JP2018183080A - Modified soil for creating brackish water eelgrass bed, and method for creating brackish water eelgrass bed using the same, and method for growing eelgrass in brackish water region - Google Patents

Modified soil for creating brackish water eelgrass bed, and method for creating brackish water eelgrass bed using the same, and method for growing eelgrass in brackish water region Download PDF

Info

Publication number
JP2018183080A
JP2018183080A JP2017086219A JP2017086219A JP2018183080A JP 2018183080 A JP2018183080 A JP 2018183080A JP 2017086219 A JP2017086219 A JP 2017086219A JP 2017086219 A JP2017086219 A JP 2017086219A JP 2018183080 A JP2018183080 A JP 2018183080A
Authority
JP
Japan
Prior art keywords
brackish water
modified soil
soil
steel slag
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017086219A
Other languages
Japanese (ja)
Other versions
JP6891615B2 (en
Inventor
知佳 小杉
Chika Kosugi
知佳 小杉
加藤 敏朗
Toshiro Kato
敏朗 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2017086219A priority Critical patent/JP6891615B2/en
Publication of JP2018183080A publication Critical patent/JP2018183080A/en
Application granted granted Critical
Publication of JP6891615B2 publication Critical patent/JP6891615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Artificial Fish Reefs (AREA)
  • Cultivation Of Seaweed (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a modified soil for creating an eelgrass bed which can suppress solidification of a seaweed bed and a rise of soil PH as much as possible even when used in a brackish water region and create the eelgrass bed suitable for raising the eelgrass, a method for creating a brackish water eelgrass bed using the same, and a method for growing the eelgrass.SOLUTION: A modified soil for creating a brackish water eelgrass bed used in a brackish water region is made of a mixture of dredged sediment and fine-particles removal steel slag in which fine-particles in the steel slag are removed. A method for creating a brackish water eelgrass bed is given in which the fine-particles removal steel slag obtained by removing fine-particles in the steel slag is mixed into the dredged sediment to prepare the modified soil, and the modified soil is laid on the bottom material of the brackish water region to create the eelgrass bed. A method for growing the eelgrass in the brackish water region is given using the modified soil.SELECTED DRAWING: None

Description

この発明は、河川の河口近傍の水域、深く入り込んだ内湾水域、干潟の陸よりの水域等において、海水と淡水とが混ざり合う汽水域で用いられるアマモ場造成用の改質土、及びこれを用いた汽水域でのアマモ場の造成方法、並びに汽水域でのアマモの育成方法に関する。   The present invention relates to a modified soil for creating an ammo field used in brackish water where seawater and fresh water are mixed in a water area near the mouth of a river, a deeply penetrated inner bay water area, a water area from land on a tidal flat, and the like. The present invention relates to a method for building a eelgrass field in a brackish water area and a method for growing eelgrass in a brackish water area.

海中で生育する植物として、陸上植物と同様に、種子によって増殖し、砂質又は砂泥質中に根を伸ばし、この根から栄養塩類を摂取して成長するアマモ科等の海草類があり、この海草類が群生する区域を海草藻場と呼ぶ。海草類は、国内で16種が確認されているが、群落を形成するのはアマモであるため、総じてアマモ場と称されている。そして、陸地と海との境目の沿岸にこのアマモ場が形成されると、生物の多様性がもたらされ、葉には珪藻や動物プランクトンが付着して魚介類の産卵場や餌場になり、豊かな生態系が形づくられるだけでなく、水質浄化の機能も果たすようになる。   As plants grown in the sea, there are seagrasses such as eelgrass that grow by seeds, grow roots in sandy or sandy mud, and ingest nutrients from these roots, just like land plants. The area where seaweeds gather is called the seagrass bed. Although 16 species of seaweeds have been confirmed in the country, it is generally called an amamo field because it is the ammo that forms the community. And when this Amamo field is formed on the coastline between the land and the sea, biodiversity is brought about, and diatoms and zooplankton adhere to the leaves and become spawning grounds and feeding grounds for seafood. In addition to the formation of a rich ecosystem, it will also function as a water purification.

しかしながら、近年、湾岸域での埋立やコンクリート化等による海砂の流失や、工場排水等による底質のヘドロ化等が発生し、アマモ場の減少が極度に進んだことから、湾岸域での環境改善の動きが始まり、これに伴ってアマモ場を造成して復元する試みも行われている。   However, in recent years, sea sand has been washed away due to land reclamation and concrete conversion in the gulf area, and sludge has become sludge due to factory effluent, etc. The movement to improve the environment has started, and along with this, attempts have been made to create and restore eelgrass fields.

そして、このような湾岸域でのアマモ場の造成に際しては、造成区域に敷設する多量の造成資材が必要になるが、この造成資材としては、施工現場やその近隣で採取された現地盤の土砂、天然石、天然砂(海砂や山砂)等を利用することが理想ではあるが、施工箇所の水深、環境等の要因から困難な場合が多く、また、施工現場やその近隣の採取場所で新たな環境問題を招来する虞もある。   And when building an ammo ground in such a bay area, a large amount of construction material is required to be laid in the construction area. It is ideal to use natural stone, natural sand (sea sand or mountain sand), but it is often difficult due to factors such as the depth of the construction site and the environment. There is also a risk of introducing new environmental problems.

そこで、アマモ場の造成に際して、造成資材としてリサイクル材の活用が検討されているが、特に大量かつ安価に調達可能なものとして、製鉄プロセスで副生する鉄鋼スラグの利用も提案されている。
例えば、特許文献1においては、沈設初期に発生するスラグ粒子からの硫黄の溶出や周辺の水のpH上昇という問題を解決するために、スラグ粒子表面を炭酸化させてスラグ粒子表面を予め炭酸カルシウム皮膜で被覆した高炉風砕スラグをアマモ場造成材として使用することが提案されている。
Therefore, the utilization of recycled materials as construction materials is being considered for the construction of amamo fields, but the use of steel slag produced as a by-product in the steel making process has also been proposed as a material that can be procured in large quantities and at low cost.
For example, in Patent Document 1, in order to solve the problems of the elution of sulfur from slag particles generated in the initial stage of deposition and the increase in pH of surrounding water, the surface of the slag particles is carbonated and the surface of the slag particles is preliminarily calcium carbonate. It has been proposed to use blast furnace pyroclastic slag coated with a coating as an amamo field construction material.

また、特許文献2においては、粒径100mm以上のスラグ塊の割合が60質量%以上であって、粒径30〜300mmのスラグ塊の割合が95質量%以上である製鋼スラグを水底に構築する潜堤の資材として用いることが提案されており、また、潜堤の資材として用いられる製鋼スラグには海藻類が付着することが記載されている。そして、特許文献3においては、スラグ内部からのミネラル分の溶出と周辺の水に溶け込んだ硫化水素やリンに対する固定化能を確保するために、表面に炭酸塩膜のない炭酸化処理済の鉄鋼スラグを水域環境保全材料の一部又は全部として使用することが提案されている。   Moreover, in patent document 2, the ratio of the slag lump with a particle size of 100 mm or more is 60 mass% or more, and the steelmaking slag whose ratio of the slag lump with a particle size of 30-300 mm is 95 mass% or more is constructed in a water bottom. It has been proposed to be used as a material for submerged dikes, and it is described that seaweeds adhere to steelmaking slag used as a material for submerged dikes. And in patent document 3, in order to ensure the elution ability of the mineral content from the inside of slag, and the fixing ability with respect to the hydrogen sulfide and phosphorus which melt | dissolved in the surrounding water, the carbonized steel without a carbonate film on the surface It has been proposed to use slag as part or all of the aquatic environment conservation material.

更に、特許文献4においては、高炉水砕スラグ又は高炉水砕スラグと他の基板用材料との混合物を敷設して造成され、高炉水砕スラグの潜在水硬作用により固結すると共に、例えば高炉水砕スラグの粒度をD20=0.15〜1.2mm及びD50=0.6〜1.9mm程度にすることによって、山中式表面硬度計(標準型)で測定される基板表面硬度が平均値で3〜20mmであり、海岸に面した浅海域の浅場や干潟においてアマモ場等の藻場の造成に適した人工水底基板が提案されている。また、特許文献5においては、浚渫土と遊離CaO含有量0.5質量%以上の鉄鋼スラグとの混合材料を中詰材として用いて造成された人工浅場又は干潟が提案されている。 Further, in Patent Document 4, a blast furnace granulated slag or a mixture of a blast furnace granulated slag and another substrate material is laid and consolidated by the latent hydraulic action of the blast furnace granulated slag. By setting the particle size of the granulated slag to D 20 = 0.15 to 1.2 mm and D 50 = 0.6 to 1.9 mm, the substrate surface hardness measured with a Yamanaka type surface hardness tester (standard type) can be obtained. Artificial water-bottom substrates that have an average value of 3 to 20 mm and are suitable for the construction of seagrass beds such as eelgrass beds in shallow waters and tidal flats facing the coast have been proposed. Patent Document 5 proposes an artificial shallow field or tidal flat constructed using a mixed material of clay and steel slag having a free CaO content of 0.5 mass% or more as a filling material.

そして、特許文献6においては、例えば0.075mm以下の粒径が10質量%以下であって26.5mm以上の粒径が5質量%以下の粒径分布を有し、かつ、50%粒径(粒子全体の50%の粒径)が5mm以上15mm以下であるような製鋼スラグを、浚渫土砂中に混合して得られる改質土であって、山中式硬度計で測定される硬度が、前記混合後30日目で20kPa以上500kPa以下に達し、かつ、前記混合後30日目以降も20kPa以上500kPa以下の範囲内である改質土を用い、この改質土を海底に敷設して海草類を育成するアマモ場の造成方法が提案されている。   In Patent Document 6, for example, a particle size distribution of 0.075 mm or less is 10% by mass or less, a particle size of 26.5 mm or more has a particle size distribution of 5% by mass or less, and 50% particle size A modified soil obtained by mixing steelmaking slag having a particle diameter of 50% or more and 15 mm or less in a dredged sand, the hardness measured by a Yamanaka hardness meter Using modified soil that reaches 20 kPa or more and 500 kPa or less on the 30th day after the mixing, and within the range of 20 kPa or more and 500 kPa or less after the 30th day after the mixing, the modified soil is laid on the seabed to form seaweeds A method to create a eelgrass field that nurtures the pupae has been proposed.

特開2004-236,546号公報Japanese Patent Laid-Open No. 2004-236,546 特開2005-256,497号公報JP 2005-256,497 特開2005-320,230号公報JP 2005-320,230 特開2006-288,323号公報JP 2006-288,323 A 特開2011-208,365号公報JP 2011-208,365 特許第6,048,088号公報Japanese Patent No. 6,048,088

ところで、本発明者らは、特許文献6に記載の方法に基づいて、浚渫土砂と製鋼スラグとを混合して改質土を調製し、得られた改質土を用いて海水域でのアマモ場の造成を行い、この造成されたアマモ場でアマモの育成を行うことについて、これまでに一定の成果を得てきた。そこで、浚渫土砂と製鋼スラグとを混合して得られた特許文献6記載の改質土と同じ改質土を用いて、汽水域でのアマモ場の造成を試みたところ、意外なことには、海水域で得られたような成果が得られず、汽水域では改質土がアマモの生育に好ましくない程まで土壌pHが上昇してしまうことが判明した。
ここで、本発明における汽水域とは、広義には海水の塩分濃度未満であるが、狭義にはアマモの生育可能な塩分濃度である1.5〜3質量%の水域を意味する。
By the way, the present inventors prepared a modified soil by mixing dredged sand and steelmaking slag based on the method described in Patent Document 6, and using the resulting modified soil, A certain result has been obtained so far about the development of the field and the cultivation of the eelgrass in the eelgrass farm that has been created. Therefore, using the same modified soil as described in Patent Document 6 obtained by mixing dredged soil and steelmaking slag, an attempt was made to create an ammo field in brackish water. As a result, it was found that the soil pH would rise to such an extent that the modified soil was not favorable for the growth of sea cucumbers in brackish waters.
Here, the brackish water area in the present invention means a water area of 1.5 to 3% by mass, which is less than the salinity concentration of seawater in a broad sense, but in a narrow sense, which is a salinity concentration at which sea eels can grow.

そこで、本発明者らは、この原因について更に検討を進めた結果、汽水域においては、汽水の塩分濃度が海水よりも低くて緩衝能が海水よりも弱く、また、汽水の塩分濃度が低くなるとそれに応じて緩衝能も低くなることを突き止め、また、アマモの生育には藻場のpH値を9.0未満の弱アルカリ域にする必要があることを明らかにし、汽水域においてアマモ場を造成するのに適した改質土の開発を検討することとした。   Therefore, as a result of further investigation on this cause, the present inventors have found that in brackish water, the salinity of brackish water is lower than that of seawater and its buffer capacity is weaker than that of seawater, and the salinity of brackish water is low. Correspondingly, it was found that the buffering capacity was lowered, and it was clarified that the pH value of the seaweed bed needs to be a weakly alkaline area of less than 9.0 for the growth of sea eels, and the sea bream field was created in the brackish water area. It was decided to study the development of modified soil suitable for this.

そして、造成したアマモ場でのpHを上昇させないためには、製鋼スラグを炭酸化処理してスラグ表面に炭酸塩の皮膜を形成させた炭酸化製鋼スラグの使用も検討されたが、この炭酸化製鋼スラグでは特許文献3に記載されているように、スラグ内部から外部へミネラル成分の溶出が抑制され、また、周辺の硫化水素やリンの固定化能が損なわれて水質改善としての機能も抑制されてしまうのであまり好ましくなく、更に、この特許文献3で提案された“表面が炭酸塩の皮膜で被覆されていない炭酸化製鋼スラグ”を用いることについても、その製造に比較的大きな手間とコストを要して大量調達が難しいという問題がある。   And in order not to raise the pH in the newly built eelgrass field, the use of carbonated steelmaking slag in which the steelmaking slag was carbonized to form a carbonate film on the slag surface was also studied. In steelmaking slag, as described in Patent Document 3, the elution of mineral components from the inside of the slag to the outside is suppressed, and the ability to fix water sulfide and phosphorus in the surrounding area is impaired and the function as a water quality improvement is also suppressed. Furthermore, the use of “carbonated steelmaking slag whose surface is not coated with a carbonate film” proposed in Patent Document 3 is also relatively large in labor and cost. There is a problem that mass procurement is difficult.

本発明者らは、このような背景の下で、容易にかつ安価に調製することができて大量調達が可能であり、しかも、製鋼スラグのもつミネラル成分の供給及び水質改善の機能を損なうことなく、汽水域でのアマモ場の造成に適した改質土の開発について更に検討を進める中で、以下の知見を得た。すなわち、製鋼スラグを浚渫土砂に混合した場合、細粒分が土砂中の水分を吸着すると同時に、スラグ表面の遊離CaOと間隙水中のSiイオンとの水和反応で固化が始まり、しかも、この際に間隙水のpH値がpH9.0を超えて上昇することを突き止めた。また、製鋼スラグから細粒分を除去すること、具体的には分級処理により細粒分を除去することにより、製鋼スラグから表面積の大きい細粒分が取り除かれて、及び/又は、洗浄処理により残された製鋼スラグの表面に纏わりついている微粒分まで取り除かれて、スラグ表面でのアルカリ溶出反応が穏やかになることも突き止めた。そして、細粒分が除去された細粒分除去製鋼スラグと浚渫土砂とを混合して調製された改質土を用いることにより、汽水域でアマモ場を造成した場合においても、土壌の固化は発現せず、また、pHの上昇も可及的に抑制できることを確認し、本発明を完成した。   Under these circumstances, the present inventors can prepare easily and inexpensively and can be procured in large quantities, and also impair the functions of supplying mineral components and improving water quality of steelmaking slag. In addition, the following knowledge was obtained in the course of further study on the development of modified soil suitable for the construction of eelgrass fields in brackish waters. That is, when steelmaking slag is mixed with dredged soil, fine particles adsorb moisture in the sediment, and at the same time, solidification starts by the hydration reaction of free CaO on the slag surface and Si ions in the pore water. It was found out that the pH value of the pore water rose above pH 9.0. Further, by removing fine particles from steelmaking slag, specifically, by removing fine particles by classification treatment, fine particles having a large surface area are removed from steelmaking slag and / or by washing treatment. It was also found that the fine particles attached to the surface of the remaining steelmaking slag were removed, and the alkali elution reaction on the surface of the slag became gentle. And even when an ammo field is created in brackish water by using a modified soil prepared by mixing fine-particle-removed steelmaking slag from which fine-grain content has been removed and dredged soil, solidification of the soil is The present invention was completed by confirming that it was not expressed and that the increase in pH could be suppressed as much as possible.

従って、本発明の目的は、汽水域で用いられても藻場の固化やpHの上昇を可及的に抑制することができ、アマモの育成に適したアマモ場を造成することができるアマモ場造成用の改質土を提供することにある。
また、本発明の他の目的は、上記のアマモ場造成用の改質土を用いて、汽水域でのアマモ場を造成する方法を提供することにある。
更に、本発明の他の目的は、上記のアマモ場造成用の改質土を用いて汽水域にアマモ場を造成し、汽水域でアマモを育成する方法を提供することにある。
Accordingly, an object of the present invention is to provide a eelgrass field that can suppress the solidification of the algae basin and increase in pH as much as possible even when used in brackish water, and can create an eelgrass field suitable for nurturing eel It is to provide improved soil for creation.
Another object of the present invention is to provide a method for creating an ammo field in a brackish water area using the above-mentioned modified soil for creating an ammo field.
Furthermore, another object of the present invention is to provide a method for creating an eelgrass field in a brackish water area using the above-mentioned modified soil for creating a eelgram field and cultivating eelgrass in the brackish water area.

すなわち、本発明は以下の通りである。   That is, the present invention is as follows.

(1) 浚渫土砂と、鉄鋼スラグ中の細粒分が除去された細粒分除去鉄鋼スラグとの混合物からなることを特徴とする汽水域で用いるための汽水域アマモ場造成用改質土。
(2) 前記細粒分除去鉄鋼スラグは、粒径2mm以下の細粒分が除去された鉄鋼スラグであることを特徴とする前記(1)に記載の汽水域アマモ場造成用改質土。
(3) 前記細粒分除去鉄鋼スラグは、粒径5mm以下の細粒分が除去された鉄鋼スラグであることを特徴とする前記(1)に記載の汽水域アマモ場造成用改質土。
(4) 前記細粒分除去鉄鋼スラグは、製鋼スラグ及び/又は高炉徐冷スラグ中の細粒分が除去された製鋼スラグ及び/又は高炉徐冷スラグであることを特徴とする前記(1)〜(3)のいずれかに記載の汽水域アマモ場造成用改質土。
(5) 前記改質土中のpH値が9.0未満にあることを特徴とする前記(1)〜(4)のいずれかに記載の汽水域アマモ場造成用改質土。
(1) A modified soil for use in brackish water ammo fields for use in brackish water characterized by comprising a mixture of dredged sand and fine-grain-removed steel slag from which fine particles in steel slag have been removed.
(2) The modified soil for brackish water ammo field construction according to (1), wherein the fine-grain-removed steel slag is a steel slag from which fine-grained particles having a particle diameter of 2 mm or less have been removed.
(3) The modified soil for brackish water ammo field construction as described in (1) above, wherein the fine particle-removed steel slag is a steel slag from which fine particles having a particle diameter of 5 mm or less have been removed.
(4) The fine grain-removed steel slag is a steelmaking slag and / or a blast furnace slow-cooled slag from which fine grains in the steel-making slag and / or blast furnace slow-cooled slag have been removed (1) Modified soil for brackish water amamo field construction according to any one of to (3).
(5) The modified soil for brackish water ammo field construction according to any one of (1) to (4), wherein the modified soil has a pH value of less than 9.0.

(6) 汽水域の底質に改質土を敷設して汽水域にアマモ場を造成するに際し、
鉄鋼スラグ中の細粒分を除去して細粒分除去鉄鋼スラグを調製し、この調製された細粒分除去鉄鋼スラグと浚渫土砂とを混合して改質土を調製し、得られた改質土を汽水域の底質に敷設してアマモ場を造成することを特徴とする汽水域アマモ場の造成方法。
(7) 前記改質土を汽水域の底質に敷設する前に前記底質に盛り土を行い、この盛り土の上に改質土を敷設することを特徴とする前記(6)に記載の汽水域アマモ場の造成方法。
(8) 前記盛り土は、水深が5m以下になるように敷設されることを特徴とする前記(7)に記載の汽水域アマモ場の造成方法。
(9) 前記細粒分除去鉄鋼スラグを調製するに際し、汽水域におけるアマモ場造成区域の汽水塩分濃度を測定し、この汽水塩分濃度に応じて前記鉄鋼スラグ中から除去すべき細粒分の粒子径を決定し、この決定された粒子径の細粒分を鉄鋼スラグ中から除去することを特徴とする前記(6)〜(8)のいずれかに記載の汽水域アマモ場の造成方法。
(10) 前記鉄鋼スラグ中から除去すべき細粒分の粒子径は、予め作成された塩分濃度−改質土pH値の検量線に基づいて、汽水域の汽水塩分濃度から改質土のpH値が9.0未満の弱アルカリ域になるように決定することを特徴とする前記(9)に記載の汽水域アマモ場の造成方法。
(11) 前記細粒分除去鉄鋼スラグの調製は、鉄鋼スラグの分級処理及び/又は洗浄処理により行うことを特徴とする前記(6)〜(10)のいずれかに記載の汽水域アマモ場の造成方法。
(12) 前記改質土中に予め海草類の種子を混合し、得られた種子入り改質土を汽水域の底質に敷設することを特徴とする前記(6)〜(11)のいずれかに記載の汽水域アマモ場の造成方法。
(13) 前記改質土を汽水中分解可能な育成容器に入れてこの改質土に海草類の種子を播種し、種子が播種された改質土を前記育成容器と共に汽水域の底質に配設することを特徴とする前記(6)〜(12)のいずれかに記載の汽水域アマモ場の造成方法。
(14) 前記海草類の種子は、改質土の表面から深さ1〜2cmまでの間に播種されることを特徴とする前記(13)に記載の汽水域アマモ場の造成方法。
(15) 前記改質土を汽水中分解可能な育成容器に入れてこの改質土に海草類の種子を播種し、育成して発芽した苗を前記改質土及び育成容器と共に汽水域の底質に移植することを特徴とする前記(13)又は(14)に記載の汽水域アマモ場の造成方法。
(6) When laying modified soil on the bottom of brackish water area and creating an ammo ground in brackish water area,
Fine slag removed steel slag is prepared by removing fine particles in steel slag, and the modified soil obtained by mixing the prepared fine slag removed steel slag and dredged sand is prepared. A method for constructing a brackish amamo field, characterized by laying pelagic soil on the bottom sediment of the brackish water area to create an ammo field.
(7) Prior to laying the modified soil on the bottom of brackish water, embankment is performed on the bottom sediment, and the modified soil is laid on the embankment. How to create a water eel
(8) The method for constructing a brackish water ammo field according to (7), wherein the embankment is laid so that a water depth is 5 m or less.
(9) When preparing the fine-grain-removed steel slag, measure the brackish water salinity of the amamo field construction area in the brackish water area, and fine particles to be removed from the steel slag according to the brackish-water salinity The method for creating a brackish water ammo field according to any one of the above (6) to (8), wherein the diameter is determined, and fine particles having the determined particle diameter are removed from the steel slag.
(10) The particle size of the fine particles to be removed from the steel slag is based on a previously prepared calibration curve of salinity concentration-modified soil pH value, from the brackish water salinity concentration in the brackish water area to the pH of the modified soil. The method for constructing a brackish water ammo field according to the above (9), wherein the value is determined so as to be in a weak alkaline region of less than 9.0.
(11) The fine-grain-removed steel slag is prepared by classifying and / or washing the steel slag, and the brackish water ammo field according to any one of the above (6) to (10) Creation method.
(12) Any of the above (6) to (11), wherein seaweed seeds are mixed in advance in the modified soil, and the obtained modified soil containing seeds is laid on the bottom sediment of a brackish water area The construction method of the brackish water ammo ground described in 1.
(13) Place the modified soil in a breeding vessel that can be decomposed in brackish water, sow seeds of seaweeds on the modified soil, and distribute the modified soil sowed with seeds to the bottom sediment of the brackish water area together with the growing vessel. The method for constructing a brackish water ammo field according to any one of the above (6) to (12), characterized by comprising:
(14) The method for creating a brackish water eel field as described in (13) above, wherein the seaweed seeds are sown from the surface of the modified soil to a depth of 1 to 2 cm.
(15) Putting the modified soil in a breeding vessel capable of decomposing in brackish water, sowing seeds of seaweeds on the modified soil, and growing and germinating seedlings together with the modified soil and the growing vessel in the bottom sediment of the brackish water area The method for constructing a brackish water eel field as described in (13) or (14) above, wherein

(16) 前記(6)〜(15)のいずれかに記載の造成方法で造成されたアマモ場を用いて、アマモ及び/又はコアマモを育成することを特徴とする汽水域でのアマモの育成方法。   (16) A method for growing sea eels in brackish water characterized by nurturing sea eels and / or core sea breams using the sea bream field created by the construction method according to any one of (6) to (15) .

本発明の汽水域アマモ場造成用改質土によれば、汽水域において、藻場の固化やpHの上昇を可及的に抑制し、アマモの育成に適したアマモ場を造成することができる。
また、本発明の汽水域アマモ場の造成方法によれば、汽水域において、アマモの育成に適したアマモ場を容易に造成することができる。
更に、本発明の汽水域でのアマモの育成方法によれば、汽水域において、アマモを容易に育成することができる。
According to the modified soil for creating a brackish water ammo field of the present invention, it is possible to create an ammo field suitable for the growth of sea cucumber in the brackish water area by suppressing the solidification of the seaweed field and the increase in pH as much as possible. .
In addition, according to the method for creating a brackish water eel field of the present invention, it is possible to easily create an eel field suitable for nurturing eel in the brackish water region.
Furthermore, according to the method for growing sea bream in the brackish water area of the present invention, it is possible to easily grow sea bream in the brackish water area.

図1は、鉄鋼スラグとして製鋼スラグ(0〜25mm)を用い、この製鋼スラグから除去される細粒分と、海水を希釈して調製した模擬汽水の塩分濃度と、細粒分を除去して得られた細粒分除去製鋼スラグを浚渫土砂中に20体積%で混合して得られた改質土中のpH値との関係を調べた際に得られた、細粒分−塩分濃度−pH値のグラフ図である。Fig. 1 uses steelmaking slag (0 to 25 mm) as steel slag, and removes fine particles removed from the steelmaking slag, salinity concentration of simulated brackish water prepared by diluting seawater, and fine particles. Fine grain content-salinity concentration-obtained when investigating the relationship with the pH value in the modified soil obtained by mixing the obtained fine grain-removed steelmaking slag into dredged soil at 20 vol% It is a graph of pH value. 図2は、アマモの発芽・生育試験における開始日から終了日までのpH値の変化を示すグラフ図である。FIG. 2 is a graph showing the change in pH value from the start date to the end date in the sprouting / growth test of sea cucumber. 図3は、アマモの発芽・生育試験における開始日から終了日までのアマモの発芽率(子葉出現率)を示すグラフ図である。FIG. 3 is a graph showing the germination rate (cotyledon appearance rate) of sea cucumber from the start date to the end date in the germination and growth test of sea cucumber. 図4は、アマモの発芽・生育試験における開始日から終了日までのアマモ発芽後の成長(平均子葉長)を示すグラフ図である。FIG. 4 is a graph showing the growth (average cotyledon length) after eel germination from the start date to the end date in the eel germination / growth test.

以下、本発明の汽水域アマモ場造成用改質土、及びこれを用いた汽水域アマモ場の造成方法、並びに汽水域でのアマモの育成方法について、詳細に説明する。
本発明の汽水域アマモ場造成用改質土は、海域の浚渫工事で発生する窒素、リン等の栄養源に富む浚渫土砂と、製鉄プロセスで副生する鉄鋼スラグ中の細粒分が除去された細粒分除去鉄鋼スラグとの混合物からなり、汽水域でのアマモ場造成用に適した改質土である。
Hereinafter, the reformed soil for creating a brackish water ammo field of the present invention, a method for creating a brackish water ammo field using the same, and a method for growing sea bream in the brackish water area will be described in detail.
The improved soil for brackish water ammo field construction of the present invention removes dredged sand that is rich in nutrients such as nitrogen and phosphorus generated by dredging work in the sea area and fine particles in steel slag by-produced in the iron making process. It is a modified soil suitable for the construction of amamo fields in brackish water.

本発明において使用される鉄鋼スラグは、安価で安定供給が可能な資材であり、転炉や電気炉等を用いた製鋼工程で副生する転炉スラグ、電気炉スラグ等の製鋼スラグや、高炉を用いた銑鉄製造工程で副生する高炉徐冷スラグを挙げることができ、好ましくは製鋼スラグである。この鉄鋼スラグは、その主成分がカルシウムシリケート化合物であって、長期間に亘ってカルシウムイオンを供給することが可能であり、また、比重も2.8〜3.0kg/Lであって砂(2.3〜2.5kg/L)よりもかなり高く、浚渫土砂と混合することによって流失し難い安定した基盤材として利用可能な改質土を調製することができる。また、この鉄鋼スラグの粒径についてみると、製鋼スラグは、粒径が通常0〜25mmの範囲であって、粒径分布が通常2.36mm以下が35%、2.36mm超4.75mm以下が15%、4.75mm超13.2mm以下が30%、13.2mm超26.5mm以下が20%であり、また、高炉徐冷スラグは、粒径が通常0〜25mmの範囲であって、粒径分布は上記製鋼スラグとほぼ同様である。   Steel slag used in the present invention is a cheap and stable material that can be stably supplied, and steel slag such as converter slag, electric furnace slag, etc. produced as a by-product in a steelmaking process using a converter, electric furnace, etc. A blast furnace slow-cooled slag produced as a by-product in the pig iron manufacturing process using steel is preferable, and steel slag is preferable. This steel slag is mainly composed of a calcium silicate compound, can supply calcium ions over a long period of time, and has a specific gravity of 2.8 to 3.0 kg / L and sand ( It is considerably higher than 2.3 to 2.5 kg / L), and it is possible to prepare modified soil that can be used as a stable base material that is difficult to be washed away by mixing with dredged soil. Further, regarding the particle size of the steel slag, the steelmaking slag generally has a particle size in the range of 0 to 25 mm, and the particle size distribution is usually 2.36 mm or less 35%, 2.36 mm to 4.75 mm or less. Is 15%, more than 4.75 mm and less than 13.2 mm is 30%, more than 13.2 mm and less than 26.5 mm is 20%, and the blast furnace slag is usually in the range of 0 to 25 mm in particle size. The particle size distribution is almost the same as that of the steelmaking slag.

ここで、鉄鋼スラグのうちの例えば製鋼スラグについてみると、その化学成分については、特に制限されるものではないが、CaO含有量20〜60質量%、f-CaO含有量0.2〜20質量%、及びSiO2含有量5〜25質量%のものであることが好ましく、また、粒径分布については、0.075mm以下の粒径が10質量%以下、及び26.5mm超の粒径が5質量%以下であることが望ましく(JIS Z 8801に規定する網ふるいの呼び寸法で規定)、更に、50%粒径(粒子全体の50%の粒径)が5mm以上15mm以下であることが望ましい。50%粒径が5〜15mm程度であると、アマモ等の海草類が根を絡めながら伸長させることができ、造成されたアマモ場においてその安定性が向上し、一般に生育困難であるとされている流速60cm/sの汽水域においても流失することなく、アマモ場を造成することが可能になる(アンカー効果)。 Here, for example, steelmaking slag among steel slags, the chemical composition is not particularly limited, but CaO content is 20 to 60% by mass, and f-CaO content is 0.2 to 20% by mass. %, And SiO 2 content of 5 to 25% by mass, and for the particle size distribution, the particle size of 0.075 mm or less is 10% by mass or less and the particle size of more than 26.5 mm is 5% by mass or less is desirable (specified by the nominal size of the screen sieve specified in JIS Z 8801), and the 50% particle size (50% of the total particle size) is 5 mm or more and 15 mm or less. desirable. When the 50% particle size is about 5 to 15 mm, seaweeds such as sea eels can be stretched while entwining their roots, and the stability of the sea turtles is improved, and it is generally difficult to grow. Even in brackish water with a flow rate of 60 cm / s, it is possible to create an ammo field without being lost (anchor effect).

本発明において、浚渫土砂に混合される細粒分除去鉄鋼スラグは鉄鋼スラグから細粒分が除去されたスラグであり、鉄鋼スラグから除去されるべき細粒分については、使用される鉄鋼スラグの種類、アマモ場が造成される汽水域の汽水塩分濃度等により異なるが、通常、粒径2mm以下の細粒分を除去して得られた粒径2mm超の鉄鋼スラグであり、好ましくは粒径5mm以下の細粒分を除去して得られた粒径5mm超の鉄鋼スラグであり、より好ましくは土壌洗浄分級装置等を用いた洗浄分級処理により所定の細粒分を除去して得られた洗浄鉄鋼スラグである。特に、洗浄分級処理により得られた洗浄鉄鋼スラグであると、その表面に纏わりついていた粒径がμm単位あるいはそれ以下の微粒分まで取り除かれ、スラグ表面でのアルカリ溶出反応がより穏やかになる。   In the present invention, the fine particle-removed steel slag mixed with dredged soil is a slag from which fine particles have been removed from the steel slag, and for the fine particles to be removed from the steel slag, the steel slag used Although it depends on the type and brackish water salinity of the brackish water area where the eelgrass field is constructed, it is usually a steel slag with a particle size of more than 2 mm obtained by removing fine particles with a particle size of 2 mm or less. Steel slag having a particle size of more than 5 mm obtained by removing fine particles of 5 mm or less, more preferably obtained by removing predetermined fine particles by washing classification using a soil washing classifier or the like. Washed steel slag. In particular, in the case of the washed steel slag obtained by the washing classification treatment, the particle size attached to the surface is removed to a fine particle size of μm or less, and the alkali elution reaction on the slag surface becomes more gentle.

そして、鉄鋼スラグから除去されるべき細粒分を決定するに際しては、得られた細粒分除去鉄鋼スラグを浚渫土砂中に混合して調製された改質土について、その間隙水を採取して測定された改質土のpH値が9.0未満、好ましくは7.4以上9.0未満の弱アルカリ域にあればよく、特に制限されるものではないが、例えば、土壌のpHを直接測る方法、間隙水を収集して測る方法等の方法を例示することができ、好ましくは、汽水域におけるアマモ場造成区域の汽水塩分濃度を測定し、この汽水塩分濃度に応じて鉄鋼スラグ中から除去すべき細粒分の粒子径を決定するのがよく、更には、使用予定の鉄鋼スラグについて異なる細粒分が除去された複数の細粒分除去鉄鋼スラグを調製し、これら各細粒分除去鉄鋼スラグを浚渫土砂中に混合して複数の改質土を調製し、得られた各改質土を複数の塩分濃度に調整された複数の模擬汽水中に入れて各改質土のpH値を測定し、前記模擬汽水の塩分濃度と測定された各改質土のpH値について塩分濃度−改質土pH値の検量線を作成し、汽水域の汽水塩分濃度から改質土のpH値が目標の9.0未満の弱アルカリ域となるように決定するのがよい。   Then, when determining the fine particle content to be removed from the steel slag, the pore water is collected from the modified soil prepared by mixing the obtained fine particle-removed steel slag into the dredged soil. The measured pH value of the modified soil is less than 9.0, preferably in the weak alkali range of 7.4 or more and less than 9.0, and is not particularly limited. The method of measuring, the method of collecting and measuring pore water, etc. can be illustrated, Preferably, the brackish water salinity concentration of the amamo field construction area in the brackish water area is measured, and from the steel slag according to this brackish water salinity concentration It is good to determine the particle size of the fine particles to be removed, and furthermore, prepare a plurality of fine particle-removed steel slags from which different fine particles have been removed for the steel slag to be used. Removed steel slag is mixed with dredged soil Preparing a plurality of modified soils, placing each of the obtained modified soils in a plurality of simulated brackish waters adjusted to a plurality of salt concentrations, measuring the pH value of each modified soil, Create a calibration curve of salinity-modified soil pH value for the measured concentration and pH value of each modified soil. From the brackish water salinity concentration in the brackish water area, the modified soil pH value is less than the target value of 9.0. It is good to determine so that it may become an alkali range.

ここで、鉄鋼スラグから細粒分を除去して得られた細粒分除去鉄鋼スラグについて、鉄鋼スラグが製鋼スラグである場合には細粒分除去製鋼スラグ又は洗浄製鋼スラグ等といい、また、鉄鋼スラグが高炉徐冷スラグである場合には細粒分除去高炉徐冷スラグ又は洗浄高炉徐冷スラグ等という。   Here, for the fine particle removal steel slag obtained by removing fine particles from steel slag, when the steel slag is steelmaking slag, it is called fine particle removal steelmaking slag or washed steelmaking slag, etc. When the steel slag is a blast furnace slow cooling slag, it is referred to as a fine particle removal blast furnace slow cooling slag, a cleaning blast furnace slow cooling slag, or the like.

本発明において、改質土中における細粒分除去鉄鋼スラグの混合割合については、鉄鋼スラグの種類やアマモ場造成区域の汽水塩分濃度等によっても異なるが、好ましくは、10質量%以上30質量%以下であるのがよく、特に製鋼スラグの場合には10質量%以上20質量%以下であるのがよい。この細粒分除去鉄鋼スラグの混合割合が10質量%以下であるとアンカー効果が不足する虞が生じ、反対に、30質量%を超えると土壌pHが9.0を超える虞が生じる。   In the present invention, the mixing ratio of the fine-grain-removed steel slag in the modified soil is different depending on the type of steel slag, brackish water salinity concentration in the Amamo field construction area, etc., but preferably 10 mass% or more and 30 mass% In particular, in the case of steelmaking slag, it is preferably 10% by mass or more and 20% by mass or less. If the mixing ratio of the fine-grain-removed steel slag is 10% by mass or less, the anchor effect may be insufficient. Conversely, if it exceeds 30% by mass, the soil pH may exceed 9.0.

本発明の改質土を汽水域のアマモ場造成区域の底質に敷設し、この改質土で海草類を育成してアマモ場を造成するに際しては、より具体的には以下の第1〜第3の方法が採用される。
すなわち、第1の方法は、前記改質土中に予め海草類の種子を混合し、得られた種子入り改質土を汽水域のアマモ場造成区域の底質に敷設する方法である。この第1の方法において、浚渫土砂に細粒分除去製鋼スラグ及びアマモ等の海草類の種子を混合した改質土から、海草類の種子が流失せず、かつ、効率良く発芽できるように、好ましくは敷設する改質土の厚みを3〜5cmとするのが望ましい。アマモ等の海草類の種子は、表面から数cmの深さであれば容易に発芽することができる。また、発芽後、深さ5cm程度で2次元的に地下茎を伸長させ、分枝しながら、個体数を増やしていくため、海草類の種子を混合させた改質土を3〜5cmの厚みで敷設することによって、効率的にアマモ等の海草類の発芽及び生長促進を促すことができる。また、5cmよりも厚く敷設すると、5cmより深い場所に存在する種子は発芽し難くなり易く、アマモ場の造成効率が低下する可能性がある。
When the modified soil of the present invention is laid on the bottom sediment of an amamo field construction area in a brackish water area and seaweeds are cultivated with this modified soil to construct an ammo field, more specifically, the following first to first Method 3 is adopted.
That is, the first method is a method in which seaweed seeds are mixed in advance in the modified soil, and the obtained modified soil containing seeds is laid on the bottom sediment of the amamo field construction area in the brackish water area. In this first method, it is preferable that the seeds of seaweeds are not washed away from the modified soil obtained by mixing the seeds of seaweeds such as steel slag with fine grain removal and sea eels in dredged soil, and preferably germinate efficiently. The thickness of the modified soil to be laid is preferably 3 to 5 cm. Seeds of seaweeds such as sea cucumber can germinate easily at a depth of several centimeters from the surface. In addition, after germination, a modified soil mixed with seaweed seeds is laid in a thickness of 3 to 5 cm in order to increase the number of individuals by extending the rhizomes two-dimensionally at a depth of about 5 cm and branching. By doing so, germination and growth promotion of seaweeds such as sea bream can be promoted efficiently. In addition, when laying thicker than 5 cm, seeds existing in a place deeper than 5 cm are difficult to germinate, and there is a possibility that the formation efficiency of the eelgrass field is reduced.

そして、第2の方法は、前記改質土を汽水中分解可能な育成容器に入れてこの改質土に海草類の種子を播種し、種子が播種された改質土を育成容器と共に汽水域の底質に敷設する方法であり、更に、第3の方法は、前記改質土を海水中分解可能な育成容器に入れてこの改質土に海草類の種子を播種し、育成して発芽した苗を前記改質土及び育成容器と共に汽水域の底質に移植する方法である。これら第2及び第3の方法において、前記改質土に海草類の種子を播種する際の播種深さについては、改質土の表面から1〜2cmであるのがよく、これより深いと発芽率が低下し、また、これより浅いと発芽しても改質土から脱落する虞がある。   In the second method, the modified soil is put in a growth vessel capable of decomposing in brackish water, seeds of seaweeds are sown on the modified soil, and the modified soil on which the seeds are sown is placed in the brackish water area together with the growth vessel. In the third method, the modified soil is placed in a growth vessel that can be decomposed in seawater, seeds of seaweeds are sown on the modified soil, grown, and germinated. Is transplanted into the bottom sediment of brackish water together with the modified soil and the growth vessel. In these second and third methods, the seeding depth when seeding seaweed seeds on the modified soil is preferably 1 to 2 cm from the surface of the modified soil. Moreover, even if it germinates if it is shallower than this, there is a possibility that it may fall off from the modified soil.

更に、本発明において、アマモ場を造成する予定のアマモ場造成区域が、アマモ等の海草類の生育に適さない水深5mを超える場合、盛り土をして生育に適した水深に調整することが好ましい。この場合、盛り土の種類には特に制限はなく、土質、砂質であってもよい。また、アマモ場造成区域における底質が極めて軟弱である場合には、硬い盛り土をしてから改質土を敷設することが好ましい。硬い盛り土として、例えば高炉スラグや、浚渫土と鉄鋼スラグを混合したものなどが挙げられる。後者の場合、浚渫土砂に鉄鋼スラグを30質量%超混合し、固化させた盛り土でマウンドを作製すれば、その上にアマモ場造成用改質土を敷設することができる。   Furthermore, in the present invention, when the ammo field construction area where the ammo field is to be constructed exceeds 5 m which is not suitable for the growth of seagrasses such as sea eels, it is preferable to adjust the water depth to be suitable for growth by embankment. In this case, the type of embankment is not particularly limited, and may be soil or sand. Moreover, when the bottom sediment in the Amamo field construction area is very weak, it is preferable to lay modified soil after hard embankment. Examples of the hard embankment include blast furnace slag and a mixture of dredged earth and steel slag. In the latter case, if the mound is made of a solid embankment mixed with more than 30% by mass of steel slag in dredged sand, it is possible to lay the ammo field-forming modified soil on it.

更に、浚渫土砂と細粒分除去鉄鋼スラグとを混合した改質土は、これまで広く用いられてきた山砂と腐植土の混合土よりも窒素及びリンが多量に含まれていて栄養塩を豊富に含むため、アマモ等の海草類の種子の発芽及び苗の生長をより促進することができる。
なお、本発明者らは、これら栄養塩の供給がスラグの混合によって阻害されないことも確認している。また、浚渫土砂が汚濁の進んでいない汽水域のもので砂分が多い場合等、浚渫土砂の間隙水中の窒素、リン等が少ない場合には、浚渫土砂及び細粒分除去鉄鋼スラグの他に、腐植土等を加えてもよい。このような腐植土の添加量は、例えば間隙水中の窒素、リン等の濃度が水産用水基準で示されたノリの養殖の海水基準値(窒素:0.1mg/L、リン:0.014mg/L)の10倍濃度以上(希釈を考慮)、即ち、窒素濃度が1mg/L以上、リン濃度が0.14mg/L以上となるように添加してもよい。
In addition, the modified soil, which is a mixture of dredged soil and fine-grain-removed steel slag, contains a larger amount of nitrogen and phosphorus than the mixed soil of mountain sand and humus soil that has been widely used so far. Since it is abundantly contained, it is possible to further promote the germination of seeds of seaweeds such as sea lions and the growth of seedlings.
The present inventors have also confirmed that the supply of these nutrient salts is not hindered by the mixing of slag. In addition to dredged sand and fine-grain-removed steel slag, when dredged sand is in a brackish water area with little pollution and there is a lot of sand, etc. Humus soil may be added. The amount of such humus soil added is, for example, the seawater standard value for the cultivation of laver in which the concentration of nitrogen, phosphorus, etc. in the pore water is indicated by the aquaculture water standard (nitrogen: 0.1 mg / L, phosphorus: 0.014 mg / L) may be added at a concentration 10 times or more (considering dilution), that is, a nitrogen concentration of 1 mg / L or more and a phosphorus concentration of 0.14 mg / L or more.

第2及び第3の方法において、アマモ等の海草類の苗を陸上において育苗する場合、本発明の改質土を用いることによって、アマモ等の海草類の苗の生長を促進することができる。上記方法によって作製した浚渫土砂及び細粒分除去鉄鋼スラグを含む改質土を育成容器(例えば、バットやカップ等)中に通常3cm以上15cm以下、好ましくは6cm以上10cm以下の厚さで敷設し、そこにアマモ種子を表面から1〜2cm程度の深さに播種する。播種した育成容器は、遮光をして、できるだけ15℃以下になるように静置する。種子の発芽を確認した後、育成容器を明条件に移し、苗の生長を促す。種子の播種の際、改質土(スラグ混合土)を予めプラスチック製のカップや生分解性プラスチック製カップや薄鉄板製カップ等の海水中分解可能なカップ等に入れて、苗を育苗してもよい。それによって、苗を汽水域のアマモ場造成区域に移植する際に、水中でカップを外してから、若しくはカップを付けたままで、容易に移植することができるため、簡便にかつアマモ苗にダメージを与えることなく移植でき、効率的にアマモ場の造成を進めることができる。   In the second and third methods, when seaweed seedlings such as eelgrass are raised on land, the growth of seaweed seedlings such as eelgrass can be promoted by using the modified soil of the present invention. The modified soil containing dredged sand and fine-particle-removed steel slag produced by the above method is laid in a growth container (for example, bat or cup) in a thickness of usually 3 cm to 15 cm, preferably 6 cm to 10 cm. Then, eel seeds are sown to a depth of about 1 to 2 cm from the surface. The seeded growth container is shielded from light and allowed to stand at 15 ° C. or less as much as possible. After confirming the germination of the seeds, the growth container is moved to light conditions to promote seedling growth. When seeding, seedlings are grown by placing the modified soil (slag mixed soil) in a plastic cup, a biodegradable plastic cup, a thin iron plate cup, etc. that can be decomposed in seawater. Also good. As a result, when transplanting seedlings to the eelgrass area construction area in brackish water, it can be easily transplanted after removing the cup in the water or with the cup attached. It can be transplanted without giving it, and it is possible to efficiently develop an ammo field.

実汽水域におけるアマモ等の海草類の種子の発芽率は、通常60%未満とされており、また、天然アマモ場の密生域では、生育密度が30株/m2以上である。したがって、アマモ場造成時の播種密度は、50〜1000粒/m2であることが好ましい。 The germination rate of seagrass seeds such as sea cucumbers in actual brackish waters is usually less than 60%, and the growth density is 30 strains / m 2 or more in dense areas of natural sea eel fields. Therefore, it is preferable that the seeding density at the time of the Amamo field construction is 50 to 1000 grains / m 2 .

本発明により造成されたアマモ場においては、土壌中のpHを9.0未満に保つことが可能となり、アマモを正常に発芽させ、安定して育成することが可能である。また、浚渫土砂のみであるとアマモが播種されても種が流失したり、発芽しても根付きが悪くて流失する等の問題があったが、鉄鋼スラグを含有することで、これら流失等の問題が抑制される。   In the eelgrass field constructed according to the present invention, the pH in the soil can be kept below 9.0, and the eelgrass can be germinated normally and cultivated stably. In addition, if only the dredged sand was seeded, the seeds were washed away even if seedlings were sown, and even if they germinated, there was a problem that the roots were poor and washed away, but by containing steel slag, these washed away etc. The problem is suppressed.

〔検証実験:除去細粒分−塩分濃度−pH値の関係の検証〕
浚渫土砂としては三重県志摩市の汽水域で採取したものを使用した。また、鉄鋼スラグとしては、粒度分布が0.075mm以下10質量%以下、26.5mm超5質量%以下、及び50%粒径が5mm以上15mm以下の製鋼スラグ(0-25mm)を用いた。更に、上記の製鋼スラグを用い、篩分けによりそれぞれ2mm以下、5mm以下、又は10mm以下の細粒分を除去して得られた3種の細粒分除去製鋼スラグ(2-25mm)、(5-25mm)、(10-25mm)を調製した。
[Verification experiment: Verification of the relationship between removed fine particles, salinity, and pH value]
The dredged material was collected from brackish water in Shima City, Mie Prefecture. As the steel slag, steelmaking slag (0-25 mm) having a particle size distribution of 0.075 mm or less and 10 mass% or less, 26.5 mm or more and 5 mass% or less, and 50% particle size of 5 mm or more and 15 mm or less was used. Furthermore, using the above steelmaking slag, three fine particle removal steelmaking slags (2-25 mm) obtained by removing fine particles of 2 mm or less, 5 mm or less, or 10 mm or less by sieving (5-25 mm), (5 -25 mm) and (10-25 mm).

上記の浚渫土砂中に、細粒分除去製鋼スラグの混合割合が20体積%となるように、上記の3種類の細粒分除去製鋼スラグを均一に混合し、3種の改質土A(浚渫土砂+細粒分除去製鋼スラグ(2-25mm))、改質土B(浚渫土砂+細粒分除去製鋼スラグ(5-25mm))、及び改質土C(浚渫土砂+細粒分除去製鋼スラグ(10-25mm))を調製した。
また、塩分濃度3.2質量%の海水を用い、この海水を純水中に20体積%、50体積%、及び80体積%の割合で混合してそれぞれ塩分濃度が0.64質量%、1.6質量%、及び2.56質量%の3種の模擬汽水を調製し、3つの6リットル(L)タンク中にそれぞれ上記3種の模擬汽水をそれぞれ5Lずつ入れて汽水タンクを準備した。
The above three types of fine particle removal steelmaking slag are uniformly mixed in the above dredged soil so that the mixing ratio of the fine particle removal steelmaking slag becomes 20% by volume. Dredged sand + fine grain removal steel slag (2-25mm)), modified soil B (mineral sand + fine grain removed steel slag (5-25mm)), and modified soil C (mineral sand + fine grain removal) Steelmaking slag (10-25 mm) was prepared.
In addition, seawater having a salinity of 3.2% by mass is mixed in pure water at a ratio of 20% by volume, 50% by volume, and 80% by volume. Three types of simulated brackish water of 6 mass% and 2.56 mass% were prepared, and 5 L each of the above three types of simulated brackish water were placed in three 6 liter (L) tanks to prepare a brackish water tank.

次に、直径約15cm×深さ約20cmの大きさの1リットル(L)ディスポカップ9個を用意し、上記各改質土A〜Cをそれぞれ3個ずつ合計9個のディスポカップ中に1Lずつ入れて、それぞれ1Lの改質土Aが入ったディスポカップ3個(A群)、それぞれ1Lの改質土Bが入ったディスポカップ3個(B群)、及びそれぞれ1Lの改質土Cが入ったディスポカップ3個(C群)を準備した。   Next, nine 1 liter (L) disposable cups with a diameter of about 15 cm and a depth of about 20 cm are prepared, and each of the above-mentioned three modified soils A to C is placed in a total of nine disposable cups. Three disposable cups each containing 1 L of modified soil A (Group A), three disposable cups each containing 1 L of modified soil B (Group B), and 1 L of modified soil C each Prepared 3 disposable cups (group C).

以上のようにして準備した上記3種の模擬汽水が入った各汽水タンク中に、上記のA群、B群、及びC群の各ディスポカップをそれぞれ1つずつ入れて、各ディスポカップを各汽水タンク中の模擬汽水内に沈設し、そのまま14日間経過した後に、各ディスポカップ内の改質土についてpH値と硬度とを調べた。この際のpH値の測定は、各汽水タンクから各ディスポカップを引き上げ、各ディスポカップについて上澄み液を除去した後、各ディスポカップ中の改質土に直径2cm×深さ3cmの大きさの穴を形成し、この穴内に浸み出してきた間隙水のpHを測定することにより行い、また、固化の現象の有無を確認する硬度の測定は、上澄み液を除去した後の各ディスポカップ中の改質土の3点について山中式硬度計を用いて行った。なお、改質土のpH値及び硬度の測定は3回繰り返して行い、その平均値を求めて測定値とした。   In each of the brackish water tanks containing the above three types of simulated brackish water prepared as described above, each one of the disposable cups of Group A, Group B, and Group C is put. After substituting in simulated brackish water in a brackish water tank and 14 days passed, the pH value and hardness of the modified soil in each disposable cup were examined. In this case, the pH value is measured by pulling up each disposable cup from each brackish water tank, removing the supernatant liquid from each disposable cup, and then opening a hole 2cm in diameter and 3cm in depth in the modified soil in each disposable cup. Is measured by measuring the pH of the interstitial water that has leached into the hole, and the hardness measurement for confirming the presence or absence of the solidification phenomenon is performed in each disposable cup after removing the supernatant liquid. Three points of the modified soil were measured using a Yamanaka hardness tester. In addition, the measurement of the pH value and hardness of the modified soil was repeated three times, and the average value was obtained and used as the measured value.

この除去細粒分−塩分濃度−pH値の関係を調べた検証実験で得られた結果は図1に示す通りであった。
この図1から明らかなように、14日間経過後の各改質土において、塩分の低下に伴ってpHが上昇する傾向が見られた。また、塩分濃度2.56質量%の模擬汽水では改質土A〜Cの全ての検証区分でpHが9未満であり、また、塩分濃度1.6%質量%の模擬汽水では、改質土Aの検証区分でpHが9.3であったのに対して改質土B及び改質土Cの検証区分でpHが9未満であり、更に、塩分濃度0.64質量%の模擬汽水では改質土A〜Cの全ての検証区分でpHが9以上であった。
なお、模擬汽水中14日間沈設経過後の改質土の硬度については、改質土A〜Cの全ての検証区分において、山中式硬度計で計測されるほどの固化は発現していなかった。
The result obtained in the verification experiment in which the relationship between the removed fine particle content, the salt content, and the pH value was examined was as shown in FIG.
As is clear from FIG. 1, in each modified soil after 14 days, there was a tendency for the pH to increase as the salinity decreased. Moreover, in the simulated brackish water having a salt concentration of 2.56% by mass, the pH is less than 9 in all the verification categories of the modified soils A to C, and in the simulated brackish water having a salt concentration of 1.6% by mass, the modified soil In the verification section of A, the pH was 9.3, whereas in the verification section of the modified soil B and the modified soil C, the pH was less than 9, and in the simulated brackish water with a salt concentration of 0.64% by mass The pH was 9 or more in all verification sections of the modified soils A to C.
Regarding the hardness of the modified soil after 14 days of simulated brackish water, solidification as measured by the Yamanaka hardness tester did not appear in all the verification sections of the modified soils A to C.

〔実施例1及び2、並びに比較例1及び2〕
1.汽水域アマモ場造成用の改質土の調製
浚渫土砂については三重県の汽水域で採取したものを使用した。また、鉄鋼スラグとして上記の検証実験で用いた製鋼スラグを用いた。更に、この製鋼スラグについて、バケツに製鋼スラグを入れて、そこに体積比10倍以上となるように水道水を入れて、2mm以下の細粒分を流水中で洗浄して除去し、洗浄製鋼スラグ(2-25mm)を調製した。
[Examples 1 and 2 and Comparative Examples 1 and 2]
1. Preparation of modified soil for brackish amamo ground construction The dredged soil was collected from brackish water in Mie Prefecture. Moreover, the steelmaking slag used in said verification experiment was used as steel slag. Furthermore, about this steelmaking slag, steelmaking slag is put into a bucket, tap water is put therein so that the volume ratio becomes 10 times or more, and fine particles of 2 mm or less are washed and removed in running water. Slag (2-25mm) was prepared.

上記の浚渫土砂中に上記の洗浄製鋼スラグを10体積%及び20体積%の割合で均一に混合し、実施例1の改質土(洗浄製鋼スラグ10)及び実施例2の改質土(洗浄製鋼スラグ20)を調製した。
また、上記の浚渫土砂中に上記の未処理の製鋼スラグを10体積%及び20体積%の割合で均一に混合し、比較例1の改質土(製鋼スラグ10)及び比較例2の改質土(製鋼スラグ20)を調製した。
更に、対照区として、アマモ苗の作成に用いられる培養土60体積%及び牡蠣殻40体積%からなる混合土〔対照区1の改質土(対照区)〕と、上記の浚渫土砂のみ〔対照区2の改質土(底泥区)〕とを用意し、また、参考例として、上記の浚渫土砂中に粒径0〜25mmの天然石を10体積%及び20体積%の割合で均一に混合して得られた参考例1の改質土(天然石10)及び参考例2の改質土(天然石20)を用いた。
以上の対照区、実施例、比較例、及び参考例で調製されたアマモ場造成用の改質土を表1に示す。
The above-mentioned washed steelmaking slag is uniformly mixed at a ratio of 10% by volume and 20% by volume in the above dredged soil, and the modified soil of Example 1 (washed steelmaking slag 10) and the modified soil of Example 2 (washed) Steelmaking slag 20) was prepared.
In addition, the untreated steelmaking slag is uniformly mixed in the ratio of 10% by volume and 20% by volume in the dredged soil, and the modified soil (steelmaking slag 10) of Comparative Example 1 and the modified example 2 of Comparative Example 2 are mixed. Soil (steel slag 20) was prepared.
Furthermore, as a control group, a mixed soil composed of 60% by volume of cultured soil and 40% by volume of oyster shells used for the preparation of sea cucumber seedlings (modified soil of control group 1 (control group)) and only the above-mentioned dredged soil [control] 2 modified soil (bottom mud)) and, as a reference example, natural rocks with a particle size of 0 to 25 mm are mixed uniformly in the ratio of 10% by volume and 20% by volume in the above dredged soil. The modified soil of Example 1 (natural stone 10) and the modified soil of Reference Example 2 (natural stone 20) thus obtained were used.
Table 1 shows the modified soil for the amamo field preparation prepared in the above control group, examples, comparative examples, and reference examples.

Figure 2018183080
Figure 2018183080

2.汽水条件下でのアマモの発芽・生育試験
上記各対照区、実施例、比較例、及び参考例で調製された各改質土を用いて、以下のアマモの発芽・生育試験を実施した。なお、アマモの発芽・生育試験に用いたアマモの種子については、浚渫土砂の採取場所の近隣にある天然のアマモ場から採取した。
2. Germination / growth test of sea cucumber under brackish water conditions The following germination / growth tests of sea bream were carried out using the modified soils prepared in each of the control plots, examples, comparative examples and reference examples. The seeds of sea cucumbers used for the germination and growth test of sea cucumbers were collected from a natural sea eel field in the vicinity of the place where dredged soil was collected.

約4Lの各改質土を長さ272mm×幅188mm×深さ79mmの大きさのプラスチック製籠の中に充填し、その表層から深さ2cmの位置に互いに等間隔になるように、アマモの種子を30粒ずつ播種した。
このようにして準備された籠を400LのFRP製水槽の底に並べ、この水槽中には、神奈川県葉山地先で採取した海水を希釈して塩分濃度2.2質量%から開始して徐々に低くし、塩分濃度1.5質量%まで低下させることにより、汽水条件を創出すると共に、水温10〜12℃、光量50〜100μmol/m2/s、及び12時間明暗周期の条件で培養を開始し、開始日から6〜14日毎に118日目の終了日まで、各改質土の硬度をクラスト硬度計(大起理化工業製DIK−5561)で計測し、また、各改質土の間隙水を採取してpHを測定し、更に、アマモの発芽率、及び発芽後の成長(草体長)を測定した。
About 4L of each modified soil is filled into a plastic jar measuring 272mm in length, 188mm in width and 79mm in depth. 30 seeds were sown each.
The troughs prepared in this way are arranged in the bottom of a 400 L FRP water tank, and in this water tank, the seawater collected at the tip of Hayama district in Kanagawa Prefecture is diluted to gradually start from a salt concentration of 2.2% by mass. And reducing the salt concentration to 1.5% by mass to create brackish water conditions and culturing under conditions of a water temperature of 10-12 ° C., a light intensity of 50-100 μmol / m 2 / s, and a 12-hour light-dark cycle. The hardness of each modified soil is measured with a crust hardness meter (DIK-5561 made by Dairika Kogyo Co., Ltd.) every 6 to 14 days from the start date to the end date of the 118th day. The pore water was collected and the pH was measured, and further, the germination rate of the sea eel and the growth after germination (plant length) were measured.

各改質土の硬度については、実験終了時において、比較例2の改質土(未処理製鋼スラグ20体積%混合)で約14kPaとなり、若干の固化が認められたが、それ以外の改質土においては検出限界以下となり、ほとんど固化しないことが示された。
また、各改質土のpH値について、測定された結果を図2に示す。この図2から明らかなように、比較例1及び2においては、改質土のpHが9以上で推移したのに対し、それ以外の実施例1及び2、対照区1及び2、並びに参考例1及び2においては、水槽中のpHとほぼ同程度の8前後で推移していた。
The hardness of each modified soil was about 14 kPa in the modified soil of Comparative Example 2 (mixed with 20% by volume of untreated steel slag) at the end of the experiment, and some solidification was observed. In soil, it was below the detection limit, indicating that it hardly solidified.
Moreover, the measured result about the pH value of each modified soil is shown in FIG. As is clear from FIG. 2, in Comparative Examples 1 and 2, the pH of the modified soil changed at 9 or more, while other Examples 1 and 2, Control Zones 1 and 2, and Reference Example In 1 and 2, it was changing at around 8 which is almost the same as the pH in the water tank.

そして、実験期間中における各改質土でのアマモの発芽率(子葉出現率)を図3に示し、また、アマモの発芽後の成長(平均子葉長)の変化を図4に示す。
播種30日後から発芽が起こり、その後子葉が観察されるようなった。35日目には、対照区2、実施例1及び2、並びに参考例1及び2においては、発芽率が90%以上となったが、未処理製鋼スラグ10体積%の比較例1では57%であり、また、未処理製鋼スラグ20体積%の比較例2では17%に過ぎず、明らかに低下しており、改質土中のpHが影響していることが判明した。対照区1は、土中のpHが9未満であったにもかかわらず、発芽率が60%であったことについては、土中の栄養塩濃度(窒素、リン)が低かったことが、実験終了後の分析によって推察された。
And the germination rate (cotyledon appearance rate) of the sea eel in each modified soil during the experiment period is shown in FIG. 3, and the change in the growth (average cotyledon length) after the germination of sea eel is shown in FIG.
Germination occurred 30 days after sowing, and then cotyledons were observed. On the 35th day, the germination rate was 90% or more in the control group 2, Examples 1 and 2, and Reference Examples 1 and 2, but 57% in Comparative Example 1 with 10% by volume of untreated steelmaking slag. In Comparative Example 2 with 20% by volume of untreated steelmaking slag, it was only 17%, which was clearly reduced, and it was found that the pH in the modified soil had an effect. In the control group 1, although the germination rate was 60% even though the pH in the soil was less than 9, the experiment showed that the nutrient concentration (nitrogen, phosphorus) in the soil was low. Inferred by post-end analysis.

また、発芽後の成長に関しては、図3の発芽率と同様に、対照区2、実施例1及び2、並びに参考例1及び2においてはいずれも順調に推移したが、未処理製鋼スラグ10体積%の比較例1、及び未処理製鋼スラグ20体積%の比較例2では顕著に成長が停滞した。対照区1の停滞については、発芽率の低下と同様の理由が考えられる。
なお、本試験は、流水環境での実験ではないので、浚渫土砂のみを用いた対照区2の場合と洗浄製鋼スラグ10体積%の実施例1及び洗浄製鋼スラグ20体積%の実施例2の場合とが同程度の発芽率及び成長(草体長)を示したが、波浪がある実環境では、浚渫土砂のみで形成されるアマモ場の不安定さから、対照区2の出芽率及び成長(草体長)は実施例1及び2の結果を下回るものと思われる。
In addition, as for the growth after germination, as in the germination rate of FIG. 3, all of the control plot 2, Examples 1 and 2, and Reference Examples 1 and 2 progressed smoothly. In Comparative Example 1 of% and Comparative Example 2 of 20% by volume of untreated steelmaking slag, growth stagnated remarkably. About the stagnation of the control ward 1, the reason similar to the fall of a germination rate can be considered.
In addition, since this test is not an experiment in a flowing water environment, in the case of the control section 2 using only dredged sand, Example 1 in which the cleaning steelmaking slag is 10% by volume, and Example 2 in which the cleaning steelmaking slag is 20% by volume. Showed a similar germination rate and growth (grass body length), but in a real environment with waves, the emergence rate and growth (grass) of the control group 2 due to the instability of the amamo field formed only with dredged sand. Body length) appears to be less than the results of Examples 1 and 2.

以上の結果から、実施例1及び2の改質土によれば、浚渫土砂中に混合される製鋼スラグの粒径が適度に改善され、これによって汽水域において改質土の間隙水のpH値が9未満のアルカリ域に維持され、アマモの発芽、成長に適した安定したアマモ場を造成できることが判明した。   From the above results, according to the modified soils of Examples 1 and 2, the particle size of the steelmaking slag mixed in the dredged sand is moderately improved, and thereby the pH value of the pore water of the modified soil in the brackish water area Is maintained in an alkaline region of less than 9, and it has been found that a stable eel field suitable for germination and growth of eelgrass can be created.

〔実施例3:実汽水域での試験〕
三重県志摩市の汽水域で採取した浚渫土に製鋼スラグ(0-25mm)を40質量%の割合で混合し、盛り土用材を調製した。この盛り土用材を三重県志摩市の汽水域の内湾に水深5mとなるように敷設した(面積3m×3m)。この盛り土の上に、表1に示した各試験土壌(対照区2、実施例1、比較例1)を用い、厚さ5cmになるように覆土した(各試験土壌につき面積0.5m×0.5m)。それぞれの試験土壌には50粒/m2となるように予めアマモ種子を混合した。
[Example 3: Test in actual brackish water area]
Steelmaking slag (0-25mm) was mixed at a rate of 40% by mass with the clay collected in the brackish water area of Shima City, Mie Prefecture to prepare a material for embankment. This embankment material was laid in an inner bay in the brackish water area of Shima City, Mie Prefecture, with a depth of 5 m (area 3 m x 3 m). On this embankment, each test soil shown in Table 1 (control group 2, Example 1, Comparative Example 1) was used to cover the soil so as to have a thickness of 5 cm (area 0.5 m × 0 for each test soil). .5m). Each test soil was premixed with eelgrass seeds at 50 grains / m 2 .

施工から3ヵ月後に、対照区2、及び実施例1においては播種した種子の8割に当たる10株の発芽が確認された。これに対し、比較例1では1株(0.8割)しか確認できなかった。
潜水調査時に覆土(各試験土壌)の一部を持ち帰り、実験室内で覆土中のpHを測定した結果、対照区2では7.6で、実施例1では8.3で、また、比較例1では9.8であった。対照区2、及び実施例1では、盛り土からのpHの影響はなく、9未満に維持されていた。一方、比較例1では、9以上となり、混合した製鋼スラグによるアルカリ影響が確認された。
盛り土周辺の水中pHは、7.8で盛り土中の製鋼スラグによるアルカリ影響が確認されなかった。また、盛り土は十分に固化しており、波浪等による損壊等は見られなかった。
Three months after the construction, in the control group 2 and in Example 1, germination of 10 strains corresponding to 80% of the sown seeds was confirmed. In contrast, in Comparative Example 1, only one strain (0.8%) could be confirmed.
A part of the cover soil (each test soil) was taken home during the diving survey, and the pH in the cover soil was measured in the laboratory. As a result, it was 7.6 in the control group 2, 8.3 in Example 1, and Comparative Example 1 It was 9.8. In the control group 2 and Example 1, there was no influence of pH from the embankment, and it was maintained below 9. On the other hand, in the comparative example 1, it became 9 or more and the alkali influence by the mixed steelmaking slag was confirmed.
The pH of the water around the embankment was 7.8, and no alkaline influence due to steelmaking slag in the embankment was confirmed. In addition, the embankment was solidified sufficiently, and no damage due to waves was observed.

Claims (16)

浚渫土砂と、鉄鋼スラグ中の細粒分が除去された細粒分除去鉄鋼スラグとの混合物からなることを特徴とする汽水域で用いるための汽水域アマモ場造成用改質土。   A modified soil for brackish water ammo field construction for use in brackish water characterized by comprising a mixture of dredged sand and fine-grain-removed steel slag from which fine particles in steel slag have been removed. 前記細粒分除去鉄鋼スラグは、粒径2mm以下の細粒分が除去された鉄鋼スラグであることを特徴とする請求項1に記載の汽水域アマモ場造成用改質土。   The reformed soil for brackish water ammo field construction according to claim 1, wherein the fine-grain-removed steel slag is a steel slag from which fine-grains having a particle diameter of 2 mm or less have been removed. 前記細粒分除去鉄鋼スラグは、粒径5mm以下の細粒分が除去された鉄鋼スラグであることを特徴とする請求項1に記載の汽水域アマモ場造成用改質土。   The reformed soil for brackish water ammo field creation according to claim 1, wherein the fine-grain-removed steel slag is steel slag from which fine-grained particles having a particle diameter of 5 mm or less have been removed. 前記細粒分除去鉄鋼スラグは、製鋼スラグ及び/又は高炉徐冷スラグ中の細粒分が除去された製鋼スラグ及び/又は高炉徐冷スラグであることを特徴とする請求項1〜3のいずれか1項に記載の汽水域アマモ場造成用改質土。   The said fine grain removal steel slag is steelmaking slag and / or blast furnace slow cooling slag from which the fine grain part in steelmaking slag and / or blast furnace slow cooling slag was removed, Any of Claims 1-3 characterized by the above-mentioned. Modified soil for building brackish water ammo fields according to claim 1. 前記改質土中のpH値が9.0未満にあることを特徴とする請求項1〜4のいずれか1項に記載の汽水域アマモ場造成用改質土。   The pH value in the said modified soil is less than 9.0, The modified soil for brackish water amamo field construction of any one of Claims 1-4 characterized by the above-mentioned. 汽水域の底質に改質土を敷設して汽水域にアマモ場を造成するに際し、
鉄鋼スラグ中の細粒分を除去して細粒分除去鉄鋼スラグを調製し、この調製された細粒分除去鉄鋼スラグと浚渫土砂とを混合して改質土を調製し、得られた改質土を汽水域の底質に敷設してアマモ場を造成することを特徴とする汽水域アマモ場の造成方法。
When laying modified soil on the bottom of brackish water and creating an ammo ground in brackish water,
Fine slag removed steel slag is prepared by removing fine particles in steel slag, and the modified soil obtained by mixing the prepared fine slag removed steel slag and dredged sand is prepared. A method for constructing a brackish amamo field, characterized by laying pelagic soil on the bottom sediment of the brackish water area to create an ammo field.
前記改質土を汽水域の底質に敷設する前に、前記底質に盛り土を行い、この盛り土の上に改質土を敷設することを特徴とする請求項6に記載の汽水域アマモ場の造成方法。   The brackish water ammo field according to claim 6, wherein before the modified soil is laid on the bottom of a brackish water area, the bottom sediment is filled and the modified soil is laid on the bank. How to build. 前記盛り土は、水深が5m以下になるように敷設されることを特徴とする請求項7に記載の汽水域アマモ場の造成方法。   The said embankment is laid so that the water depth may be 5 m or less, The construction method of the brackish water ammo ground of Claim 7 characterized by the above-mentioned. 前記細粒分除去鉄鋼スラグを調製するに際し、汽水域におけるアマモ場造成区域の汽水塩分濃度を測定し、この汽水塩分濃度に応じて前記鉄鋼スラグ中から除去すべき細粒分の粒子径を決定し、この決定された粒子径の細粒分を鉄鋼スラグ中から除去することを特徴とする請求項6〜8のいずれか1項に記載の汽水域アマモ場の造成方法。   In preparing the fine-grain-removed steel slag, measure the brackish water salinity in the Amamo field construction area in brackish water, and determine the particle size of fine-grains to be removed from the steel slag according to the brackish-water salinity And the fine grain part of this determined particle diameter is removed from steel slag, The construction method of the brackish water ammo field of any one of Claims 6-8 characterized by the above-mentioned. 前記鉄鋼スラグ中から除去すべき細粒分の粒子径は、予め作成された塩分濃度−改質土pH値の検量線に基づいて、汽水域の汽水塩分濃度から改質土のpH値が9.0未満の弱アルカリ域になるように決定することを特徴とする請求項9に記載の汽水域アマモ場の造成方法。   The particle size of the fine particles to be removed from the steel slag is based on a previously prepared calibration curve of salinity concentration-modified soil pH value, and the pH value of the modified soil is 9 from the brackish salt concentration in the brackish water area. The method for creating a brackish water ammo field according to claim 9, wherein the water is determined to be a weak alkali region less than 0.0. 前記細粒分除去鉄鋼スラグの調製は、鉄鋼スラグの分級処理及び/又は洗浄処理により行うことを特徴とする請求項6〜10のいずれか1項に記載の汽水域アマモ場の造成方法。   The method for creating a brackish water ammo field according to any one of claims 6 to 10, wherein the fine-grain-removed steel slag is prepared by classification and / or washing treatment of the steel slag. 前記改質土中に予め海草類の種子を混合し、得られた種子入り改質土を汽水域の底質に敷設することを特徴とする請求項6〜11のいずれか1項に記載の汽水域アマモ場の造成方法。   The steam according to any one of claims 6 to 11, wherein seaweed seeds are mixed in advance in the modified soil, and the obtained modified soil containing seeds is laid on the bottom sediment of a brackish water area. How to create a water eel 前記改質土を汽水中分解可能な育成容器に入れてこの改質土に海草類の種子を播種し、種子が播種された改質土を前記育成容器と共に汽水域の底質に配設することを特徴とする請求項6〜12のいずれか1項に記載の汽水域アマモ場の造成方法。   Put the modified soil in a breeding vessel capable of decomposing in brackish water, sow seeds of seaweeds on the modified soil, and arrange the modified soil sowed with seeds in the bottom of brackish water together with the growing vessel. The construction method of the brackish water ammo ground of any one of Claims 6-12 characterized by these. 前記海草類の種子は、改質土の表面から深さ1〜2cmまでの間に播種されることを特徴とする請求項13に記載の汽水域アマモ場の造成方法。   14. The method for creating a brackish amamo field according to claim 13, wherein the seaweed seeds are sown from a surface of the modified soil to a depth of 1 to 2 cm. 前記改質土を汽水中分解可能な育成容器に入れてこの改質土に海草類の種子を播種し、育成して発芽した苗を前記改質土及び育成容器と共に汽水域の底質に移植することを特徴とする請求項13又は14に記載の汽水域アマモ場の造成方法。   The modified soil is put in a breeding vessel capable of decomposing in brackish water, seeds of seaweeds are sown on the modified soil, and the seedlings that have been grown and germinated are transplanted to the bottom sediment of the brackish water area together with the modified soil and the growing vessel. The method for constructing a brackish water ammo field according to claim 13 or 14. 前記請求項6〜15のいずれか1項に記載の造成方法で造成されたアマモ場を用いて、アマモ及び/又はコアマモを育成することを特徴とする汽水域でのアマモの育成方法。
An eelgrass and / or a core eel are bred using the eelgrass field created by the cremation method according to any one of claims 6 to 15, wherein the eelgrass grows in a brackish water area.
JP2017086219A 2017-04-25 2017-04-25 How to create brackish water eelgrass field and how to grow eelgrass in brackish water. Active JP6891615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017086219A JP6891615B2 (en) 2017-04-25 2017-04-25 How to create brackish water eelgrass field and how to grow eelgrass in brackish water.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017086219A JP6891615B2 (en) 2017-04-25 2017-04-25 How to create brackish water eelgrass field and how to grow eelgrass in brackish water.

Publications (2)

Publication Number Publication Date
JP2018183080A true JP2018183080A (en) 2018-11-22
JP6891615B2 JP6891615B2 (en) 2021-06-18

Family

ID=64356253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017086219A Active JP6891615B2 (en) 2017-04-25 2017-04-25 How to create brackish water eelgrass field and how to grow eelgrass in brackish water.

Country Status (1)

Country Link
JP (1) JP6891615B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021122177A (en) * 2020-01-31 2021-08-30 日本製鉄株式会社 Soil preparation method for growing benthic organism and method for growing benthic organism
JP2022050023A (en) * 2020-09-17 2022-03-30 東洋建設株式会社 Eelgrass field formation method and eelgrass field

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205915A (en) * 1996-01-31 1997-08-12 Tokyo Kiyuuei:Kk Structural body for breeding zosteramarina
JPH11299387A (en) * 1998-04-21 1999-11-02 Sbc Techno Kyushu:Kk Cultivation of fish or shell
JP2013215184A (en) * 2012-03-16 2013-10-24 Nisshin Steel Co Ltd Civil engineering material for use in marine area
JP2014068594A (en) * 2012-09-28 2014-04-21 Nippon Steel & Sumitomo Metal Method for growing seagrass seedlings, transplant method thereof and method for developing seagrass bed
JP2014100103A (en) * 2012-11-21 2014-06-05 Nippon Steel & Sumitomo Metal Method for creating eelgrass bed
WO2015185960A1 (en) * 2014-06-05 2015-12-10 Habib Nadia Fouad Electric arc furnace unprocessed slag as a support base for artificial reef for the creation, protection, enhancement of marine fisheries in the design and construction of marine fisheries modules and other environmental uses

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205915A (en) * 1996-01-31 1997-08-12 Tokyo Kiyuuei:Kk Structural body for breeding zosteramarina
JPH11299387A (en) * 1998-04-21 1999-11-02 Sbc Techno Kyushu:Kk Cultivation of fish or shell
JP2013215184A (en) * 2012-03-16 2013-10-24 Nisshin Steel Co Ltd Civil engineering material for use in marine area
JP2014068594A (en) * 2012-09-28 2014-04-21 Nippon Steel & Sumitomo Metal Method for growing seagrass seedlings, transplant method thereof and method for developing seagrass bed
JP2014100103A (en) * 2012-11-21 2014-06-05 Nippon Steel & Sumitomo Metal Method for creating eelgrass bed
WO2015185960A1 (en) * 2014-06-05 2015-12-10 Habib Nadia Fouad Electric arc furnace unprocessed slag as a support base for artificial reef for the creation, protection, enhancement of marine fisheries in the design and construction of marine fisheries modules and other environmental uses

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021122177A (en) * 2020-01-31 2021-08-30 日本製鉄株式会社 Soil preparation method for growing benthic organism and method for growing benthic organism
JP7323808B2 (en) 2020-01-31 2023-08-09 日本製鉄株式会社 Method for preparing soil for cultivating benthic organisms and method for cultivating benthic organisms
JP2022050023A (en) * 2020-09-17 2022-03-30 東洋建設株式会社 Eelgrass field formation method and eelgrass field
JP7216056B2 (en) 2020-09-17 2023-01-31 東洋建設株式会社 Eelgrass bed creation method and eelgrass bed

Also Published As

Publication number Publication date
JP6891615B2 (en) 2021-06-18

Similar Documents

Publication Publication Date Title
CN105917787A (en) Method for fast and efficient improvement greening of coastal saline soil
CN105265211A (en) Submerged plant artificial turf cultivation system and cultivation transplanting method
JP6048088B2 (en) Amamo field construction method
CA2571556A1 (en) A method of delivering plant seed material
CN101946620B (en) Method for propagating potamogeton malaianus
CN105580763A (en) Artificial low-salt fry breeding method for eleutheronema tetradactylum
JP2014068594A (en) Method for growing seagrass seedlings, transplant method thereof and method for developing seagrass bed
JP6891615B2 (en) How to create brackish water eelgrass field and how to grow eelgrass in brackish water.
CN111615879A (en) Method for improving and repairing hard revetment vegetation based on soil seed bank
CN111492966A (en) Seedling growing method for tylophora
CN103828506A (en) Method for improving dredger fill into greening soil
JP4948945B2 (en) Restoration, creation and maintenance methods for biodegradable eel nursery sheets and eelgrass beds
CN105028100A (en) Seedling culturing and planting method for taxus chinensis
JP4234566B2 (en) Seagrass seed production method and seagrass base unit for forming seaweed beds.
CN114931080B (en) Wetland plant matrix for ecological grid hydro-fluctuation belt and application thereof
JP5089507B2 (en) Environmental improvement material, environmental restoration material in coastal area, artificial tidal flat, artificial tidal flat creation method, soil layer improvement material, crop cultivation soil, crop cultivation soil creation method, and crop production method
CN111742834A (en) Rapid planting method for hard underwater aquatic plants
CN110106842A (en) A method of hardening irrigation canals and ditches ecological reconstruction
JP6583732B2 (en) Method for producing savable seaweed seeds
CN110326479B (en) Method for cultivating trees and shrubs by improving sandy soil through matrix mud stirring pile method
JP4006517B2 (en) Amamo seeding material and method for producing the same
CN106688375A (en) Seed collecting and pregermination method of carex dispalata
CN106717750A (en) A kind of method that beach sea shrimp breeding wastewater plants sea water vegetable
JP2011004768A (en) Method for creating seaweed bed, and method for proliferating seaweed in sea bottom
CN107624539B (en) Culture medium and culture method for planting bulrush by utilizing artificial floating island

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210510

R151 Written notification of patent or utility model registration

Ref document number: 6891615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151