JPH0375635B2 - - Google Patents

Info

Publication number
JPH0375635B2
JPH0375635B2 JP59109775A JP10977584A JPH0375635B2 JP H0375635 B2 JPH0375635 B2 JP H0375635B2 JP 59109775 A JP59109775 A JP 59109775A JP 10977584 A JP10977584 A JP 10977584A JP H0375635 B2 JPH0375635 B2 JP H0375635B2
Authority
JP
Japan
Prior art keywords
metal
substrate
electrode
metal oxide
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59109775A
Other languages
Japanese (ja)
Other versions
JPS59232284A (en
Inventor
Neeru Biibaa Aaru
Ii Arekisandaa Roido
Ii Birudo Kaaru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Chemical Co
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Publication of JPS59232284A publication Critical patent/JPS59232284A/en
Publication of JPH0375635B2 publication Critical patent/JPH0375635B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide

Abstract

A substrate is coated with a solution of metal oxide precursor compounds and an etchant for etching the substrate, the metal oxide precursor compounds are thermally concentrated by removing volatiles therefrom, and the so-concentrated metal oxides precursors are thermally oxidized in-situ on the substrate. The so-formed compositions are useful, e.g., as electrode material in electrochemical apparatuses and processes.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電極の製法とその電解槽、特に塩水電
解槽における用法に関する。 クロル−アルカリ製造に使う電解槽には一般に
3つの型即ち(1)水銀槽、(2)隔膜槽、(3)メンブレイ
ン槽がある。これらの各槽の操作はKirk−
Oihmer Encylopedia of Chemical
Technology3版1巻799ページに記載されている。
水溶液電解用電極を使う他の電解槽は陽極陰極間
に分割又は分離装置を使わないいわゆる“クロレ
イト槽”である。水銀槽ではアルカリ金属塩の電
解により生じたアルカリ金属は水銀とアマルガム
を生成し、このアマルガムは水と反応して
NaOHを生成し水銀を遊離する。水銀は回収さ
れて液体陰極として循環使用される。 多くのクロル−アルカリ電解法においては塩水
溶液(電解液)は陽極陰極間にある隔膜又はメン
ブレインをもつ電解槽に電流をとおして電解され
る。塩素は陽極で生じ、一方水酸化ナトリウム
(NaOH)と水素(H2)は陰極で生成される。塩
水は電解槽に連続供給される一方でCl2、NaOH
およびH2は連続して槽から取出される。 電解液をCl2、NaOHおよびH2に電解するに要
する最小電圧は熱力学数値を用いて計算できる。
しかし実際には理論電圧値ではできないで、種々
の型の電解槽に固有の種々の抵抗に打勝つためよ
り高圧使用が必要である。隔膜又はメンブレイン
電解槽の操作効率を向上するため電極の過電圧減
少、隔膜又はメンブレインの電気抵抗減少又は電
解される塩水の電気抵抗減少の試みがなされてい
る。ここに記載の本発明は塩水電解に陰極として
特に有用で陰極過電圧が実質的に小さく電力効率
が向上される電極に関するものである。 毎年数百万トンのアルカリ金属ハライドと水が
電解されているので、僅かに0.05ボルト程度の作
業電圧の低下でも非常なエネルギー節約の意味が
ある。したがつて工業的に所要電圧の減少手段が
求められている。 クロル−アルカリ法の発達において電解槽電圧
減少法が種々開発されている。ある者は電解槽の
物理的仕様を改良して槽電圧低下に努力し、他の
者は陰極又は陽極の過電圧減少に努力している。
本発明は一部著しい低過電圧を特徴とする電極の
新規製法と電解槽におけるこの電極使用法に関す
る。 電極過電圧は電流密度とその組成の関数である
と発表されている。(文献PHYSICAL
CHEMISTRY、3版、W.J.Moore、Prentice
Hall(1962)406−408ページ)但し電流密度とは
電極の真の単位表面積当りのアンペアをいい、ま
た組成とは電極の化学的物理的構成をいう。故に
電極表面積増加法は与えられた表面的電流密度に
おけるその過電圧を減少しなければならない。ま
たよい電解触媒である物質組成を使うことも望ま
しい。これは更に過電圧を減少する。 この技術分野において電極の電導性金属で被覆
するためプラズマ又は火焔放射を使用することは
よく知られている。米国特許第1263959号は陽極
上にニツケル微粒を噴射し、粒子は溶融し鉄基質
上にプラストによつて吹付けられて陽極を被覆す
るとしている。 陰極も電導性金属で被覆される。米国特許第
3992278号はコバルト粒子とジルコニア粒子の混
合物をプラズマ放射又は火焔放射によつて被覆し
た陰極を記載している。これらの電極を水又はア
ルカリ金属ハライド塩水溶液の電解に使つた場合
これらは水素過電圧を長時間低下するといわれて
いる。 種々の金属および金属混合物がプラズマ又は火
焔放射による電極被覆に使われている。米国特許
第3630770号はランタンボライドの使用を記述し、
米国特許第3649355号はタングステンとタングス
テン合金の使用を記述し、米国特許第3788968号
は炭化チタン又は窒化チタンと白金族の少なくも
1の金属および(又は)金属酸化物および多孔性
第2酸化物膜の使用を記述し、米国特許第
3945907号はレニウムの使用を記述し、また米国
特許第3974058号はコバルト被覆と更にその上に
ルテニウム被覆を記載している。 同様の選択浸出による多孔質電極膜の製造もこ
の分野ではよく知られている。電極をニツケル粒
子で被覆した後ニツケルを焼結することは米国特
許第2928783号と2969315号に発表されている。基
質上に合金を電着させた後合金の1成分を浸出す
る方法は米国特許第3272788号に発表されている。
電極基質と共に又はその上に2又は3以上の成分
を圧着した後被覆成分の1又は2以上を選択浸出
する方法は米国特許第3316159号、3326725号、
3427204号、3713891号および3802878号に記載さ
れている。 電極のプラズマ噴射又は火焔噴射後浸出する製
造工程組合せがこの分野でも発表されている。ま
た電着後浸出する工程組合せも発表されている。
知られた方法の例は次の特許に示されている:米
国特許第3219730号は酸化物膜多数で基質を被覆
した後浸出して基質を除去する電極製法を記述
し、米国特許第3403057号は基質上にラネイ合金
を火焔又はプラズマ吹付けした後合金からアルミ
ニウムを浸出して多孔質電極と製法を記述し、米
国特許第349720号は基質上にアルミニウム、トリ
ウムおよびジルコニウム酸化物と共にタングステ
ン、チタン又はそれらの合金をプラズマ吹付けす
る方法を記述している。基質はあとで除去し多孔
質電極とする。 米国特許第3497425号は基質を比較的不溶性金
属で被覆した後より溶解し易い金属で被覆する多
孔質電極製法を記述している。この中で2つの膜
を相互拡散させる熱処理が要求される一方、最適
条件としては各膜の別々な熱処理が必要である。
可溶性金属はあとで浸出され多孔質電極ができ
る。米国特許第3618136号は基質上に2成分塩組
成物を被覆し系から可溶成分を浸出する多孔質電
極製法を記載している。この特許は2成分塩組成
物が共融混合物でありまた活性塩と不活性塩、例
えば銀塩化物とナトリウム塩化物の様に両方同じ
陰イオンを使つた場合最適結果がえられることが
重要であるとしている。 オランダ特許出願公開第75−07550号は基質に
ニツケル、コバルト、クロム、マンガンおよび鉄
より成る群からの少なくとも1の卑金属と第2の
より卑な犠牲金属の合金を被覆した後この犠牲金
属の少くも1部を除去する多孔質陽極製法に関す
る。犠牲金属とは亜鉛、アルミニウム、マグネシ
ウムおよび錫から選ばれる。犠牲金属は苛性アル
カリ溶液又は酸溶液で浸出除去される。 特公昭31−6611号は基質上にニツケル膜を電着
した後亜鉛又はアルカリ性溶液に可溶な他の可溶
性物質膜をつける多孔性電極製法に関する。この
電極は次いで亜鉛その他の可溶性物質を溶離除去
するためアルカリ性溶液への浸漬又は電気化学的
陽極処理のいづれかにより多孔質電極とする。浸
漬前に、ある実施態様では電着電極の熱処理が必
要である。 米国特許第4279709号は粒状金属と無機粒状化
合物孔生成剤の混合物をつけた後孔生成剤を浸出
して孔を生成する過電圧の減少された電極製法を
発表している。 元素周期表の族金属酸化物で被覆されたフイ
ルム生成性金属基質、特にチタンの電極は他の金
属酸化物と結合して塩水電解における様な電解法
の陽極として便利であるといわれている。種々の
他金属酸化物に関連してルテニウム酸化物、白金
酸化物および他の白金金属系酸化物は陽極として
使用するバルブ(valve)金属基質(特にTi)用
膜として非常に好評である。この陽極に関する特
許は米国第3632498号および3711385号である。こ
の被膜は種々の方法でつけられ、例えば米国特許
第3869312号は膜生成用金属酸化物と組合せた白
金族金属酸化物は支持体に還元剤をも含む有機賦
形剤中の白金族金属の熱分解性化合物と膜生成性
金属の熱分解性有機化合物の混合物をつけ、有機
賦形剤を蒸発させて膜を乾かした後支持体を400
−550℃に加熱して金属酸化物を形成する様にバ
ルブ金属基質状につけることができる。膜厚さを
増すため反復してつける。また膜生成用金属酸化
物の被覆をつける。米国特許第3632498号はプラ
ズマバーナー使用により、白金族金属および膜生
成性金属の熱分解性化合物で被覆されている基質
の加熱により、ガルバーニ浴中で金属を電着した
後空中で加熱して他のものの間の酸化物生成によ
り白金族金属と膜生成性金属の微酸化物膜が生成
できることを記述している。 更に金属酸化物表面をもつ電極に関する特許に
は米国特許第3616445号、4003817号、4072585号、
3977958号、4061549号、4073873号および4142005
号がある。 水素発生用活性膜中に白金族金属酸化物、特に
ルテニウムの使用も知られている。(文献、メレ
ンドレス、カルロスA、Spring Meeting
Electro Chem.Soc.、5月 11−16(1975))特公
昭40−9130号公報、特開昭51−131474号公報及び
特開昭52−11178号公報は白金族金属酸化物と他
の金属酸化物の混合物の活性陰極膜としての使用
を発表している。米国特許第4238311号はニツケ
ル中白金族金属および(又は)白金族金属酸化物
の微粒より成る陰極膜が陰極膜として便利である
としている。 一般にパーミオニツクな膜を使う近年のクロル
−アルカリ電解槽の水素発生用活性触媒として白
金族金属酸化物使用は、30%のNaOH濃度や95
℃を超える温度が珍らしくない様な極端な
NaOH濃度と温度条件が今が可能なので、便利
ではないことがこの分野の知識ある者に知られて
いる。知られた方法によりつくられた酸化物膜は
使用によつて老朽し多分ある場合支持金属への実
質付着性減少によつて基質からはがれておちるこ
とがわかつている。 元来低水素過電圧性をもつ金属より成る触媒膜
は電解法に使われる塩水および水中に普通ある例
えば鉄の様な金属汚染物が上に電着することによ
り実際においては触媒活性を失なわせられること
がこの分野で実施する者によくわかつている。し
たがつて実際に最新膜クロル−アルカリ電解槽に
おける水素発生用に実際に便利と思われる活性膜
は高表面積又は多孔質膜とこれらの条件において
化学的攻げきにある程度耐える組成、例えばニツ
ケル又は種々のステインレス鋼を特徴とする型に
限られる。 これらの場合、実際にはよく知られているとお
り、この本質的表面積膜の性能が時には電解法に
使われた塩水又は水中にある多量の金属汚染物、
普通Feをもつ同様の膜によつて特徴づけられる
程度に低下するので、実際には本質的に低水素過
電圧触媒の接触性の十分な効果は発揮されない。
したがつてつけた増の電解活性を特徴づけるター
フエル傾斜は本質的に鉄のそれに変り、最新膜ク
ロル−アルカリ電解槽の様に0.23乃至0.54amp/
cm2(1.5乃至3.5amp/in2)およびそれ以上の高電
流密度において特に水素過電圧の上昇となる。反
対に膜クロル−アルカリ槽における長時間操作中
低タ−フエル傾斜を特徴と知られている物質、即
ち白金族金属酸化物、特にルテニウム酸化物の元
来の低過電圧性を保つことは望ましい。本発明の
方法によつて製造した場合白金族金属とNiOから
なる不均質混合物の活性膜が高NaOH濃度、温
度および圧力において塩水電解陰極として低水素
過電圧、物理的安定性および長時間効率の予期し
ない性質を示すことが今や他のことと共に発見さ
れたのである。温度、NaOH濃度、圧力等のあ
る操業条件のもとでの塩素と苛性ソーダ生成の電
解法におけるこの電極使用は実際に他の方法では
できない必要エネルギーの減少となることも発見
されたのである。 本発明は、第1に、電導性金属基質の層とその
上に沈着させた電解触媒的に
(electrocatalytically)活性な被膜とを有し、且
つ該被膜が白金族金属酸化物の少なくとも1と
NiOからなる金属酸化物類の不均質混合物からな
ることを特徴とする電解槽用電極に関し、第2
に、 (a) 電導性基質上にニツケル酸化物の前駆体であ
るニツケル化合物と白金族金属酸化物の前駆体
である少なくとも1の白金族金属化合物と基質
および/又は既にある被膜の表面を腐蝕できる
腐蝕剤を含有する被覆用溶液をつけ、 (b) かく被覆した基質から揮発成分を除去するよ
う加熱して前駆体化合物類の金属有価物及び基
質又は既にある被膜から溶出物を濃縮し且つ基
質又は既にある被膜上に再沈着させ、次いで (c) 酸素、空気又は酸化剤の存在下に被膜中の金
属有価物を酸化するに十分な温度にさらに加熱
し、且つ 上記工程(a)、(b)及び(c)を複数回行うことを特徴
とする金属酸化物の電解触媒的に活性な不均質混
合物の溶液を被覆した基質をもつ電解槽用電極の
製造法に関する。 第1図は下記試験のいくつかの結果を図示して
いる。 白金族金属およびニツケルの不均質混合酸化物
の膜をもつ電導性基質(セラミツク等の非電導性
基質上に電導性被覆を設けたものも含む)より成
る本発明の電極は、白金族金属酸化物の前駆体で
ある可溶性白金族金属化合物とNiOの前駆体であ
るニツケルと化合物と基質用の腐蝕剤(エツチヤ
ント)とを含有する被覆用溶液を基質に塗布し、
基質が既に電導性被覆として金属酸化物被膜を有
する場合はそれを腐蝕し(それにより該被覆の最
も化学抵抗性のない部分が攻撃され溶解する)、
次いで基質を加熱して金属有価物(ここで金属有
価物とは上記の可溶性金属化合物から最終の酸化
物に至る中間状態の金属化合物を意味する)を濃
縮した上基質上に再沈着し、そしてこれらを酸化
して不均質金属酸化物の実質的に硬い安定な混合
物を形成することによつて製造される。 好ましい電導性基質は電極製造中その物理的完
全を保持するどんな金属構造でもよい。鉄系金属
に他金属、例えばニツケル又は膜生成性金属(バ
ルブ金属としても知られる)を被覆した様な金属
積層品も使用できる。基質は鉄、鋼、ステインレ
ス鋼又は鉄を主成分とする他の合金の様な金属で
もよい。基質は膜生成性金属の様な非鉄金属又は
膜生成しない金属、例えばニツケルでもよい。膜
生成性金属は関連技術においてもよく知られてい
るチタン、タンタル、ジルコニウム、ニオブ、タ
ングステンおよびそれらの互いの合金および少量
の他金属との合金がある。非導電性基質も特にそ
の上に電導層をされれば使用できる。その上に本
発明の金属酸化物がつけられる。 本発明被覆法に使われる基質の形又は形態は平
板、曲面、渦巻面、有孔面、織線、膨張金属板、
棒、管、多孔質、非多孔質、焼結品、線維、定形
又は不定形でもよい。本発明の新規被覆法はその
化学的熱的工程が電極として有用であるどんな形
にも実際上応用できるので、特定形の基質でなく
てよい。多くの電解槽は有孔板又は平板をもつ。
これらは特に曲げられて実質的に平行両側と間隔
をとつて“ポケツト”電極を形成している。 好ましい基質形態は膨張網、有孔板、織線、焼
結金属、板又はシートであるが、膨張網は多孔性
基質の最もよいものの1種である。 基質の好ましい組成はニツケル、鉄、銅、鋼、
ステインレス鋼、又はニツケル裏張り鉄系金属で
あるが、ニツケルは特に好ましい。金属酸化物膜
を上につけられるこれら基質のそれ自体下にある
基質、特に下の基質より又は基質上にニツケル、
鉄又は銅がついている下の基質によつて支持され
又は強化されているのである。金属酸化物膜がつ
けられる基質はそれ自体積層板又は被覆構造を外
層であり、任意にそれは金属酸化物が上につけら
れる非電導性基質であつてもよい。 白金族金属にはRu、Rh、Pd、Os、IrおよびPt
がある。これらのうち好ましい金属は白金とルテ
ニウムで、ルテニウムが最もよい。可溶性白金金
属化合物はハライド、サルフエイト、ナイトレイ
ト又は金属の他の可溶性塩又は可溶性化合物であ
るが、好ましいのはハライド塩、例えばRuCl3
水化物、PtCl・水化物等である。 本発明の溶液は基質をエツチングでき、また第
2およびそれ以後の膜の場合既にある酸化物の最
も化学的にうけ易い部分をエツチングし溶解でき
るが、また高温の場合多くの場合加熱混合物から
白金族金属酸化物先駆物質およびNiOからの揮発
性陰イオン又は負原子価基と共に揮発しうる少な
くも1の化学活性剤を含む。好ましい化学活性剤
即ち腐蝕剤には塩酸、硫酸、硝酸、りん酸の様な
普通の酸、およびヒドラジン重硫酸塩等があるが
塩酸とヒドラジン重硫酸塩が最もよい。 一般に本発明における好ましい方法は望む基質
に少なくも1の白金族金属化合物、少なくも1の
ニツケル金属化合物及び化学腐蝕剤およびイソプ
ロパノールの様な揮発性有機賦形剤より成る溶液
をつけ、揮発性賦形剤を蒸発させて腐蝕剤ととけ
た金属有価物を残し、次でこれら金属有価物を濃
縮し且つ金属酸化物先駆物質から出た陰イオン又
は負原子価基と共に揮発した腐蝕剤を実質的に追
出すに十分な温度に基質を加熱し酸素又は空気の
存在のもとで基質上その場で金属を熱的に酸化し
金属酸化物に変えるに十分な温度に基質を加熱す
ることより成る。工程は膜厚さを増して本発明の
最上効果をえるため多数回反復できる。更に時々
各熱酸化工程間に金属酸化物先駆物質の2又は3
以上の層をおくことからえられる利益がある。 特に好ましい実施態様における電極材料はニツ
ケル金属層(電導性基質上のニツケル層の形でも
よい)上のニツケル酸化物と白金族金属酸化物
(任意に変性用金属酸化物、例えばZrO2)より成
り、(a)上記ニツケル金属層にニツケル酸化物先駆
物質、白金族金属酸化物先駆物質、任意の変性用
酸化先駆物質、およびニツケル金属表面の最可溶
性部分を溶解する腐蝕剤より成る被覆用溶液を塗
布し、(b)被覆用溶液の揮発性部分を加熱蒸発して
濃縮し腐蝕されたニツケル金属表面上に金属酸化
物先駆物質を沈着させ(c)空気又は酸素の存在で金
属酸化物先駆物質の金属を酸化するに十分な時間
300乃至600℃の温度で加熱しかつ(d)かく製造され
た電極材料を冷却する方法により製造される。追
加膜は同様にニツケル金属表面上に生成された不
均質金属酸化物厚さを増加する様につけられる
が、第2およびそれ以後の膜被覆用腐蝕剤は初め
の被膜に使用した腐蝕剤と同じでもよく又は異つ
ていてもよい。故にニツケル金属層にニツケル酸
化物と白金族金属酸化物より成り任意に変性用金
属酸化物を含む不均質金属酸化物膜がしつかり付
着している電極材料が製造される。白金族金属酸
化物は酸化ルテニウムがよい。好ましい任意の変
性用金属酸化物は酸化ジルコニウムである。ニツ
ケル金属層の経済的形態は安価な電導性基質、例
えば鋼又は鉄合金上のニツケル層である。この電
極材料はクロル−アルカリ電解槽の陰極として特
に便利である。 普通金属の熱酸化される温度は金属によるが
300乃至650℃前后の温度が一般に効果がある。
350乃至550℃の温度で熱酸化させることが一般に
好ましい。 本発明の効果は特定金属の不均質酸化物の実質
的に硬質付着膜を生成することにある。既にある
層および(又は)基質の化学的腐蝕法を用いて溶
解化、濃縮および溶解化金属のその場での沈着が
相互に安定しまた電解触媒的に補足する緊密な酸
化混合物を生成することは本発明の範囲内であ
る。 次の実施例は実施態様を示すものであるが、こ
れによつて本発明が限定されるものではない。 実施例 1 RuCl3・3H2O 1部、NiCl2・6H2O 1部、
H2NNH2・H2SO4(ヒドラジン重硫酸塩)3.3部、
H2O 5部およびイソプロパノール28部より成る
溶液をつくつた。先ずイソプロパノールを除く全
成分を混合し一夜撹拌した後イソプロパノールを
加えて約6時間混合した。 ニツケルの40%膨張〓より成る陰極をつくつ
た。陰極に先ずサンドブラストをかけた後1:
1HClでエツチした。次いでイソプロパノールに
浸し風乾した。陰極を被覆用液に浸し風乾した後
オーブン中375℃で20分間焼いた。同様にして全
6回膜をつけた。陰極を35%NaOHを含む90℃
浴中に浸し、電流をとおして標準カロメル比較電
極(SCE)とラギン試験(Luggin probe)を用
いて電位を測定した。平方インチ当り2アンペア
の電流密度(0.31amp/cm2)においてSCEに対し
陰極電位−1145mVと測定された。陰極を実験質
膜塩素電解槽にとり付け31−33%NaOH濃度で
0.31amp/cm2(2amp/in2)電流密度、90℃で操
作し陽極でH2と陰極でCl2を生成した。陰極電位
を検べ1週間平均をとつた。結果は表に示すと
おりである。 実施例 2 RuCl3・3H2O 1部、NiCl2・6H2O 1部およ
び濃HCl3.3部より成る溶液をつくつた。この液
を1夜混合した。次いでイソプロパノール33部を
加え2時間混合した。実施例1の方法によつて陰
極をつくつた。実施例1と同じ方法で陰極に膜を
つけたが、但し焼成温度を495−500℃とした。膜
は10回つけた。陰極電位を実施例1のとおり測定
した。電位はSCEに対し−1135mVであつた。市
販ナフイオン重合体(E.I.ジユポン ド ネモー
の商品名)膜をもつ実験槽に陰極をつけた。90
℃、NaOH31−33%、電流密度0.31amp/cm2
(2amp/in2)で槽を操作した。陰極電位を検べ
週間平均を出した。結果は表に示している。 実施例 3 NH2OH・HCl1部、濃HCl 5部、10%
H2PtCl6・6H2O 2部、NiCl2・6H2O1部および
RuCl3・3H2O1部より成る溶液をつくつた。この
液を12時間混合した後イソプロパノール75部を加
え2時間混合した。陰極を実施例1と同様につく
つた後実施例1と同様に膜をつけた、但し焼成温
度は470−480℃とし、5回膜をつけた。6回目の
膜をつけた後電極を470−480℃で30分間焼成し
た。実施例1と同様に陰極電位を検べSCEに対し
−1108mVであつた。実施例2のとおりの市販膜
をもつ実験室膜塩素電解槽に陰極をとり付けた。
90℃、NaOH 31−33%、電流密度0.31amp/cm2
(2amp/in2)において槽を操作した。陰極電位
および週間平均結果を表に示している。 実施例 4 RuCl3・3H2O3部、NiCl2・6H2O3部、ZrCl41
部、濃塩酸5部およびイソプロパノール42部より
成る溶液を製造し2時間混合した。陰極に実施例
1のとおり膜をつけた。但し焼成濃度495乃至500
℃とした。8膜をつけ、9番目膜をつけた後には
470−480℃で30分間焼いた。陰極電位を測定し
SECに対し−1146mVであつた。実施例2のとお
りの市販膜をもつ膜塩素実験槽に陰極をとりつけ
た。90℃、NaOH 31−33%、電流密度
0.31amp/cm2(2amp/in2)において槽を操作し
た陰極電位を検べ週間平均値を表に示してい
る。 実施例 5 (参考例) 前実施例のとおり陰極をつくりイソプロパノー
ル100ml中にテトライソプラポノールチタネイト
1gを含む液に浸漬した。次いで陰極を475−500
℃で10分間焼成した。膜は3回つけた。実施例2
のとおり溶液をつくり陰極をこの液に浸し風乾し
475−500℃で焼成した。6回反復して膜をつけ
た。陰極電位は前実施例のとおり測定しSCEに対
し−1154mVであつた。実施例2のとおり市販膜
をもつ膜塩素実験槽に陰極をとりつけた。90℃、
NaOH 31−33%および電流密度0.31amp/cm2
(2amp/in2)において槽を操作し陰極電位を検
べ週間平均値を表と第1図に示している。 実施例 6 (比較実施例) 鋼の40%膨張〓電極をつくり膜をつけず実施例
2−5の同型メンブレインを使用した実験槽の陰
極として取つけた。陰極電位を検べ週間平均値を
表に示している。 実施例 7 (比較実施例) ニツケルの40%の膨張〓電極をつくつたが膜を
つけずに、実施例2−5における様な同型メンブ
レインをもつ実験槽の陰極として取付けた。陰極
電位を検べ週間平均値を表および第1図に示し
ている。
The present invention relates to a method for making an electrode and its use in an electrolytic cell, particularly in a salt water electrolytic cell. There are generally three types of electrolytic cells used in chlor-alkali production: (1) mercury cells, (2) diaphragm cells, and (3) membrane cells. Kirk-
Oihmer Encylopedia of Chemical
It is described on page 799 of Volume 1, Technology 3 edition.
Other electrolytic cells that use electrodes for aqueous electrolysis are so-called "chlorate cells" that do not use a dividing or separating device between the anode and cathode. In a mercury bath, alkali metals produced by electrolysis of alkali metal salts produce mercury and amalgam, and this amalgam reacts with water.
Generates NaOH and liberates mercury. The mercury is recovered and recycled as a liquid cathode. In most chlor-alkali electrolysis processes, an aqueous salt solution (electrolyte) is electrolyzed by passing an electric current through an electrolytic cell having a diaphragm or membrane between an anode and a cathode. Chlorine is produced at the anode, while sodium hydroxide (NaOH) and hydrogen (H 2 ) are produced at the cathode. While brine is continuously supplied to the electrolyzer, Cl 2 , NaOH
and H2 are continuously removed from the bath. The minimum voltage required to electrolyze an electrolyte into Cl 2 , NaOH and H 2 can be calculated using thermodynamic numbers.
However, in practice this is not possible at theoretical voltage values and requires the use of higher voltages to overcome the various resistances inherent in different types of electrolyzers. In order to improve the operating efficiency of diaphragm or membrane electrolyzers, attempts have been made to reduce the overvoltage of the electrodes, to reduce the electrical resistance of the diaphragm or membrane, or to reduce the electrical resistance of the salt water being electrolyzed. The invention described herein relates to an electrode that is particularly useful as a cathode in salt water electrolysis and has substantially reduced cathode overvoltage and improved power efficiency. Millions of tons of alkali metal halides and water are electrolyzed each year, so a reduction in operating voltage of just 0.05 volts can mean significant energy savings. There is therefore an industrial need for means to reduce the required voltage. Various electrolytic cell voltage reduction methods have been developed in the development of the chlor-alkali process. Some strive to reduce the cell voltage by improving the physical specifications of the electrolytic cell, while others strive to reduce the overvoltage at the cathode or anode.
The present invention relates in part to a new method for producing an electrode characterized by a significantly low overvoltage and to the use of this electrode in electrolytic cells. It has been published that electrode overvoltage is a function of current density and its composition. (Reference PHYSICAL
CHEMISTRY, 3rd edition, WJ Moore, Prentice
Hall (1962) pp. 406-408) However, current density refers to amperes per unit true surface area of the electrode, and composition refers to the chemical and physical composition of the electrode. Therefore, an electrode surface area enhancement method must reduce its overvoltage at a given surface current density. It is also desirable to use compositions of matter that are good electrocatalysts. This further reduces overvoltages. The use of plasma or flame radiation to coat electrodes with conductive metals is well known in the art. US Pat. No. 1,263,959 sprays nickel granules onto the anode, and the particles are melted and blasted onto the iron substrate to coat the anode. The cathode is also coated with a conductive metal. US Patent No.
No. 3,992,278 describes a cathode coated with a mixture of cobalt particles and zirconia particles by plasma or flame radiation. When these electrodes are used for the electrolysis of water or aqueous solutions of alkali metal halide salts, they are said to reduce the hydrogen overvoltage for a long time. Various metals and metal mixtures have been used to coat electrodes with plasma or flame radiation. US Pat. No. 3,630,770 describes the use of lanthambolide,
U.S. Pat. No. 3,649,355 describes the use of tungsten and tungsten alloys, and U.S. Pat. No. 3,788,968 describes the use of titanium carbide or titanium nitride and at least one metal and/or metal oxide of the platinum group and a porous second oxide. Describing the use of membranes, U.S. Patent No.
No. 3,945,907 describes the use of rhenium, and US Pat. No. 3,974,058 describes a cobalt coating with a ruthenium coating thereon. The production of porous electrode membranes by similar selective leaching is also well known in the art. Sintering the nickel after coating the electrode with nickel particles is disclosed in US Pat. Nos. 2,928,783 and 2,969,315. A method for leaching one component of the alloy after electrodeposition of the alloy on a substrate is described in US Pat. No. 3,272,788.
A method of selectively leaching one or more of the coating components after compressing two or more components with or on the electrode substrate is disclosed in U.S. Pat.
No. 3427204, No. 3713891 and No. 3802878. Manufacturing process combinations involving plasma injection or flame injection followed by leaching of the electrode have also been published in this field. A process combination in which electrodeposition is followed by leaching has also been announced.
Examples of known methods are given in the following patents: U.S. Pat. No. 3,219,730 describes an electrode manufacturing method in which the substrate is coated with an oxide film and then leached to remove the substrate, and U.S. Pat. No. 3,403,057 describes a porous electrode and process by flame or plasma spraying a Raney alloy onto a substrate and leaching the aluminum from the alloy, and U.S. Pat. Or a method of plasma spraying those alloys is described. The substrate is later removed to form a porous electrode. U.S. Pat. No. 3,497,425 describes a method for making porous electrodes in which a substrate is coated with a relatively insoluble metal followed by a more soluble metal. While heat treatment is required to interdiffuse the two films, optimal conditions require separate heat treatment for each film.
The soluble metal is later leached out, creating a porous electrode. U.S. Pat. No. 3,618,136 describes a method for making porous electrodes in which a binary salt composition is coated onto a substrate and the soluble components are leached from the system. This patent emphasizes that the binary salt composition is a eutectic mixture and that optimal results are obtained when both the active and inert salts, such as silver chloride and sodium chloride, both use the same anion. It is said that there is. Dutch Patent Application No. 75-07550 discloses coating a substrate with an alloy of at least one base metal from the group consisting of nickel, cobalt, chromium, manganese and iron and a second, more base sacrificial metal and then depositing a small amount of this sacrificial metal. The present invention also relates to a porous anode manufacturing method that removes a portion of the porous anode. The sacrificial metal is selected from zinc, aluminum, magnesium and tin. The sacrificial metal is leached away with a caustic or acid solution. Japanese Patent Publication No. 31-6611 relates to a porous electrode manufacturing method in which a nickel film is electrodeposited on a substrate and then a film of zinc or other soluble material soluble in an alkaline solution is applied. This electrode is then made porous either by immersion in an alkaline solution or by electrochemical anodization to elute away the zinc and other soluble materials. Prior to dipping, heat treatment of the electrodeposited electrode is required in some embodiments. U.S. Pat. No. 4,279,709 discloses a reduced overvoltage electrode manufacturing method in which a mixture of particulate metal and inorganic particulate compound pore former is applied and the pore former is leached to create pores. Electrodes of film-forming metal substrates, particularly titanium, coated with Group metal oxides of the Periodic Table of the Elements are said to be useful as anodes in electrolytic processes such as in salt water electrolysis in combination with other metal oxides. Ruthenium oxide, platinum oxide, and other platinum metal-based oxides, in conjunction with various other metal oxides, are very popular as membranes for valve metal substrates (particularly Ti) for use as anodes. Patents relating to this anode are US 3,632,498 and 3,711,385. This coating can be applied in a variety of ways, for example in U.S. Pat. After applying a mixture of a thermally decomposable compound and a thermally decomposable organic compound of a film-forming metal and drying the film by evaporating the organic excipient, the support was heated at 400 °C.
It can be applied to a valve metal substrate by heating to -550°C to form a metal oxide. Apply repeatedly to increase film thickness. A coating of metal oxide for film formation is also applied. U.S. Pat. No. 3,632,498 discloses the use of a plasma burner to electrodeposit metals in a galvanic bath followed by heating in air by heating a substrate coated with a pyrolyzable compound of a platinum group metal and a film-forming metal. It is described that a fine oxide film of platinum group metals and film-forming metals can be formed by oxide formation between them. Furthermore, patents related to electrodes with metal oxide surfaces include U.S. Patent No. 3616445, U.S. Pat.
No. 3977958, No. 4061549, No. 4073873 and 4142005
There is a number. The use of platinum group metal oxides, especially ruthenium, in active membranes for hydrogen generation is also known. (Reference, Melendrez, Carlos A., Spring Meeting
Electro Chem.Soc., May 11-16 (1975)) Japanese Patent Publication No. 40-9130, Japanese Patent Application Laid-open No. 131474-1974, and Japanese Patent Application Laid-open No. 11178-1987 are oxides of platinum group metals and other metals. The use of mixtures of oxides as active cathode membranes has been published. U.S. Pat. No. 4,238,311 discloses that a cathode film consisting of fine particles of nickel-medium platinum group metal and/or platinum group metal oxide is useful as the cathode film. In recent years, platinum group metal oxides have been used as active catalysts for hydrogen generation in chlor-alkali electrolyzers that generally use permionic membranes.
Extreme temperatures where temperatures exceeding ℃ are not uncommon
It is known to those knowledgeable in this field that the NaOH concentration and temperature conditions are not as convenient as they are now possible. It has been found that oxide films made by the known methods age with use and, in some cases, flake off from the substrate, possibly due to substantial reduction in adhesion to the supporting metal. Catalyst membranes made of metals that inherently have low hydrogen overpotential properties can actually lose their catalytic activity due to electrodeposition of metal contaminants, such as iron, which are common in the brine and water used in electrolysis processes. It is well understood by those practicing in this field that Therefore, active membranes that may actually be convenient for hydrogen generation in modern membrane chlor-alkali electrolysers are high surface area or porous membranes and compositions that withstand chemical attack to some extent in these conditions, such as nickel or various Limited to models featuring stainless steel. In these cases, it is well known that in practice this essential surface area membrane performance is sometimes affected by the presence of large amounts of metal contaminants in the brine or water used in the electrolytic process.
In fact, the full effect of the essentially low hydrogen overpotential catalyst accessibility is not achieved, since it is reduced to the extent that is normally characterized by similar membranes with Fe.
The terfel slope that characterizes the increased electrolytic activity thus changes essentially to that of iron, ranging from 0.23 to 0.54 amp/s as in modern membrane chlor-alkali electrolysers.
The hydrogen overpotential increases especially at high current densities of 1.5 to 3.5 amp/in 2 (cm 2 ) and higher. On the contrary, it is desirable to preserve the original low overpotential properties of materials known to be characterized by low Tafel slopes during long-term operation in membrane chlor-alkali baths, ie platinum group metal oxides, especially ruthenium oxides. Active membranes of heterogeneous mixtures of platinum group metals and NiO when prepared by the method of the present invention exhibit low hydrogen overpotential, physical stability and long-term efficiency as brine electrolysis cathodes at high NaOH concentrations, temperatures and pressures. It has now been discovered, among other things, that it exhibits the property of not doing. It has also been discovered that the use of this electrode in the electrolytic process of producing chlorine and caustic soda under certain operating conditions such as temperature, NaOH concentration, pressure, etc. actually reduces the energy requirements not possible with other methods. The invention first comprises a layer of a conductive metal substrate and an electrocatalytically active coating deposited thereon, and the coating comprises at least one platinum group metal oxide.
Regarding an electrode for an electrolytic cell characterized by being made of a heterogeneous mixture of metal oxides consisting of NiO, the second
(a) corroding the surface of the substrate and/or the existing coating with a nickel compound that is a precursor of nickel oxide and at least one platinum group metal compound that is a precursor of platinum group metal oxide on a conductive substrate; (b) heating to remove volatile components from the substrate so coated to concentrate metal values of the precursor compounds and leaching from the substrate or existing coating; (c) further heating in the presence of oxygen, air or an oxidizing agent to a temperature sufficient to oxidize the metal values in the coating; and step (a) above; The present invention relates to a method for producing an electrode for an electrolytic cell having a substrate coated with a solution of an electrocatalytically active heterogeneous mixture of metal oxides, characterized in that steps (b) and (c) are carried out multiple times. Figure 1 illustrates the results of some of the tests described below. The electrode of the present invention comprises a conductive substrate (including a conductive coating on a non-conductive substrate such as ceramic) having a film of a heterogeneous mixed oxide of a platinum group metal and nickel. Applying a coating solution containing a soluble platinum group metal compound as a precursor of NiO, a nickel compound as a precursor of NiO, and an etchant for the substrate to the substrate,
if the substrate already has a metal oxide coating as a conductive coating, it corrodes it (thereby attacking and dissolving the least chemically resistant parts of the coating);
The substrate is then heated to concentrate and redeposit the metal values (metal values here meaning intermediate metal compounds from the soluble metal compound to the final oxide) onto the substrate, and They are produced by oxidizing them to form a substantially hard stable mixture of heterogeneous metal oxides. A preferred conductive substrate is any metallic structure that retains its physical integrity during electrode fabrication. Metal laminates such as ferrous metals coated with other metals such as nickel or film-forming metals (also known as valve metals) can also be used. The substrate may be a metal such as iron, steel, stainless steel or other iron-based alloys. The substrate may be a non-ferrous metal, such as a film-forming metal, or a non-film-forming metal, such as nickel. Film-forming metals include titanium, tantalum, zirconium, niobium, tungsten and their alloys with each other and with minor amounts of other metals, which are well known in the related art. Non-conductive substrates can also be used, especially if a conductive layer is placed thereon. The metal oxide of the present invention is applied thereon. The shape or form of the substrate used in the coating method of the present invention may be a flat plate, a curved surface, a spiral surface, a perforated surface, a woven wire, an expanded metal plate,
It may be a rod, a tube, porous, non-porous, sintered, fibrous, shaped or irregularly shaped. The novel coating method of the present invention does not require a specific type of substrate, as its chemical and thermal processes can be applied to virtually any shape useful as an electrode. Many electrolytic cells have perforated or flat plates.
These are specifically bent and spaced on substantially parallel sides to form "pocket" electrodes. Preferred substrate forms are expanded mesh, perforated plates, woven wire, sintered metal, plates or sheets, although expanded mesh is one of the best types of porous substrates. The preferred composition of the substrate is nickel, iron, copper, steel,
Stainless steel or nickel-backed ferrous metals, with nickel being particularly preferred. These substrates on which a metal oxide film is applied are themselves coated with nickel, on the underlying substrate, especially on or above the underlying substrate.
It is supported or reinforced by an underlying matrix of iron or copper. The substrate to which the metal oxide film is applied is itself an outer layer of a laminate or coating structure, optionally it may be a non-conductive substrate onto which the metal oxide is applied. Platinum group metals include Ru, Rh, Pd, Os, Ir and Pt
There is. Among these, the preferred metals are platinum and ruthenium, with ruthenium being the best. Soluble platinum metal compounds are halides, sulfates, nitrates or other soluble salts or compounds of the metal, but preference is given to halide salts, such as RuCl3 .
Hydride, PtCl/hydrate, etc. The solutions of the present invention are capable of etching the substrate and, in the case of second and subsequent films, etching and dissolving the most chemically susceptible portions of the oxide already present, and at elevated temperatures often remove platinum from the heated mixture. At least one chemical activator capable of volatilizing with a group metal oxide precursor and a volatile anion or negative valence group from NiO. Preferred chemical activators or caustics include the common acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, and hydrazine bisulfate, with hydrochloric acid and hydrazine bisulfate being the best. Generally, a preferred method of the present invention involves applying a solution of at least one platinum group metal compound, at least one nickel metal compound, a chemical caustic agent, and a volatile organic excipient such as isopropanol to the desired substrate; The excipient is evaporated to leave the corrosive agent and the dissolved metal values, and then these metal values are concentrated and the volatilized corrosive agent is substantially removed along with the anions or negative valence groups from the metal oxide precursor. heating the substrate to a temperature sufficient to expel the metal to a temperature sufficient to thermally oxidize the metal in situ on the substrate in the presence of oxygen or air, converting it to a metal oxide. . The process can be repeated many times to increase the film thickness and achieve the best effect of the invention. Additionally sometimes two or three of the metal oxide precursors are added between each thermal oxidation step.
There are benefits to be gained from having the above layers. In a particularly preferred embodiment, the electrode material consists of a nickel oxide on a nickel metal layer (which may also be in the form of a nickel layer on a conductive substrate) and a platinum group metal oxide (optionally with a modifying metal oxide, e.g. ZrO 2 ). (a) coating the nickel metal layer with a coating solution consisting of a nickel oxide precursor, a platinum group metal oxide precursor, an optional modifying oxidation precursor, and an etchant that dissolves the most soluble portions of the nickel metal surface; (b) depositing the metal oxide precursor on the corroded nickel metal surface by heating and evaporating the volatile portion of the coating solution and (c) depositing the metal oxide precursor in the presence of air or oxygen. sufficient time to oxidize the metal
It is manufactured by a method of heating at a temperature of 300 to 600°C and (d) cooling the electrode material thus manufactured. Additional coatings are similarly applied to increase the thickness of the heterogeneous metal oxide formed on the nickel metal surface, but the etchant used to coat the second and subsequent coatings is the same as the etchant used for the first coating. However, they may also be different. Therefore, an electrode material is produced in which a heterogeneous metal oxide film consisting of a nickel oxide and a platinum group metal oxide, optionally containing a modifying metal oxide, is tightly adhered to a nickel metal layer. The platinum group metal oxide is preferably ruthenium oxide. A preferred optional modifying metal oxide is zirconium oxide. An economical form of nickel metal layer is a nickel layer on an inexpensive conductive substrate, such as steel or iron alloy. This electrode material is particularly useful as a cathode in chlor-alkali cells. The temperature at which metals are thermally oxidized depends on the metal.
Temperatures between 300 and 650°C are generally effective.
Thermal oxidation at temperatures between 350 and 550°C is generally preferred. The effect of the present invention is to produce a substantially hard deposit of a heterogeneous oxide of a particular metal. Using chemical etching methods of existing layers and/or substrates, the solubilization, concentration and in-situ deposition of the dissolved metal produce an intimate oxidation mixture that is mutually stable and electrocatalytically complementary. are within the scope of this invention. The following examples are illustrative of embodiments, but the invention is not limited thereto. Example 1 1 part of RuCl 3.3H 2 O, 1 part of NiCl 2.6H 2 O,
3.3 parts of H 2 NNH 2・H 2 SO 4 (hydrazine bisulfate),
A solution was made consisting of 5 parts H 2 O and 28 parts isopropanol. First, all components except isopropanol were mixed and stirred overnight, then isopropanol was added and mixed for about 6 hours. He created a cathode made of 40% expanded nickel. After first sandblasting the cathode 1:
Etched with 1HCl. Then, it was soaked in isopropanol and air-dried. The cathode was immersed in the coating solution, air-dried, and then baked in an oven at 375°C for 20 minutes. The membrane was applied a total of 6 times in the same manner. Cathode at 90℃ with 35% NaOH
The potential was measured using a standard calomel reference electrode (SCE) and a Luggin probe by immersing it in a bath and passing an electric current through it. A cathode potential of -1145 mV was measured for SCE at a current density of 2 amps per square inch (0.31 amp/cm 2 ). The cathode was installed in an experimental membrane chlorine electrolyzer at a concentration of 31-33% NaOH.
It was operated at a current density of 0.31 amp/cm 2 (2 amp/in 2 ) and 90° C. to produce H 2 at the anode and Cl 2 at the cathode. The cathode potential was checked and averaged for one week. The results are shown in the table. Example 2 A solution was prepared consisting of 1 part RuCl 3 .3H 2 O, 1 part NiCl 2 .6H 2 O and 3.3 parts concentrated HCl. This solution was mixed overnight. Next, 33 parts of isopropanol was added and mixed for 2 hours. A cathode was made by the method of Example 1. A film was applied to the cathode in the same manner as in Example 1, except that the firing temperature was 495-500°C. The membrane was applied 10 times. Cathode potential was measured as in Example 1. The potential was -1135 mV vs. SCE. A cathode was attached to an experimental chamber containing a commercially available naphionic polymer (trade name of EI DuPont de Nemaux) membrane. 90
°C, NaOH31−33%, current density 0.31amp/ cm2
The bath was operated at (2 amp/in 2 ). The cathode potential was checked and the weekly average was calculated. The results are shown in the table. Example 3 1 part of NH 2 OH・HCl, 5 parts of concentrated HCl, 10%
2 parts of H 2 PtCl 6・6H 2 O, 1 part of NiCl 2・6H 2 O, and
A solution consisting of 1 part RuCl 3.3H 2 O was prepared. After this liquid was mixed for 12 hours, 75 parts of isopropanol was added and mixed for 2 hours. A cathode was prepared in the same manner as in Example 1, and then a film was applied in the same manner as in Example 1, except that the firing temperature was 470-480°C, and the film was applied five times. After applying the sixth film, the electrode was baked at 470-480°C for 30 minutes. The cathode potential was checked in the same manner as in Example 1 and was -1108 mV with respect to SCE. A laboratory membrane chlorine electrolyzer with a commercially available membrane as in Example 2 was fitted with a cathode.
90℃, NaOH 31-33%, current density 0.31amp/ cm2
The bath was operated at (2 amp/in 2 ). The cathodic potential and weekly average results are shown in the table. Example 4 RuCl 3・3H 2 O3 parts, NiCl 2・6H 2 O3 parts, ZrCl 4 1
A solution consisting of 5 parts of concentrated hydrochloric acid and 42 parts of isopropanol was prepared and mixed for 2 hours. The cathode was coated with a membrane as in Example 1. However, the firing concentration is 495 to 500
℃. After applying the 8th membrane and the 9th membrane
Bake at 470-480℃ for 30 minutes. Measure the cathode potential
It was -1146 mV versus SEC. A membrane chlorine experimental tank with a commercially available membrane as in Example 2 was equipped with a cathode. 90℃, NaOH 31−33%, current density
The cathode potential with the cell operated at 0.31 amp/cm 2 (2 amp/in 2 ) was tested and the weekly average values are shown in the table. Example 5 (Reference Example) A cathode was prepared as in the previous example and immersed in a solution containing 1 g of tetraisoproponol titanate in 100 ml of isopropanol. Then the cathode is 475−500
Baked at ℃ for 10 minutes. The membrane was applied three times. Example 2
Make a solution as shown below, immerse the cathode in this solution and air dry it.
Calcined at 475-500℃. The membrane was applied in 6 replicates. The cathode potential was measured as in the previous example and was -1154 mV vs. SCE. A cathode was attached to a membrane chlorine experimental tank with a commercially available membrane as in Example 2. 90℃,
NaOH 31−33% and current density 0.31amp/ cm2
The cathode potential was measured by operating the tank at (2 amp/in 2 ), and the weekly average values are shown in the table and Figure 1. Example 6 (Comparative Example) 40% Swelling of Steel An electrode was prepared and installed as a cathode in an experimental tank using the same type of membrane as in Examples 2-5 without a membrane. The weekly average value of the cathode potential is shown in the table. Example 7 (Comparative Example) 40% Expansion of Nickel - An electrode was made, but without a membrane, and installed as a cathode in an experimental cell with the same type of membrane as in Examples 2-5. The weekly average values of the cathode potentials are shown in the table and Figure 1.

【表】【table】

【表】 実施例 8 電解槽の陽極と陰極室を大気圧に保ちながら90
℃、NaOH 31−33%および電流密度0.31amp/
cm2(2amp/in2)において実施例2−7と同じ電
解槽を操作した。陽極液濃度をNaOH180−200
g/およびNaOH 31−33%に保つため塩化ナ
トリウム溶液と水をそれぞれ陽極液室と陰極液室
に供給した。陰極からの水素と陽極からの塩素ガ
スの発生によるガスの自然上昇によつて電解槽の
内部混合がえられた。物質のエネルギーバランス
を含むデータを電解槽の操作期間中定期的に集め
NaOH生成に要するエネルギーを計算した。結
果を表2に示す。 表 2電極# 陰 極 NWH/MTNaOH 2 膜つき 2208 3 膜つき 2221 4 膜つき 2229 5 膜つき 2259 6 鋼 2497 7 ニツケル 2504 実施例 9 大規模試験の2系統圧膜塩素電解槽を組立て
た。系統1は槽の陰極室内にニツケルと電極をお
き、系統2は鋼壁陰極室と鋼陰極をおいた以外は
2系統電解槽の構造仕様と同じとした。系統1の
電極は本発明の方法により被覆したが、系統2の
それは被覆しなかつた。両系統に実施例2と同様
市販の陽イオン交換膜を入れた。陰極室中90℃、
電流密度0.31amp/cm2(2amp/in2)および
NaOH 31−33%において2系統を同時に運転し
た。遠心ポンプで陽極液と陰極液を槽に循還させ
ながら101325乃至202650Pa(1−2気圧)で2系
統を運転した。陰極液流の陽極液流に対する比率
を1以上に保つた。45日間にわたつてエネルギー
と物質バランスデータを集め性能平均値を計算し
た。結果は本発明の電極使用(系統1)によつて
得られたエネルギー節約が系統2に比較して5%
以上となることが明らかに示された。 高圧並びに低圧において運転された電解槽にお
ける高温において本発明の新規電極を使用するこ
とも本発明の範囲内である。85乃至105℃の高温
運転にもこの電極は適している。約101325Pa(1
気圧)前后の圧力はクロル−アルカリ電解槽に普
通使われるが、約303975Pa(3気圧)まで又はそ
れ以上の圧力も使用できる。 本発明の電極は各電解液室内の循還がその中の
生成ガスの上昇運動(移動)によつておこる電解
槽に便利であるが、槽から槽に電解液が流れるあ
る種の電解槽においてはガス上昇運動の補助又は
代替として他のポンプ輸送方法がとられる。ある
場合、陰極液ポンプ容量の陽極液ポンプ容量に対
する比率を1より大きくすることが好ましいであ
ろう。 本発明の電極は酸、例えばHClを陽極液に加え
た時の様なPH1乃至5になつている、又は調節さ
れている陽極液をもつクロル−アルカリ電解槽に
便利である。
[Table] Example 8 While maintaining the anode and cathode chambers of the electrolytic cell at atmospheric pressure,
°C, NaOH 31−33% and current density 0.31amp/
The same electrolytic cell as in Examples 2-7 was operated at 2 amp/in 2 . Anolyte concentration NaOH180−200
Sodium chloride solution and water were fed into the anolyte and catholyte compartments, respectively, to maintain 31-33% g/g/NaOH. Internal mixing of the electrolyzer was obtained by the natural rise of gases due to the evolution of hydrogen from the cathode and chlorine gas from the anode. Data including the energy balance of the material is collected periodically during the operation of the electrolyzer.
The energy required for NaOH production was calculated. The results are shown in Table 2. Table 2 Electrodes #Cathode NWH/MTNaOH 2 With membrane 2208 3 With membrane 2221 4 With membrane 2229 5 With membrane 2259 6 Steel 2497 7 Nickel 2504 Example 9 A two-system pressure membrane chlorine electrolyzer for large-scale testing was assembled. System 1 had nickel and electrodes placed in the cathode chamber of the tank, and System 2 had the same structural specifications as the two-system electrolytic cell except that a steel wall cathode chamber and steel cathode were placed. The electrodes of line 1 were coated according to the method of the invention, while those of line 2 were not coated. A commercially available cation exchange membrane was placed in both systems as in Example 2. 90℃ in cathode chamber,
Current density 0.31amp/cm 2 (2amp/in 2 ) and
Two lines were run simultaneously at 31-33% NaOH. The two systems were operated at 101,325 to 202,650 Pa (1-2 atm) while circulating the anolyte and catholyte into the tank using a centrifugal pump. The ratio of catholyte flow to anolyte flow was kept above 1. Energy and material balance data were collected over 45 days and performance averages were calculated. The results show that the energy savings obtained by using the electrodes of the present invention (system 1) is 5% compared to system 2.
It was clearly shown that the above is true. It is also within the scope of the invention to use the novel electrodes of the invention at elevated temperatures in electrolyzers operated at high as well as low pressures. This electrode is also suitable for high temperature operation between 85 and 105°C. Approximately 101325Pa (1
Pressures up to 3 atm (303975 Pa) or higher can also be used, although pressures of up to 3 atm (303975 Pa) or higher are commonly used in chlor-alkali electrolysers. Although the electrode of the invention is useful in electrolytic cells where circulation within each electrolyte chamber is caused by upward movement (movement) of the product gas therein, the electrode of the present invention is useful in certain electrolytic cells where the electrolyte flows from cell to cell. Other pumping methods may be used to supplement or replace the gas upward movement. In some cases, it may be preferable to have a ratio of catholyte pump volume to anolyte pump volume greater than 1. The electrode of the present invention is useful in chlor-alkali electrolytes having an anolyte with a pH of 1 to 5, or adjusted, such as when an acid, such as HCl, is added to the anolyte.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例5及び7における陰極電位と週
間平均値の関係を示す線図である。
FIG. 1 is a diagram showing the relationship between cathode potential and weekly average value in Examples 5 and 7.

Claims (1)

【特許請求の範囲】 1 電導性金属基質の層とその上に沈着させた電
解触媒的に活性な被膜とを有し、且つ該被膜が白
金族金属酸化物の少なくとも1とNiOからなる金
属酸化物類の不均質混合物からなることを特徴と
する電解槽用電極。 2 該電導性金属基質がニツケルであり、白金族
金属酸化物が、Ru、Rh、Pd、Os、Ir及びPtから
選ばれた金属の少なくとも1の酸化物である請求
項1の電極。 3 白金族金属酸化物がRuO2である請求項1又
は2の電極。 4 不均質金属酸化物被膜が該不均質混合物を変
性するための変性剤である金属酸化物を含有する
請求項1〜3のいずれか1の電極。 5 該変性剤がZrO2である請求項4の電極。 6 電極が塩素−アルカリ電解槽用の低水素過電
圧陰極である請求項1〜5のいずれか1の電極。 7 (a) 電導性基質上に、ニツケル酸化物の前駆
体であるニツケル化合物と白金族金属酸化物の
前駆体である少なくとも1の白金族金属化合物
と基質の表面および/又は既にある被膜の表面
を腐蝕できる腐蝕剤とを含有する被覆用溶液を
つけ、 (b) かく被覆した基質から揮発成分を除去するよ
う加熱して前駆体化合物類の金属有価物及び基
質又は既にある被膜からの溶出物を濃縮し且つ
基質又は既にある被膜上に再沈着させ、次いで (c) 酸素、空気又は酸化剤の存在下に被膜中の金
属有価物を酸化するに十分な温度にさらに加熱
し、且つ 上記工程(a)、(b)及び(c)を複数回行うことを特徴
とする金属酸化物類の電解触媒的に活性な不均質
混合物の溶液を被覆した基質をもつ電解槽用電極
の製造法。 8 被覆用溶液がニツケル酸化物と白金族金属酸
化物の不均質混合物を変性するための変性剤であ
る金属酸化物の前駆体である金属化合物を含有す
る請求項7の方法。 9 変性剤が酸化ジルコニウムである請求項8の
方法。 10 白金族金属が白金、ルテニウム及びその合
金から選ばれる請求項7、8又は9の方法。 11 金属酸化物前駆体が金属の塩化物、硝酸
塩、硫酸塩及びリン酸塩から選ばれ、腐蝕剤が塩
酸、硫酸、リン酸およびヒドラジン重硫酸塩から
選ばれる請求項7〜10のいずれか1の方法。 12 金属有価物の酸化を行う温度が300〜600℃
である請求項7〜11のいずれか1の方法。 13 電導性金属基質がニツケルである請求項7
〜12のいずれか1の方法。 14 電極が塩素−アルカリ電解槽用低水素過電
圧陰極である請求項7〜13のいずれか1の方
法。
[Scope of Claims] 1. A layer of an electrically conductive metal substrate and an electrocatalytically active coating deposited thereon, the coating comprising a metal oxide comprising at least one platinum group metal oxide and NiO. An electrode for an electrolytic cell characterized by being made of a heterogeneous mixture of substances. 2. The electrode of claim 1, wherein the conductive metal substrate is nickel and the platinum group metal oxide is an oxide of at least one metal selected from Ru, Rh, Pd, Os, Ir and Pt. 3. The electrode according to claim 1 or 2, wherein the platinum group metal oxide is RuO2 . 4. The electrode according to any one of claims 1 to 3, wherein the heterogeneous metal oxide coating contains a metal oxide that is a modifier for modifying the heterogeneous mixture. 5. The electrode of claim 4, wherein the modifier is ZrO2 . 6. An electrode according to any one of claims 1 to 5, wherein the electrode is a low hydrogen overvoltage cathode for a chlor-alkali electrolyzer. 7 (a) On a conductive substrate, a nickel compound which is a precursor of nickel oxide, at least one platinum group metal compound which is a precursor of a platinum group metal oxide, and the surface of the substrate and/or the surface of an existing coating. (b) applying a coating solution containing a corrosive agent capable of corroding the substrate; and (b) heating to remove volatile components from the substrate thus coated to remove the metal values of the precursor compounds and any leaching from the substrate or existing coating. (c) further heating in the presence of oxygen, air or an oxidizing agent to a temperature sufficient to oxidize the metal values in the coating; and A method for producing an electrode for an electrolytic cell having a substrate coated with a solution of an electrocatalytically active heterogeneous mixture of metal oxides, the method comprising carrying out steps (a), (b) and (c) multiple times. 8. The method of claim 7, wherein the coating solution contains a metal compound that is a precursor of a metal oxide that is a modifier for modifying the heterogeneous mixture of nickel oxide and platinum group metal oxide. 9. The method of claim 8, wherein the modifier is zirconium oxide. 10. The method of claim 7, 8 or 9, wherein the platinum group metal is selected from platinum, ruthenium and alloys thereof. 11. Any one of claims 7 to 10, wherein the metal oxide precursor is selected from metal chlorides, nitrates, sulfates and phosphates, and the corrosive agent is selected from hydrochloric acid, sulfuric acid, phosphoric acid and hydrazine bisulfate. the method of. 12 The temperature at which metal valuables are oxidized is 300 to 600℃
The method according to any one of claims 7 to 11. 13. Claim 7, wherein the conductive metal substrate is nickel.
The method according to any one of ~12. 14. The method of any one of claims 7 to 13, wherein the electrode is a low hydrogen overvoltage cathode for a chlor-alkali electrolyzer.
JP59109775A 1983-05-31 1984-05-31 Production and use of electrode Granted JPS59232284A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US49962683A 1983-05-31 1983-05-31
US499626 1983-05-31

Publications (2)

Publication Number Publication Date
JPS59232284A JPS59232284A (en) 1984-12-27
JPH0375635B2 true JPH0375635B2 (en) 1991-12-02

Family

ID=23986028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59109775A Granted JPS59232284A (en) 1983-05-31 1984-05-31 Production and use of electrode

Country Status (16)

Country Link
EP (1) EP0129734B1 (en)
JP (1) JPS59232284A (en)
KR (1) KR870001769B1 (en)
AT (1) ATE50003T1 (en)
AU (1) AU580002B2 (en)
BR (1) BR8402693A (en)
CA (1) CA1246008A (en)
CS (1) CS273157B2 (en)
DD (1) DD253648A1 (en)
DE (1) DE3481203D1 (en)
FI (1) FI75872C (en)
HU (1) HU201124B (en)
IN (1) IN161186B (en)
NO (1) NO164487C (en)
PL (1) PL143728B1 (en)
ZA (1) ZA844069B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2749671A1 (en) 2002-03-20 2014-07-02 Asahi Kasei Kabushiki Kaisha Method for producing an electrode for use in hydrogen generation
JP2015143389A (en) * 2013-12-26 2015-08-06 東ソー株式会社 Electrode for hydrogen generation, method for producing the same, and method of electrolysis therewith
JP2015143388A (en) * 2013-12-26 2015-08-06 東ソー株式会社 Electrode for hydrogen generation, method for producing the same, and method of electrolysis therewith

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3322169A1 (en) * 1983-06-21 1985-01-10 Sigri Elektrographit Gmbh, 8901 Meitingen CATHODE FOR AQUEOUS ELECTROLYSIS
DE3344416A1 (en) * 1983-12-08 1985-12-05 Sigri GmbH, 8901 Meitingen Method of producing a cathode for aqueous electrolysis
IN164233B (en) * 1984-12-14 1989-02-04 Oronzio De Nora Impianti
FR2579628A1 (en) * 1985-03-29 1986-10-03 Atochem CATHODE FOR ELECTROLYSIS AND METHOD FOR MANUFACTURING THE SAME CATHODE
MX169643B (en) * 1985-04-12 1993-07-16 Oronzio De Nora Impianti ELECTRODE FOR ELECTROCHEMICAL PROCESSES, PROCEDURE FOR ITS PRODUCTION AND ELECTROLYSIS TANK CONTAINING SUCH ELECTRODE
CN1012970B (en) * 1987-06-29 1991-06-26 耐用电极株式会社 Cathode for electrolysis and process for producing same
WO1992022909A1 (en) * 1991-06-13 1992-12-23 Purdue Research Foundation Solid state surface micro-plasma fusion device
JP4142191B2 (en) * 1999-02-24 2008-08-27 ペルメレック電極株式会社 Method for producing activated cathode
EP1739208B1 (en) 2004-04-23 2018-08-15 Tosoh Corporation Electrode for hydrogen generation, process for producing the same and method of electrolysis therewith
JP4578348B2 (en) * 2005-03-24 2010-11-10 旭化成ケミカルズ株式会社 Electrode for hydrogen generation
JP5317012B2 (en) * 2009-03-11 2013-10-16 ダイソー株式会社 Manufacturing method of low hydrogen overvoltage cathode
JP5429789B2 (en) * 2009-04-21 2014-02-26 国立大学法人東北大学 Electrodialysis machine
AU2022342755A1 (en) * 2021-09-13 2024-03-07 Magneto Special Anodes B.V. An electrolyzer electrocatalyst comprising cobalt (co) oxide, zirconium (zr) and a noble metal, an electrode comprising the electrocatalyst and the use of the electrocatalyst in an electrolysis process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045785A (en) * 1973-08-20 1975-04-24
JPS56130485A (en) * 1980-02-26 1981-10-13 Vladimir Reonidouitsuchi Kubas Electrode for electrochemical process and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300992A (en) * 1975-05-12 1981-11-17 Hodogaya Chemical Co., Ltd. Activated cathode
US3990957A (en) * 1975-11-17 1976-11-09 Ppg Industries, Inc. Method of electrolysis
US4100049A (en) * 1977-07-11 1978-07-11 Diamond Shamrock Corporation Coated cathode for electrolysis cells
CA1190186A (en) * 1980-08-18 1985-07-09 Henri B. Beer Electrode with mixed oxide interface on valve metal base and stable outer coating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045785A (en) * 1973-08-20 1975-04-24
JPS56130485A (en) * 1980-02-26 1981-10-13 Vladimir Reonidouitsuchi Kubas Electrode for electrochemical process and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2749671A1 (en) 2002-03-20 2014-07-02 Asahi Kasei Kabushiki Kaisha Method for producing an electrode for use in hydrogen generation
JP2015143389A (en) * 2013-12-26 2015-08-06 東ソー株式会社 Electrode for hydrogen generation, method for producing the same, and method of electrolysis therewith
JP2015143388A (en) * 2013-12-26 2015-08-06 東ソー株式会社 Electrode for hydrogen generation, method for producing the same, and method of electrolysis therewith

Also Published As

Publication number Publication date
EP0129734A3 (en) 1985-06-05
EP0129734A2 (en) 1985-01-02
ATE50003T1 (en) 1990-02-15
PL143728B1 (en) 1988-03-31
AU580002B2 (en) 1988-12-22
HUT34562A (en) 1985-03-28
FI75872B (en) 1988-04-29
KR840009124A (en) 1984-12-24
CS273157B2 (en) 1991-03-12
DE3481203D1 (en) 1990-03-08
PL247951A1 (en) 1985-02-27
KR870001769B1 (en) 1987-10-06
BR8402693A (en) 1985-05-07
DD253648A1 (en) 1988-01-27
CS409284A2 (en) 1990-07-12
HU201124B (en) 1990-09-28
AU2874984A (en) 1984-12-06
NO164487C (en) 1990-10-10
DD232514A5 (en) 1986-01-29
NO842156L (en) 1984-12-03
IN161186B (en) 1987-10-17
EP0129734B1 (en) 1990-01-31
FI842145A (en) 1984-12-01
ZA844069B (en) 1986-01-29
CA1246008A (en) 1988-12-06
JPS59232284A (en) 1984-12-27
FI75872C (en) 1988-08-08
NO164487B (en) 1990-07-02
FI842145A0 (en) 1984-05-29

Similar Documents

Publication Publication Date Title
CN101525755B (en) Cathode for hydrogen generation
JPH0375635B2 (en)
WO2004094698A1 (en) Electrocatalytic coating with platinium group metals and electrode made therefrom
JP2006515389A5 (en)
JPS6361391B2 (en)
US7001494B2 (en) Electrolytic cell and electrodes for use in electrochemical processes
US4530742A (en) Electrode and method of preparing same
US4584085A (en) Preparation and use of electrodes
US3350294A (en) Electrodes
US5035789A (en) Electrocatalytic cathodes and methods of preparation
US4572770A (en) Preparation and use of electrodes in the electrolysis of alkali halides
JP2641584B2 (en) Anode with dimensional stability
US4456518A (en) Noble metal-coated cathode
US4760041A (en) Preparation and use of electrodes
US5164062A (en) Electrocatalytic cathodes and method of preparation
US5227030A (en) Electrocatalytic cathodes and methods of preparation
US4970094A (en) Preparation and use of electrodes
US3945907A (en) Electrolytic cell having rhenium coated cathodes
JPH0114316B2 (en)
JPS5923890A (en) Insoluble electrode
JP4115575B2 (en) Activated cathode
NO861978L (en) CATALYTIC COMPOSITION MATERIALS, SPECIFICALLY FOR ELECTROLYSE ELECTRODES, AND MANUFACTURING METHOD.
US5066380A (en) Electrocatalytic cathodes and method of preparation
JPS6147231B2 (en)
JP2019210541A (en) Method of manufacturing electrode for generating hydrogen and electrolysis method using electrode for generating hydrogen

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees