JP4296584B2 - Aluminum alloy hollow member with excellent hydroforming properties - Google Patents

Aluminum alloy hollow member with excellent hydroforming properties Download PDF

Info

Publication number
JP4296584B2
JP4296584B2 JP2000290503A JP2000290503A JP4296584B2 JP 4296584 B2 JP4296584 B2 JP 4296584B2 JP 2000290503 A JP2000290503 A JP 2000290503A JP 2000290503 A JP2000290503 A JP 2000290503A JP 4296584 B2 JP4296584 B2 JP 4296584B2
Authority
JP
Japan
Prior art keywords
hollow member
alloy
aluminum alloy
crystal grain
hydroforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000290503A
Other languages
Japanese (ja)
Other versions
JP2002097540A (en
Inventor
紘一 大堀
久男 谷川
成幸 中川
聡 真嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Aluminum Co Ltd
Nissan Motor Co Ltd
Original Assignee
Mitsubishi Aluminum Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd, Nissan Motor Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2000290503A priority Critical patent/JP4296584B2/en
Publication of JP2002097540A publication Critical patent/JP2002097540A/en
Application granted granted Critical
Publication of JP4296584B2 publication Critical patent/JP4296584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
この発明は、自動車、車両、あるいは建築部材のフレームや接合部材などの成形に好適なハイドロフォーミング性に優れたアルミニウム合金中空部材に関するものである。
【0002】
【従来の技術】
近年、地球の温暖化などの環境問題から、排ガス低減や燃費向上などのために自動車の軽量化が強く要請されている。車体の軽量化の手法としては、従来主として使用されてきた鋼板をアルミ化する材料置換が最も効果的であるため、アルミニウム合金材、特に、複雑形状の構造体を一体で成形できるアルミニウム合金押出し材または引き抜き材の使用が増加している。例えば、アルミニウム合金インゴットを押出しまたはさらに引抜き加工して得られた中空部材を所定の形状に一体成形し、これらを接合して車体骨格を構成し、それに外板パネルを組み付けるアルミスペースフレーム車体が相次いで商品化されている。
これらアルミニウム合金押出し中空部材を所定の形状に一体成形するための加工技術として、最近、ハイドロフォーミング技術が注目されている。ハイドロフォーミングは管材の型の中での液圧による拡管成形が主体となる加工法で、同一部材の断面形状を自由に変更することができる。この加工法においては、例えば、液圧成形に先立ち、予備成形において管材の可動型を用いた複雑断面形状への成形と曲げ加工を行うことも一般的に成されている。また、液圧成形においては、多くの場合、管軸方向の押し込みによって変形部分への材料流入を助長することが行われている。
【0003】
かかるハイドロフォーミングを行なうためのアルミニウム合金中空部材として、現在のところ6063合金、6N01合金、6061合金などのAl−Mg−Si系合金を押出し加工することにより得られた中空部材が主に使用されている(例えば、特開平10−46280号参照)。この中空部材を予備成形により所定の断面形状に加工した後、ハイドロフォーミングが行われている。また、自由な断面形状が成形可能な押出し形材の特徴を生かし、あらかじめ管状以外の所定の断面形状に押出し成形された中空形材を素材として、この形材から直接、または適宜な予備成形を行った後、ハイドロフォーミングが行われている。
【0004】
【発明が解決しようとする課題】
ところで、Al−Mg−Si系合金、例えば、6063合金、6N01合金、6061合金などにおいては、強度の高いT5あるいはT6材はハイドロフォーミング性に劣っているため、拡管率の高いO材を用いる必要があった。
しかしながら、O材を用いて成形した場合は、部品に必要な強度を得るために、成形後に溶体化・焼入れ、時効からなる熱処理を施さなければならず、熱応力や焼入れ歪みによる変形が避けがたいという問題があった。
また、この精度低下を避けるためにO材のまま用いた場合は、強度が低いために板厚を厚くする必要があり、アルミニウム合金による軽量化効果が低くなってしまうという問題点があった。
この発明は、かかる問題点に鑑みてなされたものであって、部品に必要とされる強度と良好なハイドロフォーミング性とを兼ね備えたアルミニウム合金中空部材を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明者等は、上述のような観点から、ハイドロフォーミングして得られた成形部品の強度が十分にありかつハイドロフォーミング性に優れた中空部材を得るべく研究を行なった結果、下記の(イ)〜(ハ)記載の成分組成および結晶粒組織を有するAl合金からなる中空部材は、いずれもハイドロフォーミング性に優れ、さらにこれら中空部材を人工時効処理することにより耐力:160MPa以上の機械的特性を有するようになる、という研究結果が得られたのである。
(イ)質量%で(以下%は質量%を示す)、Si:0.5〜1.4%、Mg:0.30〜0.75%、Fe:0.1〜0.4%、Ti:0.005〜0.1%、B:0.0001〜0.004%を含有し、残りがAlと不可避不純物からなる組成を有するAl合金に、さらに、MnおよびVを、Mn:0.02〜0.2%、V:0.05〜0.25%(ただし、0.12%≦Mn+V≦0.3%)となるように添加した組成、並びに中空部材の長さ方向における平均結晶粒径をDl、中空部材の厚さ方向における平均結晶粒径をDtとすると、(Dl+Dt)/2≦100μm、Dl/Dt≦2.0の条件を満足する結晶粒組織を有するAl合金からなる中空部材、
(ロ)前記(イ)記載のAl合金に、さらにCu:0.03〜0.4%を含有したAl合金からなる中空部材、
(ハ)前記(イ)または(ロ)記載のAl合金に、さらにCr:0.02〜0.05%、Zr:0.02〜0.05%の内の1種または2種を含有したAl合金からなる中空部材、
【0006】
この発明は、上記の研究結果にもとづいてなされたものであって、
(1)Si:0.5〜1.4%、Mg:0.30〜0.75%、Fe:0.1〜0.4%、Ti:0.005〜0.1%、B:0.0001〜0.004%を含有し、さらに、MnおよびVを、Mn:0.02〜0.20%、V:0.05〜0.25%、0.12%≦Mn+V≦0.30%となるように含有し、残りがAlと不可避不純物からなる組成、並びに、Dlを中空部材の長さ方向の平均結晶粒径、Dtを中空部材の厚さ方向の平均結晶粒径とすると、(Dl+Dt)/2≦100μm、Dl/Dt≦2.0の条件を満足する結晶粒組織を有するするAl合金からなるハイドロフォーミング性に優れたアルミニウム合金中空部材、
(2)Si:0.5〜1.4%、Mg:0.30〜0.75%、Fe:0.1〜0.4%、Ti:0.005〜0.1%、B:0.0001〜0.004%、Cu:0.03〜0.4%を含有し、さらに、MnおよびVを、Mn:0.02〜0.20%、V:0.05〜0.25%、0.12%≦Mn+V≦0.30%となるように含有し、残りがAlと不可避不純物からなる組成、並びにDlを中空部材の長さ方向の平均結晶粒径、Dtを中空部材の厚さ方向の平均結晶粒径とすると、(Dl+Dt)/2≦100μm、Dl/Dt≦2.0の条件を満足する結晶粒組織を有するするAl合金からなるハイドロフォーミング性に優れたアルミニウム合金中空部材、
(3)前記(1)または(2)記載の組成を有するAl合金に、さらにCr:0.02〜0.05%、Zr:0.02〜0.05%の内の1種または2種を含有した組成を有するAl合金からなるハイドロフォーミング性に優れたアルミニウム合金中空部材、に特徴を有するものである。
【0007】
前記(1)、(2)または(3)記載のハイドロフォーミング性に優れたアルミニウム合金中空部材は、(1)、(2)または(3)記載の成分組成を有するビレットをDC鋳造法により作製し、このビレットを均質化熱処理し、均質化熱処理したビレットを温度:450〜550℃の範囲内の温度で押出した後、ただちに水冷または水冷後さらに引抜き加工することにより作製する。ここで引抜き加工とは、押出材をダイスを通してその断面を減少することにより所定の寸法精度を得るための冷間での加工である。このようにして得られたアルミニウム合金中空部材は、中空部材の長さ方向における平均結晶粒径をDl、中空部材の厚さ方向における平均結晶粒径をDtとすると、(Dl+Dt)/2≦100μm、Dl/Dt≦2.0の条件を満足する結晶粒組織を有する。
【0008】
前記(1)〜(3)の内のいずれかに記載の中空部材を温度:150〜210℃に1〜24時間保持の条件で人工時効処理すると、耐力:160MPa以上を有するハイドロフォーミング性に優れたアルミニウム合金中空部材が得られる。
【0009】
中空部材を構成するアルミニウム合金の成分組成および結晶粒径を上記の通りに限定した理由を説明する。
A.成分組成
(a)Si,Mg
これら成分には、微細なMg2Si化合物として析出して強度を向上させる作用があるが、SiおよびMgのいずれかの含有量でもSi:0.5%未満、Mg:0.3%未満になると、生成する析出物の量が少なくなって所望の強度を確保することができず、一方、その含有量がSi:1.4%およびMg:0.75%を越えるとハイドロフォーミング性、曲げ加工性、および押出しまたは引抜き加工性が低下するようになるので好ましくない。したがって、Si:0.5〜1.4%、Mg:0.30〜0.75%に定めた。SiおよびMgの一層好ましい範囲はSi:0.7〜1.2%、Mg:0.40〜0.60%である。
【0010】
(b)Fe
Fe成分はAlと金属間化合物を形成し、これらが再結晶の核生成サイトとなり、押出し組織を微細な等軸粒状の結晶粒組織とし、その結果、ハイドロフォーミング性及び曲げ加工性を向上させる作用を有するが、その含有量が0.1%未満では所望の効果が得られず、一方、0.4%を越えて添加すると押出し時の再結晶化が抑制されて伸長粒や繊維状組織が現れるようになり、ハイドロフォーミング性が劣化するので好ましくない。したがって、Feの添加量は0.1〜0.4%に定めた。
【0011】
(c)Ti、B
これら成分は、鋳造組織を微細化し、鋳造割れを防止する作用があるので添加するが、TiおよびBのいずれかの含有量でもTi:0.005%未満、B:0.0001%未満になると所望の効果が得られず、一方、TiおよびBのいずれかの含有量でもTi:0.1%およびB:0.004%を越えると、巨大な金属間化合物が生成するようになって靭性が低下し、またハイドロフォーミング性及び曲げ加工性が低下するので好ましくない。したがって、TiおよびBの含有量をそれぞれTi:0.005〜0.1%、B:0.0001〜0.004%に定めた。
【0012】
(d)Mn、V
これら成分は、共にAlと金属間化合物を形成し、これらが再結晶の核生成サイトとなって押出し組織を微細な等軸粒状の結晶粒組織とし、それによってハイドロフォーミング性及び曲げ加工性を向上させ、特にこれら成分を複合添加することによりその効果を一層大きくさせるが、MnおよびVの含有量がMn:0.02%未満、V:0.05%未満では所望の効果が得られず、一方、MnおよびVの含有量がMn:0.20%、V:0.25%を越えると、押出し時の再結晶化が抑制されて繊維状組織が現れるようになり、ハイドロフォーミング性及び曲げ加工性が劣化するので好ましくない。したがって、MnおよびVの含有量はそれぞれMn:0.02〜0.20%、V:0.05〜0.25%に定めた。MnおよびVは複合添加することが必要であり、その時の添加量はMnおよびVの合計が0.12%≦Mn+V≦0.30%の条件を満たすことが一層好ましい。したがって、MnおよびVの添加量はMn:0.02〜0.20%、V:0.05〜0.25%でかつ0.12%≦Mn+V≦0.30%に定めた。
【0013】
(e)Cu
Cuは、素地に固溶することにより中空部材の強度を向上させる作用があるので必要に応じて添加するが、その含有量がCu:0.03%未満では所望の強度向上効果が得られず、一方、その含有量が0.4%を越えると耐食性が低下するので好ましくない。したがって、Cu:0.03〜0.4%と定めた。
【0014】
(c)Cr、Zr
これら成分は、共にAlと金属間化合物を形成し、これらが再結晶の核生成サイトとなり、押出し組織を微細な等軸粒状の結晶粒組織とし、ハイドロフォーミング性及び曲げ加工性が向上させるので必要に応じて添加するが、Cr:0.02%未満、Zr:0.02%未満では所望の効果が得られず、一方、Cr:0.05%、Zr:0.05%をそれぞれ越えると、押出し時の再結晶化が抑制されて伸長粒や繊維状組織が現れるようになり、ハイドロフォーミング性及び曲げ加工性が劣化するので好ましくない。したがって、CrおよびZrの含有量はそれぞれCr:0.02〜0.05%、Zr:0.02〜0.05%に定めた。
【0015】
B.組織
(f)結晶粒の平均粒径および形状
中空部材は押出し加工またはさらに引抜き加工することによって製造するが、得られた中空部材の組織は結晶粒が微細であるほど好ましく、中空部材の長さ方向における平均結晶粒径をDl、中空部材の厚さ方向における平均結晶粒径をDtとすると、(Dl+Dt)/2≦100μmとする必要があり、さらにハイドロフォーミング性を高めるには繊維状組織の無い比較的球状の結晶粒とすることが好ましい。したがって、この発明の中空部材を構成するAl合金の結晶粒を(Dl+Dt)/2≦100μmかつDl/Dt≦2.0の範囲内にあるように定めた。
【0016】
C.機械的特性
ハイドロフォーミングするためのアルミニウム合金中空部材は、強度を必要とするところから、耐力:160MPa以上あることが必要である。
【0017】
【発明の実施の形態】
表1〜2に示される組成を有し、直径:204mmの寸法を有するAl合金ビレットを溶製し、これらビレットに温度:545℃、4時間保持の均質化処理を施した後、1650tonの押出し機を用い、押出し温度:500℃、押出し速度:5m/minで押出し加工を行ない、その後ただちに水冷し、ついで160℃、4〜8時間保持の人工時効処理を施すことにより肉厚:2.7mm、外径:43mmの寸法を有する本発明Al合金中空部材(以下、本発明中空部材という)1〜16、比較Al合金中空部材(以下、比較中空部材という)1〜4および従来Al合金中空部材(以下、従来中空部材という)1〜2を作製した。
【0018】
【表1】

Figure 0004296584
【0019】
【表2】
Figure 0004296584
【0020】
このようにして得られた本発明中空部材1〜16、比較中空部材1〜4および従来中空部材1〜2の断面のミクロ組織を観察し、中空部材の長さ方向における平均結晶粒径をDl、中空部材の厚さ方向における平均結晶粒径をDtとすると、(Dl+Dt)/2およびDl/Dtの値を求め、その結果を表3に示した。
【0021】
さらに、本発明中空部材1〜16、比較中空部材1〜4および従来中空部材1〜2から引張り試験片を切り出して作製し、この引張り試験片を用いて耐力を測定し、その結果を表3に示した。
さらに、本発明中空部材1〜16、比較中空部材1〜4および従来中空部材1〜2に内圧を負荷すると共に軸方向に押し込みを行なうことにより拡管し、破断が生じたときの破断位置での周長を求め、破断までの周長変化率が18%以上を○、18%未満が×で示し、ハイドロフォーミング性を評価し、その結果を表3に示した。
【0022】
【表3】
Figure 0004296584
【0023】
【発明の効果】
表1〜3に示される結果から、本発明中空部材1〜16は従来中空部材1〜2および比較中空部材1〜4に比べて、拡管率が優れているところから、ハイドロフォーミング性に優れていることが分かる。
【0024】
前述のように、この発明のアルミニウム合金中空部材は、ハイドロフォーミング性に優れているところから、強度の優れた各種部品を精度よく作製することができ、自動車の軽量化の向上に大いに寄与することができ、産業上優れた効果をもたらすものである。[0001]
[Industrial application fields]
The present invention relates to an aluminum alloy hollow member excellent in hydroforming properties suitable for molding a frame, a joining member, or the like of an automobile, a vehicle, or a building member.
[0002]
[Prior art]
In recent years, due to environmental problems such as global warming, there is a strong demand for weight reduction of automobiles in order to reduce exhaust gas and improve fuel efficiency. The most effective method for reducing the weight of the vehicle body is to replace the steel material, which has been mainly used in the past, with aluminum, so that aluminum alloy materials, especially aluminum alloy extruded materials that can be used to integrally form structures with complex shapes, are most effective. Or the use of drawing material is increasing. For example, a hollow member obtained by extruding or further drawing an aluminum alloy ingot is integrally formed into a predetermined shape, and these are joined together to form a car body skeleton, and an aluminum space frame car body is assembled with an outer panel panel. Has been commercialized.
As a processing technique for integrally forming these aluminum alloy extruded hollow members into a predetermined shape, a hydroforming technique has recently attracted attention. Hydroforming is a processing method that mainly consists of pipe expansion molding by hydraulic pressure in the mold of the pipe material, and the sectional shape of the same member can be freely changed. In this processing method, for example, prior to hydraulic forming, forming and bending into a complex cross-sectional shape using a movable mold of a pipe material is generally performed in preforming. Further, in the hydraulic forming, in many cases, material inflow to the deformed portion is promoted by pushing in the tube axis direction.
[0003]
Currently, hollow members obtained by extruding Al—Mg—Si alloys such as 6063 alloy, 6N01 alloy, and 6061 alloy are mainly used as aluminum alloy hollow members for performing such hydroforming. (For example, refer to JP-A-10-46280). Hydroforming is performed after processing this hollow member into a predetermined cross-sectional shape by preforming. In addition, taking advantage of the features of extruded shapes that can be molded into a free cross-sectional shape, a hollow shape material that has been previously extruded into a predetermined cross-sectional shape other than a tubular shape is used as a raw material. After performing, hydroforming is performed.
[0004]
[Problems to be solved by the invention]
By the way, in the Al-Mg-Si alloy, for example, 6063 alloy, 6N01 alloy, 6061 alloy, etc., high strength T5 or T6 material is inferior in hydroforming property, so it is necessary to use O material with high tube expansion rate. was there.
However, when molding using O material, in order to obtain the required strength of the part, it must be subjected to heat treatment consisting of solution treatment, quenching, and aging after molding, and deformation due to thermal stress and quenching strain can be avoided. There was a problem of wanting.
Further, when the O material is used as it is in order to avoid this decrease in accuracy, it is necessary to increase the plate thickness because the strength is low, and there is a problem that the lightening effect by the aluminum alloy is reduced.
The present invention has been made in view of such problems, and an object of the present invention is to provide an aluminum alloy hollow member having both strength required for a part and good hydroforming properties.
[0005]
[Means for Solving the Problems]
From the viewpoints described above, the present inventors have conducted research to obtain a hollow member having sufficient strength of a molded part obtained by hydroforming and excellent hydroforming properties. The hollow members made of an Al alloy having the component composition and the crystal grain structure described in (iii) to (c) are all excellent in hydroforming properties, and are further subjected to artificial aging treatment to have mechanical strength of 160 MPa or more. The result of the research that it has become.
(B) In mass% (hereinafter,% indicates mass%), Si: 0.5 to 1.4%, Mg: 0.30 to 0.75%, Fe: 0.1 to 0.4%, Ti : 0.005 to 0.1%, B: 0.0001 to 0.004%, and the remaining Al alloy having a composition composed of Al and inevitable impurities, Mn and V are further changed to Mn: 0.00. 02 to 0.2%, V: 0.05 to 0.25% (provided that 0.12% ≦ Mn + V ≦ 0.3%), and average crystal in the length direction of the hollow member When the grain size is Dl and the average crystal grain size in the thickness direction of the hollow member is Dt, it is made of an Al alloy having a crystal grain structure that satisfies the conditions of (Dl + Dt) / 2 ≦ 100 μm and Dl / Dt ≦ 2.0. Hollow member,
(B) A hollow member made of an Al alloy containing Cu: 0.03 to 0.4% in addition to the Al alloy described in (a) above,
(C) The Al alloy described in (i) or (b) further contains one or two of Cr: 0.02 to 0.05% and Zr: 0.02 to 0.05%. A hollow member made of an Al alloy,
[0006]
This invention was made based on the above research results,
(1) Si: 0.5-1.4%, Mg: 0.30-0.75%, Fe: 0.1-0.4%, Ti: 0.005-0.1%, B: 0 0.0001% to 0.004%, and Mn and V are further changed to Mn: 0.02 to 0.20%, V: 0.05 to 0.25%, 0.12% ≦ Mn + V ≦ 0.30. %, With the remainder consisting of Al and inevitable impurities, and Dl as the average crystal grain size in the length direction of the hollow member, and Dt as the average crystal grain size in the thickness direction of the hollow member, (Dl + Dt) / 2 ≦ 100 μm, aluminum alloy hollow member excellent in hydroforming property made of an Al alloy having a crystal grain structure that satisfies the conditions of Dl / Dt ≦ 2.0,
(2) Si: 0.5-1.4%, Mg: 0.30-0.75%, Fe: 0.1-0.4%, Ti: 0.005-0.1%, B: 0 0.0001 to 0.004%, Cu: 0.03 to 0.4%, Mn and V are further changed to Mn: 0.02 to 0.20%, V: 0.05 to 0.25%. , 0.12% ≦ Mn + V ≦ 0.30%, with the remainder comprising Al and inevitable impurities, Dl is the average crystal grain size in the length direction of the hollow member, and Dt is the thickness of the hollow member An aluminum alloy hollow member having an excellent hydroforming property made of an Al alloy having a crystal grain structure satisfying the conditions of (Dl + Dt) / 2 ≦ 100 μm and Dl / Dt ≦ 2.0 as the average crystal grain size in the vertical direction ,
(3) In addition to the Al alloy having the composition described in (1) or (2) above, one or two of Cr: 0.02 to 0.05% and Zr: 0.02 to 0.05% The aluminum alloy hollow member having an excellent hydroforming property, which is made of an Al alloy having a composition containing the above, has a feature.
[0007]
The aluminum alloy hollow member excellent in hydroforming properties described in (1), (2) or (3) is prepared by billet having the component composition described in (1), (2) or (3) by DC casting. Then, the billet is subjected to a homogenization heat treatment, and the billet subjected to the homogenization heat treatment is extruded at a temperature in the range of 450 to 550 ° C., and immediately thereafter water-cooled or water-cooled and further drawn. Here, the drawing process is a cold process for obtaining a predetermined dimensional accuracy by reducing the cross section of the extruded material through a die. The aluminum alloy hollow member thus obtained has (Dl + Dt) / 2 ≦ 100 μm, where Dl is the average crystal grain size in the length direction of the hollow member and Dt is the average crystal grain size in the thickness direction of the hollow member. And a grain structure satisfying the condition of Dl / Dt ≦ 2.0.
[0008]
When the hollow member according to any one of (1) to (3) is subjected to artificial aging treatment at a temperature of 150 to 210 ° C. for 1 to 24 hours, the hydroforming property having a yield strength of 160 MPa or more is excellent. An aluminum alloy hollow member is obtained.
[0009]
The reason why the component composition and the crystal grain size of the aluminum alloy constituting the hollow member are limited as described above will be described.
A. Component composition (a) Si, Mg
These components have the effect of improving the strength by precipitating as a fine Mg 2 Si compound, but even if the content of either Si or Mg is Si: less than 0.5%, Mg: less than 0.3% In this case, the amount of precipitates to be generated is reduced and the desired strength cannot be ensured. On the other hand, when the content exceeds Si: 1.4% and Mg: 0.75%, hydroforming properties, bending This is not preferable because processability and extrusion or drawing processability are lowered. Therefore, it was set to Si: 0.5 to 1.4% and Mg: 0.30 to 0.75%. More preferable ranges of Si and Mg are Si: 0.7 to 1.2% and Mg: 0.40 to 0.60%.
[0010]
(B) Fe
The Fe component forms an intermetallic compound with Al. These serve as nucleation sites for recrystallization, and the extruded structure becomes a fine equiaxed grain structure. As a result, hydroforming and bending workability are improved. However, if the content is less than 0.1%, the desired effect cannot be obtained. On the other hand, if the content exceeds 0.4%, recrystallization during extrusion is suppressed, and elongated grains and fibrous structures are formed. It appears, and the hydroforming property deteriorates, which is not preferable. Therefore, the addition amount of Fe is set to 0.1 to 0.4%.
[0011]
(C) Ti, B
These components are added because they have the effect of refining the cast structure and preventing casting cracks, but even if the content of either Ti or B is Ti: less than 0.005%, B: less than 0.0001% On the other hand, if any content of Ti and B exceeds Ti: 0.1% and B: 0.004%, a huge intermetallic compound is produced and toughness is not obtained. Is lowered, and hydroforming property and bending workability are lowered. Therefore, the contents of Ti and B are set to Ti: 0.005 to 0.1% and B: 0.0001 to 0.004%, respectively.
[0012]
(D) Mn, V
Both of these components form an intermetallic compound with Al, and these serve as nucleation sites for recrystallization, making the extruded structure a fine equiaxed grain structure, thereby improving hydroforming and bending workability. In particular, by adding these components in combination, the effect is further increased. However, if the contents of Mn and V are Mn: less than 0.02% and V: less than 0.05%, the desired effect cannot be obtained. On the other hand, if the contents of Mn and V exceed Mn: 0.20% and V: 0.25%, recrystallization during extrusion is suppressed, and a fibrous structure appears, resulting in hydroforming properties and bending. Since workability deteriorates, it is not preferable. Therefore, the contents of Mn and V were determined to be Mn: 0.02 to 0.20% and V: 0.05 to 0.25%, respectively. It is necessary to add Mn and V in combination, and it is more preferable that the amount of addition at that time satisfies the condition that the sum of Mn and V is 0.12% ≦ Mn + V ≦ 0.30%. Therefore, the addition amounts of Mn and V were determined as Mn: 0.02 to 0.20%, V: 0.05 to 0.25%, and 0.12% ≦ Mn + V ≦ 0.30%.
[0013]
(E) Cu
Since Cu has the effect of improving the strength of the hollow member by dissolving in the substrate, it is added as necessary. However, if the content is less than 0.03%, the desired strength improvement effect cannot be obtained. On the other hand, if the content exceeds 0.4%, the corrosion resistance decreases, which is not preferable. Therefore, it was determined that Cu: 0.03 to 0.4%.
[0014]
(C) Cr, Zr
These components together form an intermetallic compound with Al, which becomes a nucleation site for recrystallization, makes the extruded structure a fine equiaxed grain structure, and improves hydroforming and bending workability. However, if Cr: less than 0.02% and Zr: less than 0.02%, the desired effect cannot be obtained, while if Cr: 0.05% and Zr: 0.05% are exceeded, respectively. Further, since recrystallization during extrusion is suppressed and elongated grains and fibrous structures appear, hydroforming properties and bending workability deteriorate, which is not preferable. Therefore, the contents of Cr and Zr were set to Cr: 0.02 to 0.05% and Zr: 0.02 to 0.05%, respectively.
[0015]
B. Structure (f) Average particle diameter and shape of crystal grains The hollow member is manufactured by extrusion or further drawing, and the structure of the obtained hollow member is preferably as fine as the crystal grains, and the length of the hollow member When the average crystal grain size in the direction is Dl and the average crystal grain size in the thickness direction of the hollow member is Dt, it is necessary to set (Dl + Dt) / 2 ≦ 100 μm. A relatively spherical crystal grain is preferably used. Therefore, the crystal grains of the Al alloy constituting the hollow member of the present invention are determined so as to be within the range of (Dl + Dt) / 2 ≦ 100 μm and Dl / Dt ≦ 2.0.
[0016]
C. Mechanical properties An aluminum alloy hollow member for hydroforming requires strength from 160 MPa or more because strength is required.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
An Al alloy billet having the composition shown in Tables 1 and 2 and having a diameter of 204 mm was melted, subjected to homogenization treatment at a temperature of 545 ° C. for 4 hours, and then extruded at 1650 tons. Extrusion temperature: 500 ° C., extrusion speed: 5 m / min using a machine, then immediately water-cooled, and then subjected to artificial aging treatment at 160 ° C. for 4 to 8 hours to achieve a wall thickness of 2.7 mm , Outer diameter: 43 mm of the present invention Al alloy hollow member (hereinafter referred to as the present hollow member) 1 to 16, comparative Al alloy hollow member (hereinafter referred to as the comparative hollow member) 1 to 4 and conventional Al alloy hollow member 1-2 were produced (hereinafter referred to as conventional hollow members).
[0018]
[Table 1]
Figure 0004296584
[0019]
[Table 2]
Figure 0004296584
[0020]
The microstructures of the cross sections of the hollow members 1 to 16 of the present invention, the comparative hollow members 1 to 4 and the conventional hollow members 1 and 2 thus obtained were observed, and the average crystal grain size in the length direction of the hollow member was determined as Dl. Assuming that the average crystal grain size in the thickness direction of the hollow member is Dt, the values of (Dl + Dt) / 2 and Dl / Dt were obtained, and the results are shown in Table 3.
[0021]
Further, tensile test pieces were cut out from the present invention hollow members 1 to 16, comparative hollow members 1 to 4 and conventional hollow members 1 to 2, and the yield strength was measured using the tensile test pieces. It was shown to.
Furthermore, the present invention hollow members 1 to 16, the comparative hollow members 1 to 4 and the conventional hollow members 1 to 2 are expanded with an internal pressure while being pushed in the axial direction, and at the break position when the break occurs. The circumference was determined, and the rate of change in circumference until breakage was 18% or more, and less than 18% was indicated by x. Hydroforming properties were evaluated, and the results are shown in Table 3.
[0022]
[Table 3]
Figure 0004296584
[0023]
【The invention's effect】
From the results shown in Tables 1 to 3, the hollow members 1 to 16 of the present invention are superior in hydroforming properties because the tube expansion rate is superior to the conventional hollow members 1 and 2 and the comparative hollow members 1 to 4. I understand that.
[0024]
As described above, since the aluminum alloy hollow member of the present invention is excellent in hydroforming properties, various parts having excellent strength can be produced with high accuracy and contribute greatly to the reduction in weight of automobiles. It is possible to produce an excellent industrial effect.

Claims (3)

質量%で(以下%は質量%を示す)
Si:0.5〜1.4%、
Mg:0.30〜0.75%、
Fe:0.1〜0.4%、
Ti:0.005〜0.1%、
B:0.0001〜0.004%、
を含有し、さらに、MnおよびVを、
Mn:0.02〜0.20%、
V:0.05〜0.25%、
0.12%≦Mn+V≦0.30%、
となるように含有し、残りがAlと不可避不純物からなる組成、並びに、
Dlを中空部材の長さ方向の平均結晶粒径、Dtを中空部材の厚さ方向の平均結晶粒径とすると、(Dl+Dt)/2≦100μm、Dl/Dt≦2.0の条件を満足する結晶粒組織を有するAl合金からなることを特徴とするハイドロフォーミング性に優れたアルミニウム合金中空部材。
In mass% (% indicates mass%)
Si: 0.5 to 1.4%
Mg: 0.30 to 0.75%,
Fe: 0.1 to 0.4%,
Ti: 0.005 to 0.1%,
B: 0.0001 to 0.004%,
In addition, Mn and V,
Mn: 0.02 to 0.20%,
V: 0.05-0.25%,
0.12% ≦ Mn + V ≦ 0.30%,
A composition comprising the remainder of Al and inevitable impurities, and
When Dl is the average crystal grain size in the length direction of the hollow member and Dt is the average crystal grain size in the thickness direction of the hollow member, the conditions of (Dl + Dt) / 2 ≦ 100 μm and Dl / Dt ≦ 2.0 are satisfied. An aluminum alloy hollow member excellent in hydroforming properties, characterized by comprising an Al alloy having a crystal grain structure.
Si:0.5〜1.4%、
Mg:0.30〜0.75%、
Fe:0.1〜0.4%、
Ti:0.005〜0.1%、
B:0.0001〜0.004%、
Cu:0.03〜0.4%、
を含有し、さらに、MnおよびVを、
Mn:0.02〜0.20%、
V:0.05〜0.25%、
0.12%≦Mn+V≦0.30%、
となるように含有し、残りがAlと不可避不純物からなる組成、並びに、
Dlを中空部材の長さ方向の平均結晶粒径、Dtを中空部材の厚さ方向の平均結晶粒径とすると、(Dl+Dt)/2≦100μm、Dl/Dt≦2.0の条件を満足する結晶粒組織を有するAl合金からなることを特徴とするハイドロフォーミング性に優れたアルミニウム合金中空部材。
Si: 0.5 to 1.4%
Mg: 0.30 to 0.75%,
Fe: 0.1 to 0.4%,
Ti: 0.005 to 0.1%,
B: 0.0001 to 0.004%,
Cu: 0.03-0.4%,
In addition, Mn and V,
Mn: 0.02 to 0.20%,
V: 0.05-0.25%,
0.12% ≦ Mn + V ≦ 0.30%,
A composition comprising the remainder of Al and inevitable impurities, and
When Dl is the average crystal grain size in the length direction of the hollow member and Dt is the average crystal grain size in the thickness direction of the hollow member, the conditions of (Dl + Dt) / 2 ≦ 100 μm and Dl / Dt ≦ 2.0 are satisfied. An aluminum alloy hollow member excellent in hydroforming properties, characterized by comprising an Al alloy having a crystal grain structure.
請求項1または2記載の組成を有するAl合金に、さらにCr:0.02〜0.05%、Zr:0.02〜0.05%の内の1種または2種を含有した組成を有するAl合金からなることを特徴とするハイドロフォーミング性に優れたアルミニウム合金中空部材。The Al alloy having the composition according to claim 1 or 2 further has a composition containing one or two of Cr: 0.02 to 0.05% and Zr: 0.02 to 0.05%. An aluminum alloy hollow member excellent in hydroforming properties, characterized by comprising an Al alloy.
JP2000290503A 2000-09-25 2000-09-25 Aluminum alloy hollow member with excellent hydroforming properties Expired - Fee Related JP4296584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000290503A JP4296584B2 (en) 2000-09-25 2000-09-25 Aluminum alloy hollow member with excellent hydroforming properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000290503A JP4296584B2 (en) 2000-09-25 2000-09-25 Aluminum alloy hollow member with excellent hydroforming properties

Publications (2)

Publication Number Publication Date
JP2002097540A JP2002097540A (en) 2002-04-02
JP4296584B2 true JP4296584B2 (en) 2009-07-15

Family

ID=18773726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000290503A Expired - Fee Related JP4296584B2 (en) 2000-09-25 2000-09-25 Aluminum alloy hollow member with excellent hydroforming properties

Country Status (1)

Country Link
JP (1) JP4296584B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20211429A1 (en) * 2021-11-24 2023-05-25 Norsk Hydro As A 6xxx aluminium alloy with improved properties and a process for manufacturing extruded products

Also Published As

Publication number Publication date
JP2002097540A (en) 2002-04-02

Similar Documents

Publication Publication Date Title
EP0687743A1 (en) Aluminum alloy bumper-reinforcing material and method of producing the same
JP4398428B2 (en) High strength aluminum alloy extruded material with excellent corrosion resistance and method for producing the same
CN100436623C (en) Magnesium wrought alloy having improved extrudability and formability
JP2012097321A (en) High-strength aluminum alloy forged product excellent in stress corrosion cracking resistance and forging method for the same
EP2811043B1 (en) High-strength aluminum alloy extrudate with excellent corrosion resistance, ductility, and hardenability and process for producing same
CN101994047A (en) Magnesium alloy
JP4201434B2 (en) Method for producing high-strength aluminum alloy extruded material with excellent corrosion resistance
JP4846124B2 (en) Method for producing aluminum alloy pipe material for automobile piping having excellent corrosion resistance and workability
JPH116044A (en) High strength/high toughness aluminum alloy
JP4296584B2 (en) Aluminum alloy hollow member with excellent hydroforming properties
JPH09268342A (en) High strength aluminum alloy
JP3618807B2 (en) Aluminum alloy hollow shape having excellent bending workability and method for producing the shape
JPH06330264A (en) Production of aluminum alloy forged material excellent in strength and toughness
JPH0860313A (en) Production of aluminum alloy tube excellent in strength and form rollability
JP4286431B2 (en) Manufacturing method of aluminum alloy piping material
JP3929850B2 (en) Structural aluminum alloy forging with excellent corrosion resistance and method for producing the same
JP3691254B2 (en) Al-Mg-Si alloy extruded profile for side member and method for producing the same
JP4169941B2 (en) Aluminum alloy extruded shape having excellent bending workability and manufacturing method thereof
JP4296583B2 (en) Aluminum alloy hollow member with excellent hydroforming properties
JP2000054049A (en) Aluminum-magnesium-silicon alloy extruded shape material for side member excellent in collapse characteristic and its production
JPH10306338A (en) Hollow extruded material of al-cu-mg-si alloy, excellent in strength and corrosion resistance, and its manufacture
JPH05171328A (en) Thin hollow shape of aluminum alloy excellent in bendability and its production
JP2011195912A (en) 6,000 series aluminum alloy hollow extruded material having excellent high temperature expanded tube formability
JP4726524B2 (en) Aluminum alloy tube and aluminum alloy automobile structural member using the same
JP4281609B2 (en) Aluminum alloy extruded material excellent in formability and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees