JP4947673B2 - Planted cultivation soil and its manufacturing method - Google Patents

Planted cultivation soil and its manufacturing method Download PDF

Info

Publication number
JP4947673B2
JP4947673B2 JP2010141058A JP2010141058A JP4947673B2 JP 4947673 B2 JP4947673 B2 JP 4947673B2 JP 2010141058 A JP2010141058 A JP 2010141058A JP 2010141058 A JP2010141058 A JP 2010141058A JP 4947673 B2 JP4947673 B2 JP 4947673B2
Authority
JP
Japan
Prior art keywords
sewage sludge
fermentation
compost
sludge
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010141058A
Other languages
Japanese (ja)
Other versions
JP2011024569A (en
Inventor
晋二郎 金澤
Original Assignee
晋二郎 金澤
株式会社守恒造園建設
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晋二郎 金澤, 株式会社守恒造園建設 filed Critical 晋二郎 金澤
Priority to JP2010141058A priority Critical patent/JP4947673B2/en
Publication of JP2011024569A publication Critical patent/JP2011024569A/en
Application granted granted Critical
Publication of JP4947673B2 publication Critical patent/JP4947673B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Description

本発明は、上水汚泥と下水汚泥を利用して製造される植栽培養土及びその製造方法に関する。   TECHNICAL FIELD The present invention relates to a planted cultivation soil that is produced using clean water sludge and sewage sludge and a method for producing the same.

平成21年現在、上水汚泥の年間の発生量は、約36万DS−t(DS−t:濃縮汚泥固形物量のトン数)にも達している。しかし、水道全体における上水汚泥の有効利用率は、平成12年度には31.3%、平成13年度には36.1%に過ぎず、現在でも資源化率は少ない現状にある。発生する上水汚泥の処分方法としては、埋め立て処分が最も多く行われているが、処分地の確保や輸送手段の確保に種々の問題を抱えている大都市周辺では、発生汚泥の有効利用に関して多くの検討がなされてきた。   As of 2009, the annual generation amount of water sludge has reached about 360,000 DS-t (DS-t: tonnage of concentrated sludge solids). However, the effective utilization rate of drinking water sludge in the entire water supply is only 31.3% in 2000 and 36.1% in 2001, and the resource recovery rate is still low. Landfill disposal is the most common disposal method for generated water sludge. However, in the vicinity of large cities that have various problems in securing disposal sites and transportation, effective utilization of generated sludge is important. Many studies have been made.

その一つとして、園芸用土、グランド造成材、建築資材(路盤材、管敷設埋設材、造成地埋立材等)、セメント原料などとして再資源化が検討されている。特に、近年、産業廃棄物最終処分場の確保が年々困難となってきているとともに、環境保全の重要性が益々重要視されてきているため、環境対策として上水汚泥の発生抑制と減量化・再資源化に向けた取り組みが求められている。   As one of them, the recycling of horticultural soil, ground construction materials, construction materials (roadbed materials, pipe laying materials, landfill materials, etc.), cement materials, etc. are being studied. In particular, in recent years it has become more difficult to secure a final disposal site for industrial waste, and the importance of environmental conservation has become increasingly important. Efforts for recycling are required.

現在、我が国で最も広く用いられている上水処理方式は、急速濾過方式である。これは、沈砂、凝集、沈殿、濾過、消毒の5つのプロセスから成っており、コロイド粒子よりも大きな成分の除去と最近の無害化を主な機能としている。また、近年では、異臭味原因成分除去などを目的として生物処理、活性炭処理、オゾン処理等を組み合わせた高度上水処理の導入も広まりつつある。これらのプロセスにおいては、原水に含まれる微細な粒子を凝集・沈殿させるため、凝集剤が添加される。最も広く使用されている凝集剤は、硫酸バンド(硫酸アルミニウム)である。また、無機高分子系としてはポリ塩化マグネシウムやポリ塩化第2鉄等も用いられている。そのため、上水汚泥の主要な成分は、有機物、酸化アルミニウム、シリカ、酸化鉄、微生物等である。すなわち、上水汚泥には、土壌の粘土鉱物の基本成分である酸化アルミニウム、シリカ、酸化鉄等が豊富に含まれている。特に、植物の組織の合成に必要なシリカの含有量が多い。シリカは、近年、植物の生理に重要な機能を担っていることが明らかになり、植物の必須元素に加えられた要素である。   Currently, the most widely used water treatment system in Japan is the rapid filtration system. It consists of five processes: sand settling, agglomeration, settling, filtration and disinfection, with the main functions being removal of components larger than colloidal particles and recent detoxification. In recent years, the introduction of advanced water treatment that combines biological treatment, activated carbon treatment, ozone treatment, and the like for the purpose of removing off-flavor-causing components has been spreading. In these processes, a flocculant is added to agglomerate and precipitate fine particles contained in the raw water. The most widely used flocculant is the sulfate band (aluminum sulfate). Further, polymagnesium chloride and polyferric chloride are also used as the inorganic polymer system. Therefore, the main components of the water sludge are organic matter, aluminum oxide, silica, iron oxide, microorganisms and the like. That is, the water sludge is rich in aluminum oxide, silica, iron oxide, and the like, which are basic components of soil clay minerals. In particular, the silica content required for the synthesis of plant tissues is high. In recent years, silica has been found to play an important function in plant physiology, and is an element added to essential plant elements.

このような上水汚泥を堆肥化する場合、下水汚泥や木材廃棄物などの有機物を多く含む原料と混合して完熟発酵させるのが有効である。しかしながら、この完熟化処理には相当な時間が必要となる。そのため、堆肥原料を短期間で発酵させる有益な微生物の探索が試みられている。   When composting such sewage sludge, it is effective to mix it with a raw material containing a large amount of organic matter such as sewage sludge and wood waste and to complete the fermentation. However, this ripening treatment requires a considerable amount of time. Therefore, search for beneficial microorganisms that ferment compost raw materials in a short period of time has been attempted.

有機性廃棄物、特に、有機性汚泥を効率的に分解する微生物としては、例えば、特許文献1〜6に記載のものが公知である。   For example, those described in Patent Documents 1 to 6 are known as microorganisms that efficiently decompose organic waste, in particular, organic sludge.

特許文献1には、バシラス属細菌に属し、アルカリ性条件下で汚泥を分解する能力を有する微生物が開示されている。特許文献2には、有機性汚泥や生物性汚泥に含まれるタンパク質を分解するバシラス サチリスに属する微生物が開示されている。特許文献3には、有機性廃棄物中及び下水汚泥中の有機物を分解消滅する能力のあるシュードモナス属に属する微生物が開示されている。特許文献4には、排水処理等の環境浄化に役立つロドバクター属に属する微生物が開示されている。特許文献5には、有機性固形物の処理に有用なバシラス属に属する微生物が開示されている。また、特許文献6には、タンパク質分解酵素を産生し、有機性汚泥の分解能力を有する、ブレビバシラス(Brevibacillus)属細菌に属するグラム陽性の微生物が開示されている。また、非特許文献1では、バシラス(Bacillus)属の好熱性細菌を利用した、余剰汚泥の減量化技術が提案されている。   Patent Document 1 discloses a microorganism belonging to the genus Bacillus and having the ability to decompose sludge under alkaline conditions. Patent Document 2 discloses a microorganism belonging to Bacillus subtilis that decomposes proteins contained in organic sludge and biological sludge. Patent Document 3 discloses a microorganism belonging to the genus Pseudomonas that has the ability to decompose and extinguish organic matter in organic waste and sewage sludge. Patent Document 4 discloses a microorganism belonging to the genus Rhodobacter that is useful for environmental purification such as wastewater treatment. Patent Document 5 discloses a microorganism belonging to the genus Bacillus useful for the treatment of organic solids. Patent Document 6 discloses a gram-positive microorganism belonging to the genus Brevibacillus, which produces a proteolytic enzyme and has an ability to decompose organic sludge. Non-Patent Document 1 proposes a technique for reducing excess sludge using a thermophilic bacterium of the genus Bacillus.

特開2000−139449号公報JP 2000-139449 A 特開2002−125657号公報JP 2002-125657 A 特開2003−235547号公報JP 2003-235547 A 特開2003−245066号公報JP 2003-245066 A 特開2004−267127号公報JP 2004-267127 A 特開2006−230332号公報JP 2006-230332 A

長谷川進:汚泥の減量化と発生防止技術,248〜270頁、エヌ・ティー・エス社,2000年.Susumu Hasegawa: Sludge reduction and prevention technology, 248-270, NTS, 2000. E. Pikuta, A. Lysenko, N. Chuvilskaya, U. Mendrock, H. Hippe, N. Suzina, D. Nikitin, G. Osipov, K. Laurinavichius: Anoxybacillus pushchinensis gen. nov., sp. nov., a novel anaerobic alkaliphilic, moderately thermophilic bacterium from manure, and description and Anoxybacillus flavithermus comb. nov., International Journal of Systematic and Evolutionary Microbiology, 50, 2109-2117, 2000.E. Pikuta, A. Lysenko, N. Chuvilskaya, U. Mendrock, H. Hippe, N. Suzina, D. Nikitin, G. Osipov, K. Laurinavichius: Anoxybacillus pushchinensis gen. Nov., Sp. Nov., A novel anaerobic alkaliphilic, moderately thermophilic bacterium from manure, and description and Anoxybacillus flavithermus comb.nov., International Journal of Systematic and Evolutionary Microbiology, 50, 2109-2117, 2000. A. Derekova, C. Sjoholm, R. Mandreva, M. Kambourova: Anoxybacillus rupiensis sp. nov., a novel thermophilic bacterium isolated form Rupi basin (Bulgaria), Extremophiles, 11, 577-583, 2007.A. Derekova, C. Sjoholm, R. Mandreva, M. Kambourova: Anoxybacillus rupiensis sp. Nov., A novel thermophilic bacterium isolated form Rupi basin (Bulgaria), Extremophiles, 11, 577-583, 2007. L. Feng, W. Wang, J. Cheng, Y. Ren, G. Zhao, C. Gao, Y. Tang, X. Liu, W. Han, X. Peng, R. Liu, L. Wang: Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrians NG80-2 Isolates from a deep-subsurface oil reservoir, Proceedings of the National Academy of Science U.S.A., 104, 5602-5607, 2007.L. Feng, W. Wang, J. Cheng, Y. Ren, G. Zhao, C. Gao, Y. Tang, X. Liu, W. Han, X. Peng, R. Liu, L. Wang: Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrians NG80-2 Isolates from a deep-subsurface oil reservoir, Proceedings of the National Academy of Science USA, 104, 5602-5607, 2007. M. Mesbah, U. Premachandran, W. B. Whitman: Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography, International Journal of Systematic Bacteriology, 39, 159-167, 1989.M. Mesbah, U. Premachandran, W. B. Whitman: Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography, International Journal of Systematic Bacteriology, 39, 159-167, 1989. Y. Okamura, N. Inoue, T. Nikai: Isolation and characterization of a novel acid proteinase, tropiase from Candida tropicalis IFO 0589, Japanese Journal of Medical Mycology, 48, 19-25, 2007.Y. Okamura, N. Inoue, T. Nikai: Isolation and characterization of a novel acid proteinase, tropiase from Candida tropicalis IFO 0589, Japanese Journal of Medical Mycology, 48, 19-25, 2007. K. J. Raser, A. Posner, K. K. W. Wang: Casein zymography: A method to study μ-calpain, M-calpain, and their inhibitory agents, Archives of Biochemistry and Biophysics, 319, 211-216, 1995.K. J. Raser, A. Posner, K. K. W. Wang: Casein zymography: A method to study μ-calpain, M-calpain, and their inhibitory agents, Archives of Biochemistry and Biophysics, 319, 211-216, 1995. 金澤晋二郎:土壌酵素の測定法、地球環境調査計測辞典―第1巻 陸域、 pp.1111-1114、 フジ・テクノシステム、 東京、2002.Shinjiro Kanazawa: Soil Enzyme Measurement Method, Global Environment Survey and Measurement Dictionary-Volume 1, Land Area, pp.1111-1114, Fuji Techno System, Tokyo, 2002. J. N. Ladd: Properties of proteolytic enzymes extracted from soil, Soil Biology and.Biochemistry, 4, 337-237, 1971.J. N. Ladd: Properties of proteolytic enzymes extracted from soil, Soil Biology and. Biochemistry, 4, 337-237, 1971.

しかしながら、上記、従来の有機性汚泥を分解する微生物は、産業的に実用化されているものは少ない。   However, the above-mentioned microorganisms that decompose organic sludge are not practically used industrially.

そこで、本発明の目的は、上水汚泥を再資源化すべく、上水汚泥を利用して短期間に完熟化することが可能な機能性の高い植栽培養土とその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a highly functional planting soil that can be fully matured in a short period of time by using the water sludge in order to recycle the water sludge and a method for producing the same. It is in.

本発明者は、有機性汚泥の分解を効率的に行う微生物の探索を進めた結果、下水余剰汚泥を溶解するAnoxybacillus属細菌(非特許文献2,3参照)の新菌種(高プロテアーゼ活性)を、下水余剰汚泥から単離・同定し、Anoxybacillus sp. MS8株と命名した。また、バーク堆肥から単離・同定した好熱性セルロース分解菌Geobacillus thermodenitrificans NG80-2株(非特許文献4参照)を種菌として用いることにより、有機性廃棄物を短時間で分解できることを見いだした。高温で易分解性有機物に著しく富む余剰汚泥を溶解する能力が高いこの菌は、堆肥の製造に最も適している。何故なら堆肥化の目的は、これら易分解性有機物を速やかに分解して安定化した有機物にすることにあるからである。   As a result of searching for microorganisms that efficiently decompose organic sludge, the present inventor has developed a new bacterial species (high protease activity) of Anoxybacillus genus bacteria (see Non-Patent Documents 2 and 3) that dissolves excess sewage sludge. Was isolated and identified from excess sewage sludge and named Anoxybacillus sp. MS8 strain. Moreover, it discovered that an organic waste can be decomposed | disassembled in a short time by using the thermophilic cellulose degrading bacterium Geobacillus thermodenitrificans NG80-2 strain (refer nonpatent literature 4) isolated and identified from the bark compost. This fungus, which has a high ability to dissolve excess sludge that is remarkably rich in readily decomposable organics at high temperatures, is most suitable for compost production. This is because the purpose of composting is to quickly decompose these easily decomposable organic substances into stable organic substances.

そこで、これら好熱性汚泥溶解細菌Anoxybacillus sp. MS8株(高プロテアーゼ活性)及び好熱性セルロース分解細菌Geobacillus thermodenitrificans NG80-2株を種菌として下水余剰汚泥と剪定枝チップ(木質系廃棄物)を用いた堆肥化技術の構築を試みた。そのコンセプトは、発酵期間を短縮させた迅速な堆肥製造と収益が見込める安価な堆肥化施設の構築である。   Therefore, compost using excess sewage sludge and pruned branch chips (woody waste) using these thermophilic sludge-dissolving bacteria Anoxybacillus sp. MS8 (high protease activity) and thermophilic cellulose-degrading bacteria Geobacillus thermodenitrificans NG80-2 as inoculums. I tried to build a new technology. The concept is to build a low-cost composting facility that can produce profit quickly and reduce the fermentation period.

本発明者は、下水余剰汚泥と剪定枝チップ(木材廃棄物)を用いた高付加価値植栽肥料(堆肥)の開発を研究目的として、60℃で馴養した余剰汚泥から、汚泥を溶解する微生物をスクリーニングした。馴養した下水汚泥を試料として、滅菌汚泥を懸濁した培地に塗布し、生育した細菌のコロニーの周囲にハローが見られるものを分離した。単離した細菌はグラム陽性の桿菌で、その菌株についての生化学的/生理学的試験及び16SリボソームRNA遺伝子のDNA相同性解析の結果、Anoxybacillus 属の細菌(非特許文献2,3参照)であることが判明した。Anoxybacillus 属細菌が下水汚泥を可溶化するという報告はないが、汚泥を溶解することができるBacillus属の好熱性細菌株の存在が知られている(非特許文献4参照)。   The present inventor is a microorganism that dissolves sludge from surplus sludge conditioned at 60 ° C for the purpose of developing high-value-added planting fertilizer (compost) using sewage surplus sludge and pruned branch chips (wood waste). Were screened. Using conditioned sewage sludge as a sample, it was applied to a medium in which sterilized sludge was suspended, and those in which halo was observed around colonies of the grown bacteria were separated. The isolated bacterium is a Gram-positive gonococcus and is a bacterium belonging to the genus Anoxybacillus (see Non-patent Documents 2 and 3) as a result of biochemical / physiological tests on the strain and DNA homology analysis of the 16S ribosomal RNA gene. It has been found. There is no report that bacteria belonging to the genus Anoxybacillus solubilize sewage sludge, but the existence of a thermophilic bacterial strain of the genus Bacillus that can dissolve sludge is known (see Non-Patent Document 4).

今回、発明者らが分離・同定した細菌株は、50℃から60℃の温度で下水汚泥を溶解する。この菌株についての生化学的/生理学的試験では、100%の確率でGeoibacillus stearothermophilus及び98.0%の確率でBacillus lentusと同定された。さらに、16SリボソームRNA遺伝子のDNA相同性解析では、96.8%の確率でAnoxybacillus beppuensis及び96.6%の確率でAnoxybacillus rupiensisと判定された。これらの結果から、本菌株はAnoxybacillus 属細菌の新菌種であると判断されるので、この細菌株をAnoxybacillus sp. MS8株と命名した。   The bacterial strain isolated and identified by the inventors this time dissolves sewage sludge at a temperature of 50 to 60 ° C. Biochemical / physiological testing for this strain identified 100% of Geoibacillus stearothermophilus and 98.0% of Bacillus lentus. Furthermore, in the DNA homology analysis of 16S ribosomal RNA gene, it was determined to be Anoxybacillus beppuensis with a probability of 96.8% and Anoxybacillus rupiensis with a probability of 96.6%. From these results, since this strain was judged to be a new strain of bacteria belonging to the genus Anoxybacillus, this bacterial strain was named Anoxybacillus sp. MS8 strain.

本発明はこれらの発見に基づくものである。   The present invention is based on these findings.

すなわち、本発明に係る植栽培養土は、下水汚泥と木材廃棄物とを混合した原料混合物からなる下水汚泥堆肥と、浄水場の沈殿池の沈殿物として得られる上水汚泥とを混合し、この混合物を、Anoxybacillus sp.(アノキシバシラス)MS8株(受託番号FERM P-21818)により発酵させてなることを特徴とする。
That is, the planting culture soil according to the present invention is a mixture of sewage sludge compost composed of a raw material mixture obtained by mixing sewage sludge and wood waste, and water sewage sludge obtained as a sediment in a settling pond of a water purification plant , The mixture is fermented with Anoxybacillus sp. (Anoxybacillus) MS8 strain (Accession No. FERM P-21818) .

また、本発明に係る植栽培養土の製造方法は、下水汚泥と木材廃棄物とを混合した原料混合物を、Anoxybacillus sp.(アノキシバシラス)MS8株(受託番号FERM P-21818)により発酵させて下水汚泥堆肥を生成する第1工程と、
前記下水汚泥堆肥と、浄水場の沈殿池の沈殿物として得られる上水汚泥とを混合して中間混合物を生成する第2工程と、
前記中間混合物を、前記Anoxybacillus sp.(アノキシバシラス)MS8株により再度発酵させて植栽培養土を生成する第3工程と、を備えたことを特徴とする。
In addition, in the method for producing plant culture nourishment according to the present invention, a raw material mixture obtained by mixing sewage sludge and wood waste is fermented by Anoxybacillus sp. MS8 strain (accession number FERM P-21818). A first step of producing sludge compost;
A second step of producing an intermediate mixture by mixing the sewage sludge compost and the water sewage sludge obtained as a sediment of a settling basin of a water purification plant ;
And a third step of fermenting the intermediate mixture again with the Anoxybacillus sp. (Anoxybacillus) MS8 strain to produce plant culture soil.

これにより、下水汚泥と上水汚泥を堆肥資源として有効に利用することが可能となり、また、特にAnoxybacillus sp.(アノキシバシラス)MS8株を使用して発酵させることで、短期間で完熟化させることができる。また、下水汚泥と上水汚泥の両方を原料として用いることで、それぞれに不足した肥料成分を補い、肥料としての機能性の高い植栽培養土を得ることができる。   This makes it possible to effectively use sewage sludge and clean water sludge as compost resources, and in particular, fermenting using Anoxybacillus sp. it can. Moreover, by using both sewage sludge and clean water sludge as raw materials, it is possible to compensate for the lack of fertilizer components in each of them, and to obtain plant culture nourishment with high functionality as a fertilizer.

さらに、前述の植栽培養土において、さらに軽量資材が混合することもできる。   Furthermore, a lightweight material can also be mixed in the above-mentioned planting culture soil.

これにより、当該植栽培養土が軽量化され、屋上緑化に利用することが可能となる。また、軽量性・保水性が改善され、培養土としての機能性を高めることができる。   Thereby, the planting culture soil is reduced in weight and can be used for rooftop greening. Moreover, lightness and water retention are improved, and the functionality as culture soil can be enhanced.

ここで、「軽量資材」とは、内部に多数の微小空隙をもたせて軽量化された粒状の多孔質軽量化資材をいい、軽量資材としては、具体的には、例えば、粉砕した発砲ガラスやパーライトなどを使用することができる。特に、発砲ガラスはビンなどの廃棄物のリサイクルにより製造されるため、軽量資材として発泡ガラスを使用することにより、廃棄物を有効活用でき、地球環境に配慮して植栽培養土を提供することができる。   Here, the “lightweight material” refers to a granular porous lightening material that has been reduced in weight by providing a large number of microscopic voids therein. Specifically, as the lightweight material, for example, crushed foamed glass or Perlite etc. can be used. In particular, foamed glass is manufactured by recycling waste such as bottles, so by using foamed glass as a lightweight material, waste can be used effectively, and planting and cultivation soil should be provided in consideration of the global environment. Can do.

また、「下水汚泥」とは、下水処理場において下水から沈降分離される沈殿物として得られる汚泥をいい、「上水汚泥」とは、浄水場の沈殿池の沈殿物として得られる汚泥をいう。「木材廃棄物」とは、剪定枝、バーク、大鋸屑等の木質系の廃棄物をいう。「下水汚泥堆肥」は、下水汚泥と木材廃棄物とを混合した原料混合物そのものでもよいし、この原料混合物を発酵させて溶解化したものでもよい。

In addition, “sewage sludge” refers to sludge obtained as a sediment that separates from sewage in a sewage treatment plant, and “sewage sludge” refers to sludge obtained as a sediment in a sedimentation basin of a water purification plant. . “Wood waste” refers to woody waste such as pruned branches, bark, and sawdust. The “sewage sludge compost” may be a raw material mixture itself obtained by mixing sewage sludge and wood waste, or may be obtained by fermenting and dissolving this raw material mixture.

また、前記第2工程において、前記下水汚泥堆肥2体積部以上5体積部以下と、前記上水汚泥8体積部以下5体積部以上とを、合計で10体積部となる割合で混合することもできる。   Moreover, in the said 2nd process, the said sewage sludge compost 2 volume part or more and 5 volume part or less and the said sewage sludge 8 volume part or less 5 volume part or more may be mixed in the ratio used as a total of 10 volume parts. it can.

これにより、製造される植栽培養土に含まれる窒素、リン酸、カリウムの量を肥料として十分な量に確保しつつ、上水汚泥に含まれる酸化アルミニウム、シリカ、酸化鉄等のミネラル成分も十分に確保することができる。   As a result, while ensuring the amount of nitrogen, phosphoric acid, and potassium contained in the planted cultivation soil to be produced as a fertilizer, mineral components such as aluminum oxide, silica, and iron oxide contained in the water sludge are also included. It can be secured sufficiently.

また、前記第3工程において、前記中間混合物の発酵は、好気状態で行うこともできる。   In the third step, the intermediate mixture can be fermented in an aerobic state.

また、前記第1工程において、前記原料混合物の発酵は、好気状態で行うこともできる。   Moreover, in the said 1st process, fermentation of the said raw material mixture can also be performed in an aerobic state.

ここで、「好気状態」とは、生物が利用可能な遊離の酸素分子が存在する状態をいう。   Here, the “aerobic state” refers to a state in which free oxygen molecules that can be used by living organisms exist.

以上のように、本発明によれば、Anoxybacillus sp.(アノキシバシラス)MS8株を使用することによって、下水汚泥と上水汚泥に木材廃棄物を混合した原料混合物を短期間の間に完熟化させることができ、下水汚泥と上水汚泥を堆肥資源として有効に利用することが可能となる。特に、原料混合物の完熟化までの期間を短縮化できることで、発酵保存するための設備を小さくすることができ、製造される植栽培養土のコストを低減することができる。   As described above, according to the present invention, by using Anoxybacillus sp. MS8 strain, a raw material mixture in which wood waste is mixed with sewage sludge and water sewage sludge is matured in a short period of time. Therefore, sewage sludge and clean water sludge can be effectively used as compost resources. In particular, since the period until the raw material mixture is fully matured can be shortened, the equipment for fermentation and storage can be reduced, and the cost of the planted cultivation soil to be produced can be reduced.

Anoxybacillus sp. MS8株の16SリボソームRNA遺伝子のDNA塩基配列(primer: 1094f-r1L-r2L-r3L)DNA base sequence of 16S ribosomal RNA gene of Anoxybacillus sp. MS8 strain (primer: 1094f-r1L-r2L-r3L) 本発明の実施例1に係る植栽培養土の製造プラントを表す図である。It is a figure showing the manufacturing plant of the planting cultivation soil which concerns on Example 1 of this invention. 本発明の実施例1に係る植栽培養土の製造工程及び発酵温度を表す図である。It is a figure showing the manufacturing process and fermentation temperature of the planting cultivation soil which concern on Example 1 of this invention. 全細菌及び生細菌数の発酵に伴う経時変化を表す図である。It is a figure showing the time-dependent change accompanying fermentation of total bacteria and the number of living bacteria. 発芽インデックス用KS式幼植物栽培容器(キット)の構造及び使用法を説明する図である。It is a figure explaining the structure and usage of the KS type seedling cultivation container (kit) for germination index.

以下、本発明を実施するための形態について、図面を参照しながら説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

(1)使用する新規微生物
まず、本発明において植栽培養土の原料の発酵に使用する細菌であるAnoxybacillus sp.(アノキシバシラス)MS8株(受託番号FERM P-21818)について詳細に説明する。
(1) Novel microorganisms to be used First, the Anoxybacillus sp. (Anoxybacillus) MS8 strain (accession number FERM P-21818), which is a bacterium used for fermentation of raw materials for planting culture soil in the present invention, will be described in detail.

〔細菌の分離・同定〕
下水余剰汚泥240 gを500 mlフラスコに採り、それを60℃、60 rpmで1週間振とう培養し、その培養液と新たに採取した余剰汚泥を重量比1:2となるように混合し、連続的に培養した。この操作を1週間に1回繰り返した(4回連続培養)培養液を希釈し、滅菌した余剰汚泥を懸濁した平面寒天培地に塗布して60℃で培養し、生育した細菌のコロニーの中で、コロニーの周囲にハローの確認できるものを分離した。
[Separation and identification of bacteria]
Take 240 g of excess sewage sludge in a 500 ml flask, shake and culture it at 60 ° C and 60 rpm for 1 week, mix the culture solution with the newly collected excess sludge so that the weight ratio is 1: 2. Cultured continuously. This operation was repeated once a week (4 consecutive cultures). The culture broth was diluted, applied to a flat agar medium in which sterilized surplus sludge was suspended, and cultured at 60 ° C. Then, what can be confirmed halo was isolated around the colony.

分離した細菌株について、形態学的及び生化学的/生理学的性質を調べた。この菌は、50℃から65℃の温度、pH 6.0から8.0の範囲において増殖でき、グラム染色及び芽胞染色、カタラーゼ試験、オキシダーゼ試験、OF試験やAPI50CHB(Biomerieux, France)等の生化学的/生理学的試験を行った結果(表1参照)、好気性胞子形成のグラム陽性桿菌Geoibacillus stearothermophilusとの相同性(100%)が高い菌であることが判明した。   Isolated bacterial strains were examined for morphological and biochemical / physiological properties. This fungus can grow at temperatures between 50 ° C and 65 ° C, pH 6.0 to 8.0, and biochemical / physiological such as Gram and spore staining, catalase test, oxidase test, OF test and API50CHB (Biomerieux, France) As a result of a physical test (see Table 1), it was found that the aerobic spore-forming bacterium has a high homology (100%) with the Gram-positive gonococcus Geoibacillus stearothermophilus.

Figure 0004947673
Figure 0004947673

次に、微生物の進化系統の研究に最も有効な分子マーカーとして利用されている、16S リボソームRNA遺伝子のDNA相同性解析を行った。本菌株の16SリボソームRNA遺伝子を次の条件でPCRによって増幅させ(f1L forward primer: 5'-gagtttgatcctggctcag-3、r4L reverse primer: 5'-acgggc ggtgtgtgtacaag-3、反応条件:(1)95℃を5分間、 (2)95℃を30秒間、 (3)52℃を30秒間、 (4)68℃を1分30秒間、 (2)から(4)のサイクルを30回、 (5)68℃で5分間)、このPCR産物をアガロースゲル電気泳動により、目的のDNA断片を切り出し、QIAquick Gel Extraction Kit(QIAGEN Sciences, USA)で精製を行った。その後、精製したDNA断片とシーケンシングプライマー(63f forward primer: 5'-caggcctaacacatgcaagtc-3'、1094f primer: 5'-gtcccgcaacgagcgcaac-3'、r1L reverse primer: 5'-gtatta ccgcggctgctgg-3'、r2L primer: 5'-catcgtttacggcgtggac-3'、r3L primer: 5'-ttgcgctcgttgcgggact-3'、または1387r primer : 5'-gggcggtgtgtacaaggc-3')によってシーケンス反応させ((1)96℃を20秒間、(2)50℃を20秒間、(3)60℃を4分間、(1)から(3)のサイクルを30回)、DNAシーケンサーCEQ8000(Beckman Coulter, USA)にて塩基配列を決定し、汚泥溶解菌の16S リボソームRNA遺伝子のDNA塩基配列を得た(図1,別添)。得られた1,291塩基の塩基配列をもとに、代表的なDNA相同性検索エンジンであるBLAST及びFASTA(http://www.ddbj.nig.ac.jp/)にてシーケンスマッチを行った。表2に示すように、Anoxybacillus beppuensisおよびAnoxybacillus rupiensisと相同性が最も高かった。さらに、Anoxybacillus sp.MS8株のDNA塩基組成をHPLC法(非特許文献5)(YMC pack AQ-312カラム((株)ワイエムシィ))で定量したところ、G+C含量は53.2%であった。   Next, we analyzed the DNA homology of the 16S ribosomal RNA gene, which is used as the most effective molecular marker for the study of microbial evolutionary strains. The 16S ribosomal RNA gene of this strain was amplified by PCR under the following conditions (f1L forward primer: 5'-gagtttgatcctggctcag-3, r4L reverse primer: 5'-acgggc ggtgtgtgtacaag-3, reaction conditions: (1) 5 ° C at 5 ° C (2) 95 ° C for 30 seconds, (3) 52 ° C for 30 seconds, (4) 68 ° C for 1 minute 30 seconds, (2) to (4) 30 cycles, (5) 68 ° C The PCR product was excised from the PCR product by agarose gel electrophoresis and purified with QIAquick Gel Extraction Kit (QIAGEN Sciences, USA). Then, the purified DNA fragment and sequencing primer (63f forward primer: 5'-caggcctaacacatgcaagtc-3 ', 1094f primer: 5'-gtcccgcaacgagcgcaac-3', r1L reverse primer: 5'-gtatta ccgcggctgctgg-3 ', r2L primer: 5'-catcgtttacggcgtggac-3 ', r3L primer: 5'-ttgcgctcgttgcgggact-3' or 1387r primer: 5'-gggcggtgtgtacaaggc-3 ') (1) 96 ° C for 20 seconds, (2) 50 ° C For 20 seconds, (3) 60 ° C for 4 minutes, (1) to (3) 30 times), and DNA sequencer CEQ8000 (Beckman Coulter, USA). The DNA base sequence of the RNA gene was obtained (FIG. 1, attachment). Based on the obtained base sequence of 1,291 bases, sequence matching was performed with BLAST and FASTA (http://www.ddbj.nig.ac.jp/) which are typical DNA homology search engines. As shown in Table 2, the homology with Anoxybacillus beppuensis and Anoxybacillus rupiensis was the highest. Furthermore, when the DNA base composition of Anoxybacillus sp. MS8 strain was quantified by HPLC method (Non-patent Document 5) (YMC pack AQ-312 column (YMC Co., Ltd.)), the G + C content was 53.2%.

本菌株は、生化学的/生理学的試験による同定、及び16SリボソームRNA遺伝子のDNA相同性が97%以下であること、並びに実施例2に示すように、下水汚泥を溶解することから、Anoxybacillus属細菌(Anoxybacillus beppuensis近縁)の新菌種と判断されるので、この細菌をAnoxybacillus sp. MS8株(受託番号FERM P-21818)と名付けた。   Since this strain is identified by biochemical / physiological tests, the DNA homology of the 16S ribosomal RNA gene is 97% or less, and dissolves sewage sludge as shown in Example 2, the genus Anoxybacillus Since it is judged to be a new bacterial species of bacteria (related to Anoxybacillus beppuensis), this bacterium was named Anoxybacillus sp. MS8 strain (Accession No. FERM P-21818).

Figure 0004947673
Figure 0004947673

(2)堆肥化施設
次に、本発明の実施例1に係る植栽培養土を製造するために使用する施設について簡単に説明する。図2は、本発明の実施例1に係る植栽培養土の製造プラントを表す図である。植栽培養土の製造プラントは、発酵槽1、脱臭装置2、汚泥ホッパ3a、副資材ホッパ4、種菌ホッパ5、混合機6、コンベア7,8、発酵槽用ブロワ9、及び自動袋詰機10を備えている。
(2) Composting facility Next, the facility used for producing the planted cultivation soil according to Example 1 of the present invention will be briefly described. FIG. 2 is a diagram illustrating a planting cultivation soil production plant according to Example 1 of the present invention. The planting cultivation soil production plant includes a fermenter 1, a deodorizing device 2, a sludge hopper 3a, an auxiliary material hopper 4, an inoculum hopper 5, a mixer 6, conveyors 7 and 8, a fermenter blower 9, and an automatic bagging machine. 10 is provided.

本発明の植栽培養土の原料である上水汚泥及び下水汚泥は、それぞれ、下水汚泥ホッパ3a、上水汚泥ホッパ3bに投入される。また、副資材である木材廃棄物は、副資材ホッパ4に投入される。また、原料混合物の発酵に使用する細菌であるAnoxybacillus sp.(アノキシバシラス)MS8株(受託番号FERM P-21818)は、培地材料(泥土、バーク堆肥等)とともに種菌ホッパ5に投入される。   The sewage sludge and the sewage sludge, which are the raw materials of the planting culture soil of the present invention, are respectively charged into the sewage sludge hopper 3a and the sewage sludge hopper 3b. Further, the wood waste as the secondary material is put into the secondary material hopper 4. In addition, Anoxybacillus sp. (Anoxybacillus) MS8 strain (accession number FERM P-21818), which is a bacterium used for fermentation of the raw material mixture, is introduced into the inoculum hopper 5 together with medium materials (mud, bark compost, etc.).

下水汚泥ホッパ3a、上水汚泥ホッパ3b、副資材ホッパ4、及び種菌ホッパ5に投入された原料は、コンベア7により混合機6に搬送・投入され、混合機6はこれらの原料を混合する。なお、混合機6は、円筒状の連続式ロータリー混合機が使用されている。   The raw materials charged into the sewage sludge hopper 3a, the clean water sludge hopper 3b, the auxiliary material hopper 4 and the inoculum hopper 5 are conveyed and charged into the mixer 6 by the conveyor 7, and the mixer 6 mixes these raw materials. The mixer 6 is a cylindrical continuous rotary mixer.

混合された原料は、コンベア8により発酵槽1に搬送される。発酵槽1は開放型発酵槽であち、仕切壁により複数の部分槽に区画されていおり、原料の発酵の段階毎に分けて管理することが可能である。発酵槽1において原料の発酵により発生するガスは脱臭装置2により回収され脱臭がされる。さらに、発酵槽1内の原料には、発酵槽用ブロワ9により給気が行われる。   The mixed raw material is conveyed to the fermenter 1 by the conveyor 8. The fermenter 1 is an open-type fermenter and is partitioned into a plurality of partial tanks by a partition wall, and can be managed separately for each stage of fermentation of the raw material. The gas generated by fermentation of the raw material in the fermenter 1 is recovered by the deodorizer 2 and deodorized. Furthermore, the raw material in the fermenter 1 is supplied with air by a fermenter blower 9.

最終的に原料が完熟すると、ショベルカーによって自動袋詰機10に搬送され、袋詰めされて出荷される。   When the raw material is finally ripe, it is transported to the automatic bagging machine 10 by a shovel car, packed in a bag and shipped.

(3)植栽培養土の製造工程
図3は、本発明の実施例1に係る植栽培養土の製造工程及び発酵温度を表す図である。図3(a)は植栽培養土の製造における各工程において発酵温度を計測した結果を示し、図3(b)は植栽培養土の製造における各工程の内容及び期間を示している。
(3) Manufacturing process of planting culture soil FIG. 3 is a diagram showing the manufacturing process and fermentation temperature of planting culture soil according to Example 1 of the present invention. Fig.3 (a) shows the result of having measured fermentation temperature in each process in manufacture of planting culture soil, FIG.3 (b) has shown the content and period of each process in manufacture of plantation culture soil.

(工程1)
まず、混合機6により、下水汚泥と種菌であるAnoxybacillus sp.(アノキシバシラス)MS8株と混合する。さらに、原料である上水汚泥を混合機6に追加して混合し、原料混合物を製造する。製造された原料混合物は、コンベア8により発酵槽1に搬送される。
(Process 1)
First, with the mixer 6, it mixes with sewage sludge and Anoxybacillus sp. (Anoxybacillus) MS8 stock | strain which is an inoculum. Furthermore, the raw water sludge which is a raw material is added to the mixer 6 and mixed to produce a raw material mixture. The manufactured raw material mixture is conveyed to the fermenter 1 by the conveyor 8.

なお、原料混合物の製造においては、原料として「下水汚泥」の代わりに「下水汚泥堆肥」を用いることもできる。下水汚泥堆肥は、下水汚泥と木材廃棄物(剪定枝やバーク等)を混合機6により混合し、発酵槽1において発酵させて生成される堆肥である。   In the production of the raw material mixture, “sewage sludge compost” can be used as a raw material instead of “sewage sludge”. Sewage sludge compost is compost produced by mixing sewage sludge and wood waste (pruned branches, bark, etc.) with a mixer 6 and fermenting them in the fermenter 1.

下水汚泥(又は下水汚泥堆肥)と上水汚泥との混合比率は、下水汚泥堆肥2体積部以上5体積部以下に対して、上水汚泥8体積部以下5体積部以上とし、10体積部となる割合で混合する。下水汚泥堆肥の割合が2体積部より少なくなると、Anoxybacillus sp. MS8株の活動が鈍くなり、発酵時間が長くなる傾向がみられる。また、上水汚泥は、下水汚泥と比べて、植物の三養素である窒素、リン酸、及びカリウムの量が著しく少ない。これは、上水に使用する水は、できるだけきれいな水源から取水されるため、もともと取水された水に含まれる窒素、リン酸、及びカリウムの量が少ないからである。従って、下水汚泥堆肥2体積部よりも少なくなると、これら三養素の量が不足し、堆肥としての質が低下する。また、下水汚泥堆肥の割合が5体積部よりも多くすると、上水汚泥の処理可能な量が減少するとともに、上水汚泥に含まれる酸化アルミニウム、シリカ、酸化鉄等のミネラル成分が減少し、製造される堆肥においてこれらの成分の含有割合が低下する。   The mixing ratio of the sewage sludge (or sewage sludge compost) and the sewage sludge is 8 parts by volume or less and 5 parts by volume or more of the sewage sludge compost with respect to 2 parts by volume or more and 5 parts by volume or less. Mix in the ratio When the ratio of sewage sludge compost is less than 2 parts by volume, the activity of Anoxybacillus sp. MS8 strain becomes dull and the fermentation time tends to be longer. In addition, the amount of nitrogen, phosphoric acid, and potassium, which are plant tri-nutrients, is remarkably small compared with sewage sludge. This is because the amount of nitrogen, phosphoric acid and potassium contained in the originally taken water is small because the water used for clean water is taken from as clean a water source as possible. Therefore, when it becomes less than 2 volume parts of sewage sludge compost, the quantity of these three nutrients will run short and the quality as compost will fall. Moreover, when the ratio of sewage sludge compost is more than 5 parts by volume, the amount of water sludge that can be treated decreases, and mineral components such as aluminum oxide, silica, and iron oxide contained in the water sludge decrease. In the manufactured compost, the content ratio of these components decreases.

(工程2)
発酵槽1内で、原料混合物の一次発酵を行う。一次発酵は約17日程度の期間行われる。この間、発酵によって原料混合物の温度は、図3に示したように、初期の常温状態から最終的に80〜90℃程度(実測では、最高温度85.2℃)の状態にまで上昇する。なお、図3に示した発酵温度は、発酵堆積物の上部の5地点で深さ約70cmの部位の温度を測定し、その平均をとったものである。
(Process 2)
In the fermenter 1, primary fermentation of the raw material mixture is performed. The primary fermentation is performed for a period of about 17 days. During this time, as shown in FIG. 3, the temperature of the raw material mixture rises from the initial normal temperature state to about 80 to 90 ° C. (in the actual measurement, the maximum temperature is 85.2 ° C.). In addition, the fermentation temperature shown in FIG. 3 measured the temperature of the site | part of about 70 cm depth in five points of the upper part of a fermentation deposit, and took the average.

(工程3)
工程2により一次発酵された原料混合物の切り返し(第1回目の切り返し)を行う。そして、その後、約19日程度の期間をかけて二次発酵を行う。この間、発酵によって原料混合物の温度は、図3に示したように80℃程度(実測では、最高温度82.7℃)に維持される。
(Process 3)
The raw material mixture subjected to primary fermentation in the step 2 is turned back (first turn back). Then, secondary fermentation is performed over a period of about 19 days. During this time, the temperature of the raw material mixture is maintained at about 80 ° C. (as measured, the maximum temperature is 82.7 ° C.) as shown in FIG. 3 by fermentation.

(工程4)
工程3により二次発酵された原料混合物の切り返し(第2回目の切り返し)を行う。そして、その後、約14日程度の期間をかけて三次発酵を行う。この間、発酵によって原料混合物の温度は、図3に示したように65℃程度(実測では、最高温度66.4℃)に維持される。
(Process 4)
The raw material mixture subjected to secondary fermentation in step 3 is turned back (second turn). Then, the tertiary fermentation is performed over a period of about 14 days. During this time, the temperature of the raw material mixture is maintained at about 65 ° C. (as measured, the maximum temperature is 66.4 ° C.) as shown in FIG. 3 by fermentation.

(工程5)
工程4により三次発酵された原料混合物の切り返し(第3回目の切り返し)を行う。そして、その後、約16日程度の期間をかけて四次発酵を行う。この間、発酵によって原料混合物の温度は、図3に示したように55℃程度(実測では、最高温度52.9℃)に維持される。
(Process 5)
The raw material mixture subjected to the tertiary fermentation in the step 4 is turned back (third turn). Then, quaternary fermentation is performed over a period of about 16 days. During this time, the temperature of the raw material mixture is maintained at about 55 ° C. (maximum temperature 52.9 ° C. in actual measurement) as shown in FIG. 3 by fermentation.

(工程6)
工程5により四次発酵された原料混合物の切り返し(第4回目の切り返し)を行う。そして、その後、約5日程度の期間をかけて五次発酵を行う。この間、発酵によって原料混合物の温度は、図3に示したように45℃程度(実測では、最高温度46.5℃)に維持される。
(Step 6)
The raw material mixture subjected to quaternary fermentation in step 5 is turned back (fourth turn). Then, quintic fermentation is performed over a period of about 5 days. During this time, the temperature of the raw material mixture is maintained at about 45 ° C. (as measured, the maximum temperature is 46.5 ° C.) as shown in FIG. 3 by fermentation.

(工程7)
工程6により五次発酵された混合物が完熟した植栽培養土であるので、これを自動袋詰機10により堆肥袋に袋詰する。以上により、実施例1に係る植栽培養土が製造される。製造日数は約80日であった。この日数は、従来の上水汚泥堆肥の製造日数に比べて短いものである。 発酵温度の温度経過をみると、混合堆積により短期間で温度が上昇し、一次発酵で既に85.2℃の高温に達する。その後、完熟化が進行するに従って徐々に低下するが、実測では二次発酵が終了するまでは約80℃以上の高温が維持された。また、最終的な五次発酵の段階でも、46.0℃であった。従って、本実施例の植栽培養土は、約1ヶ月にわたり品温が80℃以上に上昇する極めて優れたものであった。
(Step 7)
Since the mixture fertilized in the fifth step in step 6 is a fully cultivated planting soil, it is packed into a compost bag by the automatic bagging machine 10. As described above, the planted cultivation soil according to Example 1 is manufactured. The production days were about 80 days. This number of days is shorter than the number of days for manufacturing conventional waste water sludge compost. Looking at the temperature course of the fermentation temperature, the temperature rises in a short period due to the mixed deposition, and reaches a high temperature of 85.2 ° C. already in the primary fermentation. Thereafter, the temperature gradually decreased as the ripening progressed, but in actual measurement, a high temperature of about 80 ° C. or higher was maintained until the secondary fermentation was completed. Moreover, it was 46.0 degreeC also in the stage of the final quintic fermentation. Therefore, the planting cultivation soil of this example was extremely excellent in that the product temperature rose to 80 ° C. or more over about one month.

なお、上記実施例では5回の切り返しを行っているが、後述するように3回の切り返しによって完熟化がほぼ終了するため、第4回目と第5回目の切り返しは省略してもよい。   In the above-described embodiment, the reversal is performed five times. However, since the maturation is almost completed by the third reversal as described later, the fourth and fifth reversal may be omitted.

尚、前記(工程7)の後に、上記各工程によって製造された植栽培養土に、追加資材として軽量資材を混合してもよい。これにより、製造される植栽培養土を屋上緑化資材として利用することが可能となる。   In addition, after the said (process 7), you may mix a lightweight material as an additional material in the planting cultivation soil manufactured by the said each process. Thereby, it becomes possible to utilize the planting cultivation soil manufactured as rooftop greening material.

屋上緑化は、ヒートアイランド対策などの都市環境の改善効果をはじめ、省エネなどによる経済的効果、さらに安らぎの空間を創出することによって、人々に与える生理的及び心理的効果などの様々な効果を持つことが期待されている。屋上緑化の施工による建物に与える荷重の問題、加えて屋上は乾燥の激しい環境下であるため、屋上緑化に用いる土壌は、軽量性・透水性・通気性・保水性などが要求される。   Rooftop greening has various effects such as improving urban environment such as heat island countermeasures, economic effects due to energy savings, and creating a space of comfort, such as physiological and psychological effects on people. Is expected. Because of the problem of the load applied to the building due to the rooftop greening, and the rooftop is in a dry environment, the soil used for rooftop greening is required to be lightweight, water permeable, breathable, water retentive, and the like.

これらの要求を満たすためには、上記各工程によって製造された植栽培養土に軽量資材、すなわち、廃ガラスの焼成物(発泡ガラス)のような多孔質軽量資材を混入することで、軽量性・保水性などがより一層改善されることが明らかとなった。廃ガラスの焼成物(発泡ガラス)を使用すれば、製造される植栽培養土の原料は、全て産業廃棄物である。すなわち、この軽量化された植栽培養土は、環境保全に優れた基盤土壌となり、加えて地球温暖化ガスCOの発生がないカーボンニュートラル製品となる。 In order to satisfy these demands, lightweight materials, that is, porous lightweight materials such as baked waste glass (foamed glass) are mixed into the planted cultivation soil produced by the above-mentioned processes, thereby reducing the weight.・ It has become clear that water retention and the like are further improved. If the waste glass fired product (foamed glass) is used, the raw materials for planting and cultivation soil produced are all industrial waste. That is, the lightened planting and cultivation soil becomes a base soil excellent in environmental conservation, and in addition, becomes a carbon neutral product that does not generate global warming gas CO 2 .

(4)植栽培養土の理化学特性
次に、本発明の植栽培養土の理化学特性について調査した結果を詳細に説明する。
原料の上水汚泥としては、北九州市の穴生浄水場の機械脱水ケーキとして発生する上水汚泥を使用した。その化学成分は、(表3)に示した通りである。従って、本上水汚泥は、酸化アルミニウム及びケイ酸が主体をなし、次いで酸化鉄成分が多い資材であった。
(4) Physicochemical characteristics of planted soil for cultivation Next, the results of investigation on the physicochemical properties of the planted soil for cultivation of the present invention will be described in detail.
As the raw water sludge, the water sludge generated as a mechanical dewatered cake at the Anasei water purification plant in Kitakyushu City was used. The chemical components are as shown in (Table 3). Therefore, the present water sludge is a material mainly composed of aluminum oxide and silicic acid and then rich in iron oxide components.

Figure 0004947673
Figure 0004947673

(表4)は、原料として使用する上水汚泥と下水汚泥との融合植栽培養土化に係る原料及び種堆肥の理化学性について調査した結果である。ここで、本実施例の「下水汚泥堆肥」は、下水汚泥とバーク堆肥等の木材廃棄物とを混合した混合物を発酵させた堆肥である。なお、本実施例では「木材廃棄物」としてバークを使用している。   (Table 4) is the result of investigating the physicochemical properties of the raw materials and seed compost for the mixed planting soil cultivation of water and sludge used as raw materials. Here, “sewage sludge compost” in this example is compost obtained by fermenting a mixture of sewage sludge and wood waste such as bark compost. In this embodiment, bark is used as “wood waste”.

Figure 0004947673
Figure 0004947673

(表5)は、原料として使用する上水汚泥と下水汚泥との融合植栽培養土化家庭に於ける水分含量及び化学成分の経時変化について調査した結果である。   (Table 5) is the result of investigating the time-dependent change of the water content and chemical composition in the fusion planting soil culture household of the sewage sludge and the sewage sludge used as raw materials.

Figure 0004947673
Figure 0004947673

水分含量は、原料で73.3wt%であったものが、混合で68.0wt%、第1回目の切り返しで65.5wt%、第2回目の切り返しで64.3wt%、第3回目の切り返しで62.5wt%、第4回目の切り返しで61.3wt%、第5回目の切り返し(最終製品)で60.1wt%であった。   The water content of the raw material was 73.3 wt%, but the mixture was 68.0 wt%, the first turnover was 65.5 wt%, the second turnover was 64.3 wt%, the third turnover 62.5 wt%, 61.3 wt% at the fourth turnover, and 60.1 wt% at the fifth turnover (final product).

pH値の変化は、(表5)に示した通りである。(表4)に示したように、上水汚泥はpH(HO)が6.94とほぼ中性を示すが、下水汚泥堆肥のpHは6.41と弱酸性であるため、第1回目の切り返しではpH(HO)が6.68と微酸性を示している。pH値は発酵の過程で殆ど変化せず、微酸性を示していた。 The change in pH value is as shown in (Table 5). As shown in (Table 4), the water sludge has a pH (H 2 O) of 6.94 and is almost neutral, but the pH of the sewage sludge compost is 6.41, which is weakly acidic. In the second turn-over, the pH (H 2 O) is 6.68, which is slightly acidic. The pH value hardly changed during the fermentation process, indicating a slight acidity.

上水汚泥及び下水汚泥堆肥の全炭素量は、それぞれ13.7wt%及び34.8wt%であった。また、それらを混合した原料混合物の全炭素量は22.8wt%、第1回目の切り返しで22.0wt%であった。全炭素量は、発酵の進行とともに明瞭に減少し、発酵最終の第5回目の切り返し(最終製品)で19.4wt%まで減少した。   The total carbon content of the water sludge and sewage sludge compost was 13.7 wt% and 34.8 wt%, respectively. In addition, the total carbon content of the raw material mixture obtained by mixing them was 22.8 wt%, and 22.0 wt% at the first turnover. The total carbon content clearly decreased with the progress of fermentation, and decreased to 19.4 wt% at the fifth round-back (final product) of the final fermentation.

上水汚泥及び下水汚泥堆肥の全窒素量は、それぞれ1.96wt%及び3.13wt%であった。下水汚泥堆肥の全窒素量が多いため、混合物の全窒素量は2.27wt%であった。全窒素量は発酵の進行に伴って徐々に増加し、発酵最終の第5回目の切り返し(最終製品)で2.63wt%まで増加した。   The total nitrogen contents of the water sludge and sewage sludge compost were 1.96 wt% and 3.13 wt%, respectively. Since the total amount of nitrogen in the sewage sludge compost was large, the total amount of nitrogen in the mixture was 2.27 wt%. The total amount of nitrogen gradually increased as the fermentation progressed, and increased to 2.63 wt% at the fifth turnover (final product) of the final fermentation.

上水汚泥及び下水汚泥堆肥のC/N比は、それぞれ7.0及び11.1であった。また、これらの混合物では、10.04であった。発酵の進行に伴い全窒素量が増加し全炭素量は減少することから、これを反映してC/N比は発酵の進行に伴い徐々に減少した。発酵最終の第5回目の切り返し(最終製品)で7.3まで減少した。   The C / N ratios of clean water sludge and sewage sludge compost were 7.0 and 11.1, respectively. Moreover, in these mixtures, it was 10.04. Since the total nitrogen amount increased and the total carbon amount decreased with the progress of fermentation, the C / N ratio gradually decreased with the progress of fermentation reflecting this. It decreased to 7.3 at the 5th turnover (final product) at the end of fermentation.

上水汚泥及び下水汚泥堆肥のカリウム量は、それぞれ0.133wt%及び1.10wt%であった。上水汚泥のカリウム量は、下水汚泥堆肥のカリウム量に比べて著しく低いことが示された。カリウム量は発酵の進行に伴って明瞭に増加し、発酵最終の第5回目の切り返し(最終製品)で0.775wt%まで増加した。   The amounts of potassium in the sewage sludge and sewage sludge compost were 0.133 wt% and 1.10 wt%, respectively. It was shown that the amount of potassium in the sewage sludge was significantly lower than the amount of potassium in the sewage sludge compost. The amount of potassium clearly increased as the fermentation progressed, and increased to 0.775 wt% at the fifth round-off (final product) of the final fermentation.

上水汚泥及び下水汚泥堆肥のマグネシウム量は、それぞれ0.308wt%及び0.660wt%であった。マグネシウム量については、下水汚泥堆肥が上水汚泥に比べて2倍多い程度であり、両者に極端な差異は認められなかった。これらの混合物のマグネシウム量は0.517wt%であった。マグネシウム量は発酵の進行に伴って明瞭に増加し、発酵最終の第5回目の切り返し(最終製品)で0.670wt%まで増加した。   Magnesium content of the sewage sludge compost and the sewage sludge compost was 0.308 wt% and 0.660 wt%, respectively. As for the amount of magnesium, the amount of sewage sludge compost was about twice as large as that of clean water sludge, and no extreme difference was observed between the two. The magnesium content of these mixtures was 0.517 wt%. The amount of magnesium clearly increased with the progress of fermentation, and increased to 0.670 wt% at the fifth round-back (final product) of the final fermentation.

上水汚泥及び下水汚泥堆肥のカルシウム量は、それぞれ0.981wt%及び3.600wt%であった。上水汚泥のカルシウム量は、下水汚泥堆肥のカルシウム量に比べて著しく低いことが示された。これらの混合物のカルシウム量は2.181wt%であった。カルシウム量は発酵の進行に伴って明瞭に増加し、発酵最終の第5回目の切り返し(最終製品)で2.998wt%まで増加した。   The amounts of calcium in the sewage sludge compost and sewage sludge compost were 0.981 wt% and 3.600 wt%, respectively. It was shown that the amount of calcium in the sewage sludge was significantly lower than the amount of calcium in the sewage sludge compost. The calcium content of these mixtures was 2.181 wt%. The amount of calcium clearly increased as the fermentation progressed, and increased to 2.998 wt% at the fifth round-back (final product) of the final fermentation.

上水汚泥及び下水汚泥堆肥のリン酸量は、それぞれ1.102wt%及び2.370wt%であった。上水汚泥のリン酸量は、下水汚泥堆肥のリン酸量に比べて著しく低いことが示された。これらの混合物のリン酸量は1.702wt%であった。リン酸量は発酵の進行に伴って明瞭に増加し、発酵最終の第5回目の切り返し(最終製品)で2.299wt%まで増加した。   The amounts of phosphoric acid in the water sludge and sewage sludge compost were 1.102 wt% and 2.370 wt%, respectively. It was shown that the amount of phosphoric acid in the sewage sludge was significantly lower than the amount of phosphoric acid in the sewage sludge compost. The phosphoric acid content of these mixtures was 1.702 wt%. The amount of phosphoric acid clearly increased with the progress of fermentation, and increased to 2.299 wt% at the fifth round-back (final product) of the final fermentation.

上水汚泥及び下水汚泥堆肥のEC(電気伝導度)は、それぞれ1.29ms/cm及び3.95ms/cmであった。上水汚泥のECは、下水汚泥堆肥のECに比べて著しく低いことが示された。これらの混合物のECは3.22ms/cmであった。ECは発酵の進行に伴って明瞭に増加し、発酵最終の第5回目の切り返し(最終製品)で7.29ms/cmまで増加した。   The EC (electrical conductivity) of the water sludge and sewage sludge compost was 1.29 ms / cm and 3.95 ms / cm, respectively. The EC of clean water sludge was shown to be significantly lower than that of sewage sludge compost. The EC of these mixtures was 3.22 ms / cm. The EC increased clearly with the progress of the fermentation and increased to 7.29 ms / cm at the fifth round-off (final product) of the final fermentation.

以上のように、今回の調査に使用した上水汚泥は、中性を示した。しかし、副資材である下水汚泥堆肥は微酸性であるため、これらの混合資料のpH値は微酸性を示した。pH値は発酵の過程で多少低下する程度で、最終製品に至るまで大きな変動は見られなかった。   As mentioned above, the water sludge used in this survey showed neutrality. However, since the sewage sludge compost, which is a secondary material, is slightly acidic, the pH value of these mixed materials showed slightly acidic. The pH value decreased to some extent during the fermentation process, and no significant fluctuation was observed until the final product.

また、表4から分かるように、上水汚泥は、植物の三養素(肥料成分)の中で窒素及びリン酸量が下水汚泥に比べて著しく少ない。従って、副資材として窒素量が多い下水汚泥堆肥を使用することによって、発酵が終了した第5回目の切り返し後の植栽培養土の窒素量を2.63wt%に高めることができた。加えてC/N比は7.38と極めて低い値を示した。従って、本実施例の植栽培養土は、窒素量が多く、C/N比も低い良質な植栽培養土に仕上がったといえる。   Moreover, as can be seen from Table 4, the amount of nitrogen and phosphoric acid in the three nutrients (fertilizer components) of the plant is significantly less than that of the sewage sludge. Therefore, by using sewage sludge compost having a large amount of nitrogen as an auxiliary material, the amount of nitrogen in the planted cultivation soil after the fifth turnover after fermentation was completed could be increased to 2.63 wt%. In addition, the C / N ratio was a very low value of 7.38. Therefore, it can be said that the planting culture soil of this example was finished into a high quality planting culture soil with a large amount of nitrogen and a low C / N ratio.

また、カリウム量の少ない上水汚泥に、カリウム量の多い下水汚泥堆肥を副資材として用いることによって、堆肥のカリウム量を0.133wt%から0.775wt%へと著しく増大させることができた。同様に、カルシウム量が少ない上水汚泥にカルシウム量の多い下水汚泥堆肥を混合することで、カルシウム量も0.981wt%から2.998wt%へと改善していることも示された。   Moreover, by using sewage sludge compost having a large amount of potassium as an auxiliary material for clean water sludge having a small amount of potassium, the amount of potassium in the compost could be remarkably increased from 0.133 wt% to 0.775 wt%. Similarly, it was also shown that the amount of calcium was improved from 0.981 wt% to 2.998 wt% by mixing sewage sludge compost with a large amount of calcium with water sludge with a small amount of calcium.

リン酸量の少ない上水汚泥は、リン酸量の多い下水汚泥堆肥と混合することにより、その量が0.102wt%から2.299wt%に増加した。これにより、植栽培用土として満足のゆくリン酸量を確保することができた。加えて、クロロフィル合成の必須元素であるマグネシウム量も、最終製品では0.67wt%と豊富であることが分かった。   The amount of water sludge with a small amount of phosphoric acid increased from 0.102 wt% to 2.299 wt% by mixing with sewage sludge compost with a large amount of phosphoric acid. As a result, a satisfactory amount of phosphoric acid could be secured as planting soil. In addition, the amount of magnesium, which is an essential element for chlorophyll synthesis, was found to be abundant at 0.67 wt% in the final product.

また、今回の上水汚泥は、ECは、下水汚泥に比べて著しく小さい有機資材であった。ECの高い下水汚泥堆肥を副資材として混合することで、ECは3.22まで高まった。そして、発酵の進行により、第5回目の切り返し(最終製品)では7.29にまで増加した。   In addition, this time, the sewage sludge was an organic material whose EC was significantly smaller than the sewage sludge. By mixing sewage sludge compost with high EC as a secondary material, EC increased to 3.22. And by progress of fermentation, it increased to 7.29 in the 5th turnover (final product).

(5)植栽培養土の細菌及び大腸菌数
次に、最終製品として得られた植栽培養土の細菌及び大腸菌数の調査を行った結果を示す。なお、堆肥では、培養法(寒天培地)で得られる菌数は、生存する全細菌数の1%以下しか計測できない。そのため、発酵過程の細菌数の測定は、直接検鏡法により行った。(表6)に、最終製品の培養法による細菌数及び大腸菌数を示す。
(5) Bacteria and Escherichia coli counts in plantation and cultivation soil Next, the results of investigation of bacteria and coliform counts in plantation and cultivation soil obtained as a final product are shown. In compost, the number of bacteria obtained by the culture method (agar medium) can be measured only 1% or less of the total number of living bacteria. Therefore, the number of bacteria in the fermentation process was measured by direct microscopy. (Table 6) shows the number of bacteria and the number of E. coli by the culture method of the final product.

Figure 0004947673
Figure 0004947673

直接検鏡法による細菌数の測定では、全細菌数は蛍光染料ethidium bromide(EB)、生細菌数は蛍光染料6-carboxy fliorescein diacetate(CFDA)を使用した。これらの蛍光染料で染色した全細菌及び生細菌数の発酵に伴う経時変化を図4に示す。   In the measurement of the number of bacteria by direct microscopic method, the total number of bacteria was fluorescent dye ethidium bromide (EB), and the number of living bacteria was fluorescent dye 6-carboxy fliorescein diacetate (CFDA). FIG. 4 shows changes with time in the fermentation of the total bacteria and viable bacteria counts stained with these fluorescent dyes.

直接検鏡法による原料の上水汚泥の全細菌(EB染色)数は、乾物1gあたり1.1×1010であり、約110億個の細菌が存在する。全生細菌(CFDA染色)数は3.1×10であり、約31億個の生細菌が存在していた。他方、下水汚泥堆肥の全菌数6.35×1010であり、約635億個の細菌が存在し、全生菌数は5.21×10であり、約52億個の生細菌が存在していた。このように、下水汚泥堆肥には、上水汚泥に比べて全細菌数で6倍、全盛細菌数で2倍もの多くの細菌が存在していることが明らかとなった。 The total number of bacteria in the raw water sludge (EB staining) by the direct microscopic method is 1.1 × 10 10 per 1 g of dry matter, and there are about 11 billion bacteria. The total number of live bacteria (CFDA staining) was 3.1 × 10 9 , and about 3.1 billion live bacteria were present. On the other hand, the total number of bacteria in the sewage sludge compost is 6.35 × 10 10 , there are about 63.5 billion bacteria, the total number of live bacteria is 5.21 × 10 9 , and about 5.2 billion live bacteria Existed. Thus, it was revealed that the sewage sludge compost contains 6 times as many bacteria as the total number of bacteria and 2 times as many bacteria as the sewage sludge.

従って、上水汚泥よりも下水汚泥堆肥のほうが、著しく細菌数が多いことが示された。このことを反映して、両者の混合により、全細菌が約2.5培、全生細菌が約1.7倍も多くなった。   Therefore, it was shown that the sewage sludge compost has significantly more bacteria than the clean water sludge. Reflecting this, the mixture of both resulted in about 2.5 cultures of total bacteria and about 1.7 times more total live bacteria.

発酵過程の細菌数においては、全細菌数は第1回目の切り返しでは初期発酵による増加を示して350億個、第2回目の切り返しでは320億個の細菌が存在した。しかし、第3回目の切り返しでは細菌数が減少し、その後大きな変動は見られなかったが、全生細菌数は増加する傾向が見られ、第3回目の切り返しが最も多く、約91億個の生細菌が観測された。   In the number of bacteria in the fermentation process, the total number of bacteria showed an increase due to the initial fermentation at the first turnover, and there were 35 billion bacteria, and at the second turnover, there were 32 billion bacteria. However, the number of bacteria decreased at the 3rd reversal and did not show any significant fluctuations after that. However, the total number of live bacteria tended to increase, and the 3rd reversal was the most, about 9.1 billion. Viable bacteria were observed.

また、培養法による最終製品の全細菌数は、(表6)に示したように、乾物1gあたり23.5×10であり、約2.4億個存在していた。 Moreover, as shown in (Table 6), the total number of bacteria in the final product by the culture method was 23.5 × 10 7 per 1 g of dry matter, and about 240 million were present.

なお、最終製品の大腸菌数は、検出限界以下となり、検出できなかった。   The number of E. coli in the final product was below the detection limit and could not be detected.

以上のように、本実施例に於ける植栽培養土は、発酵過程において全細菌数が約260億個に達し、驚くような菌数を示した。微生物の菌体は植物養分のプールとしての機能を有している。従って、本実施例に於ける植栽培養土は、微生物バイオマスに富んだ良質なバイオ植栽培養土であると判定される。なお、この全細菌数には、活性がない死んだ細菌も含まれている。CFDA染色により生細菌のみを調査したところ、生細菌は約86億個も存在しており、全細菌に占める全生細菌は32.3%であった。   As described above, the planting culture soil in this example showed a surprising number of bacteria, with the total number of bacteria reaching about 26 billion during the fermentation process. The microbial cell has a function as a pool of plant nutrients. Therefore, the planting culture soil in this example is determined to be a high quality bio plantation culture soil rich in microbial biomass. The total number of bacteria includes dead bacteria that have no activity. When only live bacteria were examined by CFDA staining, there were about 8.6 billion live bacteria, and the total live bacteria accounted for 32.3%.

なお、直接検鏡法と培養法で計数された全細菌数を比較すると、直接検鏡法で計数される全細菌数のほうが366倍も多かった。従って、寒天培地を用いる培養法では、最終製品の植栽培養土中に存在する全細菌のわずか0.27%しか計数できないことを示している。すなわち、最終製品の植栽培養土中に存在する細菌の99.8%は、寒天培地では培養できず、寒天培地を用いては計数できないことを示している。   When the total number of bacteria counted by the direct microscopic method and the culture method was compared, the total number of bacteria counted by the direct microscopic method was 366 times higher. Therefore, it is shown that the culture method using an agar medium can count only 0.27% of the total bacteria present in the plant culture soil of the final product. That is, 99.8% of the bacteria present in the planted cultivation soil of the final product cannot be cultured on the agar medium and cannot be counted using the agar medium.

(6)発芽インデックス法による植栽培養土の腐熟度の評価
製造された本発明の植栽培養土が、植物の生育を阻害しない所謂良好な完熟有機肥料(堆肥)であるか否かは極めて重要である。そこで、本実施例で示した本発明の植栽培養土について、新たに改良した発芽インデックス法により腐熟度の判定を行った。
(6) Evaluation of the degree of maturity of planted cultivation soil by the germination index method Whether or not the produced planted cultivation soil of the present invention is a so-called good ripe organic fertilizer (compost) that does not inhibit plant growth is extremely high. is important. Therefore, the degree of maturity was determined by the newly improved germination index method for the planted cultivation soil of the present invention shown in this example.

図5に、新規に開発した発芽インデックス・キットの概要を示す(特開2004−201586号参照)。生育測定器具Aは、栽培槽10、着床部材20、生育ホルダー25、支持基板30、及び蓋体40を有する。   FIG. 5 shows an outline of a newly developed germination index kit (see Japanese Patent Application Laid-Open No. 2004-151586). The growth measuring instrument A includes a cultivation tank 10, a landing member 20, a growth holder 25, a support substrate 30, and a lid body 40.

栽培槽10は、上方に開口し、アクリル樹脂等の透明又は半透明の部材により構成されている。栽培槽10の内底部11には、長手方向に仕切壁体12が立設されており、この仕切壁体12により栽培槽が長手方向に2つに区画されている。また、栽培槽10の正面側及び背面側の外表面部13、14には植物の生育度合いを測定する目盛部13a,14aが生育ホルダー21の下端部を基準点15として上方に1cm毎に設けられている。   The cultivation tank 10 is opened upward and is made of a transparent or translucent member such as an acrylic resin. A partition wall body 12 is erected on the inner bottom portion 11 of the cultivation tank 10 in the longitudinal direction, and the cultivation tank is divided into two in the longitudinal direction by the partition wall body 12. Moreover, the scale parts 13a and 14a which measure the growth degree of a plant are provided in the outer surface parts 13 and 14 on the front side and the back side of the cultivation tank 10 with a lower end part of the growth holder 21 as a reference point 15 at an interval of 1 cm. It has been.

着床部材20は、植物の種子を着床、発芽、生育させる部材であり、栽培槽10に収容されている。着床部材20は、水分、コンポスト化処理物からの抽出液、肥料含有水溶液等を吸液すると共に、植物の種子の着床、発芽、生育することができる材料から構成され、例えば、不織布、脱脂綿、スポンジ、濾紙、ロックウール、ガラスウール、セラミック多孔体、ヤシ殻マットなどから構成される。   The landing member 20 is a member for planting, germinating, and growing plant seeds, and is accommodated in the cultivation tank 10. The landing member 20 is made of a material that can absorb moisture, an extract from a composted product, a fertilizer-containing aqueous solution, and the like, and can be used for plant seeding, germination, and growth. It is composed of absorbent cotton, sponge, filter paper, rock wool, glass wool, ceramic porous body, coconut shell mat and the like.

生育ホルダー25は、支持基板30に並列して複数連設された状態で、栽培槽10に収容されている。生育ホルダー25は、視認性を有する透明又は半透明の縦長の筒状体からなり、着床部材20より発芽した植物を視認できる。支持基板30は、視認性を有する生育ホルダー25内で生育する植物の生育度合いを視認しやすいように暗色部材、本形態では黒色の樹脂板で構成されている。図5では、15本の生育ホルダー25が、支持基板30に並列に連設され、支持基板30、側面基板32,32、及び正面基板33により四方を包囲されてユニット化されている。また、各生育ホルダー25の下部には、着床部材20が収容される構造となるように各生育ホルダー25の下端部及び側面基板32の下端部は同じ長さとなるように設定され、支持基板30及び正面基板33の下端部は上記各生育ホルダー25の下端部及び側面基板32の下端部より短く設定されている。   The growth holder 25 is accommodated in the cultivation tank 10 in a state in which a plurality of growth holders 25 are arranged in parallel to the support substrate 30. The growth holder 25 is made of a transparent or translucent vertically long cylindrical body having visibility, and a plant sprouted from the landing member 20 can be visually recognized. The support substrate 30 is composed of a dark member, which is a black resin plate in this embodiment, so that the degree of growth of plants growing in the growth holder 25 having visibility can be easily seen. In FIG. 5, 15 growth holders 25 are connected in parallel to the support substrate 30, and are surrounded by the support substrate 30, the side substrates 32 and 32, and the front substrate 33 to form a unit. In addition, at the lower part of each growth holder 25, the lower end portion of each growth holder 25 and the lower end portion of the side substrate 32 are set to have the same length so that the landing member 20 can be accommodated. The lower end portions of 30 and the front substrate 33 are set shorter than the lower end portions of the growth holders 25 and the lower end portions of the side substrate 32.

蓋体40は、栽培槽10の上部開口を閉蓋する蓋であり、アクリル樹脂等の透明又は半透明な材質から構成されている。この蓋体40には、施蓋して種子の発芽、生育中等で各生育ホルダー25内が水蒸気で曇ってしまうため、曇り等を防止するため、長手方向中央には、直径3mmの通気用孔41が等間隔で3箇所形成されている。   The lid 40 is a lid that closes the upper opening of the cultivation tank 10 and is made of a transparent or translucent material such as acrylic resin. The lid 40 is covered and the inside of each growth holder 25 is clouded with water vapor during seed germination and growth. Therefore, in order to prevent fogging and the like, a ventilation hole having a diameter of 3 mm is provided at the center in the longitudinal direction. 41 are formed at three positions at equal intervals.

製造した最終製品の植栽培養土が農耕地に施用する場合、その植栽培養土の腐熟が十分であるかを判定しなければならない。そこで、新しく、幼植物試験法とポット栽培試験法の長所を取り入れた簡便・迅速な発芽インデックス法を改良した。本法は蒸留水を対照に植栽培養土の抽出液でコマツナを栽培して、その発芽率と茎長を7日目に調べ、次式を用いて発芽インデックスを求める。   When the planted cultivation soil of the manufactured final product is applied to the farmland, it must be determined whether the planted cultivation soil is sufficiently matured. Therefore, a simple and quick germination index method that incorporates the advantages of the seedling test method and pot cultivation test method was improved. In this method, Komatsuna is cultivated with the extract of planting soil with distilled water as a control, the germination rate and stem length are examined on the 7th day, and the germination index is obtained using the following formula.

Figure 0004947673
Figure 0004947673

具体的には、まず、乾燥した微細粉末試料20gに沸騰させた蒸留水180mLを加えよく攪拌した後、1時間静置した。静置後7000rpm、10minで遠心分離を行った。遠心後、上澄液を本発明者が開発した植物の生育測定器具(図5参照)の着床部材20に添加しコマツナ種子30粒を播種した。1週間25℃の恒温槽で栽培した。対照は、同様の処理をした後蒸留水で栽培した。1週間後発芽数と茎の長さを測定し、上記の式(1)によって発芽インデックス(GI)を測定した。   Specifically, first, 180 mL of boiled distilled water was added to 20 g of a dried fine powder sample, stirred well, and then allowed to stand for 1 hour. After standing, centrifugation was performed at 7000 rpm for 10 minutes. After centrifugation, the supernatant was added to the landing member 20 of the plant growth measuring instrument developed by the present inventors (see FIG. 5), and 30 Komatsuna seeds were sown. Cultivated in a constant temperature bath at 25 ° C for one week. The control was cultivated with distilled water after the same treatment. One week later, the number of germination and the length of the stem were measured, and the germination index (GI) was measured by the above formula (1).

発芽インデックス100%以上、即ち、堆肥抽出液で生育させた植物の茎長が蒸留水で生育させたそれよりも長ければ、植物の生育に障害を与えていないので腐熟度は十分であるとした。   If the germination index is 100% or more, that is, if the stem length of the plant grown with the compost extract is longer than that grown with distilled water, the degree of maturity is sufficient because the plant growth is not hindered .

(結果)
発芽インデックスの結果を(表7)に示す。上水汚泥の発芽インデックスは、コマツナがよく生育し、120%であった。他方、副資材とした下水汚泥堆肥の発芽インデックスは、146%で完熟堆肥であった。両者の混合物の発芽インデックスは136%であったが、第1回目の切り返し後の発芽インデックスは167%と著しく増加した。その後、発酵の進行に伴って発芽インデックスは増加し、最後の第5回目の切り返し後の最終製品では204%を示した。
(result)
The results of the germination index are shown in (Table 7). The germination index of clean water sludge was 120%, with Komatsuna growing well. On the other hand, the germination index of sewage sludge compost as an auxiliary material was 146% and was a fully matured compost. The germination index of the mixture of both was 136%, but the germination index after the first reversal increased significantly to 167%. Thereafter, the germination index increased with the progress of fermentation, and showed 204% in the final product after the final fifth turnover.

Figure 0004947673
Figure 0004947673

以上のような発芽インデックスの結果は、本発明の植栽培養土には植物の生育を阻害する物質が殆ど含まれていないことを示している。一方、副資材として使用した下水汚泥堆肥は、阻害物質が完全に分解されていて、植物を良好に生育させる完熟バイオ有機肥料であることを示している。両者を混合し、発酵過程(一次発酵)を経ると、途端に発芽インデックスは著しく増加した。さらに、発酵の進行に伴って発芽インデックスが増加していくことから、発酵熱によって植物の生育を阻害する上水汚泥由来の植物生育阻害物質が分解されることを示している。   The results of the germination index as described above indicate that the plant culture soil of the present invention contains almost no substances that inhibit plant growth. On the other hand, the sewage sludge compost used as an auxiliary material indicates that the inhibitor is completely decomposed and is a fully-ripe bio-organic fertilizer that allows plants to grow well. When both were mixed and passed through the fermentation process (primary fermentation), the germination index increased markedly. Furthermore, since the germination index increases with the progress of fermentation, it shows that the plant growth inhibitory substance derived from the water sludge that inhibits the growth of the plant by the heat of fermentation is decomposed.

発酵過程の発芽インデックスの結果を見ると、第2回目の切り返しで既に発芽インデックス190%と極めて良好な完熟バイオ植栽培養土となっていることが示されている。その後、発酵過程での数値の上昇がわずかであることを考慮すると、第2回目の切り返しの第三次発酵ですでに大部分の発酵が終了していることを示唆している。   Looking at the results of the germination index of the fermentation process, it has been shown that the second turnover has already become a very good fully ripe bioplant cultivation soil with a germination index of 190%. Then, considering that the increase in the numerical value during the fermentation process is slight, it suggests that most of the fermentation has already been completed in the second round of tertiary fermentation.

従って、上水汚泥の堆肥化は、下水汚泥堆肥を副資材として用いることで、第2回目の切り返し(第三次発酵)で極めて良好な完熟バイオ植栽培養土に仕上がることが明らかとなった。すなわち、仕込んでからわずか36日(約1ヶ月)と極めて短期間に安全で良質な完熟バイオ植栽培養土を製造できることを意味している。   Therefore, it was clarified that composting of sewage sludge is finished to a very good ripe bioplant cultivation soil by the second turnover (tertiary fermentation) by using sewage sludge compost as an auxiliary material. . In other words, it means that it is possible to produce a safe and high-quality ripe bioplant cultivation nourishment in a very short time of only 36 days (about one month) after charging.

1 発酵槽
2 脱臭装置
3a 下水汚泥ホッパ
3b 上水汚泥ホッパ
4 副資材ホッパ
5 種菌ホッパ
6 混合機
7,8 コンベア
9 発酵槽用ブロワ
10 自動袋詰機
DESCRIPTION OF SYMBOLS 1 Fermenter 2 Deodorizing device 3a Sewage sludge hopper 3b Water sewage sludge hopper 4 Secondary material hopper 5 Inoculum hopper 6 Mixer 7, 8 Conveyor 9 Fermenter blower 10 Automatic bagging machine

Claims (6)

下水汚泥と木材廃棄物とを混合した原料混合物からなる下水汚泥堆肥と、浄水場の沈殿池の沈殿物として得られる上水汚泥とを混合し、この混合物を、Anoxybacillus sp.(アノキシバシラス)MS8株(受託番号FERM P-21818)により発酵させてなる植栽培養土。
Combining sewage sludge compost consisting of a raw material mixture of sewage sludge and wood waste and water sewage sludge obtained as a sedimentation basin sediment in a water treatment plant, this mixture is mixed with Anoxybacillus sp. MS8 strain Planted cultivation soil fermented by (Accession Number FERM P-21818) .
請求項1の植栽培養土において、さらに軽量資材が混合されていることを特徴とする請求項1記載の植栽培養土。   The planted cultivation soil according to claim 1, further comprising a lightweight material mixed therein. 下水汚泥と木材廃棄物とを混合した原料混合物を、Anoxybacillus sp.(アノキシバシラス)MS8株(受託番号FERM P-21818)により発酵させて下水汚泥堆肥を生成する第1工程と、
前記下水汚泥堆肥と、浄水場の沈殿池の沈殿物として得られる上水汚泥とを混合して中間混合物を生成する第2工程と、
前記中間混合物を、前記Anoxybacillus sp.(アノキシバシラス)MS8株により再度発酵させて植栽培養土を生成する第3工程と、
を備えたことを特徴とする植栽培養土の製造方法。
A first step of producing a sewage sludge compost by fermenting a raw material mixture obtained by mixing sewage sludge and wood waste with Anoxybacillus sp. MS8 strain (accession number FERM P-21818) ;
A second step of producing an intermediate mixture by mixing the sewage sludge compost and the water sewage sludge obtained as a sediment of a settling basin of a water purification plant ;
A third step of fermenting the intermediate mixture again with the Anoxybacillus sp.
A method for producing planted soil for cultivation.
前記第2工程において、
前記下水汚泥堆肥2体積部以上5体積部以下と、前記上水汚泥8体積部以下5体積部以上とを、合計で10体積部となる割合で混合することを特徴とする請求項3記載の植栽培養土の製造方法。
In the second step,
The said sewage sludge compost 2 volume part or more and 5 volume part or less and the said water-sewage sludge 8 volume part or less 5 volume part or more are mixed in the ratio used as a total of 10 volume parts, It is characterized by the above-mentioned. Manufacturing method for planting culture soil.
前記第3工程において、
前記中間混合物の発酵は、好気状態で行うことを特徴とする請求項3又は4記載の植栽培養土の製造方法。
In the third step,
The method for producing a plant culture land according to claim 3 or 4, wherein the fermentation of the intermediate mixture is performed in an aerobic state.
前記第1工程において、
前記原料混合物の発酵は、好気状態で行うことを特徴とする請求項3乃至5の何れか一記載の植栽培養土の製造方法。
In the first step,
The method for producing a planting culture soil according to any one of claims 3 to 5, wherein the fermentation of the raw material mixture is performed in an aerobic state.
JP2010141058A 2009-06-22 2010-06-21 Planted cultivation soil and its manufacturing method Expired - Fee Related JP4947673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010141058A JP4947673B2 (en) 2009-06-22 2010-06-21 Planted cultivation soil and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009147819 2009-06-22
JP2009147819 2009-06-22
JP2010141058A JP4947673B2 (en) 2009-06-22 2010-06-21 Planted cultivation soil and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2011024569A JP2011024569A (en) 2011-02-10
JP4947673B2 true JP4947673B2 (en) 2012-06-06

Family

ID=43634072

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010141058A Expired - Fee Related JP4947673B2 (en) 2009-06-22 2010-06-21 Planted cultivation soil and its manufacturing method
JP2010141057A Expired - Fee Related JP4947672B2 (en) 2009-06-22 2010-06-21 Novel microorganism and method for producing compost using the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2010141057A Expired - Fee Related JP4947672B2 (en) 2009-06-22 2010-06-21 Novel microorganism and method for producing compost using the same

Country Status (1)

Country Link
JP (2) JP4947673B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703364B (en) * 2012-05-14 2013-04-03 大地绿源环保科技(北京)有限公司 Anoxybacillus mongoliensis UTM501 and applications thereof
KR101375293B1 (en) 2012-05-22 2014-03-19 (주)지오에버그린 Microbial Community Analyses Composition for Food-waste Vanishment and Application Thereof
CN103484369A (en) * 2012-06-12 2014-01-01 大连理工大学 Composite microbial agent and application thereof in composting treatment of pathogen-infected animal carcasses
JP2015116158A (en) * 2013-12-18 2015-06-25 株式会社 山有 Novel microorganism
JP5689560B1 (en) * 2014-10-31 2015-03-25 株式会社 山有 New microorganism
CN106424087A (en) * 2016-10-18 2017-02-22 桂林洁宇环保科技有限责任公司 Application of anaerobic spore-bearing bacilli to household refuse anaerobic treatment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2736837B2 (en) * 1992-01-28 1998-04-02 富士見工業 株式会社 Microbial treatment of purified water cake
JP3826589B2 (en) * 1998-11-09 2006-09-27 東レ株式会社 Novel microorganism and sludge treatment method using the same
JP4540211B2 (en) * 2000-10-20 2010-09-08 三井造船株式会社 New microorganisms belonging to Bacillus subtilis
JP2002253047A (en) * 2001-03-05 2002-09-10 Sumitomo Forestry Co Ltd Method for producing plant culture medium
KR100437103B1 (en) * 2002-02-08 2004-06-23 최동성 Pseudomonas sp. FK 916 producing decomposition enzyme of organic compound and method for decomposition of organic waste using the same
JP4019122B2 (en) * 2002-02-25 2007-12-12 独立行政法人産業技術総合研究所 A new species of Rhodobacter
JP2003246691A (en) * 2002-02-26 2003-09-02 Daiwa House Ind Co Ltd Method of manufacturing compost using bark or bark and dewatered sludge cake
JP3588613B2 (en) * 2003-03-10 2004-11-17 株式会社神鋼環境ソリューション Novel microorganism and method for treating organic solids using the microorganism
JP4654437B2 (en) * 2005-02-28 2011-03-23 国立大学法人九州工業大学 Novel microorganism and method for treating organic sludge using the same
JP2007167047A (en) * 2005-12-20 2007-07-05 Takeshi Muramatsu New microorganism producing heat-stable protease

Also Published As

Publication number Publication date
JP2011024568A (en) 2011-02-10
JP4947672B2 (en) 2012-06-06
JP2011024569A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
Fan et al. Effects of different concentrations and types of microplastics on bacteria and fungi in alkaline soil
de Godos et al. A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation
CN102858695B (en) Wastewater processing method, system, and method for measuring pollutant-decomposition activity
He et al. The combined effect of bacteria and Chlorella vulgaris on the treatment of municipal wastewaters
Nakasaki et al. Comparison of organic matter degradation and microbial community during thermophilic composting of two different types of anaerobic sludge
Benıtez et al. Enzyme activities in the rhizosphere of pepper (Capsicum annuum, L.) grown with olive cake mulches
Garcia et al. Organic amendment and mycorrhizal inoculation as a practice in afforestation of soils with Pinus halepensis Miller: effect on their microbial activity
Zhou et al. Rapid in-situ composting of household food waste
JP4947673B2 (en) Planted cultivation soil and its manufacturing method
CN109182193A (en) Microbial bacterial agent and its preparation method and application
Solmaz et al. Optimization of membrane photobioreactor; the effect of hydraulic retention time on biomass production and nutrient removal by mixed microalgae culture
CN106867545A (en) A kind of saline-alkali soil restoration agent, preparation method and applications from sludge
JP2019156695A (en) Composting treatment accelerator and method for producing compost
Chen et al. Isolation and application of a mixotrophic sulfide-oxidizing Cohnella thermotolerans LYH-2 strain to sewage sludge composting for hydrogen sulfide odor control
Thummes et al. Thermophilic methanogenic Archaea in compost material: occurrence, persistence and possible mechanisms for their distribution to other environments
CN106734184A (en) A kind of in-situ remediation method of heavy-metal contaminated soil
Choi et al. Co-culture consortium of Scenedesmus dimorphus and nitrifiers enhances the removal of nitrogen and phosphorus from artificial wastewater
Kapoor et al. Vermicomposting for organic waste management
CN101045652B (en) Comprehensive treatment method of bio-pollutant
Li et al. Myriophyllum elatinoides growth and rhizosphere bacterial community structure under different nitrogen concentrations in swine wastewater
Zuo et al. Microbial community structure analyses and cultivable denitrifier isolation of Myriophyllum aquaticum constructed wetland under low C/N ratio
KR20060122207A (en) Method and apparatus for decomposing sludge using alkalophilic strain
Song et al. Enhancing biomass yield, nutrient removal, and decolorization from soy sauce wastewater using an algae-fungus consortium
CN207567125U (en) The liquid fertilizer device systems of livestock waste
JP3064221B2 (en) Aerobic bacteria and sludge treatment using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20111124

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120229

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120301

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees