JP2002097540A - Hollow member of aluminum alloy superior in hydroforming property - Google Patents

Hollow member of aluminum alloy superior in hydroforming property

Info

Publication number
JP2002097540A
JP2002097540A JP2000290503A JP2000290503A JP2002097540A JP 2002097540 A JP2002097540 A JP 2002097540A JP 2000290503 A JP2000290503 A JP 2000290503A JP 2000290503 A JP2000290503 A JP 2000290503A JP 2002097540 A JP2002097540 A JP 2002097540A
Authority
JP
Japan
Prior art keywords
hollow member
crystal grain
aluminum alloy
hydroforming
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000290503A
Other languages
Japanese (ja)
Other versions
JP4296584B2 (en
Inventor
Koichi Ohori
紘一 大堀
Hisao Tanigawa
久男 谷川
Nariyuki Nakagawa
成幸 中川
Satoshi Mashima
聡 真嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd, Nissan Motor Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2000290503A priority Critical patent/JP4296584B2/en
Publication of JP2002097540A publication Critical patent/JP2002097540A/en
Application granted granted Critical
Publication of JP4296584B2 publication Critical patent/JP4296584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a hollow member of an aluminum alloy which is suitable for forming a frame member or a bonding member of an automobile, a vehicle or a building, and is superior in a hydroforming property. SOLUTION: The hollow member of the aluminum alloy comprises a composition of 0.5-1.4% Si, 0.30-0.75% Mg, 0.1-0.4% Fe, 0.005-0.1% Ti, 0.0001-0.004% B, 0.02-0.20% Mn and 0.05-0.25% V so as to satisfy 0.12%<=Mn+V<=0.30%, and 0.03-0.4% Cu, and one or two kinds of 0.02-0.05% Cr and 0.02-0.05% Zr as needed, and Al and inevitable impurities as the balance. It further comprises a crystal grain structure which satisfies a condition of (Dl+Dt)/2<=100 μm and Dl/Dt<=2.0, wherein Dl is an average crystal grain size in the longitudinal direction of the hollow member, and Dt is an average crystal grain size in the short transverse direction of the hollow member.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、自動車、車両、ある
いは建築部材のフレームや接合部材などの成形に好適な
ハイドロフォーミング性に優れたアルミニウム合金中空
部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy hollow member excellent in hydroforming properties suitable for forming a frame, a joint member, or the like of an automobile, a vehicle, or a building member.

【0002】[0002]

【従来の技術】近年、地球の温暖化などの環境問題か
ら、排ガス低減や燃費向上などのために自動車の軽量化
が強く要請されている。車体の軽量化の手法としては、
従来主として使用されてきた鋼板をアルミ化する材料置
換が最も効果的であるため、アルミニウム合金材、特
に、複雑形状の構造体を一体で成形できるアルミニウム
合金押出し材または引き抜き材の使用が増加している。
例えば、アルミニウム合金インゴットを押出しまたはさ
らに引抜き加工して得られた中空部材を所定の形状に一
体成形し、これらを接合して車体骨格を構成し、それに
外板パネルを組み付けるアルミスペースフレーム車体が
相次いで商品化されている。これらアルミニウム合金押
出し中空部材を所定の形状に一体成形するための加工技
術として、最近、ハイドロフォーミング技術が注目され
ている。ハイドロフォーミングは管材の型の中での液圧
による拡管成形が主体となる加工法で、同一部材の断面
形状を自由に変更することができる。この加工法におい
ては、例えば、液圧成形に先立ち、予備成形において管
材の可動型を用いた複雑断面形状への成形と曲げ加工を
行うことも一般的に成されている。また、液圧成形にお
いては、多くの場合、管軸方向の押し込みによって変形
部分への材料流入を助長することが行われている。
2. Description of the Related Art In recent years, due to environmental problems such as global warming, there has been a strong demand for reducing the weight of automobiles in order to reduce exhaust gas and improve fuel efficiency. As a method of reducing the weight of the car body,
The most effective method is to replace a steel sheet, which has been mainly used in the past, with an aluminum material, and the use of aluminum alloy materials, especially extruded or drawn aluminum alloy materials, which can integrally form structures having complicated shapes, is increasing. I have.
For example, a hollow member obtained by extruding or further drawing an aluminum alloy ingot is integrally formed into a predetermined shape, and these are joined to form a vehicle body skeleton. It is commercialized in. As a processing technique for integrally molding these aluminum alloy extruded hollow members into a predetermined shape, a hydroforming technique has recently attracted attention. Hydroforming is a processing method mainly including pipe expansion molding by hydraulic pressure in a pipe material mold, and can freely change the cross-sectional shape of the same member. In this processing method, for example, prior to hydroforming, it is also generally practiced to form and bend a tube into a complex cross-sectional shape using a movable die in preforming. In addition, in the hydraulic forming, in many cases, the inflow of the material into the deformed portion is promoted by pushing in the tube axis direction.

【0003】かかるハイドロフォーミングを行なうため
のアルミニウム合金中空部材として、現在のところ60
63合金、6N01合金、6061合金などのAl−M
g−Si系合金を押出し加工することにより得られた中
空部材が主に使用されている(例えば、特開平10−4
6280号参照)。この中空部材を予備成形により所定
の断面形状に加工した後、ハイドロフォーミングが行わ
れている。また、自由な断面形状が成形可能な押出し形
材の特徴を生かし、あらかじめ管状以外の所定の断面形
状に押出し成形された中空形材を素材として、この形材
から直接、または適宜な予備成形を行った後、ハイドロ
フォーミングが行われている。
[0003] As an aluminum alloy hollow member for performing such hydroforming, at present there are 60 members.
Al-M such as 63 alloy, 6N01 alloy, 6061 alloy
A hollow member obtained by extruding a g-Si alloy is mainly used (for example, see Japanese Patent Application Laid-Open No. 10-4).
No. 6280). After the hollow member is processed into a predetermined cross-sectional shape by preforming, hydroforming is performed. In addition, taking advantage of the characteristics of the extruded shape that can be formed into a free cross-sectional shape, a hollow shape that has been extruded into a predetermined cross-sectional shape other than a tubular shape in advance is used as a raw material, and directly from this shape or an appropriate preliminary molding is performed. After that, hydroforming has been performed.

【0004】[0004]

【発明が解決しようとする課題】ところで、Al−Mg
−Si系合金、例えば、6063合金、6N01合金、
6061合金などにおいては、強度の高いT5あるいは
T6材はハイドロフォーミング性に劣っているため、拡
管率の高いO材を用いる必要があった。しかしながら、
O材を用いて成形した場合は、部品に必要な強度を得る
ために、成形後に溶体化・焼入れ、時効からなる熱処理
を施さなければならず、熱応力や焼入れ歪みによる変形
が避けがたいという問題があった。また、この精度低下
を避けるためにO材のまま用いた場合は、強度が低いた
めに板厚を厚くする必要があり、アルミニウム合金によ
る軽量化効果が低くなってしまうという問題点があっ
た。この発明は、かかる問題点に鑑みてなされたもので
あって、部品に必要とされる強度と良好なハイドロフォ
ーミング性とを兼ね備えたアルミニウム合金中空部材を
提供することを目的とするものである。
However, Al-Mg
-Si-based alloys, for example, 6063 alloy, 6N01 alloy,
In the 6061 alloy and the like, the high-strength T5 or T6 material is inferior in hydroforming properties, so that it was necessary to use an O material having a high pipe expansion ratio. However,
In the case of molding using O material, heat treatment including solution heat treatment, quenching, and aging must be performed after molding in order to obtain the necessary strength for parts, and deformation due to thermal stress and quenching distortion is inevitable. There was a problem. Further, when the O material is used as it is in order to avoid the decrease in accuracy, it is necessary to increase the plate thickness because the strength is low, and there is a problem that the weight reduction effect by the aluminum alloy is reduced. The present invention has been made in view of such a problem, and an object of the present invention is to provide an aluminum alloy hollow member having both strength required for a part and good hydroforming properties.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上述のよ
うな観点から、ハイドロフォーミングして得られた成形
部品の強度が十分にありかつハイドロフォーミング性に
優れた中空部材を得るべく研究を行なった結果、下記の
(イ)〜(ハ)記載の成分組成および結晶粒組織を有す
るAl合金からなる中空部材は、いずれもハイドロフォ
ーミング性に優れ、さらにこれら中空部材を人工時効処
理することにより耐力:160MPa以上の機械的特性
を有するようになる、という研究結果が得られたのであ
る。(イ)質量%で(以下%は質量%を示す)、Si:
0.5〜1.4%、Mg:0.30〜0.75%、F
e:0.1〜0.4%、Ti:0.005〜0.1%、
B:0.0001〜0.004%を含有し、残りがAl
と不可避不純物からなる組成を有するAl合金に、さら
に、MnおよびVを、Mn:0.02〜0.2%、V:
0.05〜0.25%(ただし、0.12%≦Mn+V
≦0.3%)となるように添加した組成、並びに中空部
材の長さ方向における平均結晶粒径をDl、中空部材の
厚さ方向における平均結晶粒径をDtとすると、(Dl
+Dt)/2≦100μm、Dl/Dt≦2.0の条件
を満足する結晶粒組織を有するAl合金からなる中空部
材、(ロ)前記(イ)記載のAl合金に、さらにCu:
0.03〜0.4%を含有したAl合金からなる中空部
材、(ハ)前記(イ)または(ロ)記載のAl合金に、
さらにCr:0.02〜0.05%、Zr:0.02〜
0.05%の内の1種または2種を含有したAl合金か
らなる中空部材、
SUMMARY OF THE INVENTION From the above viewpoint, the present inventors have studied to obtain a hollow member having sufficient strength and excellent hydroforming properties of a molded part obtained by hydroforming. As a result, all of the hollow members made of an Al alloy having the component composition and the crystal grain structure described in the following (a) to (c) have excellent hydroforming properties, and furthermore, these hollow members are subjected to artificial aging treatment. Thus, a research result was obtained that mechanical strength of 160 MPa or more was obtained. (A) In mass% (% indicates mass%), Si:
0.5 to 1.4%, Mg: 0.30 to 0.75%, F
e: 0.1 to 0.4%, Ti: 0.005 to 0.1%,
B: contains 0.0001 to 0.004%, the balance being Al
Mn and V are further added to an Al alloy having a composition consisting of
0.05 to 0.25% (however, 0.12% ≦ Mn + V
≦ 0.3%), the average crystal grain size in the length direction of the hollow member is Dl, and the average crystal grain size in the thickness direction of the hollow member is Dt.
+ Dt) / 2 ≦ 100 μm and a hollow member made of an Al alloy having a crystal grain structure satisfying the conditions of Dl / Dt ≦ 2.0. (B) In addition to the Al alloy described in (A), Cu:
A hollow member made of an Al alloy containing 0.03 to 0.4%, (c) an Al alloy according to the above (a) or (b),
Further, Cr: 0.02 to 0.05%, Zr: 0.02 to
A hollow member made of an Al alloy containing one or two of 0.05%,

【0006】この発明は、上記の研究結果にもとづいて
なされたものであって、(1)Si:0.5〜1.4
%、Mg:0.30〜0.75%、Fe:0.1〜0.
4%、Ti:0.005〜0.1%、B:0.0001
〜0.004%を含有し、さらに、MnおよびVを、M
n:0.02〜0.20%、V:0.05〜0.25
%、0.12%≦Mn+V≦0.30%となるように含
有し、残りがAlと不可避不純物からなる組成、並び
に、Dlを中空部材の長さ方向の平均結晶粒径、Dtを
中空部材の厚さ方向の平均結晶粒径とすると、(Dl+
Dt)/2≦100μm、Dl/Dt≦2.0の条件を
満足する結晶粒組織を有するするAl合金からなるハイ
ドロフォーミング性に優れたアルミニウム合金中空部
材、(2)Si:0.5〜1.4%、Mg:0.30〜
0.75%、Fe:0.1〜0.4%、Ti:0.00
5〜0.1%、B:0.0001〜0.004%、C
u:0.03〜0.4%を含有し、さらに、Mnおよび
Vを、Mn:0.02〜0.20%、V:0.05〜
0.25%、0.12%≦Mn+V≦0.30%となる
ように含有し、残りがAlと不可避不純物からなる組
成、並びにDlを中空部材の長さ方向の平均結晶粒径、
Dtを中空部材の厚さ方向の平均結晶粒径とすると、
(Dl+Dt)/2≦100μm、Dl/Dt≦2.0
の条件を満足する結晶粒組織を有するするAl合金から
なるハイドロフォーミング性に優れたアルミニウム合金
中空部材、(3)前記(1)または(2)記載の組成を
有するAl合金に、さらにCr:0.02〜0.05
%、Zr:0.02〜0.05%の内の1種または2種
を含有した組成を有するAl合金からなるハイドロフォ
ーミング性に優れたアルミニウム合金中空部材、に特徴
を有するものである。
The present invention has been made based on the above research results, and (1) Si: 0.5 to 1.4.
%, Mg: 0.30 to 0.75%, Fe: 0.1 to 0.1%.
4%, Ti: 0.005 to 0.1%, B: 0.0001
0.000.004%, and further, Mn and V
n: 0.02 to 0.20%, V: 0.05 to 0.25
%, 0.12% ≦ Mn + V ≦ 0.30%, the balance being Al and unavoidable impurities, Dl as the average crystal grain size in the longitudinal direction of the hollow member, and Dt as the hollow member. The average crystal grain size in the thickness direction of (Dl +
(Dt) / 2 ≦ 100 μm, D1 / Dt ≦ 2.0, an aluminum alloy hollow member excellent in hydroformability, made of an Al alloy having a crystal grain structure, and (2) Si: 0.5 to 1 0.4%, Mg: 0.30
0.75%, Fe: 0.1 to 0.4%, Ti: 0.00
5 to 0.1%, B: 0.0001 to 0.004%, C
u: 0.03 to 0.4%, and Mn and V are further changed to Mn: 0.02 to 0.20%, V: 0.05 to
0.25%, 0.12% ≦ Mn + V ≦ 0.30%, the balance being composed of Al and unavoidable impurities, and Dl containing an average crystal grain size in the longitudinal direction of the hollow member,
When Dt is the average crystal grain size in the thickness direction of the hollow member,
(Dl + Dt) / 2 ≦ 100 μm, Dl / Dt ≦ 2.0
(3) an aluminum alloy hollow member having an excellent hydroforming property made of an Al alloy having a crystal grain structure satisfying the following conditions: (3) an Al alloy having the composition described in the above (1) or (2), further comprising Cr: 0 .02-0.05
%, Zr: 0.02 to 0.05% of an aluminum alloy hollow member having an excellent hydroforming property and made of an Al alloy having a composition containing one or two of them.

【0007】前記(1)、(2)または(3)記載のハ
イドロフォーミング性に優れたアルミニウム合金中空部
材は、(1)、(2)または(3)記載の成分組成を有
するビレットをDC鋳造法により作製し、このビレット
を均質化熱処理し、均質化熱処理したビレットを温度:
450〜550℃の範囲内の温度で押出した後、ただち
に水冷または水冷後さらに引抜き加工することにより作
製する。ここで引抜き加工とは、押出材をダイスを通し
てその断面を減少することにより所定の寸法精度を得る
ための冷間での加工である。このようにして得られたア
ルミニウム合金中空部材は、中空部材の長さ方向におけ
る平均結晶粒径をDl、中空部材の厚さ方向における平
均結晶粒径をDtとすると、(Dl+Dt)/2≦10
0μm、Dl/Dt≦2.0の条件を満足する結晶粒組
織を有する。
The aluminum alloy hollow member having excellent hydroforming properties according to the above (1), (2) or (3) is obtained by DC casting a billet having the component composition as described in the above (1), (2) or (3). The billet is prepared by the following method, and the billet is subjected to a homogenizing heat treatment.
It is produced by extruding at a temperature in the range of 450 to 550 ° C., immediately followed by water cooling or water cooling followed by drawing. Here, the drawing process is a cold process for obtaining a predetermined dimensional accuracy by reducing the cross section of the extruded material through a die. In the aluminum alloy hollow member thus obtained, assuming that the average crystal grain size in the length direction of the hollow member is Dl and the average crystal grain size in the thickness direction of the hollow member is Dt, (Dl + Dt) / 2 ≦ 10.
0 μm, and has a grain structure satisfying the condition of Dl / Dt ≦ 2.0.

【0008】前記(1)〜(3)の内のいずれかに記載
の中空部材を温度:150〜210℃に1〜24時間保
持の条件で人工時効処理すると、耐力:160MPa以
上を有するハイドロフォーミング性に優れたアルミニウ
ム合金中空部材が得られる。
When the hollow member according to any one of the above (1) to (3) is subjected to artificial aging treatment at a temperature of 150 to 210 ° C. for 1 to 24 hours, a hydroforming having a yield strength of 160 MPa or more is performed. An aluminum alloy hollow member having excellent properties can be obtained.

【0009】中空部材を構成するアルミニウム合金の成
分組成および結晶粒径を上記の通りに限定した理由を説
明する。 A.成分組成 (a)Si,Mg これら成分には、微細なMg2Si化合物として析出し
て強度を向上させる作用があるが、SiおよびMgのい
ずれかの含有量でもSi:0.5%未満、Mg:0.3
%未満になると、生成する析出物の量が少なくなって所
望の強度を確保することができず、一方、その含有量が
Si:1.4%およびMg:0.75%を越えるとハイ
ドロフォーミング性、曲げ加工性、および押出しまたは
引抜き加工性が低下するようになるので好ましくない。
したがって、Si:0.5〜1.4%、Mg:0.30
〜0.75%に定めた。SiおよびMgの一層好ましい
範囲はSi:0.7〜1.2%、Mg:0.40〜0.
60%である。
The reason why the component composition and crystal grain size of the aluminum alloy constituting the hollow member are limited as described above will be described. A. Component Composition (a) Si, Mg These components have the effect of improving the strength by precipitating as fine Mg 2 Si compounds, but the content of either Si or Mg is less than 0.5%. Mg: 0.3
%, The amount of precipitates formed is so small that the desired strength cannot be ensured. On the other hand, if the content exceeds 1.4% Si and 0.75% Mg, hydroforming occurs. This is not preferred because the properties, bending workability, and extrusion or drawing workability are reduced.
Therefore, Si: 0.5 to 1.4%, Mg: 0.30
0.70.75%. More preferable ranges of Si and Mg are: Si: 0.7 to 1.2%, Mg: 0.40 to 0.1%.
60%.

【0010】(b)Fe Fe成分はAlと金属間化合物を形成し、これらが再結
晶の核生成サイトとなり、押出し組織を微細な等軸粒状
の結晶粒組織とし、その結果、ハイドロフォーミング性
及び曲げ加工性を向上させる作用を有するが、その含有
量が0.1%未満では所望の効果が得られず、一方、
0.4%を越えて添加すると押出し時の再結晶化が抑制
されて伸長粒や繊維状組織が現れるようになり、ハイド
ロフォーミング性が劣化するので好ましくない。したが
って、Feの添加量は0.1〜0.4%に定めた。
(B) Fe The Fe component forms an intermetallic compound with Al, which serves as a nucleation site for recrystallization, and makes the extruded structure a fine equiaxed grain structure. As a result, hydroforming properties and It has an effect of improving bending workability, but if its content is less than 0.1%, the desired effect cannot be obtained.
Addition of more than 0.4% is not preferred because recrystallization at the time of extrusion is suppressed and elongated grains and a fibrous structure appear, and hydroforming properties deteriorate. Therefore, the addition amount of Fe is set to 0.1 to 0.4%.

【0011】(c)Ti、B これら成分は、鋳造組織を微細化し、鋳造割れを防止す
る作用があるので添加するが、TiおよびBのいずれか
の含有量でもTi:0.005%未満、B:0.000
1%未満になると所望の効果が得られず、一方、Tiお
よびBのいずれかの含有量でもTi:0.1%および
B:0.004%を越えると、巨大な金属間化合物が生
成するようになって靭性が低下し、またハイドロフォー
ミング性及び曲げ加工性が低下するので好ましくない。
したがって、TiおよびBの含有量をそれぞれTi:
0.005〜0.1%、B:0.0001〜0.004
%に定めた。
(C) Ti, B These components are added because they have the effect of refining the cast structure and preventing casting cracks. However, even if the content of either Ti or B is less than 0.005%, B: 0.000
If it is less than 1%, the desired effect cannot be obtained. On the other hand, if any of the contents of Ti and B exceeds 0.1% of Ti and 0.004% of B, a huge intermetallic compound is formed. As a result, the toughness is lowered, and the hydroforming property and the bending workability are lowered, which is not preferable.
Therefore, the contents of Ti and B are respectively set to Ti:
0.005 to 0.1%, B: 0.0001 to 0.004
%.

【0012】(d)Mn、V これら成分は、共にAlと金属間化合物を形成し、これ
らが再結晶の核生成サイトとなって押出し組織を微細な
等軸粒状の結晶粒組織とし、それによってハイドロフォ
ーミング性及び曲げ加工性を向上させ、特にこれら成分
を複合添加することによりその効果を一層大きくさせる
が、MnおよびVの含有量がMn:0.02%未満、
V:0.05%未満では所望の効果が得られず、一方、
MnおよびVの含有量がMn:0.20%、V:0.2
5%を越えると、押出し時の再結晶化が抑制されて繊維
状組織が現れるようになり、ハイドロフォーミング性及
び曲げ加工性が劣化するので好ましくない。したがっ
て、MnおよびVの含有量はそれぞれMn:0.02〜
0.20%、V:0.05〜0.25%に定めた。Mn
およびVは複合添加することが必要であり、その時の添
加量はMnおよびVの合計が0.12%≦Mn+V≦
0.30%の条件を満たすことが一層好ましい。したが
って、MnおよびVの添加量はMn:0.02〜0.2
0%、V:0.05〜0.25%でかつ0.12%≦M
n+V≦0.30%に定めた。
(D) Mn, V These components together form an intermetallic compound with Al, and these serve as nucleation sites for recrystallization to make the extruded structure a fine equiaxed grain structure. Hydroformability and bendability are improved, and the effect is particularly enhanced by adding these components in combination. However, when the content of Mn and V is less than 0.02%,
V: If less than 0.05%, the desired effect cannot be obtained, while
Content of Mn and V is Mn: 0.20%, V: 0.2
If it exceeds 5%, recrystallization at the time of extrusion is suppressed, and a fibrous structure appears, which is undesirable because hydroforming properties and bending workability deteriorate. Therefore, the contents of Mn and V are respectively Mn: 0.02 to
0.20%, V: 0.05 to 0.25%. Mn
And V need to be added in combination, and the amount added at that time is such that the sum of Mn and V is 0.12% ≦ Mn + V ≦
More preferably, the condition of 0.30% is satisfied. Therefore, the added amount of Mn and V is Mn: 0.02 to 0.2.
0%, V: 0.05 to 0.25% and 0.12% ≦ M
n + V ≦ 0.30%.

【0013】(e)Cu Cuは、素地に固溶することにより中空部材の強度を向
上させる作用があるので必要に応じて添加するが、その
含有量がCu:0.03%未満では所望の強度向上効果
が得られず、一方、その含有量が0.4%を越えると耐
食性が低下するので好ましくない。したがって、Cu:
0.03〜0.4%と定めた。
(E) Cu Cu is added as needed because it has the effect of improving the strength of the hollow member by forming a solid solution in the base material. If the Cu content is less than 0.03%, a desired Cu content is obtained. The effect of improving the strength cannot be obtained. On the other hand, if the content exceeds 0.4%, the corrosion resistance decreases, which is not preferable. Therefore, Cu:
0.03 to 0.4%.

【0014】(c)Cr、Zr これら成分は、共にAlと金属間化合物を形成し、これ
らが再結晶の核生成サイトとなり、押出し組織を微細な
等軸粒状の結晶粒組織とし、ハイドロフォーミング性及
び曲げ加工性が向上させるので必要に応じて添加する
が、Cr:0.02%未満、Zr:0.02%未満では
所望の効果が得られず、一方、Cr:0.05%、Z
r:0.05%をそれぞれ越えると、押出し時の再結晶
化が抑制されて伸長粒や繊維状組織が現れるようにな
り、ハイドロフォーミング性及び曲げ加工性が劣化する
ので好ましくない。したがって、CrおよびZrの含有
量はそれぞれCr:0.02〜0.05%、Zr:0.
02〜0.05%に定めた。
(C) Cr, Zr These components together form an intermetallic compound with Al, these serve as nucleation sites for recrystallization, and the extruded structure has a fine equiaxed grain structure, and the hydroforming property And Cr is added as necessary to improve the bending workability. However, if Cr: less than 0.02% and Zr: less than 0.02%, the desired effects cannot be obtained. On the other hand, Cr: 0.05%, Z
When r exceeds 0.05%, recrystallization at the time of extrusion is suppressed, and elongated grains and a fibrous structure appear, and hydroforming properties and bending workability are undesirably deteriorated. Therefore, the contents of Cr and Zr are respectively Cr: 0.02 to 0.05% and Zr: 0.
It was set to 02-0.05%.

【0015】B.組織 (f)結晶粒の平均粒径および形状 中空部材は押出し加工またはさらに引抜き加工すること
によって製造するが、得られた中空部材の組織は結晶粒
が微細であるほど好ましく、中空部材の長さ方向におけ
る平均結晶粒径をDl、中空部材の厚さ方向における平
均結晶粒径をDtとすると、(Dl+Dt)/2≦10
0μmとする必要があり、さらにハイドロフォーミング
性を高めるには繊維状組織の無い比較的球状の結晶粒と
することが好ましい。したがって、この発明の中空部材
を構成するAl合金の結晶粒を(Dl+Dt)/2≦1
00μmかつDl/Dt≦2.0の範囲内にあるように
定めた。
B. Structure (f) Average Particle Size and Shape of Crystal Grains The hollow member is manufactured by extrusion or further drawing, and the structure of the obtained hollow member is preferably as fine as the crystal grains are. Assuming that the average crystal grain size in the direction of direction is Dl and the average crystal grain size in the thickness direction of the hollow member is Dt, (Dl + Dt) / 2 ≦ 10
The thickness must be 0 μm, and in order to further enhance the hydroforming property, it is preferable to use relatively spherical crystal grains without a fibrous structure. Therefore, the crystal grain of the Al alloy constituting the hollow member of the present invention is (Dl + Dt) / 2 ≦ 1
It was determined to be within a range of 00 μm and D1 / Dt ≦ 2.0.

【0016】C.機械的特性 ハイドロフォーミングするためのアルミニウム合金中空
部材は、強度を必要とするところから、耐力:160M
Pa以上あることが必要である。
C. Mechanical properties Aluminum alloy hollow members for hydroforming require strength, and have a proof strength of 160M.
It must be Pa or more.

【0017】[0017]

【発明の実施の形態】表1〜2に示される組成を有し、
直径:204mmの寸法を有するAl合金ビレットを溶
製し、これらビレットに温度:545℃、4時間保持の
均質化処理を施した後、1650tonの押出し機を用
い、押出し温度:500℃、押出し速度:5m/min
で押出し加工を行ない、その後ただちに水冷し、ついで
160℃、4〜8時間保持の人工時効処理を施すことに
より肉厚:2.7mm、外径:43mmの寸法を有する
本発明Al合金中空部材(以下、本発明中空部材とい
う)1〜16、比較Al合金中空部材(以下、比較中空
部材という)1〜4および従来Al合金中空部材(以
下、従来中空部材という)1〜2を作製した。
BEST MODE FOR CARRYING OUT THE INVENTION Having the compositions shown in Tables 1 and 2,
An Al alloy billet having a diameter of 204 mm is melted, and the billet is subjected to a homogenization treatment at a temperature of 545 ° C. for 4 hours, and then an extruder of 1650 tons is used. : 5m / min
The aluminum alloy hollow member of the present invention having a wall thickness of 2.7 mm and an outer diameter of 43 mm is subjected to an artificial aging treatment at 160 ° C. for 4 to 8 hours. Hereinafter, hollow members of the present invention 1 to 16, comparative aluminum alloy hollow members 1 to 4 (hereinafter, comparative hollow members), and conventional aluminum alloy hollow members (hereinafter, conventional hollow members) 1 to 2 were produced.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】このようにして得られた本発明中空部材1
〜16、比較中空部材1〜4および従来中空部材1〜2
の断面のミクロ組織を観察し、中空部材の長さ方向にお
ける平均結晶粒径をDl、中空部材の厚さ方向における
平均結晶粒径をDtとすると、(Dl+Dt)/2およ
びDl/Dtの値を求め、その結果を表3に示した。
The hollow member 1 of the present invention thus obtained
-16, comparative hollow members 1-4 and conventional hollow members 1-2
Observing the microstructure of the cross section of the above, if the average crystal grain size in the length direction of the hollow member is Dl and the average crystal grain size in the thickness direction of the hollow member is Dt, the values of (Dl + Dt) / 2 and Dl / Dt And the results are shown in Table 3.

【0021】さらに、本発明中空部材1〜16、比較中
空部材1〜4および従来中空部材1〜2から引張り試験
片を切り出して作製し、この引張り試験片を用いて耐力
を測定し、その結果を表3に示した。さらに、本発明中
空部材1〜16、比較中空部材1〜4および従来中空部
材1〜2に内圧を負荷すると共に軸方向に押し込みを行
なうことにより拡管し、破断が生じたときの破断位置で
の周長を求め、破断までの周長変化率が18%以上を
○、18%未満が×で示し、ハイドロフォーミング性を
評価し、その結果を表3に示した。
Further, tensile test pieces were cut out from the hollow members 1 to 16 of the present invention, the comparative hollow members 1 to 4 and the conventional hollow members 1 and 2, and the proof stress was measured using the tensile test pieces. Are shown in Table 3. Further, the hollow members 1 to 16 of the present invention, the comparative hollow members 1 to 4 and the conventional hollow members 1 to 2 are expanded by applying an internal pressure and being pushed in the axial direction, thereby expanding the pipe at the breaking position when the breaking occurs. The perimeter was determined, and the rate of change of the perimeter until fracture was 18% or more was indicated by ○, and less than 18% was indicated by x, and the hydroforming properties were evaluated. The results are shown in Table 3.

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【発明の効果】表1〜3に示される結果から、本発明中
空部材1〜16は従来中空部材1〜2および比較中空部
材1〜4に比べて、拡管率が優れているところから、ハ
イドロフォーミング性に優れていることが分かる。
According to the results shown in Tables 1 to 3, the hollow members 1 to 16 of the present invention have an excellent expansion ratio as compared with the conventional hollow members 1 and 2 and the comparative hollow members 1 to 4. It turns out that it is excellent in forming property.

【0024】前述のように、この発明のアルミニウム合
金中空部材は、ハイドロフォーミング性に優れていると
ころから、強度の優れた各種部品を精度よく作製するこ
とができ、自動車の軽量化の向上に大いに寄与すること
ができ、産業上優れた効果をもたらすものである。
As described above, since the aluminum alloy hollow member of the present invention is excellent in hydroforming properties, various parts having excellent strength can be produced with high accuracy, and the improvement of the weight reduction of automobiles is greatly achieved. It can contribute and bring about excellent industrial effects.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷川 久男 東京都港区芝2丁目3番3号 三菱アルミ ニウム株式会社内 (72)発明者 中川 成幸 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 真嶋 聡 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hisao Tanigawa 2-3-3 Shiba, Minato-ku, Tokyo Inside Mitsubishi Aluminum Co., Ltd. (72) Inventor Shigeyuki Nakagawa 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Automobile Stock Within the company (72) Inventor Satoshi Majima 2 Nihonsan Motor Co., Ltd., 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】質量%で(以下%は質量%を示す) Si:0.5〜1.4%、 Mg:0.30〜0.75%、 Fe:0.1〜0.4%、 Ti:0.005〜0.1%、 B:0.0001〜0.004%、 を含有し、さらに、MnおよびVを、 Mn:0.02〜0.20%、 V:0.05〜0.25%、 0.12%≦Mn+V≦0.30%、 となるように含有し、残りがAlと不可避不純物からな
る組成、並びに、Dlを中空部材の長さ方向の平均結晶
粒径、Dtを中空部材の厚さ方向の平均結晶粒径とする
と、(Dl+Dt)/2≦100μm、Dl/Dt≦
2.0の条件を満足する結晶粒組織を有するAl合金か
らなることを特徴とするハイドロフォーミング性に優れ
たアルミニウム合金中空部材。
1. In mass% (% means mass%) Si: 0.5 to 1.4%, Mg: 0.30 to 0.75%, Fe: 0.1 to 0.4%, Ti: 0.005 to 0.1%, B: 0.0001 to 0.004%, and Mn and V are further defined as: Mn: 0.02 to 0.20%, V: 0.05 to 0.25%, 0.12% ≦ Mn + V ≦ 0.30%, with the balance being Al and unavoidable impurities, and Dl containing the average crystal grain size in the length direction of the hollow member, When Dt is the average crystal grain size in the thickness direction of the hollow member, (Dl + Dt) / 2 ≦ 100 μm, Dl / Dt ≦
An aluminum alloy hollow member excellent in hydroformability, comprising an Al alloy having a crystal grain structure satisfying the condition of 2.0.
【請求項2】Si:0.5〜1.4%、 Mg:0.30〜0.75%、 Fe:0.1〜0.4%、 Ti:0.005〜0.1%、 B:0.0001〜0.004%、 Cu:0.03〜0.4%、 を含有し、さらに、MnおよびVを、 Mn:0.02〜0.20%、 V:0.05〜0.25%、 0.12%≦Mn+V≦0.30%、 となるように含有し、残りがAlと不可避不純物からな
る組成、並びに、Dlを中空部材の長さ方向の平均結晶
粒径、Dtを中空部材の厚さ方向の平均結晶粒径とする
と、(Dl+Dt)/2≦100μm、Dl/Dt≦
2.0の条件を満足する結晶粒組織を有するAl合金か
らなることを特徴とするハイドロフォーミング性に優れ
たアルミニウム合金中空部材。
2. Si: 0.5 to 1.4%, Mg: 0.30 to 0.75%, Fe: 0.1 to 0.4%, Ti: 0.005 to 0.1%, B : 0.0001 to 0.004%, Cu: 0.03 to 0.4%, and further, Mn and V: Mn: 0.02 to 0.20%, V: 0.05 to 0 .25%, 0.12% ≦ Mn + V ≦ 0.30%, the balance being Al and inevitable impurities, and Dl being the average crystal grain length in the longitudinal direction of the hollow member, Dt Is the average crystal grain size in the thickness direction of the hollow member, (Dl + Dt) / 2 ≦ 100 μm, Dl / Dt ≦
An aluminum alloy hollow member excellent in hydroformability, comprising an Al alloy having a crystal grain structure satisfying the condition of 2.0.
【請求項3】請求項1または2記載の組成を有するAl
合金に、さらにCr:0.02〜0.05%、Zr:
0.02〜0.05%の内の1種または2種を含有した
組成を有するAl合金からなることを特徴とするハイド
ロフォーミング性に優れたアルミニウム合金中空部材。
3. Al having the composition according to claim 1 or 2.
Cr: 0.02 to 0.05%, Zr:
An aluminum alloy hollow member excellent in hydroforming properties, comprising an Al alloy having a composition containing one or two of 0.02 to 0.05%.
JP2000290503A 2000-09-25 2000-09-25 Aluminum alloy hollow member with excellent hydroforming properties Expired - Fee Related JP4296584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000290503A JP4296584B2 (en) 2000-09-25 2000-09-25 Aluminum alloy hollow member with excellent hydroforming properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000290503A JP4296584B2 (en) 2000-09-25 2000-09-25 Aluminum alloy hollow member with excellent hydroforming properties

Publications (2)

Publication Number Publication Date
JP2002097540A true JP2002097540A (en) 2002-04-02
JP4296584B2 JP4296584B2 (en) 2009-07-15

Family

ID=18773726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000290503A Expired - Fee Related JP4296584B2 (en) 2000-09-25 2000-09-25 Aluminum alloy hollow member with excellent hydroforming properties

Country Status (1)

Country Link
JP (1) JP4296584B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023094446A1 (en) * 2021-11-24 2023-06-01 Norsk Hydro Asa A 6xxx alloy for extrusion with improved properties and a process for manufacturing extruded products

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023094446A1 (en) * 2021-11-24 2023-06-01 Norsk Hydro Asa A 6xxx alloy for extrusion with improved properties and a process for manufacturing extruded products

Also Published As

Publication number Publication date
JP4296584B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
JP4101614B2 (en) Method for producing high-strength aluminum alloy extruded material with excellent resistance to corrosion and stress corrosion cracking
JP4398428B2 (en) High strength aluminum alloy extruded material with excellent corrosion resistance and method for producing the same
EP0687743A1 (en) Aluminum alloy bumper-reinforcing material and method of producing the same
JP2012097321A (en) High-strength aluminum alloy forged product excellent in stress corrosion cracking resistance and forging method for the same
EP2811043A1 (en) High-strength aluminum alloy extrudate with excellent corrosion resistance, ductility, and hardenability and process for producing same
WO2017185173A1 (en) Corrosion resistant alloy for extruded and brazed products
JPH08144031A (en) Production of aluminum-zinc-magnesium alloy hollow shape excellent in strength and formability
JP4201434B2 (en) Method for producing high-strength aluminum alloy extruded material with excellent corrosion resistance
JPH08225874A (en) Aluminum alloy extruded material for automobile structural member and its production
JPH116044A (en) High strength/high toughness aluminum alloy
JP2010196089A (en) Extruded pipe of aluminum alloy having high strength and superior stress corrosion cracking resistance for hydroforming process
JPH09268342A (en) High strength aluminum alloy
JP2000054049A (en) Aluminum-magnesium-silicon alloy extruded shape material for side member excellent in collapse characteristic and its production
JP3618807B2 (en) Aluminum alloy hollow shape having excellent bending workability and method for producing the shape
JP3691254B2 (en) Al-Mg-Si alloy extruded profile for side member and method for producing the same
WO2015077880A1 (en) Aluminum alloy combining high strength and extrudability, and low quench sensitivity
JPH06330264A (en) Production of aluminum alloy forged material excellent in strength and toughness
JP2002363677A (en) Al-Mg BASED ALUMINUM ALLOY HOLLOW EXTRUSION MATERIAL FOR BULGING
JP4296584B2 (en) Aluminum alloy hollow member with excellent hydroforming properties
JP3929850B2 (en) Structural aluminum alloy forging with excellent corrosion resistance and method for producing the same
JP4296583B2 (en) Aluminum alloy hollow member with excellent hydroforming properties
JPH10306338A (en) Hollow extruded material of al-cu-mg-si alloy, excellent in strength and corrosion resistance, and its manufacture
JP4281609B2 (en) Aluminum alloy extruded material excellent in formability and method for producing the same
JP2002241880A (en) Aluminum alloy extrusion profile material having excellent bending workability and production method therefor
JP4726524B2 (en) Aluminum alloy tube and aluminum alloy automobile structural member using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090405

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees