0.1 g (30 grains) of tall fescufalcon as a seed were mixed well to obtain a greening material.

【0035】一方、液体培養で、望ましいpH値の低減
を示した細菌Aを実施例1と同じ2×104cellm
-1なる希釈液とし、この希釈液3.3mlを上記緑化
資材に加えて良く混合し、然る後、底にメッシュ網を敷
いた200mlの3号鉢に、充填し、良く押さえつけて
植生ポットとした。植生ポットは、各細菌Aを加えたも
のを4個作った。また、菌株を添加しないブランク試料
を入れた植生ポットも同様の方法で4個作成した。
On the other hand, the bacteria A, which showed a desirable decrease in the pH value in the liquid culture, were subjected to the same 2 × 10 4 cells as in Example 1.
l- 1 diluted solution, 3.3 ml of the diluted solution was added to the greening material and mixed well, and then filled into a 200 ml No. 3 bowl with a mesh net at the bottom, pressed well, and vegetated. Pot. Four vegetation pots were prepared by adding each of the bacteria A. In addition, four vegetation pots containing blank samples to which no strain was added were prepared in the same manner.

【0036】このようにして得られた植生ポットを、温
度条件20〜25℃の温室に配置した。表2は、3週後
の、発芽生育本数、ポット中の緑化資材のpH値と硬度
指数を示す。表2の試験結果より、菌株有りの方が、発
芽生育率が1.5倍高く、pH値は0.5低く、硬度指
数は、変わらず、好ましい値となっていた。
The vegetation pot thus obtained was placed in a greenhouse at a temperature of 20 to 25 ° C. Table 2 shows the number of germinated growths, the pH value of the greening material in the pot, and the hardness index after 3 weeks. From the test results shown in Table 2, the presence of the strain showed that the germination growth rate was 1.5 times higher, the pH value was lower by 0.5, and the hardness index was unchanged and a preferable value.

【0037】[0037]

【表2】 (実施例3)実施例3では、まず、表3に示す植生基盤
材932gと実施例1のセメント系固化材20gの混合
物に水260gを加えて、移送可能なスラリーとし、こ
れに凝固剤を加えた場合の性状について調べた。本来な
らば、このスラリーの吹き付けノズル出口に、凝固剤を
加え、吹き付け後のスラリーを一瞬にして、固形化さ
せ、ダレないコンポジットを生成させることになるが、
この実施例では、そのモデル実験として、表4に示す各
種凝固剤をスラリーに20gずつ添加し、添加前後のス
ラリーの性状を調べた。表4はその性状を示す。
[Table 2] (Example 3) In Example 3, first, 260 g of water was added to a mixture of 932 g of the vegetation base material shown in Table 3 and 20 g of the cement-based solidification material of Example 1 to obtain a transportable slurry, and a coagulant was added thereto. The properties when added were examined. Originally, a coagulant was added to the outlet of this slurry spray nozzle, and the slurry after spraying was instantaneously solidified to produce a sagging composite,
In this example, as a model experiment, 20 g of each of various coagulants shown in Table 4 was added to the slurry, and properties of the slurry before and after the addition were examined. Table 4 shows the properties.

【0038】いずれの場合も、準スランプ値は低下し、
ダレ難いコンポジットへ変化していた。
In each case, the quasi-slump value decreases,
It had changed to a composite that was difficult to sag.

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【表4】 上記モデル実験で得られた各種凝固剤添加後のダレ難い
コンポジットを、素早く樋型耐散水試験器具(自作品)
の充填箱(125×125×45mm)3個に分けて詰
め、屋外に放置し、耐散水試験用試験体を作成した。1
日経過後、各充填箱から取り出した試験体(コンポジッ
ト)をそれぞれ個別に8分勾配になるようにセットした
木製箱型樋にのせ、各試験体に全自動噴霧器により、約
100mm/hr程度の散水強度で、水を噴霧した。
[Table 4] A gutter-type watering resistance test device (own work) is used to quickly remove the composite that is difficult to sag after adding various coagulants obtained in the above model experiment.
Was packed in three (125 × 125 × 45 mm) packed boxes and left outdoors to prepare a test piece for a water resistance test. 1
After a lapse of days, the test specimens (composites) taken out of the respective filling boxes are individually placed on wooden box-type gutters set to have a gradient of 8 minutes, and each test specimen is sprayed with a water spray of about 100 mm / hr by a fully automatic sprayer. At high intensity, water was sprayed.

【0041】表5は、コンポジットの1日後の流出土量
の測定結果を示す。流出土量はコンポジット試験体3個
の平均値である。噴霧散水強度:100mm/hr前後
の流出土量は、いずれのセメント系固化材〜凝固剤の場
合も、ブランク(セメント系固化材及び凝固剤を添加せ
ず)の場合より、少なく、大幅な改善が認められた。
Table 5 shows the measurement results of the amount of soil discharged one day after the composite. The amount of soil discharged is the average of three composite specimens. Spray watering strength: The amount of soil discharged around 100 mm / hr is less than that of the blank (without adding the cement-based solidifying material and the coagulating agent) in any of the cement-based solidifying materials to the coagulating agent, and is significantly improved. Was observed.

【0042】[0042]

【表5】 次に、表3に示す植生基盤材932gに、化成肥料(ス
ミカエース)5g、実施例1のセメント系固化材20
g、種子として、トールフェスクファルコン1.0(3
00粒)を加え、良く混合して緑化資材とした。つい
で、この資材に水260gを加えてスラリーとし、これ
に凝固剤として、3号珪曹((株)トクヤマ社製)(1
+1)希釈水溶液20gと、実施例1で示した細菌Aの
2×104cellml-1の希釈液33mlを加え良く
混合した。
[Table 5] Next, 5 g of chemical fertilizer (Sumika Ace) was added to 932 g of the vegetation base material shown in Table 3, and the cement-based solidification material 20 of Example 1 was used.
g, as seeds, tall fescue falcon 1.0 (3
00 grains) and mixed well to obtain a greening material. Next, 260 g of water was added to this material to form a slurry, and a slurry was used as a coagulant.
+1) 20 g of a diluted aqueous solution and 33 ml of a diluent of 2 × 10 4 cell ml −1 of the bacterium A shown in Example 1 were added and mixed well.

【0043】得られた土壌緑化・安定化資材を植生試験
用ポット5個に、150mlずつ充填した。また、菌株
を添加しないブランク試料についても同様な方法でポッ
ト5個を作成した。このようにして得られた植生ポット
を屋外に設置した。
The obtained soil greening / stabilizing material was filled into five vegetation test pots, 150 ml each. In addition, five pots were prepared in the same manner for a blank sample to which no strain was added. The vegetation pot thus obtained was installed outdoors.

【0044】表6は3週後の発芽成育本数、ポット中の
緑化資材のpH値と硬度指数を示す。表6の試験結果よ
り、菌株有りの方が、発芽生育率が1.3倍高く、pH
値は0.5低く、硬度指数も2低く、好ましい値を示し
ていることが分かった。
Table 6 shows the number of germinated growths after 3 weeks, the pH value of the greening material in the pot, and the hardness index. From the test results in Table 6, the germination growth rate was 1.3 times higher in the presence of the strain, and the pH was higher.
It was found that the value was lower by 0.5 and the hardness index was lower by 2 as well, indicating a preferable value.

【0045】[0045]

【表6】 [Table 6]

【0046】[0046]

【発明の効果】以上説明したように、この発明によれ
ば、上述のような構成としたから、植生基盤材に添加混
合される石灰系またはセメント系固化材の固化に伴って
生成する遊離アルカリを低減し、植物の生育しやすい土
壌基盤をつくることができる。
As described above, according to the present invention, since the above-described structure is employed, free alkali generated as the lime-based or cement-based solidified material added to and mixed with the vegetation base material is solidified. And a soil base on which plants can easily grow can be created.

フロントページの続き (71)出願人 591048195 綜合緑化株式会社 山口県徳山市新宿通6丁目1番12号 (72)発明者 溝上 俊治 山口県徳山市大字徳山1007−14 (72)発明者 丸本 卓哉 山口県山口市中尾702−2 (72)発明者 福永 敏宏 山口県下松市末武中和田1337 Fターム(参考) 2B022 AB05 BA01 BA14 BA16 BB01 2D044 DA32 Continued on the front page (71) Applicant 591048195 Sogo Greenery Co., Ltd. 6-1-12 Shinjuku-dori, Tokuyama-shi, Yamaguchi Prefecture 702-2 Nakao, Yamaguchi City, Yamaguchi Prefecture (72) Inventor Toshihiro Fukunaga 1337 Suetake Nakada, Kudamatsu City, Yamaguchi Prefecture F-term (reference) 2B022 AB05 BA01 BA14 BA16 BB01 2D044 DA32

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 土壌、化成肥料、パーク堆肥、ピートモ
ス等の植生基盤材と石灰系またはセメント系固化材との
混合物である緑化資材と、この緑化資材に接種する好ア
ルカリ性細菌とよりなる土壌緑化・安定化資材。
1. A greening material comprising a mixture of a soil, a compound fertilizer, a park compost, a vegetation base material such as peat moss and a lime-based or cement-based hardening material, and an alkaliphilic bacterium to inoculate the greening material.・ Stabilizing materials.
【請求項2】 前記好アルカリ性細菌は、 Aeromonas hydrophila、 Bacillus alcalophilus、 Bacillus thuringiensis、 Clauibacter michiganense、 Bacillus subtilis、の少なくとも1
種である請求項1記載の土壌緑化・安定化資材。
2. The method according to claim 1, wherein the alkalophilic bacterium is at least one of Aeromonas hydrophila, Bacillus alcalophilus, Bacillus thuringiensis, Claibacter michiganense, and Bacillus subtilis.
The soil greening / stabilizing material according to claim 1, which is a seed.
【請求項3】 請求項1の土壌緑化・安定化資材の施工
法であって、緑化資材に水を加えてスラリーとし、この
スラリーに凝固剤と好アルカリ性細菌を添加混合するこ
とを特徴とする土壌緑化・安定化資材の施工法。
3. The method for constructing a soil greening / stabilizing material according to claim 1, wherein water is added to the greening material to form a slurry, and a coagulant and an alkaliphilic bacterium are added to and mixed with the slurry. Construction method of soil greening and stabilizing materials.
【請求項4】 前記好アルカリ性細菌は、 Aeromonas hydrophila、 Bacillus alcalophilus、 Bacillus thuringiensis、 Clauibacter michiganense、 Bacillus subtilis、のうちの少なく
とも1種である請求項3記載の土壌緑化・安定化資材の
施行法。
4. The method of claim 1, wherein the alkalophilic bacterium is at least one of the following: a stabilizing material of Aeromonas hydrophila; Bacillus alcalophilus;
JP2000294126A 2000-09-27 2000-09-27 Soil revegetation and stabilization material and its construction method Expired - Fee Related JP3479505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000294126A JP3479505B2 (en) 2000-09-27 2000-09-27 Soil revegetation and stabilization material and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000294126A JP3479505B2 (en) 2000-09-27 2000-09-27 Soil revegetation and stabilization material and its construction method

Publications (2)

Publication Number Publication Date
JP2002101753A true JP2002101753A (en) 2002-04-09
JP3479505B2 JP3479505B2 (en) 2003-12-15

Family

ID=18776796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000294126A Expired - Fee Related JP3479505B2 (en) 2000-09-27 2000-09-27 Soil revegetation and stabilization material and its construction method

Country Status (1)

Country Link
JP (1) JP3479505B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114391334A (en) * 2021-12-28 2022-04-26 淮阴工学院 Grass seed coating material in high-strength vegetation concrete, coating material slurry and coated grass seeds thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114391334A (en) * 2021-12-28 2022-04-26 淮阴工学院 Grass seed coating material in high-strength vegetation concrete, coating material slurry and coated grass seeds thereof

Also Published As

Publication number Publication date
JP3479505B2 (en) 2003-12-15

Similar Documents

Publication Publication Date Title
WO1987002660A1 (en) Microbial compositions and methods for treating soil
CN112897972A (en) Solid waste based porous material, preparation and ecological restoration method for coal gangue dump
JP5185732B2 (en) Greening base material and greening method using the greening base material
CN106006978B (en) The substrate improved materials and preparation method and restorative procedure of a kind of high organic bed mud shallow lake
CN108834460A (en) Mud utilizes methods and applications
CN108949183A (en) A kind of method for greening desert
CN111771670B (en) Method for improving river sediment into planting soil
JP4947673B2 (en) Planted cultivation soil and its manufacturing method
JP2007136452A (en) Slag material, method of producing the same, material for improving environment using the slag material, environmental improvement method and structural engineering material
CN101731091A (en) Method for preparing multifunctional flower cultivating soil in unban garden by hydrolyzing sludge
CN108689730A (en) The liquid fertilizer device systems of livestock waste and the liquid fertilizer manufacturing method for utilizing its livestock waste
CN105540694A (en) Rice field water purifying agent with sludge as matrix and preparation method thereof
JP3479505B2 (en) Soil revegetation and stabilization material and its construction method
KR102308209B1 (en) Material for afforesting incline and preparation process thereof
WO1999007490A1 (en) Method for purifying contaminated soil
JP2018183080A (en) Modified soil for creating brackish water eelgrass bed, and method for creating brackish water eelgrass bed using the same, and method for growing eelgrass in brackish water region
KR100537986B1 (en) Organic ferment complex fertilizer manufacturing process
JP2005126678A (en) Soil-improving material and method for improving soil by using the same
CN109266360B (en) Composite sand fixing agent containing municipal sludge and method for constructing biological crust
JP3774637B2 (en) Porous plate carrier for seaweed seedling growth
KR100714416B1 (en) Infrared ray use composite of artificial tree-planting soil and the manufacturing method thereof
KR20030064994A (en) A vegetation soil for sludge and the producing method thereof
JP3238683B2 (en) Soil modification method
JP2004257084A (en) Slope greening method
Thakur et al. Chapter-1 An Overview: How Organic Matter Leads to Pedogenic Aggregation

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030826

LAPS Cancellation because of no payment of annual fees