JP2002088494A - Method for recovering platinum group metal from metallic electrode - Google Patents
Method for recovering platinum group metal from metallic electrodeInfo
- Publication number
- JP2002088494A JP2002088494A JP2000278197A JP2000278197A JP2002088494A JP 2002088494 A JP2002088494 A JP 2002088494A JP 2000278197 A JP2000278197 A JP 2000278197A JP 2000278197 A JP2000278197 A JP 2000278197A JP 2002088494 A JP2002088494 A JP 2002088494A
- Authority
- JP
- Japan
- Prior art keywords
- platinum group
- metal
- group metal
- electrode
- recovering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B11/00—Obtaining noble metals
- C22B11/04—Obtaining noble metals by wet processes
- C22B11/042—Recovery of noble metals from waste materials
- C22B11/046—Recovery of noble metals from waste materials from manufactured products, e.g. from printed circuit boards, from photographic films, paper or baths
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B11/00—Obtaining noble metals
- C22B11/02—Obtaining noble metals by dry processes
- C22B11/021—Recovery of noble metals from waste materials
- C22B11/025—Recovery of noble metals from waste materials from manufactured products, e.g. from printed circuit boards, from photographic films, paper, or baths
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/04—Extraction of metal compounds from ores or concentrates by wet processes by leaching
- C22B3/06—Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
- C22B3/10—Hydrochloric acid, other halogenated acids or salts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Geochemistry & Mineralogy (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、金属電極から白金
族金属を回収する方法に係り、特に工業用電解に使用さ
れて使用済となった白金族金属酸化物を電極物質として
主にチタン等の電極基材上に設けてなる不溶性金属電極
から白金族金属を回収する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering a platinum group metal from a metal electrode, and more particularly to a method for recovering a platinum group metal oxide which has been used in industrial electrolysis and mainly used as an electrode material. The present invention relates to a method for recovering a platinum group metal from an insoluble metal electrode provided on an electrode substrate.
【0002】[0002]
【従来の技術】チタン製の電極基材上にイリジウムやル
テニウム等の白金族金属酸化物を含む電極被覆の被覆層
を設けた所謂寸法安定性陽極(DSA)、寸法安定性電
極(DSE)と称されている不溶性金属電極が、隔膜法
食塩電解等の種々の電気化学の分野において大量に使用
されている。この様な金属電極は、表面被覆層が安定な
セラミックであるが、チタン製の電極基材とはある種の
化学結合を有していることから、物理的にも化学的にも
極めて安定していることは知られている。このように、
金属電極として安定であっても長期の使用では徐々に腐
食等による消耗が進行し、表面の被覆層をある程度残し
たまま一定の性能を維持できなくなって使用不能とな
り、最終的には廃棄処分されることとなる。2. Description of the Related Art A so-called dimensionally stable anode (DSA) and a dimensionally stable electrode (DSE) having a coating layer of an electrode coating containing a platinum group metal oxide such as iridium or ruthenium on a titanium electrode substrate. The so-called insoluble metal electrodes are used in large quantities in various electrochemical fields, such as diaphragm electrolysis. Such a metal electrode is a ceramic whose surface coating layer is stable, but has a certain chemical bond with the titanium electrode base material, and is extremely stable physically and chemically. It is known that in this way,
Even if it is stable as a metal electrode, it will gradually wear out due to corrosion etc. over a long period of use, and it will not be possible to maintain a certain level of performance with a certain amount of surface coating layer left, making it unusable and eventually being disposed of The Rukoto.
【0003】[0003]
【発明が解決しようとする課題】ところで、前述したよ
うに物理的にも、化学的にも極めて安定な例えばチタン
製の金属電極から金属や被覆層を回収することはかなり
困難であり、適当な方法が無いのが現状である。即ち、
白金族金属酸化物は白金族金属に比べて化学的な面から
見ても遥かに安定であるため、アルカリ溶融等の一部の
特殊な処理方法しか通用せず、しかも、水溶液中ではこ
の白金族金属酸化物が電極基材の表面を電気化学的に保
護するため、被覆層を剥離して電極基材と分離すること
が極めて困難である。However, as described above, it is quite difficult to recover a metal or a coating layer from a metal electrode made of, for example, titanium, which is extremely stable physically and chemically. At present there is no method. That is,
Platinum group metal oxides are much more stable in terms of chemistry than platinum group metals, so only certain special treatment methods, such as alkali melting, can be used. Since the group metal oxide electrochemically protects the surface of the electrode substrate, it is extremely difficult to separate the coating layer from the electrode substrate.
【0004】そこで、本願発明者等は、白金族金属酸化
物がアルカリ溶融塩に溶解することを利用して、チタン
製電極基材を保護しながら表面の白金族金属酸化物を含
有する被覆層を溶解するように当該電極基材の表面に高
濃度のアルカリ水溶液を塗布し、それを炉中で加熱して
水分を蒸発させると共にアルカリが実質上溶融状態とな
るようにして被覆層をアルカリ中に溶解すると言う実用
化に向けた開発を行なってきた。しかし、この方法では
高価な白金族金属の回収が実質上困難で、しかも、大き
な処理設備が必要になる等の問題がある。又、電極基材
をそのまま使う場合は問題にならないが、電極基材と白
金族金属酸化物を含有する被覆層との双方を回収しよう
とする場合には実質上殆ど不可能であった。[0004] The inventors of the present invention have developed a coating layer containing a platinum group metal oxide on the surface while protecting a titanium electrode substrate by utilizing the fact that the platinum group metal oxide is dissolved in an alkali molten salt. A high-concentration aqueous alkali solution is applied to the surface of the electrode substrate so as to dissolve it, and is heated in a furnace to evaporate the water and to make the alkali substantially in a molten state, thereby forming the coating layer in the alkali. Has been developed for practical use, which is to dissolve in water. However, this method has problems in that it is practically difficult to recover expensive platinum group metals and that large processing equipment is required. Although no problem arises when the electrode substrate is used as it is, it is practically almost impossible to recover both the electrode substrate and the coating layer containing the platinum group metal oxide.
【0005】又、被覆層の剥離のために、電極基材の表
面を腐食性の酸により溶解して被覆層を電極基材から剥
離する方法が提案されている(例えば特開昭59-12
3730号公報等において提案されている)。ところ
が、この方法では理屈上は可能であるものの、実際の問
題としてチタン製電極基材と被覆層の中間に介在する酸
化物が強固であるために思うように被覆層が剥離しない
と言う問題と共に、電極基材(チタン)の回収率が悪
い。又、使用する酸の量が極めて多く不経済であると言
う問題が残されている。又、溶解された電極基材を含む
酸中には白金族金属酸化物の被覆物スラッジが含まれて
おり、この貴金属金属酸化物の濃度が相対的に小さくな
ってしまうことから、この回収が困難になると言った問
題をも合せ持っていた。In order to peel off the coating layer, a method has been proposed in which the surface of the electrode substrate is dissolved with a corrosive acid to peel off the coating layer from the electrode substrate (for example, JP-A-59-12).
No. 3730). However, although this method is theoretically possible, the actual problem is that the coating layer does not peel off as expected because the oxide interposed between the titanium electrode substrate and the coating layer is strong. In addition, the recovery rate of the electrode substrate (titanium) is poor. Further, there remains a problem that the amount of acid used is extremely large and uneconomical. In addition, the acid containing the dissolved electrode base material contains a coating sludge of platinum group metal oxide, and the concentration of the noble metal oxide becomes relatively small. He also had the problem of being difficult.
【0006】ところで、電極基材の回収においてはセラ
ミックからなる被覆層を完全に取り除かなければ、チタ
ンとして再生することはできないが、従来では完全に剥
離が行なえないため、通常はフェロアロイ等のように付
加価値の低い合金材料(鉄合金)としてしか使用するこ
とができず、価値が下がると言う問題をも合せ持ってい
た。[0006] In the recovery of the electrode substrate, titanium cannot be regenerated unless the coating layer made of ceramic is completely removed, but conventionally, it cannot be completely peeled off. It can be used only as a low value-added alloy material (iron alloy), and has the problem that its value is reduced.
【0007】更に、電極側から見れば、チタン材、被覆
用白金族金属、又はその酸化物用原材料とも実質的に過
去に経歴を持たない方が望ましく、取扱いも容易である
ので、チタンを再溶解した新しいチタンを用いることが
結局は安価であり、取扱いも容易であると言う点から見
ても従来法では満足できるものではなかった。Further, when viewed from the electrode side, it is desirable that the titanium material, the platinum group metal for the coating, or the raw material for the oxide thereof have substantially no history in the past, and the handling is easy. The use of new dissolved titanium is ultimately inexpensive and easy to handle, and is not satisfactory with the conventional method.
【0008】又、過去には廃純チタンをチタンとして再
溶解して使うことは表面付着物の完全除去が困難である
点等から殆ど行なわれていなかった。しかし乍ら、今後
高価なチタンがアルミニウム並みに使われるためには、
使用済になったチタン又はチタン合金製金属電極からチ
タンを回収するリサイクルが工業上重要となる。そのた
めには、チタン又はチタン合金製電極基材の表面から被
覆層等の付着物を完全に且つ低コストにて取り除くため
の電極基材と被覆層とを分離する処理方法の出現が今後
の展開に大きく左右することとなる。[0008] In the past, redistribution of waste pure titanium as titanium has been scarcely carried out because it is difficult to completely remove deposits on the surface. However, in order for expensive titanium to be used like aluminum in the future,
Recycling for recovering titanium from used titanium or titanium alloy metal electrodes is industrially important. To this end, the emergence of a treatment method that separates the electrode substrate and the coating layer from the surface of the titanium or titanium alloy electrode substrate to completely remove deposits such as the coating layer from the surface of the electrode substrate at low cost will be developed in the future. Will be greatly affected.
【0009】本発明はこの様な従来事情に鑑みてなされ
たものであり、その目的とする処は、白金族金属酸化物
を含む被覆層を有する使用済の水溶性金属電極から白金
族金属を回収するに際し、不溶性金属電極から被覆層を
剥離、分離した後、被覆物スラッジから不純物を殆ど取
り除いた高純度にて白金族金属を分離回収し得る方法を
提供することにある。The present invention has been made in view of such a conventional situation, and an object thereof is to remove a platinum group metal from a used water-soluble metal electrode having a coating layer containing a platinum group metal oxide. An object of the present invention is to provide a method capable of separating and collecting a platinum group metal with high purity by removing a coating layer from an insoluble metal electrode, separating the coating layer from the insoluble metal electrode, and removing most of impurities from the coating sludge.
【0010】[0010]
【課題を達成するための手段】課題を達成するために本
発明は、白金族金属酸化物を含む被覆層を有する使用済
となった不溶性金属電極から白金族金属を回収する方法
に於いて、チタン又はチタン合金その他の貴金属製電極
基材から被覆層を剥離し、該被覆層を還元性雰囲気中で
加熱して白金族金属成分を金属に還元した後に、それを
塩素化し、塩酸水溶液とした後に未溶解部分を濾過除去
し、次いで、陽イオン交換膜による電気透析法により存
在する陽イオンの分離除去を行うことにより、白金族金
属を塩化物として回収するようにしたことである。To achieve the object, the present invention provides a method for recovering a platinum group metal from a spent insoluble metal electrode having a coating layer containing a platinum group metal oxide. The coating layer is peeled off from the electrode substrate made of titanium or a titanium alloy or other noble metal, and the coating layer is heated in a reducing atmosphere to reduce the platinum group metal component to the metal. Thereafter, the undissolved portion is removed by filtration, and then the existing cation is separated and removed by an electrodialysis method using a cation exchange membrane, whereby the platinum group metal is recovered as chloride.
【0011】又、本発明では上記電極基材からの被覆層
の剥離を、物理的及び/又は化学的に行うようにしたこ
とである。In the present invention, the coating layer is peeled off from the electrode substrate physically and / or chemically.
【0012】又、本発明では上記還元性雰囲気が、水素
ガス雰囲気であり、望ましい加熱温度は白金族金属が還
元する500〜1000℃の範囲であり、特に望ましくは600〜
950℃の範囲である。又、処理時間は特に限定されるも
のではないが、1〜10時間程度が望ましく、特に2〜5
時間程度とすることが望ましい。In the present invention, the reducing atmosphere is a hydrogen gas atmosphere, and the preferable heating temperature is in the range of 500 to 1000 ° C. at which the platinum group metal is reduced, and particularly preferably 600 to 1000 ° C.
It is in the range of 950 ° C. The processing time is not particularly limited, but is preferably about 1 to 10 hours, and more preferably 2 to 5 hours.
It is desirable to set it to about time.
【0013】又、本発明では回収する上記白金族金属が
ルテニウムの場合、塩素化を酸化性ガスを含む加熱濃塩
酸水溶液中に溶解することにより行うようにしたことで
ある。Further, in the present invention, when the platinum group metal to be recovered is ruthenium, the chlorination is carried out by dissolving in a heated concentrated hydrochloric acid aqueous solution containing an oxidizing gas.
【0014】又、本発明では回収する上記白金族金属が
イリジウム又はイリジウム/ルテニウムの場合、塩素化
をハロゲン化アルカリとの混合により加熱し塩素ガスを
通すことによって行うようにしたことである。Further, in the present invention, when the platinum group metal to be recovered is iridium or iridium / ruthenium, chlorination is carried out by heating by mixing with an alkali halide and passing chlorine gas.
【0015】又、本発明では上記ハロゲン化アルカリが
塩化ナトリウムであり、望ましい加熱温度は500〜700℃
の範囲であり、特に望ましくは550〜650℃の範囲である
ことを特徴とする。In the present invention, the alkali halide is sodium chloride, and the preferable heating temperature is 500 to 700 ° C.
And particularly preferably in the range of 550 to 650 ° C.
【0016】又、本発明では上記陽イオン交換膜を隔膜
とする陽極室に溶解液を供給しながら電解を行い、不純
物金属を陰極室に送り分離除去するようにしたことであ
る。Further, in the present invention, electrolysis is performed while supplying a solution to an anode chamber having the cation exchange membrane as a diaphragm, and impurity metals are sent to a cathode chamber to be separated and removed.
【0017】又、本発明では白金族金属塩化物の塩酸水
溶液を減圧蒸留により濃縮処理を行なうようにしたこと
である。Further, in the present invention, the hydrochloric acid aqueous solution of the platinum group metal chloride is concentrated by distillation under reduced pressure.
【0018】而して、上記した本発明の技術的手段によ
れば、白金族金属酸化物を含む被覆層を有する使用済の
水溶性金属電極から白金族金属を回収するに際し、白金
族金属酸化物を含む被覆層を電極基材から物理的及び/
又は化学的に剥離した後に還元性雰囲気中で加熱する。
例えば水素ガス雰囲気中500〜1000℃で加熱することに
より、還元し易い白金族金属成分その他を金属に還元し
た後にこれを塩素化し、塩酸中に溶解してこの塩酸水溶
液中の不溶物である未溶解部分を濾過除去し、更に陽イ
オン交換膜による電気透析法により存在する陽イオンを
殆ど残さずに分離除去する。これにより、高純度の白金
族金属を塩化物として回収する。According to the above technical means of the present invention, when recovering a platinum group metal from a used water-soluble metal electrode having a coating layer containing a platinum group metal oxide, the platinum group metal oxide The coating layer containing the substance from the electrode substrate physically and / or
Alternatively, it is heated in a reducing atmosphere after being chemically stripped.
For example, by heating at 500 to 1000 ° C. in a hydrogen gas atmosphere, a platinum group metal component or the like, which is easy to reduce, is reduced to a metal and then chlorinated, dissolved in hydrochloric acid, and insoluble in the hydrochloric acid aqueous solution. The dissolved portion is removed by filtration, and further separated and removed by an electrodialysis method using a cation exchange membrane with almost no remaining cation. Thereby, high purity platinum group metals are recovered as chlorides.
【0019】[0019]
【発明の実施の形態】本発明の実施の具体例を説明す
る。金属電極としては、例えば通常用いられているチタ
ン又はチタン合金製の電極基材の表面に、白金族金属酸
化物又は白金族金属とその他の金属からなる複合酸化物
を含む被覆層を設けた例えば電解銅箔製造装置や隔膜法
食塩電解装置、又はイオン交換膜法クロルアルカリ電解
装置等に組み込み内蔵されて使用される工業電解用の不
溶性金属電極である。尚、特別な場合には電極基材がニ
ッケル又はステンレススチールである場合があり、この
場合の電極は陰極として使用される。Embodiments of the present invention will be described. As the metal electrode, for example, a coating layer containing a platinum group metal oxide or a composite oxide composed of a platinum group metal and another metal is provided on the surface of an electrode substrate made of, for example, a commonly used titanium or titanium alloy. It is an insoluble metal electrode for industrial electrolysis that is incorporated and used in an electrolytic copper foil manufacturing apparatus, a diaphragm method salt electrolysis apparatus, an ion exchange membrane method chloralkali electrolysis apparatus, or the like. In special cases, the electrode substrate may be nickel or stainless steel, and the electrode in this case is used as a cathode.
【0020】そして、本発明では使用済となった前述の
水溶性金属電極から白金族金属を回収するに際し、まず
始めに白金族金属酸化物又は白金族金属と他の金属から
なる複合酸化物を電極基材から剥離して集めるものであ
るが、この剥離は特に限定されるものではない。例えば
被覆層に傷を付ける又はロール掛け等によって金属電極
自体を圧延して電極基材と被覆層との結合状態を破壊す
る等の物理的な前処理を施した後、電極基材のコーティ
ング界面を酸により腐食させる等の化学的な後処理を施
すことで、被覆層を電極基材から剥離する。In recovering the platinum group metal from the used water-soluble metal electrode used in the present invention, first, a platinum group metal oxide or a composite oxide comprising a platinum group metal and another metal is used. It is separated and collected from the electrode substrate, but this separation is not particularly limited. For example, after applying a physical pretreatment such as damaging the coating layer or rolling the metal electrode itself by rolling or the like to break the bonding state between the electrode substrate and the coating layer, the coating interface of the electrode substrate The coating layer is peeled off from the electrode substrate by performing a chemical post-treatment such as corroding the coating layer with an acid.
【0021】次に、このようにして剥離した被覆物スラ
ッジ(固形物スラッジ)をそのまま、又は酸により溶解
し易い物質を除くために酸処理を行う。この酸処理の条
件としては特に限定されるものではないが、被覆物スラ
ッジに混入しているチタン等の電極基材や表面付着物等
の除去のために例えば20%沸騰塩酸や40%以上で温度85
℃以上の硫酸により処理することが望ましく、この処理
を行なうことによって酸化物以外の金属成分は略溶解で
きる。Next, the coated sludge (solid sludge) thus peeled is subjected to an acid treatment as it is or to remove a substance which is easily dissolved by an acid. The conditions of this acid treatment are not particularly limited, but for example, 20% boiling hydrochloric acid or 40% or more for removing electrode base materials such as titanium and surface deposits mixed in the coating sludge. Temperature 85
It is desirable to treat with sulfuric acid at a temperature of not less than ℃, and by performing this treatment, metal components other than oxides can be substantially dissolved.
【0022】このようにして得られた電極物質からなる
被覆物スラッジの成分を分析して見たところ、主にチタ
ンやタンタル等の弁金属酸化物と、白金族金属酸化物か
らなることが分かった。又、一部の金属成分がやはり酸
化物として残留していることが分かった。これらの金属
酸化物は不純物の場合もあるし、電極物質として添加し
たものの場合もある。但し、回収は白金族原料として不
純物を含まないものとしたいためにこれらも分解する必
要がある。Analysis of the components of the coating sludge made of the electrode material obtained in this way revealed that the coating sludge was mainly composed of valve metal oxides such as titanium and tantalum and platinum group metal oxides. Was. It was also found that some metal components remained as oxides. These metal oxides may be impurities or may be added as electrode materials. However, in order to recover the platinum group raw material without impurities, it is necessary to decompose these as well.
【0023】そこで、本発明では前述の金属酸化物を水
素雰囲気等の還元性雰囲気中で加熱して金属に還元する
処理を行う。この還元性雰囲気としては特に限定される
ものではない。例えばアンモニアガスやメタンガス等の
還元ガス雰囲気があるが、還元性がもっとも強く、尚且
つ、汚染の可能性が殆どない水素ガス雰囲気が最も望ま
しい。水素ガス雰囲気としては、略大気圧の水素ガス雰
囲気で良く、水素ガスを流しながら加熱して金属酸化物
を金属に還元処理する。この水素ガス雰囲気中での加熱
温度は白金族金属が還元する500〜1000℃の範囲に設定
することが望ましい。その理由は、500℃以下では白金
族金属酸化物の還元が不十分となり易いからであり、10
00℃を越えると、加熱に使用する炉等の設備が大掛かり
になり、処理コストの高騰を招くからである。又、他の
理由として、白金族金属以外の金属が還元するとそのま
ま不純物となってしまうことがあるので、白金族金属の
みが選択的且つ優先的に還元される加熱温度が500〜100
0℃の範囲であるからである。Therefore, in the present invention, the above-mentioned metal oxide is heated in a reducing atmosphere such as a hydrogen atmosphere to reduce the metal oxide to a metal. The reducing atmosphere is not particularly limited. For example, there is a reducing gas atmosphere such as an ammonia gas or a methane gas, but a hydrogen gas atmosphere having the strongest reducibility and having little possibility of contamination is most preferable. The hydrogen gas atmosphere may be a hydrogen gas atmosphere at approximately atmospheric pressure, and the metal oxide is reduced to metal by heating while flowing hydrogen gas. The heating temperature in this hydrogen gas atmosphere is desirably set in the range of 500 to 1000 ° C. at which the platinum group metal is reduced. The reason is that if the temperature is 500 ° C. or lower, the reduction of the platinum group metal oxide tends to be insufficient.
If the temperature exceeds 00 ° C., equipment such as a furnace used for heating becomes large-scale, which causes a rise in processing cost. Another reason is that if a metal other than the platinum group metal is reduced, it may become an impurity as it is, so that the heating temperature at which only the platinum group metal is selectively and preferentially reduced is 500 to 100.
This is because the range is 0 ° C.
【0024】従って、本発明では水素ガス雰囲気中500
〜1000℃の範囲が望ましく、特に望ましくは600〜950℃
の範囲である。又、800℃以上では不純物として含まれ
る可能性のある砒素やアンチモンの少なくとも一部を蒸
発除去できる効果が得られるものである。そして、この
水素ガス雰囲気中500〜1000℃の範囲での処理時間につ
いても特に限定されるものではないが、1時間〜10時間
程度で良く、特に2〜5時間程度で十分である。この様
な条件で還元処理を行なうことで、還元され易い白金族
金属成分は還元されて金属になり、還元され難いチタン
やタンタル等の弁金属は還元されずに酸化物で存在する
こととなる。又、不純物の一部は揮発すると共に一部は
還元されて金属になる。この場合の還元物は塩酸に溶解
する。Therefore, according to the present invention, in a hydrogen gas atmosphere,
~ 1000 ° C is desirable, particularly preferably 600-950 ° C
Range. At 800 ° C. or higher, an effect is obtained in which at least a part of arsenic and antimony which may be contained as impurities can be removed by evaporation. The processing time in the range of 500 to 1000 ° C. in the hydrogen gas atmosphere is not particularly limited, but about 1 to 10 hours is sufficient, and about 2 to 5 hours is sufficient. By performing the reduction treatment under such conditions, the platinum group metal component which is easily reduced is reduced to a metal, and valve metals such as titanium and tantalum which are hardly reduced are present as oxides without being reduced. . In addition, some of the impurities volatilize and some are reduced to metal. The reduced product in this case dissolves in hydrochloric acid.
【0025】又、本発明では白金族金属がイリジウム又
はイリジウム/ルテニウムの場合は直接塩酸に溶解する
ことが困難であるので、塩化ナトリウム等のハロゲン化
アルカリと混合により加熱し、塩素ガスを通すことによ
って行なう。この場合の加熱温度は500〜700℃の範囲に
設定することが望ましい。その理由は、500℃以下では
白金族金属の塩素化が十分でなく、収率の低下が見られ
やすいことであるからであり、700℃を越えると、十分
に反応が早く進むので問題点は少ないが、塩素の取り扱
い上の温度が高くなると危険性が増すのでできるだけ低
い温度の処理が望ましいからである。In the present invention, when the platinum group metal is iridium or iridium / ruthenium, it is difficult to directly dissolve it in hydrochloric acid. Therefore, the platinum group metal is heated by mixing with an alkali halide such as sodium chloride and passing chlorine gas. Performed by In this case, the heating temperature is desirably set in the range of 500 to 700 ° C. The reason is that the chlorination of the platinum group metal is not sufficient at 500 ° C or less, and the yield tends to decrease.If the temperature exceeds 700 ° C, the reaction proceeds sufficiently quickly, so the problem is that Although the amount is small, the danger increases when the temperature for handling chlorine increases, so that the treatment at the lowest possible temperature is desirable.
【0026】例えば、塩化ナトリウム等のハロゲン化ア
ルカリと混合して600℃程度に加熱しながら塩素ガスを
通すことによって塩素化し、それを塩酸水溶液に溶解す
る。この様な方法では殆どの白金族金属を溶解すること
ができるので、例えばイリジウムとルテニウムを含む混
合塩化物として回収することができる。又、この時のチ
タンやタンタル酸化物やその他の酸化物は不純物として
濾過分離される。For example, the mixture is mixed with an alkali halide such as sodium chloride or the like and chlorinated by passing a chlorine gas while heating to about 600 ° C., and the chlorination is dissolved in an aqueous hydrochloric acid solution. In such a method, most of the platinum group metals can be dissolved, so that they can be recovered, for example, as a mixed chloride containing iridium and ruthenium. At this time, titanium, tantalum oxide and other oxides are separated by filtration as impurities.
【0027】又、本発明では白金族金属がルテニウムを
主とする場合には塩素化を、酸化性ガスを含む加熱濃塩
酸水溶液中に溶解することにより行う。この場合、前述
の方法でも可能ではあるが、酸素や塩素等の酸化剤と共
に大気中で沸騰、望ましくはオートクレーブにて120℃
程度に加熱した塩酸を使用することで簡単に溶解するこ
とができる。又、溶解し易くするために所謂35塩酸と呼
ばれる35〜37%の濃塩酸を使用すると良い。In the present invention, when the platinum group metal is mainly ruthenium, chlorination is carried out by dissolving in a heated concentrated hydrochloric acid aqueous solution containing an oxidizing gas. In this case, although it is possible with the above-mentioned method, it is boiled in the air together with an oxidizing agent such as oxygen or chlorine, preferably in an autoclave at 120 ° C.
It can be easily dissolved by using hydrochloric acid heated to a certain degree. In order to facilitate dissolution, it is preferable to use 35 to 37% concentrated hydrochloric acid, which is called so-called 35 hydrochloric acid.
【0028】尚、塩素ガスの供給は外部から塩素ボンベ
等を用いて行なうも良いが、塩酸容器中に電極を置いて
電解を行なうことで塩素ガスを発生させて使うことがで
きる。この時の陽極としては前述の被覆物スラッジをそ
のまま使うことができ、塩素の発生は最小限で白金族金
属が溶解して行く。この様にして被覆物スラッジは溶解
するが、酸化物で不溶性である酸化チタン、酸化タンタ
ル等の複合酸化物を形成する弁金属成分は溶解しないで
そのままスラッジとして残る。又、僅かに白金族金属が
不溶分として残るが、これらは別途回収するか、又は次
のバッチに加えることにより白金族金属全てを回収する
ことができる。The chlorine gas may be supplied from outside using a chlorine cylinder or the like, but the chlorine gas can be generated and used by placing an electrode in a hydrochloric acid container and performing electrolysis. As the anode at this time, the above-mentioned coated sludge can be used as it is, and the generation of chlorine is minimized and the platinum group metal is dissolved. In this way, the coating sludge dissolves, but the valve metal component which forms a complex oxide such as titanium oxide and tantalum oxide, which is insoluble as an oxide, does not dissolve and remains as sludge. Further, although a small amount of the platinum group metal remains as an insoluble component, they can be recovered separately or added to the next batch to recover all the platinum group metal.
【0029】又、ルテニウムが含まれている場合には一
部が8価の酸化ルテニウムとして揮散する可能性がある
ので、廃ガスはトラップしてやはり35%塩酸を通してそ
れらをRuCI4(H2RuCl6)として塩化物で回収することが
できる。この様にして得られた白金族金属を塩酸中で溶
解すると共に不溶物である弁金属酸化物を濾過分離す
る。Further, when ruthenium is contained, a part of the waste gas may be volatilized as octavalent ruthenium oxide. Therefore, the waste gas is trapped, and the same is converted to RuCI4 (H2RuCl6) through 35% hydrochloric acid. It can be collected by goods. The platinum group metal thus obtained is dissolved in hydrochloric acid, and the valve metal oxide, which is an insoluble matter, is separated by filtration.
【0030】又、本発明ではこの様にして得られた白金
族金属溶液には一部に不純物金属が含まれているのでこ
れを電気透析法で分離除去する。即ち、塩酸溶液を陽イ
オン交換膜によって陽極室と陰極室とに分離された電解
槽の陽極室に入れて通電する。すると、陽イオンで存在
する鉛や砒素等の不純物金属は電解槽の陽イオン交換膜
を通って陰極室に移動する。これにより、陽極室には白
金族金属塩化物の塩酸水溶液が残る。この塩酸水溶液を
必要に応じて減圧蒸留することによって塩酸濃度又は白
金族金属濃度を調節する等として、白金族金属塩化物又
は塩化物の固形物として回収することができる。In the present invention, since the platinum group metal solution thus obtained partially contains impurity metals, these are separated and removed by electrodialysis. That is, the hydrochloric acid solution is supplied to the anode compartment of the electrolytic cell separated into an anode compartment and a cathode compartment by a cation exchange membrane, and is energized. Then, impurity metals such as lead and arsenic existing as cations move to the cathode chamber through the cation exchange membrane of the electrolytic cell. As a result, an aqueous hydrochloric acid solution of a platinum group metal chloride remains in the anode chamber. The hydrochloric acid aqueous solution can be recovered as a platinum group metal chloride or chloride solid by, for example, adjusting the concentration of hydrochloric acid or the concentration of platinum group metal by vacuum distillation as necessary.
【0031】尚、2種類以上の白金族金属塩化物が共存
している場合にはそれらを分離するも、用途によっては
分離せずにそのままの混合物として回収することもでき
るものである。When two or more kinds of platinum group metal chlorides coexist, they can be separated or, depending on the application, can be recovered as a mixture without being separated.
【0032】次に、具体的な各実施例1〜4について更
に詳しく説明するが、この実施例詳述に限定されるもの
ではないことをまず始めに述べておく。 実施例1 電解銅箔製造装置に使用されて使用済となったチタン製
電極基材の表面に、イリジウムとタンタルからなる複合
酸化物を含む被覆層を有する水溶性金属電極からイリジ
ウムの回収を行なった。まず、金属電極から表面付着物
を取り除くために、過酸化水素を加えた1:1硝酸液に
金属電極を浸漬する。これにより、酸化鉛を主体とする
表面付着物を取り除いた後、バフ処理によって被覆層を
剥離回収した。そして、剥離回収した被覆層からバフ処
理時に電極基材であるチタン金属やバフ処理物質である
ステンレススチール等の不純金属物を除去するために85
℃の40%硫酸液中で、3時間処理を行ったところ、不純
金属物はほぼ除去されたことが分かった。Next, specific embodiments 1 to 4 will be described in more detail, but it is first described that the present invention is not limited to the embodiments. Example 1 Iridium was recovered from a water-soluble metal electrode having a coating layer containing a composite oxide composed of iridium and tantalum on the surface of a used titanium electrode base material used in an electrolytic copper foil manufacturing apparatus. Was. First, to remove surface deposits from the metal electrode, the metal electrode is immersed in a 1: 1 nitric acid solution containing hydrogen peroxide. Thus, after removing the surface deposits mainly composed of lead oxide, the coating layer was peeled and collected by buffing. Then, in order to remove impurities such as titanium metal which is an electrode base material and stainless steel which is a buffing substance, buffing is performed from the peeled and recovered coating layer.
When the treatment was performed in a 40% sulfuric acid solution at 40 ° C. for 3 hours, it was found that the impurity metal was almost completely removed.
【0033】次に、東洋濾紙(株)製のNo1濾紙を用い
て濾過し、濾紙上に集まった多数の固形物スラッジにつ
いて洗浄乾燥を行い。更に、この固形物スラッジを水素
炉に入れて還元処理を行った。この時の水素炉内の水素
圧力をほぼ大気圧とし、処理温度を800℃とした。この
様にして処理後の固形物スラッジの状態をエックス線回
折で観察したところ、イリジウムは金属となり、その他
に酸化タンタル、酸化チタンの存在が確認された。更に
僅かな量ではあるが、鉛、アンチモンの存在も確認され
た。Next, filtration was performed using No. 1 filter paper manufactured by Toyo Roshi Kaisha Co., Ltd., and a large number of solid sludges collected on the filter paper were washed and dried. Further, the solid sludge was placed in a hydrogen furnace to perform a reduction treatment. At this time, the hydrogen pressure in the hydrogen furnace was set to approximately atmospheric pressure, and the processing temperature was set to 800 ° C. When the state of the solid sludge after the treatment was observed by X-ray diffraction, it was confirmed that iridium was a metal and that tantalum oxide and titanium oxide were additionally present. The presence of lead and antimony was also confirmed, albeit in small amounts.
【0034】次に、この固形物スラッジに同量の食塩を
混ぜ合わせた後に雰囲気炉に入れ、温度600℃で加熱し
ながら乾燥塩素ガスを通して2時間反応させたところで
冷却し、35%塩酸液に溶解した後に、前述のNo1濾紙を
用いて濾過したところ不純物金属は酸化タンタル、タン
タル/鉛複合酸化物、酸化チタンが確認され、僅かなイ
リジウムが確認された。又、塩酸液側は塩化イリジウム
が主体であったが僅かな鉛、砒素、アンチモンの塩化物
と大量の食塩の存在が確認された。Next, the solid sludge is mixed with the same amount of sodium chloride, then placed in an atmosphere furnace, and allowed to react for 2 hours through a dry chlorine gas while being heated at a temperature of 600 ° C., and then cooled to a 35% hydrochloric acid solution. After dissolution, filtration was performed using the above-mentioned No. 1 filter paper. As the impurity metals, tantalum oxide, tantalum / lead composite oxide, and titanium oxide were confirmed, and slight iridium was confirmed. The hydrochloric acid solution was mainly composed of iridium chloride, but it was confirmed that slight amounts of lead, arsenic, antimony chloride and a large amount of sodium chloride were present.
【0035】次に、このものをイリジウムで150〜200g/
l程度となるまで減圧蒸留を行ったところ、かなりの食
塩が析出されたことが確認されたので前述のNo1濾紙で
濾過し、この濾過液について電気透析を行った。つま
り、この濾過液を陽極液として陽イオン交換膜Nafion41
7を隔膜とする2室法電解槽に供給しながら電解を行っ
た。この時、陰極液として5%塩酸水溶液を用い、そし
て、陽極側に酸化イリジウムをチタン製電極基材上に被
覆してなる不溶性金属電極を用い、陰極側にはニオブ板
を用いて陽極電流密度1A/dm2にて10時間電解を行っ
た。すると、不純物として認められた鉛並びにアンチモ
ンが陰極室に移って取り除かれ、又ナトリウム分も陽極
室に殆ど移行されていることが確認された。これによ
り、塩化イリジウム液の不純物はトレース程度まで下げ
られそのままイリジウム原料として使うことができた。Next, this product is iridium 150-200 g /
Distillation under reduced pressure was carried out to about l, and it was confirmed that a considerable amount of salt was precipitated. Thus, filtration was carried out with the above-mentioned No1 filter paper, and this filtrate was subjected to electrodialysis. In other words, this filtrate is used as the anolyte for the cation exchange membrane Nafion41.
Electrolysis was performed while supplying the solution to a two-chamber electrolytic cell using 7 as a diaphragm. At this time, a 5% hydrochloric acid aqueous solution was used as a catholyte, an insoluble metal electrode formed by coating iridium oxide on a titanium electrode substrate was used on the anode side, and a anodic current density was used using a niobium plate on the cathode side. Electrolysis was performed at 1 A / dm2 for 10 hours. As a result, it was confirmed that lead and antimony recognized as impurities were removed to the cathode chamber and removed, and sodium was almost completely transferred to the anode chamber. As a result, the impurities in the iridium chloride solution were reduced to a trace level, and could be used as a raw iridium material.
【0036】実施例2 隔膜法食塩電解装置に使用されて使用済となったチタン
製電極基材の表面に、ルテニウムとチタンからなる複合
酸化物を含む被覆層を有する水溶性金属電極からルテニ
ウムの回収を行なった。まず、金属電極から表面付着物
を取り除くために、ジェットウォーシャーによる処理を
行った。これにより、廃苛性ソーダー、隔膜物質を主体
とする表面付着物を取り除いた後、バフ処理によって被
覆物を剥離回収し、更にこの回収物と共に剥離後の電極
を100℃20%塩酸で酸洗いして残留する被覆層の回収と
共に金属成分の溶解を行った。この時の処理時間は30分
であった。Example 2 A water-soluble metal electrode having a coating layer containing a composite oxide composed of ruthenium and titanium was formed on the surface of a used titanium electrode base material used in a diaphragm method salt electrolysis apparatus. Recovery was performed. First, a treatment with a jet washer was performed to remove surface deposits from the metal electrode. In this way, after removing the surface deposits mainly composed of waste caustic soda and diaphragm material, the coating is peeled and collected by buffing, and the stripped electrode is further washed with 20% hydrochloric acid at 100 ° C together with the collected material. In addition, the remaining coating layer was recovered and the metal component was dissolved. The processing time at this time was 30 minutes.
【0037】次に、東洋濾紙(株)製のNo5濾紙を用い
て濾過し、濾紙上に集まった多数の固形物スラッジにつ
いて洗浄乾燥を行い。更に、この固形物スラッジを水素
炉に入れて還元処理を行った。この時の水素炉内の水素
圧力をほぼ大気圧とし、処理温度を600℃とした。そし
て、このスラッジをチタン製籠に入れて陽極として100
℃35%塩酸中で電解を行った。Next, filtration was performed using No. 5 filter paper manufactured by Toyo Roshi Kaisha Co., Ltd., and a large number of solid sludges collected on the filter paper were washed and dried. Further, the solid sludge was placed in a hydrogen furnace to perform a reduction treatment. At this time, the hydrogen pressure in the hydrogen furnace was set to approximately atmospheric pressure, and the processing temperature was set to 600 ° C. Then put this sludge in a titanium basket and use it as an anode for 100
Electrolysis was carried out in hydrochloric acid at 35 ° C.
【0038】一方、陰極としてはタンタル板を用いてチ
タン製籠を取り囲むように置いた。電流密度10A/dm2で
電解を行い塩素ガスが出てくるまで電解を継続した。こ
の電解を塩素ガスの発生が確認されたところで止めた後
に、電解液を分離し減圧蒸留により濃縮を行い不溶物部
分の分析を行ったところ、酸化チタンは略100%溶解せ
ずに残っており、ルテニウムは元の量に対して5%程度
の固形物として残留していることが確認された。On the other hand, a tantalum plate was used as a cathode and placed so as to surround a titanium basket. Electrolysis was performed at a current density of 10 A / dm2, and electrolysis was continued until chlorine gas came out. After stopping the electrolysis when the generation of chlorine gas was confirmed, the electrolytic solution was separated and concentrated by distillation under reduced pressure to analyze the insoluble portion. As a result, approximately 100% of the titanium oxide remained without being dissolved. It was confirmed that ruthenium remained as a solid matter of about 5% of the original amount.
【0039】次に、これについて減圧濃縮を行ないルテ
ニウムが200g/l程度とした。そして、これを陽極液とし
て陽イオン交換膜Nafion417を隔膜とする2室法電解槽
に供給しながら電解を行った。この時、陰極液として5
%塩酸水溶液を用い、そして、陽極としては酸化ルテニ
ウムをチタン製の電極基材上に被覆した不溶性金属電極
を、陰極にはニオブ板を用いて陰極電流密度1A/dm2に
て2時間電解を行った。すると、不純物として認められ
たアンチモンが陰極室に移って取り除かれ、塩化ルテニ
ウム液の不純物はトレース程度まで下げられそのままル
テニウム原料として使うことができた。Next, this was concentrated under reduced pressure to adjust ruthenium to about 200 g / l. Then, electrolysis was performed while using this as an anolyte and supplying it to a two-chamber electrolytic cell using a cation exchange membrane Nafion417 as a diaphragm. At this time, 5
% Aqueous hydrochloric acid solution, an insoluble metal electrode coated with ruthenium oxide on an electrode substrate made of titanium as the anode, and a niobium plate as the cathode for 2 hours at a cathode current density of 1 A / dm2. Was. Then, antimony recognized as an impurity was transferred to the cathode chamber and removed, and the impurity in the ruthenium chloride solution was reduced to a trace level and could be used as a ruthenium raw material as it was.
【0040】実施例3 イオン交換膜法クロルアルカリ電解装置に使用されて使
用済となったチタン製穴明き板からなる金属基材上に、
イリジウム、ルテニウム及びチタンからなる複合酸化物
を含む被覆層を有する水溶性金属電極からイリジウム、
ルテニウムの回収を行なった。まず、金属電極から表面
付着物を取り除くために、ジェットウォーシャーによる
処理を行った後、実施例2と同様にバフ処理によって電
極基材から被覆層を剥離回収し、更にこの回収物を90℃
40%硫酸中に浸漬して酸洗いを行った。すると、2時間
の洗浄により電極基材であるチタン表面が腐食して残留
被覆層が黒色スラッジとして酸洗い槽の底部に沈殿した
ので、この黒色スラッジを酸洗い槽のドレーン口から取
り出して水洗いし、バフ研磨で剥離回収したスラッジと
共に20%の沸騰塩酸中で30分間処理してチタンやバフの
金属分を溶解して取り除いた。更に、このものを水素気
流中650℃2時間の還元処理を行った。Example 3 On a metal substrate consisting of a perforated titanium plate used in a chlor-alkali electrolysis apparatus using an ion exchange membrane method,
Iridium, iridium from a water-soluble metal electrode having a coating layer containing a composite oxide consisting of ruthenium and titanium,
Ruthenium was recovered. First, in order to remove surface deposits from the metal electrode, a treatment with a jet washer was performed, and then the coating layer was peeled and collected from the electrode substrate by buffing in the same manner as in Example 2.
Pickling was performed by immersion in 40% sulfuric acid. Then, the titanium surface as the electrode base material was corroded by the washing for 2 hours, and the residual coating layer was precipitated as black sludge at the bottom of the pickling tank. The black sludge was taken out from the drain port of the pickling tank and washed with water. The sludge separated and recovered by buffing was then treated for 30 minutes in 20% boiling hydrochloric acid to dissolve and remove titanium and buff metals. Further, this was subjected to a reduction treatment at 650 ° C. for 2 hours in a hydrogen stream.
【0041】次に、この様にして得た還元物をオートク
レーブに入れて35%塩酸を溶解液として120℃に加熱
し、塩素ガスを通しながら溶解した。すると、3時間の
溶解で液が黒色になると共に不溶分が沈殿した。これを
取り出して冷却した後に、東洋濾紙(株)製のNo1濾紙
を用いて濾過し、濾紙上に集まった多数の不溶分を分析
してみたところ、僅かにイリジウムを含み残りは酸化チ
タンであった。この時の溶液はルテニウムとイリジウム
の塩化物となっていた。この塩化物を減圧蒸留してルテ
ニウムとイリジウムの合計で200g/l程度になるように濃
縮した後、実施例2と同様の条件で電気透析を行って陽
イオンの分離除去を行った。そして、分離後の溶液を分
析してみたところ、ルテニウム及びイリジウム以外にト
レース程度のチタンが確認されたが、他の金属イオンは
確認されなった。このものを更に減圧蒸留することによ
って塩化ルテニウムと塩化イリジウムの混合塩化物を得
た。Next, the reduced product thus obtained was put into an autoclave, heated to 120 ° C. using 35% hydrochloric acid as a solution, and dissolved while passing chlorine gas. As a result, the solution turned black and the insoluble matter precipitated after 3 hours of dissolution. This was taken out and cooled, and then filtered using No. 1 filter paper manufactured by Toyo Roshi Kaisha, Ltd., and a large number of insolubles collected on the filter paper were analyzed. As a result, a small amount of iridium was contained and the remainder was titanium oxide. Was. The solution at this time was a chloride of ruthenium and iridium. This chloride was distilled under reduced pressure and concentrated to a total of about 200 g / l of ruthenium and iridium, and electrodialysis was performed under the same conditions as in Example 2 to separate and remove cations. When the solution after separation was analyzed, trace-level titanium was confirmed in addition to ruthenium and iridium, but other metal ions were not confirmed. This was further distilled under reduced pressure to obtain a mixed chloride of ruthenium chloride and iridium chloride.
【0042】実施例4 イオン交換膜型食塩電解装置で使用されて使用済となっ
たチタン製エクスパンドメッシュからなる電極基材上
に、イリジウム、ルテニウム及びチタンからなる複合酸
化物を含む被覆層を有する水溶性金属電極からイリジウ
ム、ルテニウムの回収を行なった。まず、被覆層を電極
基材から剥離回収するに当り、この金属電極には溶接が
あり、又、電解装置から取り外した時に生じた大きな歪
みが金属電極に与えられていたために強いレベラーによ
って、金属電極を平坦化することで被覆層とチタン製金
属基材との間に僅かに隙間を作り、これを塩酸と硫酸と
の混合酸による酸洗いでエッチングを行うことによって
剥離を行なった。この時、硫酸として25%及び塩酸とし
て20%含有する混合酸をエッチング液として温度85〜90
℃に保持し、平坦化した前述の金属電極を30分間浸漬し
た。すると、被覆層が黒色スラッジとして液中に沈殿し
た。尚、この時30分間のエッチングにより電極基材から
略完全に被覆層が剥離取り除かれたことが確認された。Example 4 A coating layer containing a composite oxide composed of iridium, ruthenium and titanium was provided on an electrode substrate composed of a titanium expanded mesh used and used in an ion exchange membrane type salt electrolysis apparatus. Iridium and ruthenium were recovered from the water-soluble metal electrode. First, in peeling and recovering the coating layer from the electrode substrate, the metal electrode is welded, and a large level of strain generated when the metal electrode is removed from the electrolytic device is given to the metal electrode by a strong leveler. By flattening the electrode, a slight gap was formed between the coating layer and the titanium metal substrate, and this was etched by pickling with a mixed acid of hydrochloric acid and sulfuric acid, thereby separating the electrode. At this time, a mixed acid containing 25% as sulfuric acid and 20% as hydrochloric acid was used as an etching solution at a temperature of 85 to 90%.
The above-mentioned flattened metal electrode was kept at ℃ and immersed for 30 minutes. Then, the coating layer precipitated in the liquid as black sludge. At this time, it was confirmed that the coating layer was almost completely removed from the electrode substrate by etching for 30 minutes.
【0043】そして、この黒色スラッジを濾過分離した
後に水で十分に洗い乾燥した後に、この黒色スラッジを
実施例1と同様に水素炉に入れて還元処理を行った。但
し、処理温度は700℃とした。3時間の還元処理後に
エックス線回折で黒色スラッジの分析を行ったところ、
この黒色スラッジは酸化チタン、イリジウム及びルテニ
ウムからなることが分かった。After the black sludge was separated by filtration, washed sufficiently with water and dried, the black sludge was placed in a hydrogen furnace and reduced as in Example 1. However, the processing temperature was 700 ° C. After analyzing the black sludge by X-ray diffraction after the reduction treatment for 3 hours,
This black sludge was found to consist of titanium oxide, iridium and ruthenium.
【0044】次に、この黒色スラッジについて実施例1
と同様にして同量の食塩と混合し、塩素ガスを通して塩
素化を行なった。尚この時、四酸化ルテニウム(RuO4)
のガスが生成する可能性があるので、体積で5%のイソ
プロピルアルコールを加えた35%塩酸でトラップした。
そして、塩素化が終了した時点で四酸化ルテニウムの回
収に使った塩酸に生成した全ての塩化物を溶解し、この
ものについて減圧蒸留を行ってルテニウム、イリジウム
の合計で200g/l程度になるように濃縮した後、実施例1
と同様に電気透析を行った。すると、僅かに混入してい
た鉄が略無くなり、他の金属の存在は確認されなかった
ことから、このまま原料として使えることが分かった。
尚、ここで得られた塩化物はH2IrCl6とH2RuCl6との混合
物であり、その組成剥離被覆とほぼ同じであることが分
かった。Next, the black sludge of Example 1 was used.
In the same manner as in the above, the mixture was mixed with the same amount of sodium chloride and chlorinated by passing chlorine gas. At this time, ruthenium tetroxide (RuO4)
Was trapped in 35% hydrochloric acid with 5% isopropyl alcohol by volume.
Then, at the time when the chlorination is completed, dissolve all the chlorides generated in the hydrochloric acid used for the recovery of ruthenium tetroxide, and perform vacuum distillation on this to make a total of about 200 g / l of ruthenium and iridium. Example 1
Electrodialysis was performed in the same manner as described above. Then, the slightly mixed iron almost disappeared, and the presence of other metals was not confirmed. Therefore, it was found that the iron could be used as it was as it was.
The chloride obtained here was a mixture of H2IrCl6 and H2RuCl6, and was found to be almost the same as the composition release coating.
【0045】[0045]
【発明の効果】本発明の金属電極から白金族金属を回収
する方法は叙上の如く構成してなることから下記の作用
効果を奏する。 .本発明では電極基材から白金族金属酸化物を含む被
覆層を剥離し、この被覆物層を還元性雰囲気中で加熱し
て白金族金属成分を金属に還元した後これを塩素化し、
塩酸水溶液とした状態で未溶解部分を濾過除去し、その
後更に電気透析法により存在する陽イオンを分離除去す
るようにしたことから、使用済の不溶性金属電極から白
金族金属を塩化物として回収することができる。The method for recovering a platinum group metal from a metal electrode according to the present invention has the following functions and effects because it is configured as described above. . In the present invention, the coating layer containing the platinum group metal oxide is peeled off from the electrode substrate, and the coating layer is heated in a reducing atmosphere to reduce the platinum group metal component to metal, and then chlorinated.
The undissolved portion is removed by filtration in the state of an aqueous hydrochloric acid solution, and then the cations present are further separated and removed by electrodialysis, so that the platinum group metal is recovered as chloride from the used insoluble metal electrode be able to.
【0046】.又、本発明では水溶性金属電極に物理
的及び/又は化学的な処理を施すことで電極基材から白
金族金属酸化物を含む被覆層を剥離するようにしてなる
ことから、被覆層を電極基材から簡単に剥離、分離する
ことができる。[0046] Further, in the present invention, the coating layer containing the platinum group metal oxide is peeled from the electrode base material by performing physical and / or chemical treatment on the water-soluble metal electrode. It can be easily peeled and separated from the substrate.
【0047】.又、本発明では水素ガス雰囲気中500
〜1000℃の加熱範囲で電極基材から剥離した白金族金属
酸化物を含む被覆層を加熱することにより白金族金属成
分のみを選択的に且つ優先的に金属に還元するようにし
てなる。即ち、還元し易い白金族金属性分は還元されて
金属になり、還元され難い電極基材、例えばチタン、タ
ンタル等の弁金属酸化物は還元されずに酸化物で存在す
ることとなることから、これを塩酸中に溶解すること
で、白金族金属成分は塩化物として液中に残るので、白
金族金属を塩化物として簡単に回収することができる。[0047] Also, in the present invention, in a hydrogen gas atmosphere 500
By heating the coating layer containing the platinum group metal oxide separated from the electrode substrate in the heating range of up to 1000 ° C., only the platinum group metal component is selectively and preferentially reduced to metal. That is, the platinum group metal component that can be easily reduced is reduced to a metal, and the electrode material that is hardly reduced, for example, titanium, valve metal oxides such as tantalum, etc. is present as an oxide without being reduced. By dissolving this in hydrochloric acid, the platinum group metal component remains in the liquid as chloride, so that the platinum group metal can be easily recovered as chloride.
【0048】.又、本発明では前述のように被覆層か
ら白金族金属を塩酸中に溶解した形で回収することがで
きることから、溶解した後は全て液層処理による回収と
なり、その取扱い回収が簡便となる。[0048] Further, in the present invention, since the platinum group metal can be recovered from the coating layer in a form dissolved in hydrochloric acid as described above, after the dissolution, all the recovery is performed by liquid layer treatment, and the handling and recovery are simplified.
【0049】.又、本発明では被覆物スラッジに存在
している金属酸化物は酸化物のままであることから、溶
出することにより簡単且つ容易に分離除去することがで
きる。よって、塩化物として回収する白金族金属への混
入は無い。[0049] Further, in the present invention, since the metal oxide present in the coating sludge remains as an oxide, it can be easily and easily separated and removed by elution. Therefore, there is no mixing with the platinum group metal recovered as chloride.
【0050】.又、本発明では塩化ナトリウム等のハ
ロゲン化アルカリと混合して500〜700℃で加熱しながら
塩素ガスを通すことによって塩素化し、それを塩酸水溶
液に溶解する。即ち、白金族金属を溶解することができ
るので、例えばイリジウムとルテニウムを含む混合塩化
物として回収することができる。それにより、例えばチ
タンやタンタル酸化物やその他の不純物全てを残らず完
全に分離除去することができることから、不純物の少な
い高純度の白金族金属の回収が可能になる。[0050] Further, in the present invention, chlorination is performed by mixing with an alkali halide such as sodium chloride or the like and passing a chlorine gas while heating at 500 to 700 ° C., and dissolving it in an aqueous hydrochloric acid solution. That is, since the platinum group metal can be dissolved, it can be recovered, for example, as a mixed chloride containing iridium and ruthenium. Thereby, for example, since titanium, tantalum oxide and all other impurities can be completely separated and removed, it is possible to recover a high-purity platinum group metal with few impurities.
【0051】.又、本発明では白金族金属塩化物の塩
酸水溶液を必要に応じて減圧蒸留することによって塩酸
濃度又は白金族金属濃度を調節する等として、白金族金
属塩化物又は塩化物の固形物として回収することができ
る。[0051] Also, in the present invention, the hydrochloric acid aqueous solution of the platinum group metal chloride is optionally distilled under reduced pressure to adjust the hydrochloric acid concentration or the platinum group metal concentration, and the platinum group metal chloride or chloride solid is recovered as a solid. be able to.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22B 7/00 C22B 3/00 M 11/00 11/04 Fターム(参考) 4K001 AA41 CA01 CA02 DA08 DA10 DA14 DB04 DB21 DB22 4K058 AA22 BA19 BA37 BB03 CA05 DD13 DD18 DD22 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) C22B 7/00 C22B 3/00 M 11/00 11/04 F term (reference) 4K001 AA41 CA01 CA02 DA08 DA10 DA14 DB04 DB21 DB22 4K058 AA22 BA19 BA37 BB03 CA05 DD13 DD18 DD22
Claims (8)
水溶性金属電極から白金族金属を回収する方法に於い
て、 電極基材から被覆層を剥離し、この被覆物スラッジを還
元性雰囲気中で加熱して白金族金属成分を金属に還元し
た後に、塩素化し、塩酸水溶液とした後に未溶解部分を
濾過除去し、次いで、陽イオン交換膜による電気透析法
により存在する陽イオンの分離除去を行うことにより、
白金族金属を塩化物として回収するようにしたことを特
徴とする金属電極から白金族金属を回収する方法。In a method of recovering a platinum group metal from a water-soluble metal electrode having a coating layer containing a platinum group metal oxide, the coating layer is peeled off from an electrode substrate, and the coated sludge is reduced in a reducing atmosphere. After reducing the platinum group metal component to metal by heating in an atmosphere, chlorinating the solution to form an aqueous hydrochloric acid solution, removing the undissolved portion by filtration, and then separating and removing existing cations by electrodialysis using a cation exchange membrane. By doing
A method for recovering a platinum group metal from a metal electrode, wherein the platinum group metal is recovered as a chloride.
及び/又は化学的に行うことを特徴とする金属電極から
白金族金属を回収する方法。2. A method for recovering a platinum group metal from a metal electrode, wherein the peeling of the coating layer according to claim 1 is performed physically and / or chemically.
ス雰囲気であり、加熱温度が500〜1000℃であることを
特徴とする金属金属から白金族金属を回収する方法。3. A method for recovering a platinum group metal from a metal metal according to claim 1, wherein the reducing atmosphere is a hydrogen gas atmosphere and the heating temperature is 500 to 1000 ° C.
金属が、ルテニウムであり、塩素化を、酸化性ガスを含
む加熱濃塩酸水溶液中に溶解することにより行うことを
特徴とする金属電極から白金族金属を回収する方法。4. The platinum group metal according to claim 1, wherein the platinum group metal is ruthenium, and the chlorination is performed by dissolving in a heated concentrated hydrochloric acid aqueous solution containing an oxidizing gas. A method of recovering a platinum group metal from a metal electrode.
金属がイリジウム又はイリジウム/ルテニウムであり、
塩素化を、ハロゲン化アルカリとの混合により加熱し、
塩素ガスを通すことによって行うことを特徴とする金属
電極から白金族金属を回収する方法。5. The platinum group metal according to claim 1, wherein the platinum group metal is iridium or iridium / ruthenium.
Heating the chlorination by mixing with the alkali halide;
A method for recovering a platinum group metal from a metal electrode, which is performed by passing chlorine gas.
化ナトリウムであり、加熱温度が500〜700℃であること
を特徴とする金属電極から白金族金属を回収する方法。6. A method for recovering a platinum group metal from a metal electrode, wherein the alkali halide according to claim 5 is sodium chloride and the heating temperature is 500 to 700 ° C.
する陽極室に溶解液を供給しながら電解を行い、不純物
金属を陰極室に送り分離することを特徴とする金属電極
から白金族電極を回収する方法。7. A platinum group from a metal electrode, wherein electrolysis is performed while supplying a solution to an anode chamber using the cation exchange membrane according to claim 1 as a diaphragm, and an impurity metal is sent to a cathode chamber for separation. How to collect electrodes.
て、減圧蒸留により濃縮処理を行なうことを特徴とする
電極金属から白金族金属を回収する方法。8. The method for recovering a platinum group metal from an electrode metal according to claim 1, wherein the concentration treatment is performed by distillation under reduced pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000278197A JP4607303B2 (en) | 2000-09-13 | 2000-09-13 | Method for recovering platinum group metals from metal electrodes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000278197A JP4607303B2 (en) | 2000-09-13 | 2000-09-13 | Method for recovering platinum group metals from metal electrodes |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2002088494A true JP2002088494A (en) | 2002-03-27 |
JP2002088494A5 JP2002088494A5 (en) | 2007-11-01 |
JP4607303B2 JP4607303B2 (en) | 2011-01-05 |
Family
ID=18763396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000278197A Expired - Lifetime JP4607303B2 (en) | 2000-09-13 | 2000-09-13 | Method for recovering platinum group metals from metal electrodes |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4607303B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002194581A (en) * | 2000-12-27 | 2002-07-10 | Furuya Kinzoku:Kk | Method for recovering platinum group metal from metal electrode |
WO2006073840A1 (en) * | 2004-12-30 | 2006-07-13 | 3M Innovative Properties Company | Platinum recovery from nanostructured fuel cell catalyst |
WO2008099747A1 (en) * | 2007-02-16 | 2008-08-21 | Tanaka Kikinzoku Kogyo K.K. | Method for recovering platinum group metal from waste |
JP2009520589A (en) * | 2005-12-23 | 2009-05-28 | ビーエーエスエフ ソシエタス・ヨーロピア | Method for recovering ruthenium from spent catalyst containing ruthenium oxide |
US8043491B2 (en) | 2004-02-20 | 2011-10-25 | Furuya Metal Co., Ltd. | Particle-dispersed complex and solid electrolytic sensor using it |
KR20140098159A (en) | 2011-11-21 | 2014-08-07 | 페르메렉덴꾜꾸가부시끼가이샤 | Method for exfoliating coating layer of electrode for electrolysis |
KR101539528B1 (en) * | 2014-02-20 | 2015-07-29 | 금오공과대학교 산학협력단 | A method for recovering silver from the waste solar cell |
JP2021038124A (en) * | 2019-09-04 | 2021-03-11 | 株式会社東芝 | Method for recovering metal from ceramic |
JP2023062131A (en) * | 2018-11-21 | 2023-05-02 | 株式会社大阪ソーダ | Method for removing electrode surface deposit containing lead compound from electrolysis electrode to which lead compound is attached |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5675538A (en) * | 1979-11-27 | 1981-06-22 | Toyota Motor Corp | Chlorination roasting method for platinum group metal |
JPS5997536A (en) * | 1982-11-26 | 1984-06-05 | Permelec Electrode Ltd | Method for recovering ruthenium from metallic electrode |
JPS59123730A (en) * | 1982-12-28 | 1984-07-17 | Permelec Electrode Ltd | Method for recovering iridium from metallic electrode |
JPS63270421A (en) * | 1987-04-27 | 1988-11-08 | Tanaka Kikinzoku Kogyo Kk | Method for recovering platinum group metals from platinum group metallic oxide electrode |
JPH02197532A (en) * | 1989-01-26 | 1990-08-06 | Tanaka Kikinzoku Kogyo Kk | Method for recovering ru from metallic electrode |
JPH0388728A (en) * | 1989-08-31 | 1991-04-15 | Cataler Kogyo Kk | Method for recovering platinum-group metal from monolithic catalyst for purifying exhaust gas |
JPH04214890A (en) * | 1989-12-19 | 1992-08-05 | Eltech Syst Corp | Molten salt separation method of electrode covering |
JPH05255771A (en) * | 1991-03-15 | 1993-10-05 | N E Chemcat Corp | Reduction method for noble metal |
JPH06280074A (en) * | 1992-12-18 | 1994-10-04 | Carl Zeiss:Fa | Method for electrolytic extraction of highly pure platinum from platinum alloy mixed with impurity |
-
2000
- 2000-09-13 JP JP2000278197A patent/JP4607303B2/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5675538A (en) * | 1979-11-27 | 1981-06-22 | Toyota Motor Corp | Chlorination roasting method for platinum group metal |
JPS5997536A (en) * | 1982-11-26 | 1984-06-05 | Permelec Electrode Ltd | Method for recovering ruthenium from metallic electrode |
JPS59123730A (en) * | 1982-12-28 | 1984-07-17 | Permelec Electrode Ltd | Method for recovering iridium from metallic electrode |
JPS63270421A (en) * | 1987-04-27 | 1988-11-08 | Tanaka Kikinzoku Kogyo Kk | Method for recovering platinum group metals from platinum group metallic oxide electrode |
JPH02197532A (en) * | 1989-01-26 | 1990-08-06 | Tanaka Kikinzoku Kogyo Kk | Method for recovering ru from metallic electrode |
JPH0388728A (en) * | 1989-08-31 | 1991-04-15 | Cataler Kogyo Kk | Method for recovering platinum-group metal from monolithic catalyst for purifying exhaust gas |
JPH04214890A (en) * | 1989-12-19 | 1992-08-05 | Eltech Syst Corp | Molten salt separation method of electrode covering |
JPH05255771A (en) * | 1991-03-15 | 1993-10-05 | N E Chemcat Corp | Reduction method for noble metal |
JPH06280074A (en) * | 1992-12-18 | 1994-10-04 | Carl Zeiss:Fa | Method for electrolytic extraction of highly pure platinum from platinum alloy mixed with impurity |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002194581A (en) * | 2000-12-27 | 2002-07-10 | Furuya Kinzoku:Kk | Method for recovering platinum group metal from metal electrode |
US8043491B2 (en) | 2004-02-20 | 2011-10-25 | Furuya Metal Co., Ltd. | Particle-dispersed complex and solid electrolytic sensor using it |
WO2006073840A1 (en) * | 2004-12-30 | 2006-07-13 | 3M Innovative Properties Company | Platinum recovery from nanostructured fuel cell catalyst |
JP2009520589A (en) * | 2005-12-23 | 2009-05-28 | ビーエーエスエフ ソシエタス・ヨーロピア | Method for recovering ruthenium from spent catalyst containing ruthenium oxide |
WO2008099747A1 (en) * | 2007-02-16 | 2008-08-21 | Tanaka Kikinzoku Kogyo K.K. | Method for recovering platinum group metal from waste |
KR20140098159A (en) | 2011-11-21 | 2014-08-07 | 페르메렉덴꾜꾸가부시끼가이샤 | Method for exfoliating coating layer of electrode for electrolysis |
KR101539528B1 (en) * | 2014-02-20 | 2015-07-29 | 금오공과대학교 산학협력단 | A method for recovering silver from the waste solar cell |
JP2023062131A (en) * | 2018-11-21 | 2023-05-02 | 株式会社大阪ソーダ | Method for removing electrode surface deposit containing lead compound from electrolysis electrode to which lead compound is attached |
JP7462884B2 (en) | 2018-11-21 | 2024-04-08 | 株式会社大阪ソーダ | Method for removing electrode surface deposits containing lead compounds from an electrode for electrolysis to which lead compounds are attached |
JP2021038124A (en) * | 2019-09-04 | 2021-03-11 | 株式会社東芝 | Method for recovering metal from ceramic |
JP7337609B2 (en) | 2019-09-04 | 2023-09-04 | 株式会社東芝 | Metal recovery method from ceramics |
Also Published As
Publication number | Publication date |
---|---|
JP4607303B2 (en) | 2011-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4647695B2 (en) | Method for recovering valuable metals from ITO scrap | |
JP5043027B2 (en) | Recovery method of valuable metals from ITO scrap | |
WO2008053619A1 (en) | Method for collection of valuable metal from ito scrap | |
JP4519294B2 (en) | Indium recovery method | |
JP4607303B2 (en) | Method for recovering platinum group metals from metal electrodes | |
JP2003247089A (en) | Method of recovering indium | |
JP4465685B2 (en) | Insoluble electrode recovery method | |
JP2002088494A5 (en) | ||
CN111349961B (en) | Method for cleaning waste titanium anode plate for foil forming machine and removing and recycling precious metal | |
EP2783025B1 (en) | Method for exfoliating coating layer of electrode for electrolysis | |
JP2002194581A (en) | Method for recovering platinum group metal from metal electrode | |
JP4700815B2 (en) | Method for recovering platinum group metals from metal electrodes | |
JP2005187865A (en) | Method and apparatus for recovering copper from copper etching waste solution by electrolysis | |
CN111020633A (en) | Treatment method of acidic etching waste liquid | |
US4895626A (en) | Process for refining and purifying gold | |
JP4450945B2 (en) | Method for recovering precious metals from metal electrodes | |
JP4450942B2 (en) | Method for recovering precious metals from metal electrodes | |
JP2006176353A (en) | Method for recovering hydrochloric acid and copper from copper etching waste liquid | |
JP2001294948A5 (en) | ||
JP5115936B2 (en) | Method for collecting insoluble metal electrode | |
JP2001303141A5 (en) | ||
JPH07145427A (en) | Method for recovering and recycling palladium or palladium alloy from contact material | |
JPS61133192A (en) | Treatment of waste copper liquid containing hydrochloric acid | |
JPH0215187A (en) | Production of iron and chlorine from aqueous solution containing iron chloride | |
JP4142769B2 (en) | Method for producing high purity cobalt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070913 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070913 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070913 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100406 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100629 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100809 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100907 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101007 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4607303 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131015 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |