JP6048088B2 - Amamo field construction method - Google Patents

Amamo field construction method Download PDF

Info

Publication number
JP6048088B2
JP6048088B2 JP2012254920A JP2012254920A JP6048088B2 JP 6048088 B2 JP6048088 B2 JP 6048088B2 JP 2012254920 A JP2012254920 A JP 2012254920A JP 2012254920 A JP2012254920 A JP 2012254920A JP 6048088 B2 JP6048088 B2 JP 6048088B2
Authority
JP
Japan
Prior art keywords
soil
modified soil
seeds
mass
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012254920A
Other languages
Japanese (ja)
Other versions
JP2014100103A (en
Inventor
知佳 小杉
知佳 小杉
加藤 敏朗
敏朗 加藤
有三 赤司
有三 赤司
三木 理
理 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012254920A priority Critical patent/JP6048088B2/en
Publication of JP2014100103A publication Critical patent/JP2014100103A/en
Application granted granted Critical
Publication of JP6048088B2 publication Critical patent/JP6048088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cultivation Of Seaweed (AREA)

Description

本発明は、アマモ場を造成する方法に関する。   The present invention relates to a method for creating an ammo field.

海水中で生育する植物には、付着器によって岩礁帯に接着し、海水中に溶存した栄養塩類を摂取して生長する海藻類(コンブ、ノリ等)と、陸上植物と同様に種子によって増殖し、砂質又は砂泥質中に根を伸ばし、この根から栄養塩類を摂取して生長する海草類(アマモ等)がある。   Plants that grow in seawater are grown on seaweeds (comb, seaweed, etc.) that grow by ingesting nutrient salts dissolved in seawater, and seeds, as in land plants. There are seaweeds (such as sea cucumbers) that grow roots in sandy or sandy mud and grow nutrients from these roots.

海草類が群生する場所を主に海草藻場(アマモ場)と呼ぶが、このアマモ場は、多くの魚介類の産卵場、生育場であり、さらにアマモ表面に珪藻や動物プランクトンが付着することから、餌場にもなる。アマモ場によって形成される豊かな生態系は、水質浄化の役目も果たしている。   The place where seaweeds grow is called the seaweed algae field (Amamo field), which is a spawning ground for many seafood, and because diatoms and zooplankton adhere to the surface of the sea eels. It also becomes a feeding ground. The rich ecosystem formed by Amamo fields also plays a role in water purification.

しかし、近年、沿岸域の埋め立て工事、それによる海砂の流失、底質のヘドロ化等によって、アマモ場は激減しており、沿岸域の底質環境の改善によるアマモ場の復元が強く求められるようになった。
そして、これまでも、アマモ場の回復に向けて以下のような対策が提案され、実施されている。
In recent years, however, sea lions have drastically decreased due to land reclamation work in the coastal area, resulting in the loss of sea sand and sludge, etc., and there is a strong need for restoration of sea lions by improving the sediment environment in the coastal area. It became so.
So far, the following measures have been proposed and implemented for recovery of the eelgrass field.

1)アマモ苗の根を粘土で包み、直接海域底質に固定する方法(特許文献1)
2)人工栽培したアマモ苗を生分解性シートに移植し、海域底質に敷設する方法(特許文献2)
これらの方法1)及び2)は、アマモ苗を粘土や生分解性シートに固定させて移植するものであり、移植時の作業を簡便化するものではあるが、アマモ苗へのダメージが大きく、アマモ苗が根付くには容易ではなく、結果として、アマモ苗の根の伸長が遅くなり、海域底部付近の流速が速い場合等にはアマモが容易に流失することから、この移植後の苗の流失を予め考慮に入れた上でのアマモ場造成となってしまう。また、上記の方法は、汚濁の進んだ底質環境を改善するものではないのでアマモ場の復元は容易ではなく、ある程度環境が清浄化した場所に限定した適用となってしまう。さらに、上記の方法2)においては、アマモ種子の播種から移植まで一貫して同じ生分解性シートを用いているものの、移植可能になるまでの育成期間においては海水をかけ流しにする必要があり、設備投資が大きくなるほか、実施可能な箇所が限られてしまい、必ずしも簡便な方法であるとは言い難い。
1) A method of wrapping roots of sea cucumber seedlings with clay and fixing them directly to the sea sediment (Patent Document 1)
2) A method of transplanting artificially grown sea cucumber seedlings onto a biodegradable sheet and laying them on the sea bottom sediment (Patent Document 2)
These methods 1) and 2) are transplanted by fixing eel seedlings to clay or a biodegradable sheet, which simplifies the operation at the time of transplantation, but the damage to eel seedlings is large, It is not easy for root-growth seedlings to take root, and as a result, the root-growth of seagull seedlings slows down, and when the flow velocity near the bottom of the sea area is high, sea eels are easily washed away. It will be the Amamo field construction that takes into account the stake. Moreover, since the above method does not improve the polluted bottom sediment environment, the recovery of the eelgrass field is not easy, and the application is limited to a place where the environment has been cleaned to some extent. Furthermore, in the above method 2), although the same biodegradable sheet is used consistently from seeding of seedling to transplanting, it is necessary to pour seawater during the growing period until transplantation becomes possible. In addition to an increase in capital investment, the number of places that can be implemented is limited, and it is not necessarily a simple method.

上記のような方法1)及び2)に加えて、近年、海域の浚渫工事で発生する浚渫土砂を用いてアマモ場を復元する方法が提案されている。しかし、浚渫土砂は窒素、リン等のアマモの生長に必要な栄養源を多く含むものの、極めて粒度が小さく流失し易いため、そのままではアマモ場の基盤材として用いることが困難である。そこで、以下のような流出防止対策が考案されている。   In addition to the above methods 1) and 2), in recent years, a method for restoring the eelgrass field using dredged sand generated by dredging work in the sea has been proposed. However, although dredged soil contains many nutrients necessary for the growth of sea cucumbers such as nitrogen and phosphorus, it is extremely small in particle size and easily washed away, so that it is difficult to use as it is as a base material for the sea bream field. Therefore, the following spill prevention measures have been devised.

3)軽焼マグネシア系固化剤、セメント系固化剤を浚渫土に混合して、アマモを植え付ける方法(特許文献3)
4)高炉水砕スラグを浚渫土に混合して、アマモを植え付ける方法(特許文献4)
これらの方法3)及び4)は、流失し易い浚渫土に軽焼マグネシア系固化材、セメント系固化材、あるいは高炉水砕スラグを混合し、軟弱底質である浚渫土を改質してアマモ場の基盤材とするものであるが、浚渫土砂の改質指標が明確でなく、改質の程度とアマモの生長との関係も不明確であり、アマモ場の復元を期待できるものではない。それ故、これらの方法で永続的にかつ広範囲に安定してアマモ場を造成することは困難であり、また、高炉水砕スラグは天然砂よりも比重が重く、安定性に優れてはいるものの、潜在水硬性(アルカリ刺激でそれ自体が硬化する現象)があり、使用程度によっては底質の固化が過度に進行し、アマモの根の伸長を阻害することも懸念される。
3) A method of planting eelgrass by mixing light-burned magnesia-based solidifying agent and cement-based solidifying agent with clay (Patent Document 3)
4) Mixing blast furnace granulated slag with dredged soil and planting eelgrass (Patent Document 4)
In these methods 3) and 4), light-burned magnesia-based solidified material, cement-based solidified material, or granulated blast furnace slag is mixed with the easily-disappeared clay, and the soft soil, which is soft sediment, is reformed. Although it is used as a base material for the field, the improvement index of dredged soil is not clear, and the relationship between the degree of modification and the growth of the eel is unclear, and it cannot be expected that the eel field will be restored. Therefore, it is difficult to create an Amamo field permanently and over a wide range by these methods, and although granulated blast furnace slag has a higher specific gravity than natural sand and is excellent in stability. There is a latent hydraulic property (a phenomenon that cures itself by alkali stimulation), and depending on the degree of use, the solidification of the sediment may proceed excessively, and there is a concern that the root elongation of sea eels may be inhibited.

ところで、改質の程度を示す指標として「硬度」が挙げられており、この硬度を指標として用いる以下の方法が考案されている。
5)高炉水砕スラグと他の基盤用材料を混合して、山中式硬度計による硬度測定値が少なくとも一部において10mm以上となるように人工水底基盤を作製する方法(特許文献5)
6)高炉水砕スラグと他の基盤用材料を混合して、山中式硬度計による硬度測定値が3〜20mmとなるように人工水底基盤を作製する方法(特許文献6)
By the way, “hardness” is cited as an index indicating the degree of modification, and the following methods using this hardness as an index have been devised.
5) A method of producing an artificial submarine base by mixing blast furnace granulated slag and other base materials so that the hardness measured by a Yamanaka hardness tester is at least 10 mm or more (Patent Document 5)
6) A method of producing an artificial water bottom base by mixing blast furnace granulated slag and other base materials so that the hardness measured by a Yamanaka hardness meter is 3 to 20 mm (Patent Document 6)

これらの方法5)及び6)は、いずれも着底基盤の硬度を規定しているものの、施工完了から6カ月後の硬度を評価する必要があることから、着底基盤の施工とアマモ場の造成とを同時期に実行できず、たとえ同時期に実行したとしても、希望する硬度を得られる可能性が低く、アマモ場の復元までに長時間を要し、早急な対策を打てる方策とは言い難い。また、これらの方法では、固化状態が均一ではないため、必ずしもアマモやその他の底生生物に適した硬度が得られるとは限らない。高炉水砕スラグは、硫黄含有量が多く、水産用水基準からも海域底質に大量に用いるべきではなく、さらに、着生基盤から何らかの原因で高炉水砕スラグが露出した場合には、アルカリ成分が溶出して固化が異常に進行し、提案されている所望の均質な硬度を得ることが難しくなり、また、混合が不十分な場合には、その箇所での固化が異常に進み、生物の生息も困難になる。   Although these methods 5) and 6) both specify the hardness of the bottomed base, it is necessary to evaluate the hardness after six months from the completion of the construction. It is unlikely that the desired hardness can be obtained even if it is executed at the same time, and it takes a long time to restore the ammo field, and what can be done as soon as possible It's hard to say. Moreover, in these methods, since the solidified state is not uniform, it is not always possible to obtain hardness suitable for sea lions and other benthic organisms. Blast furnace granulated slag has a high sulfur content and should not be used in large quantities in marine sediments based on the marine water standards, and if blast furnace granulated slag is exposed for some reason from the settlement base, Elution and solidification progresses abnormally, making it difficult to obtain the desired uniform hardness, and when mixing is inadequate, solidification at that location progresses abnormally, It becomes difficult to live.

特公平7-2,063号公報Japanese Patent Publication No.7-2,063 特開2008-61,568号公報JP 2008-61,568 特開2008-259,436号公報JP 2008-259,436 特開2011-4,768号公報JP 2011-4768 特開2006-288,322号公報JP 2006-288,322 特開2006-288,323号広報JP 2006-288,323 PR

アマモ類の自然再生ガイドライン、水産庁・マリノフォーラム21、2007Guidelines for natural regeneration of sea cucumbers, Fisheries Agency / Marino Forum 21, 2007

そこで、本発明者らは、これまでに提案・実施されてきたアマモ場の造成方法における種々の問題点を解決すべく鋭意検討した結果、意外なことには、浚渫土砂にカルシウムイオンを溶出する固化促進材、特に製鋼スラグを添加してアマモの生育に適すると共に流出防止を達成できる硬度の改質土を調製し、この改質土を用いることにより、アマモの種子の発芽を促進し、また、アマモ場を効果的に造成できることを見出し、本発明を完成した。 Therefore, the present inventors have intensively studied to solve various problems in the Amamo field construction methods that have been proposed and implemented so far, and surprisingly, calcium ions are eluted in dredged soil. A solidified accelerator , especially steelmaking slag, is added to prepare a modified soil with a hardness that is suitable for the growth of sea cucumber and can prevent outflow, and by using this modified soil, germination of sea eel seeds is promoted. The present inventors have found that an ammo field can be effectively created and completed the present invention.

従って、本発明の目的は、浚渫土砂を改質し、アマモの生育に適した硬度に制御することにより、アマモの発芽及び生育を促進し、これによってアマモ場を容易に造成し得るアマモ場の造成方法を提供することにある。   Therefore, the object of the present invention is to improve the dredged sand and control the hardness to be suitable for the growth of sea cucumber, thereby promoting the germination and growth of sea cucumber, thereby making it possible to easily create the sea eel field. It is to provide a creation method.

本発明の要旨とするところは、次の(1)〜(15)の通りである。
(1)浚渫土砂と製鋼スラグとを混合して得られ、山中式硬度計で測定される硬度が、前記混合後30日目で20kPa以上500kPa以下に達し、かつ、前記混合後30日目以降も20kPa以上500kPa以下の範囲内である改質土を海底に敷設し、この改質土で海草類を育成することを特徴とするアマモ場の造成方法。
The gist of the present invention is as follows (1) to (15).
(1) obtained by mixing the dredged material and steel slag, hardness measured by Yamanaka-type hardness meter, the after mixing 30 days reached below 500kPa above 20 kPa, and the mixture after 30 days after A method for building an ammo field, comprising laying modified soil on the sea floor within a range of 20 kPa to 500 kPa and cultivating seaweeds with the modified soil.

(2) 前記改質土の硬度が、前記混合後30日目で30kPa以上に達し、かつ、前記混合後30日目以降も30kPa以上500kPa以下の範囲内であることを特徴とする前記(1)に記載のアマモ場の造成方法
(3)前記改質土中に予め海草類の種子を混合し、得られた種子入り改質土を海底に敷設することを特徴とする前記(1)又は(2)に記載のアマモ場の造成方法。
(4)海底に敷設された前記改質土に海草類の種子を播種し、育成することを特徴とする前記(1)又は(2)に記載のアマモ場の造成方法。
(2) The hardness of the modified soil reaches 30 kPa or more on the 30th day after the mixing, and is within the range of 30 kPa or more and 500 kPa or less after the 30th day after the mixing. ) Amamo field construction method described in .
(3) Creation of an ammo field as described in (1) or (2) above, wherein seaweed seeds are mixed in advance in the modified soil, and the obtained modified soil containing seeds is laid on the seabed. Method.
(4) The method for building an ammo field as described in (1) or (2) above, wherein seeds of seaweeds are sown and grown on the modified soil laid on the seabed.

(5)前記改質土を海水中分解可能な育成容器に入れてこの改質土に海草類の種子を播種し、種子が播種された改質土を育成容器と共に海底に敷設することを特徴とする前記(1)又は(2)に記載のアマモ場の造成方法。
(6)前記改質土を海水中分解可能な育成容器に入れてこの改質土に海草類の種子を播種し、育成して発芽した苗を前記改質土及び育成容器と共に海底に移植することを特徴とする前記(1)又は(2)に記載のアマモ場の造成方法。
(5) The modified soil is put in a growth vessel that can be decomposed in seawater, seeds of seaweeds are sown on the modified soil, and the modified soil on which the seeds are sown is laid on the seabed together with the growth vessel. The method for building an ammo field as described in (1) or (2) above.
(6) Putting the modified soil in a growth vessel that can be decomposed in seawater, sowing seeds of seaweeds on the modified soil, and transplanting the seedlings grown and germinated together with the modified soil and the growth vessel to the seabed. The method for building an ammo field as described in (1) or (2) above.

(7)前記海草類の種子が、改質土の表面から深さ1〜2cmまでの間に播種されることを特徴とする前記(4)〜(6)のいずれか1項に記載のアマモ場の造成方法。 (7) The seaweed field according to any one of (4) to (6) , wherein the seaweed seeds are sown from a surface of the modified soil to a depth of 1 to 2 cm. How to build.

(8)前記製鋼スラグの添加量が、前記改質土中30質量%以下であることを特徴とする前記(1)〜(7)のいずれか1項に記載のアマモ場の造成方法。
(9)前記製鋼スラグは、0.075mm以下の粒径が10質量%以下であって、26.5mm以上の粒径が5質量%以下であることを特徴とする前記(1)〜(8)のいずれか1項に記載のアマモ場の造成方法。
(8) The amamo field creation method according to any one of (1) to (7) , wherein an amount of the steelmaking slag added is 30% by mass or less in the modified soil.
(9) the steelmaking slag is not more than the particle size of 10 wt% or less 0.075 mm, above, wherein the particle size of greater than or equal to 26.5mm is not more than 5 wt% (1) - (8 The construction method of the eelgrass field according to any one of (1) .

(10)30質量%の製鋼スラグを混合して得られる前記改質土の硬度が20kPa未満の場合、前記改質土中に1質量%以下の高炉スラグを混合することを特徴とする前記(1)〜(9)のいずれか1項に記載のアマモ場の造成方法。
(11)前記改質土中に、無機態栄養分として腐植土を混合することを特徴とする前記(1)〜(10)のいずれか1項に記載のアマモ場の造成方法。
(10) said modified soil hardness that is obtained by mixing 30 mass% of steelmaking slag of less than 20 kPa, above, wherein the mixing 1 mass% of blast furnace slag to the reforming soil (1) The construction method of the eelgrass field given in any 1 paragraph of (9) .
(11) The method for building an ammo field according to any one of (1) to (10) , wherein humus soil is mixed as an inorganic nutrient in the modified soil.

(12)前記海水中分解可能な育成容器が、生分解性プラスチック製であることを特徴とする前記(4)〜(11)のいずれか1項に記載のアマモ場の造成方法。
(13)前記海底が水深5m以上である場合、この海底に盛り土をして水深5m未満としてから前記改質土の敷設をして海草類を育成することを特徴とする前記(1)〜(12)のいずれか1項に記載のアマモ場の造成方法。
(12) The method for building an ammo field according to any one of (4) to (11) , wherein the growth vessel capable of being decomposed in seawater is made of a biodegradable plastic.
(13) if the seabed is not less than 5m deep, the (1) to (12, characterized in that growing the seaweed and the laying of the reforming soil after less than 5m deep and the fill into the seabed eelgrass beds method Construction according to any one of).

(14)前記盛り土が、30質量%超の製鋼スラグを含むものであることを特徴とする前記(13)に記載のアマモ場の造成方法。
(15)前記盛り土が、浚渫土砂中に30質量%超の製鋼スラグを混合して得られたものであることを特徴とする前記(13)又は(14)に記載のアマモ場の造成方法。
(14) The ammo field construction method according to (13) , wherein the embankment includes steelmaking slag of more than 30% by mass.
(15) The method for creating an ammo field according to (13) or (14), wherein the embankment is obtained by mixing steelmaking slag of more than 30% by mass in dredged sand.

本発明により、固化促進材を用いて軟弱土壌である浚渫土砂を改質し、アマモの生育に適した硬度に制御することによって、アマモ種子の発芽及び生長を促進し、さらに簡便にアマモ場を造成することが可能となる。   According to the present invention, the dredged sand, which is a soft soil, is modified by using a solidification promoting material and controlled to a hardness suitable for the growth of sea cucumber, thereby promoting the germination and growth of sea cucumber seeds, and more easily It can be created.

図1は、浚渫土砂、この浚渫土砂に製鋼スラグを種々の混合率(スラグ混合率:10質量%、20質量%、30質量%、及び50質量%)で混合して得られたスラグ混合土(改質土)、及びコントロール(腐植土+山砂)にアマモ種子を播種した際におけるアマモ種子の発芽率を示すグラフ図である。Fig. 1 shows dredged sand and mixed slag obtained by mixing steelmaking slag with the dredged sand at various mixing ratios (slag mixing ratio: 10%, 20%, 30%, and 50% by weight). It is a graph which shows the germination rate of the Amomo seed at the time of sowing an Amamo seed to (modified soil) and control (humus soil + mountain sand).

図2は、浚渫土砂、この浚渫土砂に製鋼スラグを種々の混合率(スラグ混合率:10質量%、20質量%、30質量%、及び50質量%)で混合して得られたスラグ混合土(改質土)、及びコントロール(腐植土+山砂)の硬度の経時変化を示すグラフ図である。Fig. 2 shows dredged sand and mixed slag obtained by mixing steelmaking slag with the dredged sand at various mixing ratios (slag mixing ratio: 10%, 20%, 30%, and 50% by weight). It is a graph which shows a time-dependent change of the hardness of (modified soil) and control (humus soil + mountain sand).

図3は、製鋼スラグの各スラグ混合率に対するアマモ発芽率及び硬度変化の関係を示すグラフ図である。FIG. 3 is a graph showing the relationship between the Amamo germination rate and the hardness change with respect to each slag mixing rate of steelmaking slag.

図4は、製鋼スラグの各スラグ混合率に対するアマモ発芽体の各種部位における生長の違いを示すグラフ図である。FIG. 4 is a graph showing the difference in growth at various parts of the Amamo germination body with respect to each slag mixing ratio of the steelmaking slag.

まず、本発明の海草藻場(アマモ場)の造成方法について説明する。
本発明が造成の対象とする海草藻場とは、水底の底質(天然の海草藻場であれば、砂質又は砂泥質)中に地下茎を張り巡らせ、そこから生育・繁殖するアマモ類(例えば、アマモ、コアマモ、オオアマモ、リュウキュウスガモ)等の海草類が群生している海底のことであり、一般にはアマモ場と呼ばれる。
First, the construction method of the seaweed algae field (Amamo field) of this invention is demonstrated.
The seagrass beds that are the subject of the present invention are the sea cucumbers that stretch the rhizomes in the bottom sediment (sandy or sandy mud in the case of natural seaweed algae beds) and grow and breed from there. This is the seabed where seaweeds such as sea cucumbers, core ducks, giant ducks, and Ryukyuus ducks are clustered and are generally called amamo fields.

このようなアマモ場を造成するために、本発明のアマモ場の造成方法では、浚渫土砂にカルシウムイオンを溶出する固化促進材を混合し、浚渫土砂の硬度をアマモ等の海草類の生育に適した範囲に調整し、海草類を育成するための改質土(基盤材)とする。この改質土によってアマモ種子の発芽、発芽体の生長を促進し、さらに海草類の地下茎又は根の安定性を増すことで、永続的なアマモ場の造成が可能となる。また、浚渫土砂の硬度を増大させることにより、浚渫土砂の流出を防止することが可能になる。   In order to create such an ammo field, in the amam field construction method of the present invention, a solidification promoter that elutes calcium ions is mixed with dredged sand, and the hardness of dredged sand is suitable for the growth of seaweeds such as amamo. Adjust to the range and use modified soil (base material) to grow seaweeds. This modified soil promotes the germination of eelgrass seeds and the growth of germination bodies, and further increases the stability of the rhizomes or roots of seaweeds, thereby making it possible to create a permanent eelgrass field. Further, by increasing the hardness of dredged sand, it is possible to prevent dredged sand from flowing out.

固化促進材としては、カルシウムイオンを溶出する材料を用いることが必要であり、これは、浚渫土砂から溶解性シリカが溶出するが、この浚渫土砂にカルシウムイオンが供給されると、浚渫土砂の粒子間にケイ酸カルシウム(CSH)が生成し、固化が促進されるからである。このような固化促進材としては、水酸化カルシウム、酸化カルシウム、塩化カルシウム等も使用できるが、中でも、製鉄プロセスの副産物である製鋼スラグを用いることが最も望ましい。これは以下の理由による。   As the solidification promoter, it is necessary to use a material that elutes calcium ions. This is because soluble silica elutes from the dredged sand. When calcium ions are supplied to the dredged sand, This is because calcium silicate (CSH) is generated between them and solidification is promoted. As such a solidification promoting material, calcium hydroxide, calcium oxide, calcium chloride, and the like can be used. Among them, it is most desirable to use steel slag which is a byproduct of the iron making process. This is due to the following reason.

製鋼スラグは、製鉄系スラグの一つであり、安価で安定供給のできる資材である。また、主成分はカルシウムシリケート化合物であって、長期間に亘ってカルシウムイオンを供給することが可能である。また、比重も2.8〜3.0kg/Lと砂(2.3〜2.5kg/L)よりもかなり高く、浚渫土砂と混合することによって流失し難い安定した基盤材(改質土)となる。但し、製鋼スラグを過剰に添加し過ぎると周辺海水のpH上昇が懸念されるため、最大添加量は50質量%以下とすることが望ましい。混合する場合には、十分に混合し、それによって、酸性である浚渫土砂の間隙水が製鋼スラグのアルカリ分を中和し、極端なpHの上昇を抑えることができる。30質量%を超える製鋼スラグの混合は、浚渫土砂の種類によっては間隙水のpHが過度に上昇する場合があり、アマモ等の海草類の生長を阻害する可能性がある。   Steelmaking slag is one of iron-making slags, and is a material that can be stably supplied at a low cost. The main component is a calcium silicate compound, which can supply calcium ions over a long period of time. Moreover, specific gravity is also 2.8-3.0 kg / L and is considerably higher than sand (2.3-2.5 kg / L), and it becomes a stable base material (modified soil) which is hard to be washed away by mixing with dredged soil. However, excessive addition of steelmaking slag may raise the pH of the surrounding seawater, so the maximum addition amount is desirably 50% by mass or less. In the case of mixing, the mixture is sufficiently mixed, whereby the acidic pore water of the clay soil can neutralize the alkali content of the steelmaking slag and suppress an extreme increase in pH. The mixing of steelmaking slag exceeding 30% by mass may excessively increase the pH of pore water depending on the type of dredged soil, which may inhibit the growth of seaweeds such as sea bream.

本発明で使用する製鋼スラグは、浚渫土砂を混合した改質土の硬度と相関性が確認されているCaO、f-CaO、及びSiO2の含有割合が、それぞれ20〜60質量%、0.2〜20質量%、及び5〜25質量%の範囲であるのが好ましい。また、粒径分布は、0.075mm以下の粒径が10質量%以下、26.5mm以上の粒径が5質量%以下であることが望ましい(JIS Z 8801に規定する網ふるいの呼び寸法で規定)。さらに、50%粒径(粒子全体の50%の粒径)が5mm以上15mm以下であることが望ましい。0.075mm以下の粒径の製鋼スラグはf-CaOの含有率が高く、また、表面積も大きくてpHが上昇し易いため、10質量%以下とすることが望ましい。また、粒径が26.5mm以上の製鋼スラグでは、逆にカルシウムイオンの溶出が抑制され、固化の進行が生じ難くなるため、5質量%以下とすることが望ましい。 The steelmaking slag used in the present invention has CaO, f-CaO, and SiO 2 content ratios of 20 to 60% by mass and 0.00%, respectively, which have been confirmed to correlate with the hardness of the modified soil mixed with dredged soil. The range of 2 to 20% by mass and 5 to 25% by mass is preferable. The particle size distribution is preferably 10% by mass or less for particles having a particle size of 0.075 mm or less, and 5% by mass or less for particles having a particle size of 26.5 mm or more (the nominal size of a screen sieve specified in JIS Z 8801). Regulations). Furthermore, it is desirable that the 50% particle size (50% of the total particle size) is 5 mm or more and 15 mm or less. Steelmaking slag having a particle size of 0.075 mm or less has a high content of f-CaO, and also has a large surface area, so that the pH tends to increase, so that it is desirable to make it 10% by mass or less. On the other hand, in the steelmaking slag having a particle size of 26.5 mm or more, the elution of calcium ions is suppressed on the contrary, and the progress of solidification hardly occurs.

さらに、本発明で使用する製鋼スラグは、50%粒径が5〜15mm程度の礫であるため、アマモ等の海草類は、根を礫に絡めながら伸長させることができるので、造成されたアマモ場においてその安定性が向上し、一般に生育困難であるとされている流速60cm/sの海域でも流失することなく、アマモ場を造成することができる(アンカー効果)。なお、従来において、アマモ場の造成で推奨されている砂の50%粒径は0.14〜0.39mmであり、上記のようなアンカー効果は期待することができない。また、本発明においては、施工時に、従来法(特許文献3)で使用が推奨されている草体安定工(例えば、エクスバンドメタル)を採用する必要がなく、より安価に、かつ、簡便にアマモ場を造成することが可能である。   Furthermore, since the steelmaking slag used in the present invention is a gravel with a 50% particle size of about 5 to 15 mm, seaweeds such as sea eels can be stretched while the roots are entangled with the gravel. The stability of the sea bream is improved, and an ammo field can be created without being lost even in a sea area with a flow velocity of 60 cm / s, which is generally considered difficult to grow (anchor effect). In addition, conventionally, the 50% particle size of sand recommended for the construction of an ammo field is 0.14 to 0.39 mm, and the anchor effect as described above cannot be expected. Further, in the present invention, it is not necessary to adopt a grass stabilizer (for example, an ex-band metal) recommended for use in the conventional method (Patent Document 3) at the time of construction, and it is cheaper and simpler. It is possible to create a place.

浚渫土砂に製鋼スラグを所定量混合しても硬度20kPa以上の改質土が得られない場合には、さらに固化を促進させるために、高炉水砕スラグの微粉を製鋼スラグと共に加えてもよい。しかし、高炉水砕スラグの微粉はそれ自体が潜在水硬性(アルカリ刺激で硬化する現象)を有しているため、過剰に加えると、得られた改質土(スラグ混合土)の硬度が500kPa以上になり、アマモ種子の発芽及び苗の生育を阻害する場合がある。そこで、改質土の硬度を500kPa以下とするためには、高炉水砕スラグ微粉の添加については、比重2.89及びブレーン値3000〜5000cm2/gで規定されるものを用いて、その添加量も1質量%以下とすることが望ましい。 If a modified soil with a hardness of 20 kPa or more cannot be obtained even when a predetermined amount of steelmaking slag is mixed with dredged soil, fine powder of blast furnace granulated slag may be added together with the steelmaking slag in order to further promote solidification. However, since the ground granulated blast furnace slag itself has latent hydraulic properties (a phenomenon that hardens by alkali stimulation), when added excessively, the hardness of the resulting modified soil (slag mixed soil) becomes 500 kPa. Thus, the germination of seedlings and the growth of seedlings may be inhibited. Therefore, in order to set the hardness of the modified soil to 500 kPa or less, the blast furnace granulated slag fine powder is added with a specific gravity of 2.89 and a brane value of 3000 to 5000 cm 2 / g. The amount is desirably 1% by mass or less.

ところで、アマモ等の海草類の生息できる基盤材(改質土)の理想的な環境としては、これまで、海底流速、底質砂面の変化量、そして底質の移動状況を示すシールズ数を指標として定義されてきた(非特許文献1)。特に、底質砂面の変化量の計測には1週間から1ヶ月を要し、アマモ場造成の候補地としての迅速な判断をすることが困難であった。また、これまでは、基盤材の硬度は、アマモ場の環境指標としては無視されてきた。これは硬度の増大は、アマモの生育にマイナスの効果しかないとして認識されてきたためである。しかし、発明者らは、本発明において、硬度の増加は必ずしもマイナスの効果ばかりではなく、アマモの生育に適した基盤材の硬度が存在することを初めて見出したのである。ここで述べる土壌の硬度は「山中式土壌硬度計」を用いて測定した圧入抵抗値である。山中式土壌硬度計を用いることによって、簡便、かつ短時間にアマモ場造成地としての適性を判断することができる。さらに、該硬度計は、測定者による誤差も生じ難く、安価に入手できる。   By the way, as an ideal environment for the base material (modified soil) in which seagrasses such as sea eels can inhabit, the seabed flow velocity, the amount of change in the bottom sand surface, and the number of shields indicating the state of movement of the bottom sediment have been indexed so far. (Non-patent Document 1). In particular, it took 1 week to 1 month to measure the amount of change in the sediment sand surface, and it was difficult to make a quick judgment as a candidate site for the Amamo field. In the past, the hardness of the base material has been ignored as an environmental indicator for the Amamo field. This is because an increase in hardness has been recognized as having only a negative effect on the growth of sea cucumber. However, the inventors found for the first time in the present invention that the increase in hardness is not necessarily a negative effect, but that there is a hardness of the base material suitable for the growth of sea cucumber. The soil hardness described here is a press-fit resistance value measured using a “Yamanaka soil hardness meter”. By using a Yamanaka type soil hardness meter, it is possible to judge suitability as an amamo field construction site in a simple and short time. Furthermore, the hardness meter is less prone to error by the measurer and can be obtained at a low cost.

製鋼スラグによる浚渫土砂の改質、つまり固化の促進は、製鋼スラグの混合割合によって調節することができる。通常、固化の進行は、混合直後から開始するが、材齢30日で飽和となるため、30日以降の硬度(山中式硬度計で測定した圧入抵抗値)が20kPa以上500kPa以下、好ましくは30kPa以上400kPa以下になるように、浚渫土砂に製鋼スラグを混合するのがよい。硬度が20kPa未満では海流による流出を抑制することが困難であり、反対に、硬度が500kPa超ではアマモの発芽に影響が出る。できれば、敷設する前に、少量の製鋼スラグ及び浚渫土砂でテストピースを作製し、30日目の硬度が20kPa以上500kPa以下となる配合割合を特定しておくのがよい。以上のように、本発明によって、改質土の硬度を短期間で簡便に評価できるため、より迅速にアマモ場の造成を実現することができる。   The modification of dredged soil by steelmaking slag, that is, the promotion of solidification, can be adjusted by the mixing ratio of steelmaking slag. Normally, the solidification starts immediately after mixing, but becomes saturated at the age of 30 days, so the hardness after 30 days (press-fit resistance value measured with a Yamanaka hardness meter) is 20 kPa to 500 kPa, preferably 30 kPa. Steelmaking slag is preferably mixed with dredged soil so as to be 400 kPa or less. If the hardness is less than 20 kPa, it is difficult to suppress the outflow due to ocean currents. Conversely, if the hardness exceeds 500 kPa, it will affect the germination of sea bream. If possible, it is better to prepare a test piece with a small amount of steelmaking slag and dredged sand before laying, and specify the blending ratio at which the hardness on the 30th day is 20 kPa to 500 kPa. As described above, according to the present invention, the hardness of the modified soil can be easily evaluated in a short period of time, so that it is possible to more quickly create an ammo field.

本発明の改質土を海底に敷設し、この改質土で海草類を育成してアマモ場を造成するに際し、より具体的には以下の第1〜第4の方法が採用される。
すなわち、第1の方法は、前記改質土中に予め海草類の種子を混合し、得られた種子入り改質土を海底に敷設する方法である。この第1の方法において、浚渫土砂に製鋼スラグ及びアマモ等の海草類の種子を混合した改質土から、海草類の種子が流失せず、かつ、効率よく発芽できるように、好ましくは敷設する改質土の厚みを3〜5cmとするのが望ましい。アマモ等の海草類の種子は、表面から数cmの深さであれば容易に発芽することができる。また、発芽後、深さ5cm程度で2次元的に地下茎を伸長させ、分枝しながら、個体数を増やしていくため、海草類の種子を混合させた改質土を3〜5cmの厚みで敷設することによって、効率的にアマモ等の海草類の発芽及び生長促進を促すことができる。また、5cmよりも厚く敷設すると、5cmより深い場所に存在する種子は発芽し難くなり易く、アマモ場の造成効率が低下する可能性がある。
When the modified soil of the present invention is laid on the seabed and seaweeds are grown on the modified soil to create an ammo field, the following first to fourth methods are more specifically adopted.
That is, the first method is a method of previously mixing seaweed seeds in the modified soil and laying the obtained modified soil containing seeds on the seabed. In this first method, a modified soil preferably laid so that seeds of seaweeds are not washed away and can be efficiently germinated from modified soil obtained by mixing steelmaking slag and seaweed seeds such as sea bream into dredged soil. The thickness of the soil is preferably 3 to 5 cm. Seeds of seaweeds such as sea cucumber can germinate easily at a depth of several centimeters from the surface. In addition, after germination, a modified soil mixed with seaweed seeds is laid in a thickness of 3 to 5 cm in order to increase the number of individuals by extending the rhizomes two-dimensionally at a depth of about 5 cm and branching. By doing so, germination and growth promotion of seaweeds such as sea bream can be promoted efficiently. In addition, when laying thicker than 5 cm, seeds existing in a place deeper than 5 cm are difficult to germinate, and there is a possibility that the formation efficiency of the eelgrass field is reduced.

また、第2の方法は、海底に敷設された前記改質土に海草類の種子を播種して育成する方法であり、また、第3の方法は、前記改質土を海水中分解可能な育成容器に入れてこの改質土に海草類の種子を播種し、種子が播種された改質土を育成容器と共に海底に敷設する方法であり、更に、第4の方法、前記改質土を海水中分解可能な育成容器に入れてこの改質土に海草類の種子を播種し、育成して発芽した苗を前記改質土及び育成容器と共に海底に移植する方法である。そして、これら第2〜4の方法において、前記改質土に海草類の種子を播種する際の播種深さについては、改質土の表面から1〜2cmであるのがよく、これより深いと発芽率が低下し、また、これより浅いと発芽しても改質土から脱落する虞がある。 The second method is a method for growing seeds of seaweeds on the modified soil laid on the seabed, and the third method is a method for growing the modified soil in seawater. It is a method of placing seeds of seaweeds in this modified soil in a container, and laying the modified soil on which the seeds are sown together with a growing container on the sea floor, and a fourth method, wherein the modified soil is submerged in seawater This is a method in which seeds of seaweeds are sown in this modified soil in a degradable growing container, and the seedlings that have been grown and germinated are transplanted to the seabed together with the modified soil and the growing container. In these second to fourth methods, the seeding depth when seeding seaweed seeds on the modified soil is preferably 1 to 2 cm from the surface of the modified soil. The rate decreases, and if it is shallower than this, even if it germinates, it may fall off from the modified soil.

更に、本発明において、改質土の敷設予定地が、アマモ等の海草類の生育に適さない水深5m以上である場合、盛り土をして生育に適した水深に調整することも可能である。この場合、盛り土の種類には特に制限はないが、製鋼スラグを30質量%超で含んで固化が促進された盛り土であることが好ましく、特に製鋼スラグを30質量%超で含む浚渫土砂が好ましい。また、底質が極めて軟弱である場合には、浚渫土砂に製鋼スラグを30質量%以上混合し、強固に固化させた盛り土でマウンドを作製し、その上にアマモ種子を混合した改質土(製鋼スラグ30質量%以下混合)を敷設すればよい。なお、製鋼スラグを多量に混合した盛り土は、周辺海水のpHを上昇させ易くなるが、その上に本発明の改質土を被覆することにより周辺海水との間が遮蔽され、pHの上昇を抑制することができる。   Furthermore, in the present invention, when the planned site of the modified soil is a depth of 5 m or more that is not suitable for the growth of seaweeds such as sea cucumbers, it is possible to adjust the depth to be suitable for growth by embankment. In this case, there is no particular limitation on the type of embankment, but it is preferably an embankment that contains steelmaking slag at more than 30% by mass and solidification is promoted, and in particular, dredged sand that contains steelmaking slag at more than 30% by mass is preferred. . In addition, when the sediment is extremely soft, a modified soil (mixed steel sand slag is mixed with 30% by mass or more of dredged soil, a mound is produced with a solidified solid embankment, and amamo seeds are mixed on the mound. What is necessary is just to lay steelmaking slag 30 mass% or less). In addition, the embankment mixed with a large amount of steelmaking slag is easy to raise the pH of the surrounding seawater, but by covering the modified soil of the present invention on it, the surrounding seawater is shielded, and the pH is raised. Can be suppressed.

さらに、浚渫土砂と製鋼スラグを混合し固化が進行した改質土は、これまで広く用いられてきた山砂と腐植土の混合土よりも栄養塩を豊富に含むため、アマモ等の海草類の種子の発芽及び苗の生長をより促進することができる。すなわち、表1に示すように、浚渫土砂の間隙水には無機態の窒素及びリンが多量に含まれており、これらを摂取したアマモ等の海草類の種子は、その発芽及び生長が促されるものと考えられる。なお、本発明者らは、これら栄養塩の供給が改質土の固化によって阻害されないことを確認している。   In addition, the modified soil, which has been solidified by mixing dredged soil and steelmaking slag, contains abundant nutrients compared to the mixed soil of mountain sand and humus soil that has been widely used so far, so seaweed seeds such as sea eels Germination and seedling growth can be further promoted. In other words, as shown in Table 1, the pore water of dredged soil contains a large amount of inorganic nitrogen and phosphorus, and seeds of seaweeds such as sea cucumber that ingested them are encouraged to germinate and grow. it is conceivable that. In addition, the present inventors have confirmed that the supply of these nutrient salts is not hindered by the solidification of the modified soil.

Figure 0006048088
Figure 0006048088

なお、浚渫土砂が汚濁の進んでいない海域のもので砂分が多い場合等、浚渫土砂の間隙水中の窒素、リン等が少ない場合も想定される。このような浚渫土砂を用いる場合には、浚渫土砂及び製鋼スラグの他に、腐植土等を加えてもよい。このような腐植土の添加量は、間隙水中の窒素、リン等の濃度が水産用水基準で示されたノリの養殖の海水基準値(窒素:0.1mg/L、リン:0.014mg/L)の10倍濃度以上(希釈を考慮)、即ち、窒素濃度が1mg/L以上、リン濃度が0.14mg/L以上となるように添加すればよい。   It is also assumed that dredged soil has less nitrogen, phosphorus, etc. in the pore water of the dredged soil, such as when the dredged soil is from a marine area that is not polluted and has a large amount of sand. When such dredged soil is used, humus or the like may be added in addition to dredged soil and steelmaking slag. The amount of humus soil added is that of the seawater standard values (nitrogen: 0.1 mg / L, phosphorus: 0.014 mg / L) of seaweed culture in which the concentration of nitrogen, phosphorus, etc. in the pore water is indicated by the aquaculture water standard. The concentration may be 10 times or more (considering dilution), that is, the nitrogen concentration may be 1 mg / L or more and the phosphorus concentration may be 0.14 mg / L or more.

アマモ等の海草類の苗を陸上において育苗する場合、本発明で確立した浚渫土砂の改質によって、アマモ等の海草類の苗の生長を促進することができる。上記方法によって作製した浚渫土砂及び製鋼スラグを含む改質土を育成容器(例えば、バットやカップ等)中に通常3cm以上15cm以下、好ましくは6cm以上10cm以下の厚さで敷設し、そこにアマモ種子を表面から1〜2cm程度の深さに播種する。播種した育成容器は、遮光をして、できるだけ15℃以下になるように静置する。種子の発芽を確認した後、育成容器を明条件に移し、苗の生長を促す。種子の播種の際、改質土(スラグ混合土)を予めプラスチック製のカップや生分解性プラスチック製カップや薄鉄板製カップ等の海水中分解可能なカップ等に入れて、苗を育苗してもよい。それによって、苗をアマモ場造成海域に移植する際に、海中でカップを外してから、もしくはカップを付けたままで、容易に移植することができるため、簡便にかつアマモ苗にダメージを与えることなく移植でき、効率的にアマモ場の造成を進めることができる。   When seaweed seedlings such as sea cucumbers are grown on land, the growth of seaweed seedlings such as sea eels can be promoted by the modification of dredged soil established in the present invention. The modified soil containing dredged sand and steelmaking slag produced by the above method is laid in a growth container (for example, a bat or a cup) in a thickness of usually 3 cm or more and 15 cm or less, preferably 6 cm or more and 10 cm or less. Seeds are sown to a depth of about 1 to 2 cm from the surface. The seeded growth container is shielded from light and allowed to stand at 15 ° C. or less as much as possible. After confirming the germination of the seeds, the growth container is moved to light conditions to promote seedling growth. When seeding, seedlings are grown by placing the modified soil (slag mixed soil) in a plastic cup, a biodegradable plastic cup, a thin iron plate cup, etc. that can be decomposed in seawater. Also good. As a result, when transplanting seedlings into the sea eel formation sea area, it can be easily transplanted after removing the cup in the sea or with the cup attached, so it is easy and without damaging the sea eel seedlings It can be transplanted, and the construction of the eelgrass field can be promoted efficiently.

実海域におけるアマモ等の海草類の種子の発芽率は、通常10%未満とされており、また、天然アマモ場の密生域では、生育密度が30株/m2程度である。したがって、アマモ場造成時の播種密度は、300〜1000粒/m2であることが好ましい。 The germination rate of seagrass seeds such as sea cucumbers in the actual sea area is usually less than 10%, and the growth density is about 30 strains / m 2 in the dense area of the natural sea eel field. Therefore, it is preferable that the seeding density at the time of the Amamo field construction is 300 to 1000 grains / m 2 .

以下、実施例に基づいて、本発明をより具体的に説明する。
〔実施例1:アマモ種子の発芽に適した硬度の特定〕
浚渫土砂への製鋼スラグの混合率(スラグ混合率)を変化させて4種類の改質土を作製し、アマモ種子の発芽率を比較することによって、アマモ種子の発芽に適した硬度の特定を行った。
Hereinafter, based on an Example, this invention is demonstrated more concretely.
[Example 1: Identification of hardness suitable for germination of sea cucumber seeds]
By changing the mixing ratio of steelmaking slag to dredged soil (slag mixing ratio), four types of modified soil were prepared, and the germination rate of eelgrass seeds was compared to identify the hardness suitable for the germination of eelgrass seeds. went.

東京湾で採取した浚渫土砂に製鋼スラグをスラグ混合率0質量%(0vol%)、10質量%(6.3vol%)、20質量%(13.1vol%)、30質量%(20.6vol%)、及び50質量% (37.7vol%)の割合で混合し、各々400mLの改質土からなる試験土壌を作製した。また、コントロールとして、通常、アマモ種子の発芽に用いる山砂及び腐植物質を体積比7:3で混合した試験土壌400mLを用いた。   Steelmaking slag is mixed with dredged sand collected in Tokyo Bay. Slag mixing ratio 0 mass% (0 vol%), 10 mass% (6.3 vol%), 20 mass% (13.1 vol%), 30 mass% (20.6 vol%), and Mixing at a ratio of 50% by mass (37.7 vol%), test soils each consisting of 400 mL of modified soil were prepared. As a control, 400 mL of test soil in which mountain sand and humic substances used for germination of sea cucumber seeds were mixed at a volume ratio of 7: 3 was used.

各試験土壌の中に、冷暗環境下で保管されたアマモ種子を900粒/m2となるように50個ずつ混合し、得られた種子入りの試験土壌を厚さ4cm程度となるようにバット上に広げた。次に、このようにして調製したアマモ種子入りの各試験土壌が敷設された各バットを、バケツに入れた東京湾の実海水中に沈め、遮光した後に15℃に設定した人工気象室に移し、種子の発芽を促した。定期的に発芽した個体数を計測し、実験区での発芽率を算出した。結果を表2に示す。 In each test soil, 50 eel seeds stored in a cool and dark environment were mixed at a rate of 900 grains / m 2, and the obtained test soil containing seeds was batted to a thickness of about 4 cm. Spread over. Next, each vat laid with each test soil containing eel seeds prepared in this way was submerged in the actual sea water of Tokyo Bay in a bucket, and after being shielded from light, moved to an artificial weather chamber set at 15 ° C. , Encouraged seed germination. The number of individuals that regularly germinated was counted, and the germination rate in the experimental plot was calculated. The results are shown in Table 2.

Figure 0006048088
Figure 0006048088

(1)発芽率の比較(図1)
図1に示すように、敷設から8日目で最初の発芽を確認した。その後、発芽個体数は徐々に増加していった。コントロールの試験土壌(腐植土+山砂)では、42日目に発芽率が24%となり、その後変化が見られなかった。実験系では、製鋼スラグを含まないスラグ混合率0質量%(浚渫土砂のみ)の試験土壌、及びスラグ混合率50質量%の試験土壌において、コントロールよりも低く、57日目で12.5%となった。また、スラグ混合率10〜30質量%の各試験土壌では、ほぼ同率でコントロールよりも顕著に高くなり、スラグ混合率20質量%の試験土壌において57日目で38%に達した。57日目の発芽率を比較すると以下のようになった。
10〜30質量%>コントロール(腐植土+山砂)>浚渫土砂、50質量%
(1) Comparison of germination rate (Fig. 1)
As shown in FIG. 1, the first germination was confirmed on the 8th day after laying. Thereafter, the number of germinated individuals gradually increased. In the control test soil (humus soil + mountain sand), the germination rate was 24% on the 42nd day, and no change was observed thereafter. In the experimental system, the test soil with a slag mixing ratio of 0% by mass (only dredged soil) without steelmaking slag and the test soil with a slag mixing ratio of 50% by mass are lower than the control and 12.5% on the 57th day. became. In addition, in each test soil having a slag mixing ratio of 10 to 30% by mass, the ratio was substantially the same and significantly higher than that of the control, and reached 38% on the 57th day in the test soil having a slag mixing ratio of 20% by mass. The germination rate on day 57 was compared as follows.
10-30% by mass> control (humus soil + mountain sand)> soil soil, 50% by mass

アマモ種子の発芽には、根の伸長が伴う。そのため、浚渫土砂に製鋼スラグを混合した改質土(スラグ混合土)からなる試験土壌のように、硬度が上昇したとしても、底質中に礫があることで、根が絡まり易く、安定し易い。このことが、浚渫土砂単体(スラグ混合率0質量%の試験土壌)よりも硬度が高い改質土で発芽率が上回ったものと考えられる。しかし、スラグ混合率50質量%の試験土壌において発芽率が低下したことから、アマモ種子の発芽に適した硬度があることが推察された。   Germination of eelgrass is accompanied by root elongation. Therefore, even if the hardness increases, as in the test soil consisting of modified soil (slag mixed soil) in which steelmaking slag is mixed with dredged soil sand, the roots tend to be entangled and stable due to the presence of gravel in the bottom sediment. easy. This is considered to be that the germination rate was higher in the modified soil having higher hardness than the dredged soil alone (test soil with a slag mixing rate of 0 mass%). However, since the germination rate decreased in the test soil having a slag mixing rate of 50% by mass, it was presumed that there was a hardness suitable for the germination of sea cucumber seeds.

(2)硬度の比較(図2)
上で作製した各試験土壌の硬度を、山中式硬度計を用いて計測した。硬度は、各試験土壌毎に3地点計測し、その平均値を求めた。
コントロールの試験土壌(腐植土+山砂)では、30日目には、17kPaと約20kPaになった。その後もそのままで推移し、飽和硬度は20kPaと推定された。
(2) Comparison of hardness (Fig. 2)
The hardness of each test soil prepared above was measured using a Yamanaka hardness tester. The hardness was measured at three points for each test soil, and the average value was obtained.
In the control test soil (humus soil + mountain sand), it became 17 kPa and about 20 kPa on the 30th day. Thereafter, the temperature remained unchanged, and the saturation hardness was estimated to be 20 kPa.

また、浚渫土砂単体(スラグ混合率0質量%)の試験土壌では、硬度を発現することなく、0kPaのままであった。
スラグ混合率10及び20質量%の試験土壌では、コントロールよりも若干硬く、それぞれ32kPa、38kPaであった。その後もゆるやかに上昇し、飽和硬度は40kPa程度と推定された。
In addition, the test soil of dredged soil alone (slag mixing rate 0 mass%) remained at 0 kPa without developing hardness.
The test soils with a slag mixing ratio of 10 and 20% by mass were slightly harder than the control and were 32 kPa and 38 kPa, respectively. After that, it gradually increased and the saturation hardness was estimated to be about 40 kPa.

スラグ混合率30質量%の試験土壌では、14日目に318kPaとなり、30日目には458kPaとなり、飽和硬度は500kPaと推定された。
スラグ混合率50質量%の試験土壌では、さらに硬度が増し、30日目に981kPaに達し、57日目には1155kPaとなり、飽和硬度は、約1000kPaと推定された。
In the test soil having a slag mixing ratio of 30% by mass, it was 318 kPa on the 14th day, 458 kPa on the 30th day, and the saturation hardness was estimated to be 500 kPa.
In the test soil having a slag mixing ratio of 50% by mass, the hardness further increased and reached 981 kPa on the 30th day, 1155 kPa on the 57th day, and the saturated hardness was estimated to be about 1000 kPa.

(3)硬度と発芽率の関係(図3)
上記の各試験土壌(改質土)におけるスラグ混合率に対する発芽率及び硬度変化の関係を図3に示す。
この図3から理解されるように、改質土の硬度が30〜500kPaの間で発芽率が高く、コントロール(硬度17kPa)よりも上回った。しかし、この範囲以外にある場合、0kPa、及び1000kPaでは、発芽率がコントロールよりも下回り、アマモ種子の発芽に適さないことが判明した。
(3) Relationship between hardness and germination rate (Figure 3)
FIG. 3 shows the relationship between the germination rate and the hardness change with respect to the slag mixing rate in each of the test soils (modified soils).
As understood from FIG. 3, the germination rate was high when the hardness of the modified soil was between 30 and 500 kPa, which was higher than the control (hardness of 17 kPa). However, when it was outside this range, it was found that at 0 kPa and 1000 kPa, the germination rate was lower than the control, and it was not suitable for germination of eelgrass seeds.

〔実施例2:実海域での試験〕
東京湾で採取した浚渫土砂に製鋼スラグを40質量%の割合で混合し、改質土を調製した。この改質土を用いて東京湾沿岸の水深10mの実海域に水深が4mになるように盛り土を行った。この盛り土の上に、表2に示した各試験土壌〔コントロール(山砂:腐植物質=7:3)、スラグ混合率0質量%、10質量%、20質量%、30質量%、50質量%)の改質土〕を用い、厚さ5cmのマウンド(5m×5m)を作成した。
[Example 2: Test in actual sea area]
Steelmaking slag was mixed at a ratio of 40% by mass with dredged soil collected in Tokyo Bay to prepare modified soil. Using this modified soil, embankment was carried out in a real sea area of 10m depth along the Tokyo Bay coast so that the water depth would be 4m. On this embankment, each test soil shown in Table 2 [control (mountain sand: humic substance = 7: 3), slag mixing ratio 0 mass%, 10 mass%, 20 mass%, 30 mass%, 50 mass% ) Was used to prepare a mound (5 m × 5 m) having a thickness of 5 cm.

また、各マウンドと同様の試験土壌を生分解性プラスチックカップに入れて播種し、発芽させたアマモ苗(アマモ種子発芽体)を各マウンドに50株/m2となるように植え付けた。移植から約2カ月後の57日目にアマモ苗の各種部位を計測し、比較した。
結果を図4に示す。
Moreover, the test soil similar to each mound was put in a biodegradable plastic cup and sown, and the sprouting seedlings (seedling seedlings) were planted on each mound at 50 strains / m 2 . On the 57th day after about 2 months from the transplantation, various parts of the eelgrass seedlings were measured and compared.
The results are shown in FIG.

コントロールでは、4割の苗が脱落していたのに対し、スラグ混合率0質量%、10質量%、20質量%、30質量%の各マウンドでは、アマモ苗の脱落は殆どなく、脱落個体は2割に止まっていた。また、スラグ混合率50質量%のマウンドでは、7割が枯死していた。
また、マウンド付近のpHは、全条件で8.2前後となり、製鋼スラグを混合したことによるpHの上昇は全く認められなかった。
In the control, 40% of the seedlings had fallen, but in each mound with a slag mixing rate of 0%, 10%, 20%, and 30%, almost no eel seedlings dropped out. It stopped at 20%. In addition, 70% of the mound with a slag mixing ratio of 50% by mass was dead.
Further, the pH in the vicinity of the mound was about 8.2 under all conditions, and no increase in pH was observed due to the mixing of the steelmaking slag.

計測項目である葉幅、葉数、草丈、葉身全てにおいて、スラグ混合率0〜20質量%の各マウンドは、コントロールを上回っており、スラグ混合土30質量%のマウンドはコントロールとほぼ同程度という傾向が見られた。スラグ混合率50質量%のマウンドでは、移植後殆ど生長が認められず、全ての計測項目でコントロールを下回った。スラグ混合率0〜30質量%の各マウンドでコントロール以上もしくは同様にアマモ苗が生長したことから、浚渫土砂からの栄養塩類の溶出がアマモの生長に大きく影響していることが判明した。   For all measurement items, leaf width, number of leaves, plant height, and blade, each mound with a slag mixing ratio of 0-20% by mass exceeds the control, and the mound with 30% by mass slag mixed soil is almost the same as the control. The tendency was seen. In the mound with a slag mixing ratio of 50% by mass, almost no growth was observed after transplantation, and all the measurement items were below the control. It was clarified that elution of nutritive salts from dredged soil greatly affected the growth of sea cucumber, since the sea eel seedlings grew more than control or similarly in each mound having a slag mixing ratio of 0 to 30% by mass.

さらに、57日目の各マウンドの硬度は、表3のようになり、実施例1の実験室内における検討と同様であった。これらの結果とアマモ種子の発芽率を考慮すると、アマモに適した硬度は20〜500kPaであり、製鋼スラグの混合率は10〜30質量%であることが判明した。
なお、スラグ混合率0質量%(浚渫土単独)のマウンドでは、アマモ苗の生長は良好であったが、マウンドの一部が流失しており、長期的には、盤石なアマモ場造成は困難であると判断した。
Further, the hardness of each mound on the 57th day was as shown in Table 3, which was the same as the examination in the laboratory of Example 1. Considering these results and the germination rate of eelgrass seeds, it was found that the hardness suitable for eelgrass is 20 to 500 kPa and the mixing rate of steelmaking slag is 10 to 30% by mass.
In addition, in the mound with a slag mixing ratio of 0% by mass (only dredged soil), the growth of eelgrass seedlings was good, but some of the mounds were washed away, and in the long term it would be difficult to create a rocky eel It was judged that.

Figure 0006048088
Figure 0006048088

Claims (15)

浚渫土砂と製鋼スラグとを混合して得られ、山中式硬度計で測定される硬度が、前記混合後30日目で20kPa以上500kPa以下に達し、かつ、前記混合後30日目以降も20kPa以上500kPa以下の範囲内である改質土を海底に敷設し、この改質土で海草類を育成することを特徴とするアマモ場の造成方法。 Obtained by mixing the dredged material and steel slag, hardness measured by Yamanaka-type hardness meter, the mixture after 30 days 20kPa or 500kPa or less reached at, and the mixture after 30 days onwards even 20kPa or more A method for building an ammo field, comprising laying modified soil within the range of 500 kPa or less on the seabed and cultivating seaweeds using the modified soil. 前記改質土の硬度が、前記混合後30日目で30kPa以上に達し、かつ、前記混合後30日目以降も30kPa以上500kPa以下の範囲内であることを特徴とする請求項1に記載のアマモ場の造成方法。The hardness of the modified soil reaches 30 kPa or more on the 30th day after the mixing, and is in the range of 30 kPa or more and 500 kPa or less after the 30th day after the mixing. How to create an Amamo field. 前記改質土中に予め海草類の種子を混合し、得られた種子入り改質土を海底に敷設することを特徴とする請求項1又は2に記載のアマモ場の造成方法。 3. A method for creating an eelgrass field according to claim 1 or 2 , wherein seeds of seaweeds are mixed in advance in the modified soil, and the obtained modified soil containing seeds is laid on the seabed. 海底に敷設された前記改質土に海草類の種子を播種し、育成することを特徴とする請求項1又は2に記載のアマモ場の造成方法。 The method for creating a eelgrass field according to claim 1 or 2 , wherein seeds of seaweeds are sown and grown on the modified soil laid on the seabed. 前記改質土を海水中分解可能な育成容器に入れてこの改質土に海草類の種子を播種し、種子が播種された改質土を育成容器と共に海底に敷設することを特徴とする請求項1又は2に記載のアマモ場の造成方法。 The modified soil is put in a growth vessel that can be decomposed in seawater, seeds of seaweeds are sown on the modified soil, and the modified soil on which the seeds are sown is laid on the seabed together with the growth vessel. 3. A method for building an ammo field according to 1 or 2 . 前記改質土を海水中分解可能な育成容器に入れてこの改質土に海草類の種子を播種し、育成して発芽した苗を前記改質土及び育成容器と共に海底に移植することを特徴とする請求項1又は2に記載のアマモ場の造成方法。 The modified soil is put in a growth vessel that can be decomposed in seawater, seeds of seaweeds are sown on the modified soil, and the seedlings that have been grown and germinated are transplanted to the seabed together with the modified soil and the growth vessel. The construction method of the eelgrass field according to claim 1 or 2 . 前記海草類の種子が、改質土の表面から深さ1〜2cmまでの間に播種されることを特徴とする請求項4〜6のいずれか1項に記載のアマモ場の造成方法。 The seaweed seeds are sown from the surface of the modified soil to a depth of 1 to 2 cm, 7. The method for creating a eelgrass field according to any one of claims 4 to 6 . 前記製鋼スラグの添加量が、前記改質土中30質量%以下であることを特徴とする請求項1〜7のいずれか1項に記載のアマモ場の造成方法。 The method for building an ammo field according to any one of claims 1 to 7 , wherein an addition amount of the steelmaking slag is 30% by mass or less in the modified soil. 前記製鋼スラグは、0.075mm以下の粒径が10質量%以下であって、26.5mm以上の粒径が5質量%以下であることを特徴とする請求項1〜8のいずれか1項に記載のアマモ場の造成方法。 The steelmaking slag is not more than the particle size of 10 wt% or less 0.075 mm, any one of the preceding claims, wherein the particle size of greater than or equal to 26.5mm is less than 5 mass% The construction method of the Amamo field as described in 1. 30質量%の製鋼スラグを混合して得られ改質土の硬度が20kPa未満の場合、前記改質土中に1質量%以下の高炉スラグを混合することを特徴とする請求項1〜9のいずれか1項に記載のアマモ場の造成方法。 When the hardness of the obtained that reforming soil obtained by mixing 30 mass% of the steel slag is less than 20 kPa, claims 1-9, characterized by mixing 1 mass% of blast furnace slag to the reforming soil The construction method of the Amamo field of any one of. 前記改質土中に、無機態栄養分として腐植土を混合することを特徴とする請求項1〜10のいずれか1項に記載のアマモ場の造成方法。 The humus soil creation method according to any one of claims 1 to 10 , wherein humus soil is mixed as an inorganic nutrient in the modified soil. 前記海水中分解可能な育成容器が、生分解性プラスチック製であることを特徴とする請求項5〜11のいずれか1項に記載のアマモ場の造成方法。 The method for creating an eelgrass field according to any one of claims 5 to 11 , wherein the growth vessel capable of being decomposed in seawater is made of a biodegradable plastic. 前記海底が水深5m以上である場合、この海底に盛り土をして水深5m未満としてから前記改質土の敷設をして海草類を育成することを特徴とする請求項1〜12のいずれか1項に記載のアマモ場の造成方法。 If the seabed is not less than 5m deep, any one of claims 1 to 12, characterized in that to cultivate seaweed and the laying of the reforming soil after less than 5m deep and the fill into the seabed The construction method of the Amamo field as described in 1. 前記盛り土が、30質量%超の製鋼スラグを含むものであることを特徴とする請求項13に記載のアマモ場の造成方法。 14. The eelgrass field building method according to claim 13 , wherein the embankment contains steelmaking slag of more than 30% by mass. 前記盛り土が、浚渫土砂中に30質量%超の製鋼スラグを混合して得られたものであることを特徴とする請求項13又は14に記載のアマモ場の造成方法。 The method for creating an ammo field according to claim 13 or 14 , wherein the embankment is obtained by mixing steelmaking slag of more than 30 mass% in dredged sand.
JP2012254920A 2012-11-21 2012-11-21 Amamo field construction method Active JP6048088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012254920A JP6048088B2 (en) 2012-11-21 2012-11-21 Amamo field construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012254920A JP6048088B2 (en) 2012-11-21 2012-11-21 Amamo field construction method

Publications (2)

Publication Number Publication Date
JP2014100103A JP2014100103A (en) 2014-06-05
JP6048088B2 true JP6048088B2 (en) 2016-12-21

Family

ID=51023258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012254920A Active JP6048088B2 (en) 2012-11-21 2012-11-21 Amamo field construction method

Country Status (1)

Country Link
JP (1) JP6048088B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6583732B2 (en) * 2016-06-28 2019-10-02 国立研究開発法人産業技術総合研究所 Method for producing savable seaweed seeds
JP6891615B2 (en) * 2017-04-25 2021-06-18 日本製鉄株式会社 How to create brackish water eelgrass field and how to grow eelgrass in brackish water.
KR102200724B1 (en) * 2018-06-12 2021-01-08 원광대학교산학협력단 Artificial cultivation method of seagrasses and Artificial cultivation device
JP7077852B2 (en) * 2018-08-01 2022-05-31 日本製鉄株式会社 Soil preparation method for growing benthic organisms and method for growing benthic organisms
JP7323808B2 (en) * 2020-01-31 2023-08-09 日本製鉄株式会社 Method for preparing soil for cultivating benthic organisms and method for cultivating benthic organisms
JP7216056B2 (en) * 2020-09-17 2023-01-31 東洋建設株式会社 Eelgrass bed creation method and eelgrass bed

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3977903B2 (en) * 1997-08-29 2007-09-19 日鐵住金建材株式会社 Seaweed bed outside the breakwater and its construction method
JP3861257B2 (en) * 1999-08-26 2006-12-20 独立行政法人科学技術振興機構 Artificial reef and manufacturing method thereof
JP3536035B2 (en) * 2001-03-30 2004-06-07 三重県 Method for constructing seaweed beds of seaweed having rhizomes such as eelgrass and self-disintegrating porous concrete block used for the method
JP2005087068A (en) * 2003-09-16 2005-04-07 Michio Nagasaka Marine plant and seaweed and method for growing the same
JP4677759B2 (en) * 2004-10-19 2011-04-27 株式会社田中 Larvae seedling breeding and eelgrass farm construction method
JP2006288323A (en) * 2005-04-13 2006-10-26 Jfe Steel Kk Artificial water bottom base
JP5571617B2 (en) * 2011-05-27 2014-08-13 Jfeミネラル株式会社 Supplying iron into water

Also Published As

Publication number Publication date
JP2014100103A (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP6048088B2 (en) Amamo field construction method
CN102677684B (en) Spraying and sowing greening method for concrete anchoring and shotcreting slope
CN101288377A (en) Tree planting method in alkaline land
CN101779586B (en) Technique for forestation of Chinese tamarisk on coastal tidal flats
JP2016504915A (en) Non-soil vegetation mat and method for producing the same
CN102257915A (en) Method for transversely growing yam and interplanting spring and autumn potato under coverage of straw
CN111492966B (en) Seedling growing method for tylophora
CN105494077B (en) A kind of eelgrass sows enrichment procedure
CN106665048A (en) High-steep slope plant cultivation method
JP2014068594A (en) Method for growing seagrass seedlings, transplant method thereof and method for developing seagrass bed
JP4948945B2 (en) Restoration, creation and maintenance methods for biodegradable eel nursery sheets and eelgrass beds
JP5157286B2 (en) A method for breeding pot seedlings and planting green grasses
CN102599034A (en) Grape planting method
JP6891615B2 (en) How to create brackish water eelgrass field and how to grow eelgrass in brackish water.
JP2015154726A (en) Method for promoting growth of laminaria
CN109197302B (en) Method for repairing waste ionic rare earth mining area by utilizing blueberries and planting blueberries
CN106688356B (en) Island bare area ecological restoring method
JP6583732B2 (en) Method for producing savable seaweed seeds
CN108243893A (en) A kind of method for carrying out nursery flower planting in serious pollution saline-alkali wetland
CN110326479B (en) Method for cultivating trees and shrubs by improving sandy soil through matrix mud stirring pile method
CN107347426A (en) A kind of falling zone barricade area vegetation implantation methods
JP4006517B2 (en) Amamo seeding material and method for producing the same
JP2011004768A (en) Method for creating seaweed bed, and method for proliferating seaweed in sea bottom
CN116282556B (en) Lake submerged plant community restoration method based on natural restoration suitability diagnosis
CN107926671B (en) Suspended ecological submerged plant planting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161107

R151 Written notification of patent or utility model registration

Ref document number: 6048088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350