JPH11269687A - Electrolytic electrode - Google Patents

Electrolytic electrode

Info

Publication number
JPH11269687A
JPH11269687A JP10073730A JP7373098A JPH11269687A JP H11269687 A JPH11269687 A JP H11269687A JP 10073730 A JP10073730 A JP 10073730A JP 7373098 A JP7373098 A JP 7373098A JP H11269687 A JPH11269687 A JP H11269687A
Authority
JP
Japan
Prior art keywords
iridium
coating layer
platinum
electrode
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10073730A
Other languages
Japanese (ja)
Inventor
Minoru Ogiso
稔 小木曽
Eisaku Ushiku
英作 牛久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP10073730A priority Critical patent/JPH11269687A/en
Publication of JPH11269687A publication Critical patent/JPH11269687A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress damages of a base material under conditions of high current density and high voltage and to improve the production efficiency of electrolytic products by successively forming coating layers of platinum, iridium and iridium oxide on an electrode base body such as titanium, niobium and tantalum. SOLUTION: A platinum coating layer, an iridium coating layer and an iridium oxide coating layer are successively formed on an electrode base body containing one or more kinds of metal selected from titanium, niobium and tantalum to form an electrode. The platinum coating layer and the iridium coating layer are formed to each 0.1 to 5 μm thickness, while the iridium oxide coating layer is formed to 0.1 to 0.5 μm thickness. The platinum coating layer and the iridium coating layer are formed by dry plating such as a platinum- iridium cladding method to laminate thin plates under pressure, and vacuum vapor deposition or sputtering, or by wet electric plating. The iridium oxide layer is preferably formed by a pyrolyzing method such as by applying an iridium compd. soln. on the iridium coating layer, drying and heating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、希薄な食塩水を電気分
解して殺菌効果を持つ強酸性水を生成するための電極、
有機物含有排水の電解清浄化処理等の用途に使用される
不溶性電極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for electrolyzing a dilute saline solution to produce a strongly acidic water having a bactericidal effect.
The present invention relates to an insoluble electrode used for applications such as electrolytic cleaning of wastewater containing organic substances.

【0002】[0002]

【従来の技術】強酸性水は殺菌効果をもつ水で、 100mg
/lから1000mg/l程度の濃度の希薄な食塩水を隔膜電気分
解して陽極液より得られる。強酸性水の電解生成では、
市水と濃厚食塩水を混合して電気分解する方法がとられ
ている。市水中には、カルシウムやマグネシウムが含ま
れているため、強酸性水製造装置の稼働につれて、電極
上にはカルシウム塩やマグネシウム塩が付着してくる。
これらを除くために、電極極性を反転させる逆電解操作
を行う。強酸性水製造に用いる電極としては、チタニウ
ム等の弁金属基材上に酸化イリジウム単体や酸化イリジ
ウムと金属白金等からなる電極活性材料をバインダとと
もに焼成して形成させる焼き付け電極やチタニウム等の
弁金属基材上に白金メッキを施した電極等が用いられて
きた。この内白金メッキによる電極は、電極の製造条件
を焼き付け電極に比べて安定して製造できる利点があ
り、寿命において安定した特性を示し、電圧の上昇が緩
やかに起こるために、電極の交換時期を予め予測するこ
とが出来る利点があり、さらに逆電解操作に丈夫である
利点がある。しかし、焼き付け電極に比べて、希薄な食
塩水中での塩素発生効率が劣る欠点があり、より多くの
電流を隔膜電気分解セルに投入する必要があるので、結
果として電極寿命が短くなってしまうという問題が有っ
た。
2. Description of the Related Art Strongly acidic water is a water having a bactericidal effect.
A diluted saline solution having a concentration of about 1000 mg / l to about 1000 mg / l is obtained from the anolyte by electrolysis with a diaphragm. In the electrolysis of strongly acidic water,
A method is used in which city water and concentrated saline are mixed and electrolyzed. Since city water contains calcium and magnesium, calcium salts and magnesium salts adhere to the electrodes as the strongly acidic water production device operates.
In order to remove these, a reverse electrolysis operation for inverting the electrode polarity is performed. Examples of the electrode used for the production of strongly acidic water include a baked electrode formed by firing an electrode active material composed of iridium oxide alone or iridium oxide and metal platinum together with a binder on a valve metal base material such as titanium and a valve metal such as titanium. Electrodes or the like in which a substrate is plated with platinum have been used. Of these electrodes, platinum-plated electrodes have the advantage that electrode manufacturing conditions can be manufactured more stably than baked electrodes, exhibit stable characteristics over their lifetime, and cause a gradual rise in voltage. It has the advantage that it can be predicted in advance, and the advantage that it is robust to reverse electrolysis. However, compared to a baked electrode, there is a drawback that chlorine generation efficiency in dilute saline is inferior, and more current must be supplied to the diaphragm electrolysis cell, resulting in a shorter electrode life. There was a problem.

【0003】白金メッキを施した電極は、触媒活性物質
層が金属白金であるので、消耗がおこっても、不導体化
した電極基材にかかる電圧と白金メッキ部分にかかる電
圧の差は、焼き付け電極に比べて大きい。基材は保護さ
れ、剥落部に流れていた電流は剥落を起こしていない触
媒活性物質層に流れるようになる。従って高電流密度条
件や高電圧条件下でも基材の損傷を抑制される。白金層
と電極基材との間の損傷も、徐々に進むので、電極の消
耗は電圧の上昇などで、事前に判断できる。消耗は、徐
々にすすむため前述の酸化イリジウムを含む焼き付け電
極に比べて、交換計画を立てやすい。しかし火力発電に
おける冷却水用の海水電解を例にとれば、陽極として使
用した際に、酸素の発生量が多く塩素の発生量が少なく
なってしまう欠点がある。すなわち酸素発生が支配的で
あり、酸素以外の電解生成物を得る場合には不利であ
る。また酸素を発生する場合においても、酸素過電圧が
高く電力を多く投入する必要がある。電流密度が高けれ
ばなおさらにこの傾向は、顕著になる。従って工業用の
不溶解性陽極を用いた電解操作では、寿命判定や電解条
件を加味して酸化イリジウムを含む焼き付け電極や白金
の電解などが適宜用いられている。
[0003] In a platinum-plated electrode, since the catalytically active material layer is made of metallic platinum, the difference between the voltage applied to the nonconductive electrode substrate and the voltage applied to the platinum-plated portion, even when consumed, is baked. Larger than electrodes. The substrate is protected, and the current flowing in the spalled portion flows to the non-peeled catalytically active material layer. Therefore, damage to the substrate is suppressed even under high current density conditions and high voltage conditions. Since the damage between the platinum layer and the electrode base material also progresses gradually, the consumption of the electrode can be determined in advance by increasing the voltage. Since the consumption gradually proceeds, it is easier to make a replacement plan as compared with the above-mentioned burnt electrode containing iridium oxide. However, taking seawater electrolysis for cooling water in thermal power generation as an example, there is a disadvantage that when used as an anode, a large amount of oxygen is generated and a small amount of chlorine is generated. That is, the generation of oxygen is dominant, which is disadvantageous when an electrolytic product other than oxygen is obtained. Also, in the case of generating oxygen, it is necessary to supply a large amount of electric power with a high oxygen overvoltage. This tendency becomes even more pronounced when the current density is high. Therefore, in an electrolytic operation using an insoluble anode for industrial use, a baked electrode containing iridium oxide, electrolysis of platinum, and the like are appropriately used in consideration of life determination and electrolytic conditions.

【0004】さらに、これら電極の改良として、多孔質
の白金層に酸化イリジウム等の白金族金属酸化物を3次
元的に担持した電極が提案されている(特開昭58−1
71589号公報)。この発明の代表的実施形態は、電
気メッキによって形成された多孔質白金被覆層に白金族
金属酸化物を形成する化合物含有溶液を塗布し、熱分解
によって白金被覆層の表面及び孔内に白金族金属酸化物
を形成担持させて得られる3次元的電極構造であり、こ
の構造をとることにより、白金と白金族金属酸化物とい
う2つの電気化学的活性成分の有する利点を最大限に活
用し、低い過電圧と高い耐久性を有す電極を得るという
発明の効果をもたらす点に特徴がある。
Further, as an improvement of these electrodes, there has been proposed an electrode in which a platinum group metal oxide such as iridium oxide is three-dimensionally supported on a porous platinum layer (Japanese Patent Laid-Open No. 58-1).
No. 71589). In a typical embodiment of the present invention, a solution containing a compound forming a platinum group metal oxide is applied to a porous platinum coating layer formed by electroplating, and the surface of the platinum coating layer and the pores are formed by pyrolysis. It is a three-dimensional electrode structure obtained by forming and supporting a metal oxide. By taking this structure, the advantages of two electrochemically active components, platinum and a platinum group metal oxide, are maximized, It is characterized in that an effect of the invention of obtaining an electrode having low overvoltage and high durability is obtained.

【0005】しかしながら、上記の3次元構造からなる
電極を用いた場合においても、昨今の厳しい使用条件下
すなわち、高電流密度条件や高電圧条件下では耐久性の
点で必ずしも満足出来ない状況が発生することがある。
例えば、長期の使用において、白金族金属酸化物層が白
金層から剥落してしまい、著しい特性の劣化が観察され
る例が見られるが、これは白金層中の孔内であっても液
中反応場になる限り液の流通による物理的剥離の危険に
さらされており、反応時電極表面に印加された電圧によ
って形成される局部電場が引き金となって白金族金属酸
化物層の剥落が生じるものと推測される。この場合、前
述の熱分解法で形成された白金族金属酸化物層では白金
層との接合強度が不足することが原因して、剥落が進行
しやすいものと推定される。
[0005] However, even in the case of using the electrode having the three-dimensional structure described above, a situation arises in which the durability cannot always be satisfied under severe use conditions in recent years, that is, under high current density conditions and high voltage conditions. May be.
For example, in long-term use, there is an example in which the platinum group metal oxide layer peels off from the platinum layer, and a remarkable deterioration in characteristics is observed. As long as it is in the reaction field, it is at risk of physical separation due to the flow of liquid, and the local electric field formed by the voltage applied to the electrode surface during the reaction triggers the separation of the platinum group metal oxide layer It is supposed to be. In this case, it is presumed that the platinum group metal oxide layer formed by the above-mentioned pyrolysis method is likely to be easily peeled off due to insufficient bonding strength with the platinum layer.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上述した従
来電極の欠点である高電流密度条件や高電圧条件下での
基材の損傷を抑制することができるとともに、塩素など
酸素以外の電解生成物の生成効率に優れた電極を提供す
るものである。
SUMMARY OF THE INVENTION The present invention is capable of suppressing damage to a substrate under high current density conditions and high voltage conditions, which are the drawbacks of the above-mentioned conventional electrodes, and at the same time, is capable of electrolytically removing chlorine and other substances other than oxygen. An object of the present invention is to provide an electrode having excellent product generation efficiency.

【0007】[0007]

【課題をを解決するための手段】本発明は、チタニウ
ム、ニオブ及びタンタルより選択される1種以上の金属
を含む電極基材上に、(a)白金被覆層、(b)イリジ
ウム被覆層及び(c)イリジウム酸化物被覆層が順に形
成されてなる電極である。白金被覆層及びイリジウム被
覆層の厚みを 0.1〜5 μmとし、イリジウム酸化物被覆
層の厚みを 0.1〜0.5 μmとすることが望ましい。この
ような構造を採用することにより、白金被覆層とイリジ
ウム被覆層とは金属同士のため、またイリジウム被覆層
とイリジウム酸化物被覆層とは同一元素成分系のため高
い接合強度を有するものであり、電極全体としての膜強
度が向上するものと考えられ、結果として後述するよう
な高耐久性を維持出来る所となる。
According to the present invention, there is provided an electrode substrate comprising at least one metal selected from titanium, niobium and tantalum, wherein (a) a platinum coating layer, (b) an iridium coating layer, (C) An electrode in which an iridium oxide coating layer is sequentially formed. It is desirable that the thickness of the platinum coating layer and the iridium coating layer be 0.1 to 5 μm, and the thickness of the iridium oxide coating layer be 0.1 to 0.5 μm. By adopting such a structure, the platinum coating layer and the iridium coating layer have high bonding strength because they are metals, and the iridium coating layer and the iridium oxide coating layer are the same element component system. It is considered that the film strength of the entire electrode is improved, and as a result, high durability as described later can be maintained.

【0008】本発明によれば、5A/dm2以上200A/dm2以下
といった高電流密度条件や高電圧条件下での基材の損傷
を抑制し、酸化イリジウム電極などと同様の触媒活性の
得られる電極が得られる。また電極の寿命点付近では、
電解電圧の上昇または、電解電流の低下が徐々に始まる
ため、電圧値や電流値の変化で事前に電極の寿命を判定
できる。酸化イリジウム電極の欠点と白金メッキ電極の
欠点を補うことができるので、電極の利用分野におい
て、応用範囲が広くなる。
According to the present invention, damage to a substrate under high current density conditions or high voltage conditions of 5 A / dm 2 or more and 200 A / dm 2 or less is suppressed, and a catalyst activity similar to that of an iridium oxide electrode or the like is obtained. The obtained electrode is obtained. In the vicinity of the electrode life point,
Since the increase in the electrolytic voltage or the decrease in the electrolytic current starts gradually, the life of the electrode can be determined in advance based on the change in the voltage value or the current value. Since the disadvantages of the iridium oxide electrode and the disadvantages of the platinum-plated electrode can be compensated for, the range of application in the field of use of the electrode is widened.

【0009】[0009]

【発明の実施の形態】基材に用いるチタニウム、ニオ
ブ、タンタル等の弁金属の入手は容易である。ニオブと
タンタル、ニオブとチタニウム等の合金も好ましい。電
気化学的活性成分層の剥落後に、基材表面が不動態化し
て、電極基材が保護されれば良いからである。基材の前
処理には、エメリーによるブラスト処理や化学エッチン
グ法により基材表面を粗にしておくとメッキ電着物と基
材との密着性が良くなる。化学エッチング法において
は、フッ化物によるエッチング液がよく用いられるが、
この他にも、濃硫酸、塩酸、シュウ酸などによる液が使
用されフッ化物と混合して使用されることもある。これ
らの処理の他に、メッキ前の基材のコンディションを整
えるための、硫酸浸漬工程や水洗工程、フッ化物溶液中
での酸化物除去工程等の公知の前処理方法を組み合わせ
ても良い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Valve metals such as titanium, niobium, and tantalum used for a base material are easily available. Alloys such as niobium and tantalum, and niobium and titanium are also preferred. This is because the surface of the substrate is passivated after the electrochemically active component layer is peeled off, so that the electrode substrate is protected. In the pretreatment of the substrate, if the surface of the substrate is roughened by blasting by emery or chemical etching, the adhesion between the plated electrodeposit and the substrate is improved. In the chemical etching method, an etching solution using a fluoride is often used.
In addition, a solution of concentrated sulfuric acid, hydrochloric acid, oxalic acid, or the like is used, and may be used by being mixed with fluoride. In addition to these treatments, known pretreatment methods such as a sulfuric acid immersion step, a water washing step, and an oxide removal step in a fluoride solution for adjusting the condition of the base material before plating may be combined.

【0010】白金被覆層とイリジウム被覆層形成方法に
は、特に限定はなく、薄板を圧着接合したいわゆる白金
イリジウムクラッド、真空蒸着やスパッタリング等のド
ライメッキ、湿式電気メッキ等の種々の方法が適用可能
である。電気メッキの場合、硫酸浴のほか中性浴やアル
カリ浴のものを適宜選択して使用できる。イリジウムと
白金の間に、白金−酸化物の拡散層を形成させてもよ
い。
The method for forming the platinum coating layer and the iridium coating layer is not particularly limited, and various methods such as a so-called platinum iridium clad in which thin plates are pressure-bonded, dry plating such as vacuum evaporation and sputtering, and wet electroplating can be applied. It is. In the case of electroplating, a neutral bath or an alkaline bath other than a sulfuric acid bath can be appropriately selected and used. A diffusion layer of platinum-oxide may be formed between iridium and platinum.

【0011】イリジウム酸化物層の形成には、いわゆる
「熱分解法」が好適である。「熱分解法」によれば、イ
リジウム化合物溶液をイリジウム被覆層に塗布乾燥し、
加熱することによりイリジウム被覆層上に薄く均一なイ
リジウム酸化物の膜が形成される。熱処理温度は、大気
または簡便な酸化雰囲気で、概ね 400℃乃至 800℃の範
囲で行う。 400℃未満では、長寿命化にあまり効果がな
く、大気で行った場合800℃を超えた温度では基材の酸
化が激しく好ましくない。 800℃を超えた温度で熱処理
を施す場合は、基材の損傷を防止するために、真空下、
窒素雰囲気、アルゴン雰囲気で処理するのが良いが、設
備費用やコストがかかる。処理時間は、概ね数分から数
時間程度であるが、長時間行う場合には低い温度で、短
時間で行うためには高い温度で良い。熱処理条件は、適
宜選択すれば良いが、大気中では、 450℃から 650℃の
間で10分から60分程度が良い。こうして熱分解によって
生成するイリジウムは上記温度範囲では容易に酸化され
る為、ほぼ完全なイリジウム酸化物膜が形成されている
ものと考えられる。イリジウム酸化物被覆層の形成に際
して、熱処理が行われるので、電極寿命は増大する。こ
のようにして熱処理を施したものは、白金メッキによる
単層の電極を熱処理した際の、寿命に対する効果は、1.
3 倍程度であるが、本発明の多層膜電極においては、熱
処理の効果は2.5 倍であった。この効果は電気メッキに
よる結晶の成長方向、粒子の生成と熱処理との相互作用
によるものと考えられる。
For forming the iridium oxide layer, a so-called "pyrolysis method" is preferable. According to the "pyrolysis method", the iridium compound solution is applied to the iridium coating layer and dried,
By heating, a thin and uniform iridium oxide film is formed on the iridium coating layer. The heat treatment is performed at a temperature of about 400 ° C. to 800 ° C. in the air or a simple oxidizing atmosphere. If the temperature is lower than 400 ° C., there is not much effect on the extension of the service life. When performing heat treatment at a temperature exceeding 800 ° C, in order to prevent damage to the base material,
The treatment is preferably performed in a nitrogen atmosphere or an argon atmosphere, but equipment costs and costs are high. The processing time is generally from several minutes to several hours, but a low temperature may be used for a long time, and a high temperature may be used for a short time. The heat treatment conditions may be appropriately selected, but in the air, the temperature is preferably from 450 ° C. to 650 ° C. for about 10 minutes to 60 minutes. Since iridium generated by the thermal decomposition is easily oxidized in the above temperature range, it is considered that an almost complete iridium oxide film is formed. Since the heat treatment is performed when forming the iridium oxide coating layer, the electrode life is increased. In the case where the heat treatment is performed in this manner, the effect on the life when the heat treatment is performed on a single-layer electrode formed by platinum plating is 1.
Although it was about three times, in the multilayer electrode of the present invention, the effect of the heat treatment was 2.5 times. This effect is considered to be due to the interaction between the crystal growth direction by electroplating and the generation of particles and the heat treatment.

【0012】本発明による電極では、表面から順に酸化
イリジウム、イリジウム、白金の被覆層が形成されてい
る。電極表面の酸化イリジウムが剥落もしくは消耗した
場合でも、電気分解に伴いイリジウムは、陽極酸化によ
り酸化イリジウムに変化すると考えられる。海水電解を
例にとれば、正電解中、酸化イリジウムの作用により、
高い塩素発生効率が得られるが、上記の通り、本発明の
電極にあっては、第2層のイリジウムが消耗し尽くさな
い限り、常に酸化イリジウムが表面に露出した形態を取
れるため、安定的に塩素発生効率が得られる。
In the electrode according to the present invention, a coating layer of iridium oxide, iridium, and platinum is formed in order from the surface. Even when iridium oxide on the electrode surface is peeled or consumed, it is considered that iridium changes to iridium oxide by anodic oxidation with electrolysis. Taking seawater electrolysis as an example, during positive electrolysis, the action of iridium oxide
Although a high chlorine generation efficiency can be obtained, as described above, in the electrode of the present invention, iridium oxide always takes a form exposed on the surface unless iridium in the second layer is exhausted, so that the electrode can be stably formed. Chlorine generation efficiency is obtained.

【0013】さらに、基材とイリジウム被覆層の中間に
白金被覆層を設けているので、イリジウムの回収が容易
になるという効果と電極基材が保護されるという効果が
ある。使用済みのイリジウムを使用した電極から、イリ
ジウムを回収するには塩酸塩素水にて溶解する方法があ
る。しかし、表面の僅かなイリジウムを回収する際に、
基材も溶解してしまうので、薬液を多く使用し、基材を
再利用することができない。中間に白金被覆層を設ける
と、王水により白金部分が溶解しイリジウムは箔、及び
微細な粉として基材より分解することができる。基材に
は、チタニウム、ニオブ、タンタル等の金属や合金を用
いるので、王水には溶解しないため、少ない薬液で回収
することができ、基材も再利用することができる。分離
されたイリジウム粉や箔、白金の溶液は、前述の方法に
比べれば、回収は容易である。イリジウム被覆層の下地
に、白金被覆層が形成してあるため、イリジウム被覆層
が消耗しても基材が露出することはない。露出した白金
被覆層は電解に寄与するので、仮にイリジウム被覆層の
剥落が進んでも、電解性能の低下は抑えられる。電圧の
上昇は、この間に徐々に進行するので、白金被覆層が露
出しはじめた時点で電極を交換すれば良い。
Further, since the platinum coating layer is provided between the substrate and the iridium coating layer, there is an effect that the recovery of iridium is facilitated and an effect that the electrode substrate is protected. In order to recover iridium from an electrode using used iridium, there is a method of dissolving with chlorinated water. However, when recovering a small amount of iridium on the surface,
Since the base material is also dissolved, a large amount of the chemical solution is used, and the base material cannot be reused. When a platinum coating layer is provided in the middle, the platinum portion is dissolved by aqua regia and iridium can be decomposed from the base material as a foil and a fine powder. Since a metal or an alloy such as titanium, niobium, or tantalum is used for the base material, it is not dissolved in aqua regia, so that it can be recovered with a small amount of chemical solution, and the base material can be reused. The separated iridium powder, foil, and platinum solution can be easily recovered as compared with the above-described method. Since the platinum coating layer is formed under the iridium coating layer, the substrate is not exposed even if the iridium coating layer is consumed. Since the exposed platinum coating layer contributes to the electrolysis, even if the iridium coating layer peels off, the deterioration of the electrolytic performance can be suppressed. Since the voltage rise gradually progresses during this period, the electrodes may be replaced when the platinum coating layer starts to be exposed.

【0014】熱処理が加えてあると、白金被覆層の上層
には、イリジウムの拡散層が生じている。このため、白
金層が露出した当初は、白金イリジウムの合金に近い状
態なので熱処理を加えた電極は、更に優れた特性を示
す。
When heat treatment is applied, an iridium diffusion layer is formed on the platinum coating layer. For this reason, when the platinum layer is initially exposed, it is in a state close to a platinum-iridium alloy, so that the electrode subjected to the heat treatment exhibits more excellent characteristics.

【0015】酸化イリジウム被覆層の厚みは 0.1〜 0.5
μmとし、イリジウム被覆層の厚みは、経済性や作業性
を考慮して 0.2から 5.0μm程度施すのが好ましい。ま
た白金については、 0.1から 2.0μm程度にするのが良
い。特に白金については、電極のイリジウム被覆層の消
耗が始まり、交換するまでの時間を考慮して設定するこ
とができる。
The thickness of the iridium oxide coating layer is 0.1 to 0.5
The thickness of the iridium coating layer is preferably about 0.2 to 5.0 μm in consideration of economy and workability. The thickness of platinum is preferably about 0.1 to 2.0 μm. In particular, for platinum, it can be set in consideration of the time from when the iridium coating layer of the electrode starts to be consumed and when it is replaced.

【0016】本発明による電極は、低い電流密度から高
電流密度まで使用することができ、5A/dm2以上の条件に
おいて優れた性能を示す。上限は、実用面を考えて200A
/dm2以下とする。
The electrode according to the present invention can be used from a low current density to a high current density, and shows excellent performance under conditions of 5 A / dm 2 or more. The upper limit is 200A for practical use
/ dm 2 or less.

【0017】以下本発明の実施例について説明する。Hereinafter, embodiments of the present invention will be described.

【0018】[0018]

【実施例1】幅10mm長さ 100mmのリードをもつ縦40mm×
横50mm×厚さ 1mmのチタニウム板を電極基材として本発
明の電極を作成した際の実施例について示す。まず、チ
タニウム板をサンドブラスト法により粗化してメッキの
前処理とした。メッキの前処理は、酸性脱脂液(日本エ
レクトロプレイティング・エンジニヤース株式会社製:
イートレックス15)に30秒浸漬の後、水洗し、アルカリ
性脱脂液(日本エレクトロプレイティング・エンジニヤ
ース株式会社製:イートレックス11)に超音波下で1分
間浸漬し水洗いした。さらにチタンの酸化皮膜を除去す
るため、 1%の硝酸を含む 5%の酸性フッ化アンモニウ
ム溶液に1分間浸漬し、水洗、 5%硫酸溶液30秒浸漬を
行い、水洗した。前処理の後、浴温50℃、電流密度0.5A
/dm2、撹拌条件下で白金メッキを行い、1.4μm厚の白
金被覆層を形成した。白金メッキ浴は、ジニトロジアン
ミン白金塩をベースとした硫酸浴によって行った。続い
て浴温80℃、電流密度0.15A/dm2 、撹拌条件下でイリジ
ウムメッキを行い0.6μm厚のイリジウム被覆層を形成
した。イリジウムメッキ浴は、ヘキサブロモイリジウム
(III)酸ナトリウムとシュウ酸による浴によって行っ
た。最後に塩化イリジウム酸ナトリウム10gを20mlのブ
タノールに溶解した溶液を上記白金・イリジウム被覆層
上に塗布乾燥後、大気中 600℃で5時間焼成し、イリジ
ウム酸化物被覆層を形成した。被覆層全体の膜厚は2.15
μmであった。
[Example 1] 40 mm long with a lead of 10 mm in width and 100 mm in length
An example in which an electrode of the present invention was prepared using a titanium plate having a width of 50 mm and a thickness of 1 mm as an electrode substrate will be described. First, a titanium plate was roughened by a sandblast method to prepare a pretreatment for plating. The pretreatment of plating is performed using an acidic degreasing solution (manufactured by Nippon Electroplating Engineers Co., Ltd .:
After being immersed in Eatrex 15) for 30 seconds, it was washed with water, immersed in an alkaline degreasing solution (manufactured by Nippon Electroplating Engineers Co., Ltd .: Eatrex 11) for 1 minute under ultrasonic waves, and washed with water. Further, in order to remove the titanium oxide film, the film was immersed in a 5% acidic ammonium fluoride solution containing 1% nitric acid for 1 minute, washed with water, immersed in a 5% sulfuric acid solution for 30 seconds, and washed with water. After pretreatment, bath temperature 50 ℃, current density 0.5A
Platinum plating was performed under stirring conditions of / dm 2 to form a platinum coating layer having a thickness of 1.4 μm. The platinum plating bath was performed with a sulfuric acid bath based on dinitrodiammine platinum salt. Subsequently, iridium plating was carried out at a bath temperature of 80 ° C., a current density of 0.15 A / dm 2 and stirring conditions to form an iridium coating layer having a thickness of 0.6 μm. The iridium plating bath was performed by a bath using sodium hexabromoiridate (III) and oxalic acid. Finally, a solution prepared by dissolving 10 g of sodium chloride iridate in 20 ml of butanol was applied and dried on the platinum-iridium coating layer, and then baked at 600 ° C. for 5 hours in the atmosphere to form an iridium oxide coating layer. The overall coating thickness is 2.15
μm.

【0019】(評価1、有効塩素濃度測定)海水電解や
ソーダ電解を想定して、塩素の発生効率を測定した際の
試験の方法について示す。幅60mm、長さ 100mmの電極を
6枚使用し、極間距離 3mmで 5セルとしたバイポーラ型
隔膜電解槽に、 2 l/分の速度で陰極液流量と陽極液流
量比を 1:1とし、20℃の塩化ナトリウム溶液(濃度 100
0ppm)を流した。隔膜には、プラチックの枠に整流桟の
付いたものに、フッ素系の陽イオン交換膜を張ったもの
を使用した。1セルあたり電流密度で7.5A/dm2、の電流
を印加し、5分後に陽極側より流出する液中の有効塩素
濃度を沃素滴定法により測定したところ116ppmであっ
た。
(Evaluation 1, Effective Chlorine Concentration Measurement) A test method for measuring chlorine generation efficiency assuming seawater electrolysis or soda electrolysis will be described. Using a 6-electrode cell with a width of 60 mm and a length of 100 mm and a 5-cell bipolar electrode with a gap of 3 mm and a gap of 3 mm, the flow rate of catholyte to anolyte was set to 1: 1 at a rate of 2 l / min. , 20 ° C sodium chloride solution (concentration 100
0 ppm). As the diaphragm, a plastic frame with a flow straightening bar and a fluorine-based cation exchange membrane was used. A current of 7.5 A / dm 2 was applied at a current density per cell, and after 5 minutes, the effective chlorine concentration in the liquid flowing out from the anode side was measured by iodine titration to be 116 ppm.

【0020】(評価2、寿命試験)本実施例は、電極の
寿命試験をした際の方法について示す。横幅20mm、縦幅
80mm、深さ 100mmの塩化ビニル製の水槽に、下部より塩
化ナトリウムの溶液を送り込む入口を設け、深さ20mmの
ところより液がオーバーフローする液排出口を設けた無
隔膜電解セルにて加速寿命試験を実施した。実施例1に
て示した電極寸法である幅10mm、長さ 100mmのリードを
もつ縦40mm×横50mm×厚さ1mmの電極を陰極および陽極
とし、極間距離 3mmにてセルの中央に配し、200A/dm2
電流密度で 700時間定電流電解を行ない、結果を図1に
示す。なお塩化ナトリウム溶液は、室温にて濃度5g/1の
ものを 50ml/分の速度で連続して試験セルに送り込ん
だ。本試験では、電流密度を高くして加速試験となるよ
うにしている。この試験方法に従い寿命試験を行ったと
ころ、本発明にかかる電極は表面がわずかに黒ずんだも
のの、被覆層の厚みにほとんど変化がなく、 700時間経
過時点での消耗量はわずか0.05μm(約 2.3%に相当)
であった。
(Evaluation 2, Life Test) This embodiment shows a method for performing a life test of an electrode. 20mm width, vertical width
Accelerated life test in a non-diaphragm electrolytic cell equipped with an inlet for feeding sodium chloride solution from the lower part in a water tank made of vinyl chloride with a depth of 80 mm and a depth of 100 mm, and a liquid outlet for overflowing the liquid from a depth of 20 mm Was carried out. An electrode having a length of 40 mm, a width of 50 mm, and a thickness of 1 mm having a lead of 10 mm in width and 100 mm in length, which is the electrode dimension shown in Example 1, was used as a cathode and an anode, and was disposed at the center of the cell at a distance of 3 mm between the electrodes. A constant current electrolysis was performed at a current density of 200 A / dm 2 for 700 hours, and the results are shown in FIG. The sodium chloride solution having a concentration of 5 g / 1 at room temperature was continuously fed into the test cell at a rate of 50 ml / min. In this test, the current density is increased to perform an accelerated test. A life test was performed according to this test method. As a result, although the surface of the electrode according to the present invention was slightly darkened, there was almost no change in the thickness of the coating layer, and the consumption after 700 hours was only 0.05 μm (about 2.3 μm). %)
Met.

【0021】[0021]

【実施例2】実施例1に示した電極の寸法のチタニウム
板を5%フッ酸に1分浸漬して表面を粗化した。別に、
白金箔とイリジウム箔を重ねてから圧接して白金の厚み
が 100μmでイリジウムの厚みが 300μmのクラッド状
金属箔を用意し、前記チタニウム板に白金側を下にして
載せ、圧接してイリジウム被覆と白金被覆がなされたチ
タニウム板を作成し、最後に実施例1と同様にして酸化
イリジウムをイリジウム被覆層上に形成した。こうして
6枚の試料を用意し実施例1の手順により寿命試験を行
ったところ、電極の表面がわずかに黒ずんだが、電極厚
みはほとんど変化がなかった。
Example 2 A titanium plate having the dimensions of the electrode shown in Example 1 was immersed in 5% hydrofluoric acid for 1 minute to roughen the surface. Separately,
A platinum foil and an iridium foil are stacked and pressed together to prepare a clad metal foil having a platinum thickness of 100 μm and an iridium thickness of 300 μm, placed on the titanium plate with the platinum side down, and pressed against the iridium coating. A titanium plate coated with platinum was formed, and finally iridium oxide was formed on the iridium coating layer in the same manner as in Example 1. When six samples were prepared in this way and subjected to a life test according to the procedure of Example 1, the surface of the electrode was slightly darkened, but the electrode thickness was hardly changed.

【0022】[0022]

【実施例3】実施例2と同様にしてフッ酸により表面粗
化したチタニウム板を用意し、実施例1の手順によって
白金被覆層、イリジウム被覆層、酸化イリジウム被覆層
を順に形成した後、実施例1の手順にしたがってイリジ
ウム被覆層、酸化イリジウム被覆層を順にもう1層ずつ
形成した。これを実施例1の手順により寿命試験を行っ
たところ、電極の表面がわずかに黒ずんだが、被覆層の
厚みにはほとんど変化がなく、 700時間経過時点での消
耗量はわずか0.05μm(約 1.8%に相当)で寿命試験前
の2.85μmから2.80μmに減少しただけであった。
EXAMPLE 3 A titanium plate whose surface was roughened with hydrofluoric acid was prepared in the same manner as in Example 2, and a platinum coating layer, an iridium coating layer, and an iridium oxide coating layer were formed in this order according to the procedure of Example 1. According to the procedure of Example 1, another iridium coating layer and another iridium oxide coating layer were sequentially formed. When this was subjected to a life test according to the procedure of Example 1, the surface of the electrode was slightly darkened, but the thickness of the coating layer was hardly changed, and the consumption at the time of 700 hours was only 0.05 μm (about 1.8 μm). %), Which only decreased from 2.85 μm before the life test to 2.80 μm.

【0023】[0023]

【従来例1】実施例1に示した電極の寸法のもので、チ
タニウムの板に白金メッキにより平均厚みが2.05μmの
白金被覆層のみを形成した電極を6枚用意した。この電
極についても実施例1の手順により有効塩素濃度測定を
行ったところ、濃度45ppmに止まり、実施例1をかなり
下回った。また実施例1の手順により寿命試験を行い、
結果を図1に併せて示した。図1からわかるように、電
極の著しい消耗が認められ、被覆層膜厚が寿命試験 700
時間経過時点で約1.00μm即ち被覆層のほぼ半分が消耗
していた。
Conventional Example 1 Six electrodes having the dimensions of the electrodes shown in Example 1 were prepared by forming only a platinum coating layer having an average thickness of 2.05 μm on a titanium plate by platinum plating. When the effective chlorine concentration of this electrode was measured according to the procedure of Example 1, the concentration was only 45 ppm, which was considerably lower than that of Example 1. A life test was performed according to the procedure of Example 1, and
The results are shown in FIG. As can be seen from FIG. 1, remarkable wear of the electrode was observed, and the thickness of the coating layer was reduced by the life test.
At the elapse of time, about 1.00 μm, that is, almost half of the coating layer had been consumed.

【0024】[0024]

【従来例2】従来例1に示した電極の寸法のもので、チ
タニウムの板に白金メッキにより白金被覆層のみを形成
したものについて実施例1の手順により酸化イリジウム
被覆層を形成した試料を6枚作成した。実施例1の手順
により有効塩素濃度測定を行ったところ80ppmであり、
実施例1をやや下回った。さらに実施例1の手順により
寿命試験を行ったところ、電極の消耗が認められ、被覆
層の厚みが寿命試験前の2.15μmから1.95μmに減少
し、消耗量は0.20μm(約 9.3%に相当)にも及んでい
た。
Conventional Example 2 A sample having the dimensions of the electrode shown in Conventional Example 1 and having only a platinum coating layer formed on a titanium plate by platinum plating and having an iridium oxide coating layer formed by the procedure of Example 1 was used. Created. The effective chlorine concentration was measured by the procedure of Example 1 to be 80 ppm,
It was slightly below Example 1. Further, a life test was performed according to the procedure of Example 1. As a result, electrode wear was observed. The thickness of the coating layer was reduced from 2.15 μm before the life test to 1.95 μm, and the consumption was 0.20 μm (corresponding to about 9.3%). ).

【0025】以上示したように、本発明及び従来例2に
よる電極は、最外層に設けた酸化イリジウム被覆層の働
きで有効塩素濃度が高いことから、塩素発生効率が高い
が、従来例1に示した様に白金メッキのみでは塩素発生
効率が低く、酸素発生が多くなることがわかる。また、
寿命試験に示した通り、本発明にかかる電極は加速電解
試験を行った場合膜厚減少量が、従来例1〜2に比べ、
はるかに少なく長寿命であることがわかる。
As described above, the electrodes according to the present invention and the conventional example 2 have a high effective chlorine concentration due to the function of the iridium oxide coating layer provided as the outermost layer. As shown, it can be seen that the efficiency of chlorine generation is low and the generation of oxygen increases only with platinum plating. Also,
As shown in the life test, the electrode according to the present invention has a reduced film thickness when the accelerated electrolytic test is performed,
It can be seen that the life is much less.

【0026】[0026]

【発明の効果】本発明による、酸性水生成用電極によれ
ば、 (1)イリジウムの電気メッキによる電極の構成によ
り、電極の長寿命化と、メンテナンス上での利点を得る
ことができる。 (2)高電流密度条件での電極の消耗を抑え、ひいては
本発明を組み込んだ装置では、長期間の使用に耐えう
る。 (3)高価な貴金属を容易に回収することができ、基材
も再利用が可能である。
According to the electrode for producing acidic water according to the present invention, (1) the configuration of the electrode by iridium electroplating can extend the life of the electrode and obtain advantages in maintenance. (2) The electrode consumption under high current density conditions is suppressed, and the device incorporating the present invention can withstand long-term use. (3) The expensive precious metal can be easily recovered, and the base material can be reused.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年6月15日[Submission date] June 15, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明と従来例との比較評価を行うために実施
した電極寿命試験の結果を示す図である。
FIG. 1 is a diagram showing the results of an electrode life test performed for comparative evaluation of the present invention and a conventional example.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 チタニウム、ニオブ及びタンタルより選
択される1種以上の金属を含む電極基材上に、(a)白
金被覆層、(b)イリジウム被覆層及び(c)イリジウ
ム酸化物被覆層が順に形成されてなる電極。
1. An electrode substrate comprising at least one metal selected from titanium, niobium and tantalum, wherein (a) a platinum coating layer, (b) an iridium coating layer and (c) an iridium oxide coating layer. Electrodes formed in order.
【請求項2】 白金被覆層及びイリジウム被覆層の厚み
が 0.1〜 5μmであり、イリジウム酸化物被覆層の厚み
が 0.1〜 0.5μmであることを特徴とする請求項1に記
載の電極。
2. The electrode according to claim 1, wherein the thickness of the platinum coating layer and the iridium coating layer is 0.1 to 5 μm, and the thickness of the iridium oxide coating layer is 0.1 to 0.5 μm.
【請求項3】 白金被覆層及びイリジウム被覆層はメッ
キによって形成されたものであり、イリジウムの酸化物
被覆層はイリジウムの化合物溶液を熱分解して形成され
たものであることを特徴とする請求項1又は2に記載の
電極。
3. The method according to claim 1, wherein the platinum coating layer and the iridium coating layer are formed by plating, and the iridium oxide coating layer is formed by thermally decomposing an iridium compound solution. Item 3. The electrode according to item 1 or 2.
【請求項4】 上記(a)(b)(c)の3層が繰返し
形成されてなる請求項1乃至3に記載の電極。
4. The electrode according to claim 1, wherein the three layers (a), (b), and (c) are repeatedly formed.
JP10073730A 1998-03-23 1998-03-23 Electrolytic electrode Pending JPH11269687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10073730A JPH11269687A (en) 1998-03-23 1998-03-23 Electrolytic electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10073730A JPH11269687A (en) 1998-03-23 1998-03-23 Electrolytic electrode

Publications (1)

Publication Number Publication Date
JPH11269687A true JPH11269687A (en) 1999-10-05

Family

ID=13526655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10073730A Pending JPH11269687A (en) 1998-03-23 1998-03-23 Electrolytic electrode

Country Status (1)

Country Link
JP (1) JPH11269687A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100487677B1 (en) * 2002-10-09 2005-05-03 정도원 An insoluble electrode on which a platinum contained oxide covering is formed and its manufacturing method
JP2005154818A (en) * 2003-11-25 2005-06-16 Furuya Kinzoku:Kk Corrosion resistant material, and its production method
JP2006009094A (en) * 2004-06-25 2006-01-12 Furuya Kinzoku:Kk Corrosion-resistant material and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100487677B1 (en) * 2002-10-09 2005-05-03 정도원 An insoluble electrode on which a platinum contained oxide covering is formed and its manufacturing method
JP2005154818A (en) * 2003-11-25 2005-06-16 Furuya Kinzoku:Kk Corrosion resistant material, and its production method
JP4615847B2 (en) * 2003-11-25 2011-01-19 株式会社フルヤ金属 Corrosion resistant material and method for producing the same
JP2006009094A (en) * 2004-06-25 2006-01-12 Furuya Kinzoku:Kk Corrosion-resistant material and its manufacturing method
JP4615909B2 (en) * 2004-06-25 2011-01-19 株式会社フルヤ金属 Corrosion resistant material and method for producing the same

Similar Documents

Publication Publication Date Title
CN1763252B (en) Hydrogen evolving cathode
EP2757179B1 (en) Chlorine-generating positive electrode
AU2003294678A1 (en) Electrocatalytic coating with platinium group metals and electrode made therefrom
JP5522484B2 (en) Electrolytic plating anode and electrolytic plating method using the anode
CN111926349B (en) Composite anode for hydrometallurgy and preparation method and application thereof
JP2010507017A (en) Anode for electrolysis
JPH0375635B2 (en)
JP2011202206A (en) Insoluble electrode and method of producing the same
JPH04231491A (en) Electric catalyzer cathode and its manufacture
EP1483433B1 (en) Anode for oxygen evolution and relevant substrate
US4119503A (en) Two layer ceramic membranes and their uses
JPH0790665A (en) Oxygen generating electrode
JPH11269687A (en) Electrolytic electrode
JPH11269688A (en) Electrolytic electrode
US3497426A (en) Manufacture of electrode
JP2001262388A (en) Electrode for electrolysis
JPH0885894A (en) Electrode
US20030116431A1 (en) Electrode
JP3161827U (en) Insoluble anode structure
JP3406403B2 (en) Electrode for strong acid water
US3899409A (en) Bipolar electrode
US3920535A (en) Bipolar electrode
US3826731A (en) Bipolar electrode
WO2023203231A1 (en) Anode with metallic interlayer for electrodeposition
JPH02294497A (en) Chromium plating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070911