JP4450942B2 - Method for recovering precious metals from metal electrodes - Google Patents

Method for recovering precious metals from metal electrodes Download PDF

Info

Publication number
JP4450942B2
JP4450942B2 JP2000112639A JP2000112639A JP4450942B2 JP 4450942 B2 JP4450942 B2 JP 4450942B2 JP 2000112639 A JP2000112639 A JP 2000112639A JP 2000112639 A JP2000112639 A JP 2000112639A JP 4450942 B2 JP4450942 B2 JP 4450942B2
Authority
JP
Japan
Prior art keywords
electrode
metal
coating layer
titanium
metal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000112639A
Other languages
Japanese (ja)
Other versions
JP2001294948A (en
JP2001294948A5 (en
Inventor
堯民 古屋
孝之 島宗
重治 赤塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuya Metal Co Ltd
Original Assignee
Furuya Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuya Metal Co Ltd filed Critical Furuya Metal Co Ltd
Priority to JP2000112639A priority Critical patent/JP4450942B2/en
Publication of JP2001294948A publication Critical patent/JP2001294948A/en
Publication of JP2001294948A5 publication Critical patent/JP2001294948A5/ja
Application granted granted Critical
Publication of JP4450942B2 publication Critical patent/JP4450942B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/10Hydrochloric acid, other halogenated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • C22B11/046Recovery of noble metals from waste materials from manufactured products, e.g. from printed circuit boards, from photographic films, paper or baths
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • ing And Chemical Polishing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属電極から貴金属を回収する処理方法に係り、特に工業用電解に使用されて使用済となったチタン、チタン合金、タンタル、ジルコニウム、ニオブ、ルテニウム又はイリジウムの金属製電極基材上に、白金族金属酸化物を含有する電極物質の被覆層を設けた不溶性金属電極から貴金属を分離(剥離)回収する回収プロセスにおける金属電極の処理方法に関する。
【0002】
【従来の技術】
従来から、寸法安定性陽極(DSA)又は寸法安定性電極(DSE)と称される不溶性金属電極は、長期間の安定運転が可能なこと、省エネルギー並びに取り扱い性が容易である等から、種々の工業用電解の分野、特に水銀法、隔膜法、イオン交換膜法等による食塩電解装置等の工業等の分野においる不溶性金属電極(陽極)として広く使われる。又、工業電解メッキその他の電解製造分野等においても広く使われていることは知られている。
ところで、この不溶性金属電極は、チタン又はチタン合金製の電極基材上に、酸化ルテニウム、酸化イリジウム等の白金族金属酸化物を、他の金属酸化物と共に熱分解法により設けたものであるが、電極基材を作るチタン又はチタン合金は高価な金属として知られている。又、言うまでもなく被覆層の白金族金属も生産量が少なく高価である。
従って、チタン又はチタン合金製の電極基材上に白金族金属製の被覆層を設けてなる不溶性金属電極からこれらの両金属を分離回収して再利用することが今後の重要な課題になる。
【0003】
そこで、従来からこの回収技術については種々が提案されている。例えば、特開昭57-155332号公報には使用済になった不溶性金属電極の表面に食塩等の薬品を塗布し、高温に加熱した後に急冷して表面の被覆層と電極基材とを分離し、白金族金属を回収する方法が記載されている(以後、前者)。
又、特開昭59-104438号や特開昭59-123730号公報等には不溶性金属電極から被覆層を分離(剥離)し、この被覆層を、酸化剤を含むアルカリ金属水酸化物溶融塩で溶解する等の処理を行なうことで、イリジウム及び/又はルテニウムを塩化物として回収する方法が記載されている(以後、後者)。
【0004】
【発明が解決しようとする課題】
しかし乍ら、前者において加熱温度が実際には800℃程度必要であること、又不溶性金属電極に塗布する食塩等により加熱炉自体を腐食してしまうとう問題を引き起こすこと、又、加熱後に急冷するための冷却設備等が必要となること等からその使用が限られてしまうものであった。
一方、後者においては水溶性金属電極から分離した被覆層を化学的に処理することで、被覆層からイリジウム及び/又はルテニウムを塩化物として回収する方法であるが、水溶性金属電極から被覆層を分離(剥離)することが困難な現状ではこの分離技術が問題になること、又、含有する不純物を除去する処理等に問題があること等から実際には殆ど実用化されていないのが現状であり、水溶性金属電極から被覆層を容易に且つ低コストにて分離する開発が望まれている。
即ち、使用済の水溶性金属電極から貴金属を回収するに当っては被覆層と電極基材との分離(剥離)技術が今後の最も重要な開発課題となっている。
【0005】
ところで、被覆層の分離が困難な理由としては、電極基材と酸化物からなる被覆層との結合が化学的結合により行なわれていることで、堅牢で分離(剥離)し難い構造になっている。そして、被覆層そのものが熱分解法により作られた結晶性であり、しかも、被覆層形成時点では溶融状態になっていない多孔性である等から、多孔部分のチタン又はチタン合金製の電極基材表面は強固な酸化物になっている共に、被覆層である白金族金属が電気化学的な保護作用を有する。
従って、この様な結合状態で電極基材上に設けられている被覆層を前者のように食塩等による腐食により分離しようとした場合、電極基材表面の電位を貴にするために反応し難く、その反応は全体的に均一に起らずに部分的である等から極めて困難である。又、腐食は部分的に大きく起ることから、電極基材の酸化消耗が極めて大きいばかりか、使用する酸量が多い割には被覆層の分離が十分に進行しないものである。
【0006】
本発明はこの様な従来事情に鑑み、長年に亘り種々の研究を重ねてきた結果、使用済の特に不溶性金属電極に機械的歪みを与えることで、電極基材と表面の酸化物電極物質との付着性を緩め、その後、緩めた両者の間に腐食液を入れて電極基材表面を腐食させる酸洗いを行なうことで、両者を確実に分離し得ることを発見し、本発明に至ったものであり、その目的とする処は、短時間で効率的に、しかも、低コストにて貴金属を分離回収し得るように改良した処理方法を提供することにある。
【0007】
【課題を達成するための手段】
課題を達成するために本発明は、チタン、チタン合金、タンタル、ジルコニウム、ニオブ、ルテニウム又はイリジウムの金属製電極基材上に、白金族金属酸化物を含有する電極物質の被覆層を設けた金属電極のうち、前記被覆層から貴金属を回収する処理方法において、金属電極に機械的歪みを与えることで、電極基材と被覆層との付着性を緩めた後に、緩めた両者の間に酸洗いによって腐食液を万遍なく均一に腐食液を入れることで、被覆層と電極基材とを分離し、分離した被覆層物質を塩化物として回収するようにしたことである。
【0008】
又、上記機械歪みを、ロールプレスによるロール圧延により与えるようにしたことである。この時の圧延率は特に限定されるものではないが、10〜40%が好ましく、特に好ましくは10〜35%であり、更に好ましくは15〜25%である。
【0009】
又、上記酸洗いを、加熱した塩酸及び/又は硫酸中で行なうようにしたことである。
ここで、塩酸を使用する場合は共沸組成である20%程度の塩酸を沸騰状態で使うことが望ましい。又、硫酸を使用する場合には40%程度の硫酸を酸洗い液とし、処理温度を85〜95℃程度とすることが望ましい。
又、硫酸と塩酸との混合水溶液として使用する場合には例えば酸中に25%の硫酸と20%の塩酸を含むことが望ましい。この場合、処理温度を高くするほど反応速度が速くなるが、85〜90℃程度とすることが望ましい。
【0010】
又、被覆層と分離した電極基材を細かく切断し、その後に、再溶解して基材金属に戻すようにしたことである。
【0012】
而して、上記した本発明の技術的手段によれば、金属製、例えばチタン又はチタン合金製電極基材上に白金族金属酸化物を含有する電極物質の被覆層を設けた不溶性金属電極から白金族金属を剥離回収するに際し、使用済の不溶性金属電極に機械的歪みを与えることにより電極基材と被覆層との付着性を緩める。その後に、緩めた両者の間に酸洗いによって腐食液を万遍なく均一に腐食液を入れることにより電極基材と被覆層とを分離し、分離した電極基材からチタン又はチタン合金を、そして被覆層から白金族金属を塩化物として回収する。それにより、簡単に且つ金属消耗を抑えた安定的に電極基材と被覆層とを分離することができる。そして、分離した電極基材と被覆層から不純物を含まない純粋な金属として回収することができる。
【0013】
【発明の実施の形態】
本発明の実施の具体例を以下に説明する。
本発明は使用済となった不溶性金属電極(以後、単に金属電極と言う)に機械的歪みを与えることで、チタン又はチタン合金製電極基材と表面の白金族金属酸化物を含有する電極物質の被覆層との付着性を緩める。その後、酸洗いによって緩めた電極基材と被覆層との両者の間に腐食液を入れることで、電極基材の表面全体を均一に腐食させる化学的処理を加えることで、両者を効率的に低コストにて分離し得るようにしたことである。
尚、電極基材としてはチタン又はチタン合金以外に、タンタル、ジルコニウム、ニオブ、ルテニウム、イリジウム等の通常用いられているその他の金属が挙げられる。
【0014】
そして、本発明においては、例えば食塩電解装置等の電解装置から取り外された使用済の金属電極に機械的歪みを与えるために機械加工を行なうものであるが、この機械加工をロールプレスによるロール圧延により行なう。そして、このロールプレスにより金属電極を圧延率としては特に限定されないが、10〜40%が好ましく、特に好ましくは10〜35%であり、更に好ましくは15〜25%である。
その理由は、圧延率が10%以下では次の酸洗い工程によって電極基材と被覆層との間に腐食液が万遍なく均一に入り込むように両者間の付着力を緩める機械的歪みを金属電極に与えられないからであり、40%を越えると、板厚みが小さくなり、電極基材と被覆層との分離(剥離)後にチタン又はチタン合金を回収するために溶解炉に入れる際に入れ難くなること、そして、表面積が大きくなり、その分、酸素量が増加するためにそのままでは溶解炉に入れられなくなるとう問題が起る。即ち、溶解炉に入れられる板厚は通常0.5mm程度であり、圧延後の酸洗いによって更に板厚が減ることをも考慮すると、例えば板厚が1mm程度の金属電極の場合で、圧延率はせいぜい30%程度の板厚減少に抑えておいた方が良く、20%前後程度であれば金属電極によるが、圧延時に被覆層の剥離による金属消耗は殆ど無視できる程度である。
【0015】
この様に、使用済の金属電極をロール圧延する理由は、例えばイオン交換膜法用として代表される食塩電解装置に用いられる金属電極は、通常メッシュ状、多孔質板状等を呈している。そして、電解装置に装着される時には溶接等の固着手段等により行なわれるので、電解装置から取り外された状態では溶接部分に穴があったり、凸凹な状態になっていたり、大きく歪んだ状態になっている。
従って、電解装置から取り外した状態のままでは穴や凸凹な状態によって金属電極が取扱いい等からロール圧延により金属電極の平滑化と共に圧延率20%程度の圧延を行なう。
【0016】
而して、ロールプレスによる機械加工によって、金属電極の平滑化と共に酸化物である被覆層にはマクロクラックが発生する。又、電極基材と酸化物との間には僅かに隙間が発生し、この隙間の発生により酸洗いより比較的に容易に酸化物を剥離せしめて電極基材との分離が可能になる。
又、電極基材のチタン又はチタン合金の被覆による電気化学的な保護作用が弱くなるために、酸洗い時に電極基材の表面全体に腐食が均一に起る。それにより、電極基材の酸化消耗を最小限に抑えることが可能になる。
【0017】
そして、本発明ではロールプレスにより金属電極に機械的歪みを与えた後に、酸洗いをするものであるが、この酸洗い条件については特に限定される。
【0018】
次に、塩酸及び/又は硫酸これらの酸を使った場合の夫々の特性について説明する。
塩酸の場合、共沸組成である20%程度の塩酸を沸騰状態で使うことが望ましい。20〜30分程度の酸洗い処理でチタン又はチタン合金の消耗が5〜8%程度となり、略完全に被覆層と電極基材とを分離することができる。
この様にして分離された被覆層は粉末状となって液中に懸濁するので、これを濾過により分離回収するものであるが、取扱温度が比較的に高いこと、塩酸の揮発とミストの発生があるのでスクラバーを設ける必要がある。
【0019】
一方、硫酸の場合、電極基材の腐食速度が比較的遅いので時間を掛けての処理に適する。即ち、40%程度の硫酸を酸洗い液とし、処理温度を85〜95℃程度とすることにより、1時間程度で前述の塩酸と同様な状態になる。
この様に、塩酸の場合と同じく液中に電極基材から剥離した被覆層が粉末状となり懸濁するので、被覆層を濾過回収するものである。
【0020】
硫酸水溶液としては、温度が低いこと、不揮発性であることから殆どミストの発生も無く取扱は容易である。但し、腐食力が比較的弱いので回収品(金属電極)の状態によって処理時間を調整した方が良い場合がある。
【0021】
そして、硫酸と塩酸との混合水溶液を使用することで、両者の中間的な性質を示し取扱いは比較的に容易となる。例えば、酸中に25%の硫酸と20%の塩酸を含む混合水溶液を作り、これによって機械的歪みを与えた金属電極の酸洗いを行なうことで、電極基材と被覆層との分離が良い。この場合、処理温度を高くするほど反応速度が速くなるが、温度85〜90℃で処理を行なうと、沸騰20%塩酸と略同様な腐食速度と強さが得られるものである。そして、温度が85℃以下になると、腐食速度が極端に落ちるので注意をする必要がある。通常の処理では85℃で30〜45分程度が適正であり、この時のチタン又はチタン合金製電極基材の腐食量は略5〜8%である。
【0022】
而して、機械的歪みを与えた金属電極を前述したやり方により酸洗いし、酸を濾過することによって剥離された被覆層物質を得ることができる。そして、得られた被覆層物質は十分に水洗いして酸を取り除いてから塩化物として回収するものである。例えば、水素雰囲気中で還元した後に鉛や銀等と合わせて加熱溶融し、合金化する。この時、還元され無い又は合金化されないチタンやタンタル等の所謂弁金属はスラッジとして取り除かれる。
又、得られた合金を硫酸中に浸漬したり、電解によって溶解させることによって、溶解しない白金族金属は液中に沈殿するので濾過によって容易に分離することができる。
そして、必要に応じて精製を行ない、更に塩素化することによって直接塩化物とすることができる。この条件は特に限定されないが、例えば20%の沸騰塩酸で洗浄した後、乾燥し、加熱しながら次亜塩素酸ソーダと反応酸化して塩化物とした後にイオン交換樹脂によってナトリウムイオンを除去することにより、目的の塩化物を得ることができる。
又、白金族金属がルテニウムの場合では直接塩素と反応させてRuO4とした後、それを僅かにアルコール等の還元剤を含む塩酸中にRuC 4として溶解することにより、塩化物として回収することができるものである。
【0023】
又、白金族金属酸化物の中でイリジウム、ルテニウムについて回収した酸化物スラッジをアルカリ溶融し、溶融物を塩酸によって中和し、更に酸性にした後に次亜塩素酸や塩素で酸化してルテニウムの場合はRuO4として揮発させると共に塩酸中にRuC 4として塩化物で回収することができる。
又、イリジウムは揮発性の塩とはならない代わりに塩化イリジウム酸塩となるので、陽イオン交換樹脂を通して陽イオンであるアルカリイオン等を除いた塩化イリジウム酸として回収する。この場合、塩酸溶液となっているので必要に応じて減圧蒸留することで、塩化物固体として回収することができる。
尚、ロジウムについても同様であるが、白金は酸化白金にはならないので別の方法により回収することは言うまでもないであろう。
【0024】
実施例1
例えばイオン交換膜法電解槽等で6年間使用されて使用済になった金属電極の電極基材上に残留する白金族金属酸化物を含有する電極物質の被覆層から白金族金属を分離する回収を行なった。
ここで用いた金属電極は、エクスパンドメッシュからなるチタン製電極基板上に、酸化イリジウム・酸化ルテニウム並びに酸化チタンの複合酸化物の被覆層が設けられたものであり、イリジウム、ルテニウム共に夫々投影面当たり8〜12g/m2の残留していることが見られた。
まず、この金属電極を幅約30cm、長さ約12cmの大きさに切断した後にロールプレスに掛けて金属的歪みを与えた。この時、ロール圧延方向を変えて2度圧延を行ない金属電極の平滑化と共に圧延率を板厚の20%減少に抑えた。このロー圧延作業では表面の被覆層の剥離は全く認められなかった。
【0025】
次に、機械的歪みを与えた金属電極を硫酸と塩酸との混合水溶液を用いて酸洗いを行なった。この混合水溶液は250g/lの硫酸と200g/lの塩酸とを混合させ、温度を85〜90℃としたものである。この混合水溶液中に浸漬させてから15分後から激しく気泡が出始め、30分後には略完全に電極基材のチタン表面が出て、最初黒色であったものが灰色に変化した。そして更に5分間保持した後に酸洗いを止め、被覆層が除かれた電極基材を取り出したところ、表面は完全に灰色になっており、被覆層が完全に分離取り除かれていることが分かった。この時、金属重量の減少は、被覆層を含めて5.3%であった。又、酸液中には黒色の沈殿が認められた。
そして、酸液を冷却した後、目開き10μmの濾過紙にて濾過したところ、完全に黒色部分を回収することができた。この黒色スラッジと分析したところ、酸化チタン、酸化ルテニウム、及び酸化イリジウムのみからなり、その組成はルテニウムとイリジウムの比率は基の電極のそれと同じであることが分かった。又、ルテニウムとイリジウムとの合せ量は、スラッジ重量の50%であり、チタン以外の不純物を含まないので、そのまま塩化精製工程に持っていき、酸化チタンを除いた後、ルテニウムとイリジウムの混合塩化物として回収した。
尚、チタン(電極基材)は表面が水素化チタンとなっているが、その他の不純物を含まないので3〜5cm角程度に細かく切断し、その後、チタン溶解プロセスに持ち込んだ。この時、表面酸化が全くないので、チタンの酸素含有にも影響を与えないので問題なく使えることが分かった。因みに、この時のチタンの回収率は90%位であった。
【0026】
比較例1
ロールプレスによるロール圧延を行なわない以外については実施例1と同じである。
然るに、金属電極に機械的歪みを与えることなく、単に酸洗いしたところ、反応が起らず、酸中に浸漬させた状態で3時間保持した後も殆ど変化は起らず、分離回収することが困難であることが分かった。
【0027】
比較例2
実施例1と同じくロール圧延を行なった後に、酸洗いではなく、ステンレスバフによる剥離を行なった。この時、表面が金属光沢のみになるまでバフ掛けを行ない、スラッジを回収した。すると、回収したスラッジには20%のステンレス成分が含まれていたので、それを沸騰塩酸中で除いた後に、ルテニウムとイリジウム量を計ったところ、初期量の約50%であることが分かった。そこで、バフ処理を行なった電極基材表面のイリジウムとルテニウムを蛍光エックス線で測定して見たところ、初期量の40%程度残っていることが分かった。これにより、機械的処理のみでは十分に回収できないことが分かる。
【0028】
実施例2
1mmの板厚を有するチタン製電極基材上に、酸化イリジウムと酸化チタンからなる被覆層を有する金属電極から貴金属を分離する回収を行なった。実施例1詳述と同じ条件でロールプレスに掛けて金属的歪みを与えた。この時の見掛け厚さを0.8mmとした。
そして、機械的歪みを与えた金属電極を20%の沸騰塩酸中に浸漬させて酸洗いを行なったところ、最初の10分間は反応が起らなかったが、その後急激に表面からの気泡の発生が起り、30分後には電極基材の表面は灰色となり、表面の被覆層は完全に分離取り除かれたことが分かった。この時、酸洗いを止めて洗浄した後に、電極基材の表面イリジウム量を蛍光エックス線で測定してみたところ、イリジウムの残部が全く認められなかった。
そして、実施例1と同様に酸液を冷却した後に濾過してスラッジを回収した。回収したスラッジは50%以上のイリジウムが含まれていることが分かった。又、酸洗いで使用した塩酸中のイリジウム量を蛍光エックス線で測定してみたところ、イリジウム、タンタルの存在が認められず、被覆層は略完全に回収取り除かれたことが分かった。
【0029】
実施例3
実施例1と同様にロールプレスにより機械的歪みを与えた金属電極について、酸洗いを50%硫酸にて行なったところ、処理時間3時間で略完全に被覆層が除かれたことが分かった。
【0030】
実施例4
実施例1と同様にロールプレスにより機械的歪み与えた金属電極について、酸洗いをフッ化水素酸水溶液にて行なったところ、室温で処理時間10分ほどで略完全に被覆層が除かれて回収されることが分かった。
尚、斯かる実施例では被覆層物質の一部が電極基材の表面に残留していることが確認され、酸洗いが終了した後に表面をブラシ処理する必要があった。
【0031】
実施例5
実施例1と同様にロールプレスにより機械的歪みを与えた金属電極について酸洗いを10%酸と4%フッ化水素酸水溶液からなる所謂フッ硝酸液を用いて行なったところ、40℃で処理時間15分で略完全に被覆層が除かれ、回収されたこが分かった。
尚、斯かる実施例5においても実施例4と同様に、被覆層物質の一部が電極基材の表面に残留していることが確認されたため、酸洗いが終了した後に表面をブラシ処理する必要があった。
【0032】
【発明の効果】
本発明の金属電極から貴金属を回収する処理方法は叙上の如く構成してなることから下記の作用効果を秦する。
1.本発明では使用済の金属電極に、チタン、チタン合金、タンタル、ジルコニウム、ニオブ、ルテニウム又はイリジウム製電極基材と白金族金属酸化物を含有する電極物質の被覆層との付着力を緩める機械的歪みを与えた後に、緩めた電極基材と被覆層との両者の間に腐食液を入れる酸洗いを行なうようにしたことから、従来では困難とされた電極基材と被覆層との分離を確実に行なうことができる。
【0033】
▲2▼.又、本発明では電極基材の表面から取り除かれた被覆層物質は酸液中に懸濁又は沈殿した塩化物として回収するようにしたことから、回収が容易となり、しかも回収率の向上が期待できる。
【0034】
▲3▼.又、本発明では酸液中に取り除かれた被覆層物質が塩酸溶液となっているので必要に応じて減圧蒸留することで、塩化物固体として回収することができる。
【0035】
▲4▼.又、本発明ではロールプレスにより機械的歪みを与えることから、その機械的処理が容易であり、能率的に貴金属を回収することが可能になる。それにより、処理の手間が最小にできるので、回収コストの低減を図り得る。
【0036】
▲5▼.又、本発明では例えば溶接等の固着手段により装着されているイオン交換膜法電解槽等から取り外された状態のままでは変形して取扱い難い金属電極であっても機械的歪みを与える機械加工時に平滑化に戻す修復が可能であることから、貴金属を回収する上での取扱いに何ら問題になることはない。
【0037】
従って、本発明によれば、容易で能率の向上が図れるロールプレスにより不溶性金属電極に機械的歪みを与えることで、電極基材と被覆層との付着性を緩める。そして、緩めた電極基材と被覆層との間に万遍なく均一に腐食液を入れて電極基材表面を腐食させる酸洗いを行なうことより前記電極基材と被覆層とを分離するようにしたことから、使用済の不溶性金属電極から短時間で効率的に、しかも、低コストにて貴金属を分離回収し得る画期的な処理方法を提供することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a processing method for recovering noble metal from a metal electrode, particularly on a metal electrode base material of titanium, titanium alloy, tantalum, zirconium, niobium, ruthenium or iridium used for industrial electrolysis. The present invention also relates to a method for treating a metal electrode in a recovery process in which a noble metal is separated (separated) and recovered from an insoluble metal electrode provided with a coating layer of an electrode material containing a platinum group metal oxide.
[0002]
[Prior art]
Conventionally, an insoluble metal electrode called a dimensionally stable anode (DSA) or dimensionally stable electrode (DSE) can be stably operated for a long period of time, and energy saving and handling are easy. It is widely used as an insoluble metal electrode (anode) in the field of industrial electrolysis, particularly in the field of industrial fields such as a salt electrolysis apparatus using a mercury method, a diaphragm method, an ion exchange membrane method, or the like. It is also known that it is widely used in industrial electrolytic plating and other electrolytic manufacturing fields.
By the way, this insoluble metal electrode is obtained by providing a platinum group metal oxide such as ruthenium oxide and iridium oxide together with other metal oxides on a titanium or titanium alloy electrode base material by a thermal decomposition method. Titanium or titanium alloys that make electrode substrates are known as expensive metals . Needless to say, the platinum group metal of the coating layer is also less expensive and expensive.
Therefore, it will become an important subject in the future to separate and recover these two metals from an insoluble metal electrode in which a coating layer made of a platinum group metal is provided on an electrode substrate made of titanium or a titanium alloy.
[0003]
Therefore, various types of recovery techniques have been proposed. For example, in Japanese Patent Application Laid-Open No. 57-155332, a chemical such as salt is applied to the surface of a used insoluble metal electrode, heated to a high temperature, and then rapidly cooled to separate the surface coating layer from the electrode substrate. However, a method for recovering platinum group metals is described (the former).
JP-A-59-104438, JP-A-59-123730, etc. separate (peel) a coating layer from an insoluble metal electrode, and use this coating layer as an alkali metal hydroxide molten salt containing an oxidizing agent. Describes a method of recovering iridium and / or ruthenium as a chloride by performing a treatment such as dissolution in (hereinafter the latter).
[0004]
[Problems to be solved by the invention]
However乍Ra it to the heating temperature actually requires about 800 ° C. In the former, also it can cause problems which would have the corroded the furnace itself by saline or the like applied to the insoluble metal electrodes, and, after heating Its use is limited due to the necessity of cooling equipment for rapid cooling.
On the other hand, the latter is a method of recovering iridium and / or ruthenium as chloride from the coating layer by chemically treating the coating layer separated from the water-soluble metal electrode. In the present situation where separation (peeling) is difficult, this separation technique becomes a problem, and because there is a problem in the processing for removing impurities contained therein, etc., it has not been practically used in practice. There is a need to develop a method for easily and inexpensively separating the coating layer from the water-soluble metal electrode.
That is, the separation (peeling) technique between the coating layer and the electrode base material is the most important development issue in the future for recovering the noble metal from the used water-soluble metal electrode.
[0005]
By the way, the reason why it is difficult to separate the coating layer is that the bonding between the electrode substrate and the coating layer made of oxide is performed by chemical bonding, which makes the structure robust and difficult to separate (peel). Yes. And since the coating layer itself is crystalline produced by a thermal decomposition method, and is porous which is not in a molten state at the time of coating layer formation, the electrode substrate made of titanium or titanium alloy in the porous portion both the surface has become solid oxide, platinum group metal is a coating layer having an electrochemical protection action.
Therefore, when the coating layer provided on the electrode base material in such a bonded state is separated by corrosion with salt or the like as in the former case, it is difficult to react to make the potential of the electrode base material noble. The reaction is extremely difficult because it does not occur uniformly as a whole and is partial. In addition, since corrosion occurs partly, the oxidation consumption of the electrode substrate is extremely large, and the separation of the coating layer does not proceed sufficiently for a large amount of acid used.
[0006]
As a result of various studies over many years in view of such a conventional situation, the present invention gives mechanical strain to a used insoluble metal electrode in particular, and thereby provides an electrode base material and a surface oxide electrode material. After that, it was found that the two can be reliably separated by performing acid pickling that corrodes the electrode substrate surface by putting a corrosive liquid between the loosened adhesive and then corroding the surface of the electrode substrate. The purpose of the processing is to provide an improved processing method so that the precious metal can be separated and recovered efficiently in a short time and at low cost.
[0007]
[Means for achieving the object]
To achieve the object, the present invention provides a metal in which a coating layer of an electrode substance containing a platinum group metal oxide is provided on a metal electrode base material of titanium, titanium alloy, tantalum, zirconium, niobium, ruthenium or iridium. Among the electrodes , in the processing method for recovering the noble metal from the coating layer , the metal electrode is mechanically strained to loosen the adhesion between the electrode substrate and the coating layer, and then pickle between the loosened electrodes. Thus, the coating solution and the electrode substrate are separated from each other by uniformly and uniformly putting the corrosion solution by the method, and the separated coating layer material is recovered as a chloride.
[0008]
Further, the mechanical strain is applied by roll rolling using a roll press. The rolling rate at this time is not particularly limited, but is preferably 10 to 40%, particularly preferably 10 to 35%, and further preferably 15 to 25%.
[0009]
Further, the pickling is performed in heated hydrochloric acid and / or sulfuric acid.
Here, when hydrochloric acid is used, it is desirable to use about 20% hydrochloric acid having an azeotropic composition in a boiling state. When sulfuric acid is used, it is desirable that about 40% sulfuric acid is used as the pickling solution, and the treatment temperature is about 85 to 95 ° C.
When used as a mixed aqueous solution of sulfuric acid and hydrochloric acid, for example, it is desirable that the acid contains 25% sulfuric acid and 20% hydrochloric acid. In this case, the higher the treatment temperature, the faster the reaction rate, but it is desirable to set it at about 85 to 90 ° C.
[0010]
In addition, the electrode base material separated from the coating layer is finely cut and then re-dissolved to return to the base metal.
[0012]
Thus, according to the technical means of the present invention described above, from an insoluble metal electrode in which a coating layer of an electrode substance containing a platinum group metal oxide is provided on an electrode substrate made of metal , for example, titanium or a titanium alloy. When the platinum group metal is peeled and recovered, the adhesion between the electrode substrate and the coating layer is loosened by applying mechanical strain to the used insoluble metal electrode. After that, the electrode substrate and the coating layer are separated by putting the corrosion solution evenly and uniformly by pickling between the loosened electrode, separating the electrode substrate and the coating layer, and titanium or titanium alloy from the separated electrode substrate, and The platinum group metal is recovered from the coating layer as chloride. Thereby, the electrode substrate and the coating layer can be separated easily and stably with reduced metal consumption. And it can collect | recover as a pure metal which does not contain an impurity from the isolate | separated electrode base material and a coating layer.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Specific examples of implementation of the present invention will be described below.
The present invention provides an electrode material containing a titanium or titanium alloy electrode substrate and a platinum group metal oxide on the surface by applying mechanical strain to a used insoluble metal electrode (hereinafter simply referred to as a metal electrode). The adhesion with the coating layer is loosened. After that, by adding a chemical treatment that uniformly corrodes the entire surface of the electrode substrate by putting a corrosive solution between the electrode substrate and the coating layer loosened by pickling, both of them can be efficiently treated. That is, it can be separated at low cost.
In addition to titanium or a titanium alloy, examples of the electrode base material include other commonly used metals such as tantalum, zirconium, niobium, ruthenium, and iridium.
[0014]
In the present invention, for example, machining is performed to give mechanical strain to a used metal electrode removed from an electrolysis apparatus such as a salt electrolysis apparatus. To do. And although it does not specifically limit as a rolling rate of a metal electrode by this roll press, 10 to 40% is preferable, Especially preferably, it is 10 to 35%, More preferably, it is 15 to 25%.
The reason for this is that when the rolling rate is 10% or less, the metal picks mechanical strain that loosens the adhesion between the electrode substrate and the coating layer so that the corrosive solution can uniformly enter the electrode substrate and the coating layer in the next pickling process. This is because it is not applied to the electrode. If it exceeds 40%, the plate thickness will be reduced, and it will be put into the melting furnace to recover titanium or titanium alloy after separation (peeling) of the electrode substrate and coating layer. hard becomes possible, and the surface area is increased, correspondingly, as is the problem that would have the not be placed in a melting furnace occurs for oxygen content increases. That is, the plate thickness that is put into the melting furnace is usually about 0.5 mm, and considering that the plate thickness is further reduced by pickling after rolling, for example, in the case of a metal electrode with a plate thickness of about 1 mm, the rolling rate is It is better to suppress the reduction of the plate thickness to about 30% at most. If it is about 20%, it depends on the metal electrode, but metal consumption due to peeling of the coating layer during rolling is almost negligible.
[0015]
As described above, the reason why the used metal electrode is roll-rolled is that, for example, the metal electrode used in a salt electrolysis apparatus represented by an ion exchange membrane method usually has a mesh shape, a porous plate shape, or the like. And when it is attached to the electrolysis device, it is done by fixing means such as welding, so when it is removed from the electrolysis device, there is a hole in the welded portion, it is in an uneven state, or it is in a greatly distorted state. ing.
Therefore, performing the rolling reduction ratio of about 20% with smoothing of the metal electrodes by rolling from such have difficulty handling the metal electrode by holes or uneven state in the state removed from the electrolytic device.
[0016]
Thus, macro-cracking occurs in the coating layer that is an oxide along with smoothing of the metal electrode by machining by a roll press. Further, a slight gap is generated between the electrode base material and the oxide, and the generation of this gap makes it possible to separate the oxide from the electrode base material relatively easily by pickling.
In addition, since the electrochemical protective action of the electrode base material with titanium or titanium alloy coating is weakened, corrosion occurs uniformly on the entire surface of the electrode base material during pickling. Thereby, it is possible to minimize the oxidation consumption of the electrode substrate.
[0017]
In the present invention, the metal electrode is mechanically strained by a roll press and then pickled, but this pickling condition is particularly limited.
[0018]
Next, characteristics of hydrochloric acid and / or sulfuric acid when these acids are used will be described.
In the case of hydrochloric acid, it is desirable to use about 20% hydrochloric acid having an azeotropic composition in a boiling state. The pickling treatment for about 20 to 30 minutes consumes about 5 to 8% of titanium or titanium alloy, and the coating layer and the electrode substrate can be separated almost completely.
Since such a manner separated coating layer is suspended in the liquid become powder, but it is intended to separate recovered by filtration, it handled had the temperature is relatively high, volatilization and mist hydrochloride It is necessary to install a scrubber.
[0019]
On the other hand, in the case of sulfuric acid, since the corrosion rate of the electrode base material is relatively slow, it is suitable for the treatment over time. That is, when about 40% sulfuric acid is used as the pickling solution and the treatment temperature is about 85 to 95 ° C., the state becomes the same as the above-mentioned hydrochloric acid in about one hour.
In this way, the coating layer peeled off from the electrode substrate is suspended in the form of a powder in the same solution as in the case of hydrochloric acid, and the coating layer is collected by filtration.
[0020]
The aqueous solution of sulfuric acid, the temperature is low, is almost without any handling physician generation of mist easily because it is non-volatile. However, since the corrosive force is relatively weak, it may be better to adjust the treatment time depending on the state of the recovered product (metal electrode).
[0021]
By using a mixed aqueous solution of sulfuric acid and hydrochloric acid, the intermediate properties of the two are shown and the handling becomes relatively easy. For example, by making a mixed aqueous solution containing 25% sulfuric acid and 20% hydrochloric acid in acid, and pickling a metal electrode that has been subjected to mechanical strain, it is possible to separate the electrode substrate from the coating layer. . In this case, the higher the treatment temperature, the faster the reaction rate. However, when the treatment is carried out at a temperature of 85 to 90 ° C., a corrosion rate and strength almost the same as boiling 20% hydrochloric acid can be obtained. And when the temperature falls below 85 ° C, the corrosion rate drops extremely, so care must be taken. In normal treatment, about 30 to 45 minutes at 85 ° C. is appropriate, and the amount of corrosion of the electrode substrate made of titanium or titanium alloy at this time is about 5 to 8%.
[0022]
Thus, the metal electrode subjected to mechanical strain is pickled in the manner described above, and the peeled coating layer material can be obtained by filtering the acid. The resulting coating layer material is sufficiently washed with water to remove the acid and then recovered as a chloride. For example, after reducing in a hydrogen atmosphere, it is heated and melted together with lead, silver, etc. to form an alloy. At this time, Iben metal at such as titanium or tantalum that is not free or alloyed been reduced are removed as sludge.
Further, by immersing the obtained alloy in sulfuric acid or dissolving it by electrolysis, the platinum group metal which does not dissolve is precipitated in the liquid and can be easily separated by filtration.
And it refine | purifies as needed and can be directly made into a chloride by further chlorinating. Although this condition is not particularly limited, for example, after washing with 20% boiling hydrochloric acid, drying, heating and reaction with sodium hypochlorite to form chloride, and then removing sodium ions with an ion exchange resin Thus, the target chloride can be obtained.
Further, after the platinum group metal which was RuO 4 directly reacted with chlorine in the case of ruthenium, by dissolving it as Ruc l 4 in hydrochloric acid containing a reducing agent such as slightly alcohol, recovered as a chloride It is something that can be done.
[0023]
In addition, the oxide sludge recovered for iridium and ruthenium in the platinum group metal oxide is melted with alkali, the melt is neutralized with hydrochloric acid, further acidified, and then oxidized with hypochlorous acid and chlorine to form ruthenium. If it can be recovered in chloride as Ruc l 4 in hydrochloric acid with evaporating as RuO 4.
In addition, iridium does not become a volatile salt, but instead becomes a chlorinated iridate, so that it is recovered through a cation exchange resin as chlorinated iridium acid excluding alkaline ions and the like. In this case, since it is a hydrochloric acid solution, it can be recovered as a chloride solid by distillation under reduced pressure if necessary.
The same applies to rhodium, but it goes without saying that platinum is not converted to platinum oxide and is recovered by another method.
[0024]
Example 1
For example, a platinum group metal is recovered from a coating layer of an electrode material containing a platinum group metal oxide remaining on an electrode substrate of a metal electrode that has been used for six years in an ion exchange membrane electrolytic cell or the like. Was done.
The metal electrode used here is a titanium electrode substrate made of an expanded mesh, on which a coating layer of a composite oxide of iridium oxide / ruthenium oxide and titanium oxide is provided, and both iridium and ruthenium per projection surface. It was observed that 8-12 g / m 2 remained.
First, the metal electrode was cut into a size of about 30 cm in width and about 12 cm in length, and then subjected to a roll press to give metallic distortion. At this time, the roll rolling direction was changed and the rolling was performed twice to smooth the metal electrode and suppress the rolling rate to 20% reduction in the plate thickness. It was not observed at all the release of the coating layer on the surface in this role rolling operation.
[0025]
Next, the metal electrode subjected to mechanical strain was pickled using a mixed aqueous solution of sulfuric acid and hydrochloric acid. This mixed aqueous solution was prepared by mixing 250 g / l sulfuric acid and 200 g / l hydrochloric acid to a temperature of 85 to 90 ° C. Bubbles began to emerge vigorously 15 minutes after immersion in this mixed aqueous solution, and after 30 minutes, the titanium surface of the electrode base material appeared almost completely, and the initially black one turned gray. Then, after further holding for 5 minutes, pickling was stopped and the electrode substrate from which the coating layer was removed was taken out, and it was found that the surface was completely gray and the coating layer was completely separated and removed. . At this time, the decrease in the metal weight including the coating layer was 5.3%. In addition, a black precipitate was observed in the acid solution.
Then, after cooling the acid solution, it was filtered with a filter paper having an opening of 10 μm, and the black portion could be completely recovered. Analysis of this black sludge revealed that it consisted of only titanium oxide, ruthenium oxide, and iridium oxide, and the composition was the same as that of the base electrode in the ratio of ruthenium to iridium. Also, the combined amount of ruthenium and iridium is 50% of the sludge weight and does not contain impurities other than titanium, so it is taken directly to the chlorination purification process, after removing the titanium oxide, the mixed chlorination of ruthenium and iridium. It was recovered as a product.
The surface of titanium (electrode substrate) is titanium hydride, but does not contain other impurities, so it was finely cut to about 3 to 5 cm square and then brought into the titanium dissolution process. At this time, since there was no surface oxidation, it was found that it can be used without any problem because it does not affect the oxygen content of titanium. Incidentally, the recovery rate of titanium at this time was about 90%.
[0026]
Comparative Example 1
Except not performing roll rolling by roll press, it is the same as Example 1.
However, without mechanical strain on the metal electrode, simply pickling, there is no reaction, there is almost no change even after holding for 3 hours in the acid so that it can be separated and recovered Proved difficult.
[0027]
Comparative Example 2
After roll rolling as in Example 1, peeling with a stainless steel buff was performed instead of pickling. At this time, buffing was performed until the surface became only metallic luster, and sludge was collected. Then, since the recovered sludge contained 20% stainless steel component, after removing it in boiling hydrochloric acid, the amount of ruthenium and iridium was measured and found to be about 50% of the initial amount. . Therefore, when iridium and ruthenium on the surface of the electrode base material subjected to the buff treatment were measured with a fluorescent X-ray, it was found that about 40% of the initial amount remained. Thereby, it turns out that it cannot fully collect only by mechanical processing.
[0028]
Example 2
Recovery was performed by separating a noble metal from a metal electrode having a coating layer made of iridium oxide and titanium oxide on a titanium electrode substrate having a plate thickness of 1 mm. Example 1 Metallic strain was applied to the roll press under the same conditions as described in detail. The apparent thickness at this time was 0.8 mm.
When the mechanically strained metal electrode was immersed in 20% boiling hydrochloric acid and pickled, the reaction did not occur for the first 10 minutes, but then bubbles suddenly generated from the surface. After 30 minutes, it was found that the surface of the electrode substrate became gray and the coating layer on the surface was completely separated and removed. At this time, after the pickling was stopped and the surface was washed, the amount of iridium on the surface of the electrode substrate was measured with a fluorescent X-ray. As a result, the remainder of iridium was not observed at all.
And like Example 1, after cooling the acid solution, it filtered and collect | recovered sludge. The recovered sludge was found to contain over 50% iridium. Further, when the amount of iridium in hydrochloric acid used for pickling was measured with a fluorescent X-ray, it was found that the presence of iridium and tantalum was not observed, and the coating layer was almost completely recovered and removed.
[0029]
Example 3
As in Example 1, when the metal electrode subjected to mechanical strain by a roll press was pickled with 50% sulfuric acid, it was found that the coating layer was removed almost completely after 3 hours of treatment.
[0030]
Example 4
When the metal electrode mechanically strained by the roll press as in Example 1 was pickled with a hydrofluoric acid aqueous solution, the coating layer was removed almost completely in about 10 minutes at room temperature and recovered. I found out that
In such an example, it was confirmed that a part of the coating layer substance remained on the surface of the electrode substrate, and it was necessary to brush the surface after pickling was completed.
[0031]
Example 5
It was performed using the same manner as in Example 1 rolling press with 10% pickling the metal electrodes provide mechanical strain nitric acid and called hydrofluoric nitric acid solution at consisting of 4% aqueous hydrofluoric acid, treated with 40 ° C. substantially completely covering layer is removed at time 15 min, it was found and recovered this is.
In Example 5 as well, as in Example 4, it was confirmed that a part of the coating layer material remained on the surface of the electrode base material, so that the surface was brushed after pickling was completed. There was a need.
[0032]
【The invention's effect】
Since the processing method for recovering noble metal from the metal electrode of the present invention is configured as described above, the following effects are obtained.
1. In the present invention, a used metal electrode is a mechanical member that loosens the adhesion between an electrode base material made of titanium, titanium alloy, tantalum, zirconium, niobium, ruthenium or iridium and an electrode material containing a platinum group metal oxide. After applying distortion, pickling with a corrosive solution between the loosened electrode base material and the coating layer was performed, so separation of the electrode base material and the coating layer, which had been difficult in the past, was achieved. It can be done reliably.
[0033]
(2). In the present invention, the coating layer material removed from the surface of the electrode base material is recovered as chloride suspended or precipitated in the acid solution, so that recovery is facilitated and an improvement in recovery rate is expected. it can.
[0034]
(3). In the present invention, since the coating layer material removed in the acid solution is a hydrochloric acid solution, it can be recovered as a chloride solid by distillation under reduced pressure if necessary.
[0035]
(4). Further, in the present invention, since mechanical strain is given by a roll press, the mechanical treatment is easy, and it becomes possible to efficiently recover the noble metal. As a result, the processing effort can be minimized, and the recovery cost can be reduced.
[0036]
(5). Further, in the present invention, for example, at the time of machining which gives mechanical distortion even if the metal electrode is deformed and difficult to handle while being removed from the ion exchange membrane electrolytic cell or the like which is mounted by fixing means such as welding. Since restoration to smoothing is possible, there is no problem in handling when recovering the precious metal.
[0037]
Therefore, according to the present invention, the adhesiveness between the electrode base material and the coating layer is loosened by applying mechanical strain to the insoluble metal electrode by a roll press that is easy and can improve efficiency. Then, the electrode base material and the coating layer are separated from each other by performing acid pickling that corrodes the surface of the electrode base material by uniformly putting a corrosive solution between the loose electrode base material and the coating layer. Therefore, it is possible to provide an epoch-making treatment method capable of separating and recovering a precious metal efficiently from a used insoluble metal electrode in a short time and at a low cost.

Claims (4)

チタン、チタン合金、タンタル、ジルコニウム、ニオブ、ルテニウム又はイリジウムの金属製電極基材上に、白金族金属酸化物を含有する電極物質の被覆層を設けた金属電極のうち、前記被覆層から貴金属を回収する処理方法において、
金属電極に機械的歪みを与えた後に、酸洗いによって電極基材と被覆層とを分離し、被覆層物質を塩化物として回収することを特徴とする金属電極から貴金属を回収する処理方法。
Among metal electrodes in which a coating layer of an electrode material containing a platinum group metal oxide is provided on a metal electrode base material of titanium, titanium alloy, tantalum, zirconium, niobium, ruthenium or iridium, noble metal is removed from the coating layer. In the processing method to collect,
A processing method for recovering a noble metal from a metal electrode, comprising: mechanically straining the metal electrode; separating the electrode base material and the coating layer by pickling; and recovering the coating layer material as a chloride.
請求項1記載の機械的歪みを、ロールプレスにより与えることを特徴とする金属電極から貴金属を回収する処理方法。  The processing method which collect | recovers noble metals from the metal electrode characterized by giving the mechanical distortion of Claim 1 with a roll press. 請求項1又は2記載の酸洗いを、加熱した塩酸及び/又は硫酸中で行なうことを特徴とする金属電極から貴金属を回収する処理方法。  A processing method for recovering a noble metal from a metal electrode, wherein the pickling according to claim 1 or 2 is performed in heated hydrochloric acid and / or sulfuric acid. 請求項1乃至3いずれか1項記載の電極基材を細かく切断し、その後に、再溶解して基材金属に戻すことを特徴とする金属電極から貴金属を回収する処理方法。  A processing method for recovering a noble metal from a metal electrode, wherein the electrode substrate according to any one of claims 1 to 3 is finely cut and then re-dissolved to return to the base metal.
JP2000112639A 2000-04-13 2000-04-13 Method for recovering precious metals from metal electrodes Expired - Lifetime JP4450942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000112639A JP4450942B2 (en) 2000-04-13 2000-04-13 Method for recovering precious metals from metal electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000112639A JP4450942B2 (en) 2000-04-13 2000-04-13 Method for recovering precious metals from metal electrodes

Publications (3)

Publication Number Publication Date
JP2001294948A JP2001294948A (en) 2001-10-26
JP2001294948A5 JP2001294948A5 (en) 2007-06-14
JP4450942B2 true JP4450942B2 (en) 2010-04-14

Family

ID=18624765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000112639A Expired - Lifetime JP4450942B2 (en) 2000-04-13 2000-04-13 Method for recovering precious metals from metal electrodes

Country Status (1)

Country Link
JP (1) JP4450942B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060144791A1 (en) * 2004-12-30 2006-07-06 Debe Mark K Platinum recovery from nanostructured fuel cell catalyst
PL2783025T3 (en) 2011-11-21 2019-08-30 Industrie De Nora S.P.A. Method for exfoliating coating layer of electrode for electrolysis
CN115216773B (en) * 2021-04-14 2024-07-19 中国科学院过程工程研究所 Treatment method of copper-based material containing metal plating layer

Also Published As

Publication number Publication date
JP2001294948A (en) 2001-10-26

Similar Documents

Publication Publication Date Title
JP4465685B2 (en) Insoluble electrode recovery method
JP4607303B2 (en) Method for recovering platinum group metals from metal electrodes
JP4450942B2 (en) Method for recovering precious metals from metal electrodes
EP2783025B1 (en) Method for exfoliating coating layer of electrode for electrolysis
CN111349961B (en) Method for cleaning waste titanium anode plate for foil forming machine and removing and recycling precious metal
US5141563A (en) Molten salt stripping of electrode coatings
JP2002088494A5 (en)
JPS58194745A (en) Recovery of ruthenium
JP4700815B2 (en) Method for recovering platinum group metals from metal electrodes
JP4450945B2 (en) Method for recovering precious metals from metal electrodes
JP2001294948A5 (en)
JP2002194581A (en) Method for recovering platinum group metal from metal electrode
JP2001303141A5 (en)
JPS6254849B2 (en)
CN112680749B (en) Noble metal recovery process based on vacuum sputtering chamber
JPS6254850B2 (en)
US4895626A (en) Process for refining and purifying gold
JP5115936B2 (en) Method for collecting insoluble metal electrode
JPS63270421A (en) Method for recovering platinum group metals from platinum group metallic oxide electrode
JPH07145427A (en) Method for recovering and recycling palladium or palladium alloy from contact material
JP4142769B2 (en) Method for producing high purity cobalt
JP2023142339A (en) Method for recovering catalyst layer from electrode including conductive substrate and catalyst layer disposed on conductive substrate
JPH11269687A (en) Electrolytic electrode
JP4291868B1 (en) Method for recovering platinum group metals
JPH059606A (en) Separation of gold-silver alloy

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100127

R150 Certificate of patent or registration of utility model

Ref document number: 4450942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term