JP7462884B2 - Method for removing electrode surface deposits containing lead compounds from an electrode for electrolysis to which lead compounds are attached - Google Patents

Method for removing electrode surface deposits containing lead compounds from an electrode for electrolysis to which lead compounds are attached Download PDF

Info

Publication number
JP7462884B2
JP7462884B2 JP2023024778A JP2023024778A JP7462884B2 JP 7462884 B2 JP7462884 B2 JP 7462884B2 JP 2023024778 A JP2023024778 A JP 2023024778A JP 2023024778 A JP2023024778 A JP 2023024778A JP 7462884 B2 JP7462884 B2 JP 7462884B2
Authority
JP
Japan
Prior art keywords
electrode
electrolysis
lead
metal
lead compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023024778A
Other languages
Japanese (ja)
Other versions
JP2023062131A (en
Inventor
学 岩田
宏一 寺田
尚平 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Osaka Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Soda Co Ltd filed Critical Osaka Soda Co Ltd
Publication of JP2023062131A publication Critical patent/JP2023062131A/en
Application granted granted Critical
Publication of JP7462884B2 publication Critical patent/JP7462884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/08Rinsing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

本発明は、電解銅箔製造、または銅メッキ等の工業電解における電解により、表面に鉛化合物を含む電極表面付着物が付着した電解用電極から電極表面付着物を除去する方法に関するものである。 The present invention relates to a method for removing electrode surface deposits containing lead compounds from electrodes for electrolysis that have been adhered to the surface by electrolysis in industrial electrolysis such as electrolytic copper foil production or copper plating.

従来、電解銅箔製造、または銅メッキ等の工業電解における電解においては、チタン、タンタル等のバルブメタル、またはバルブメタル合金からなる電極基体の表面に、直接、イリジウム酸化物を含有する電極触媒層が被覆された酸素発生用電極が用いられている。 Conventionally, in industrial electrolysis such as electrolytic copper foil production or copper plating, an oxygen generating electrode has been used in which an electrode catalyst layer containing iridium oxide is directly coated on the surface of an electrode substrate made of a valve metal such as titanium or tantalum, or a valve metal alloy.

しかしながら、この種の酸素発生用電極は、一定期間以上使用すると、チタン、タンタル等のバルブメタル、またはバルブメタル合金からなる電極基体とイリジウム酸化物等の電極触媒層との界面が腐食し、電極基体の表面に不働態層が形成されるため電解を行うことが困難となる。そのため、電極基体表面を新しい表面が出るまで物理的方法で削るか、若しくは新たに電解用電極を電極基体から製作する必要があった。 However, when this type of oxygen generating electrode is used for a certain period of time or longer, the interface between the electrode substrate, which is made of a valve metal such as titanium or tantalum, or a valve metal alloy, and the electrode catalyst layer, such as iridium oxide, corrodes, and a passive layer forms on the surface of the electrode substrate, making it difficult to perform electrolysis. For this reason, it was necessary to either scrape the electrode substrate surface using physical methods until a new surface was revealed, or to fabricate a new electrode for electrolysis from the electrode substrate.

また、酸素発生用電極として、チタン、タンタル等のバルブメタル、またはバルブメタル合金からなる電極基体の表面に、0.5~20μmのタンタル、ニオブ等の金属、または金属酸化物、若しくは金属合金を含む層を形成し、該層の表面にイリジウム酸化物を含有する電極触媒層が被覆された電解用電極を用いた場合、電極基体と触媒層の界面腐食が抑制されることが分かっている。 In addition, when an oxygen generating electrode is used, the electrode has a surface made of a valve metal such as titanium or tantalum, or a valve metal alloy, on which a 0.5 to 20 μm layer containing a metal such as tantalum or niobium, or a metal oxide or a metal alloy is formed, and the surface of the layer is coated with an electrode catalyst layer containing iridium oxide. When this layer is used, the interfacial corrosion between the electrode substrate and the catalyst layer is suppressed.

しかしながら、上記酸素発生用電極であっても、これを電解銅箔製造、または銅メッキにおける電解に使用した場合、電解用電極の電極表面に、硫酸鉛または酸化鉛を含む鉛化合物が付着する。電解時においては、電解液中に含まれる鉛は、良導電体である酸化鉛として電極表面に付着するが、電解停止時には、導電体の酸化鉛から不良導電体である硫酸鉛に変化する。更に、電極表面付着物である鉛化合物(硫酸鉛、または酸化鉛)は、電解開始・停止時若しくは電解中に、電解用電極の表面から脱落する。その結果、上記の酸素発生用電極は、電解用電極として、電流分布が不均一となり、銅箔厚み不良の原因となり、電解用電極として長期間、継続使用できないという課題を有していた。 However, even with the above-mentioned oxygen generating electrode, when it is used for electrolysis in the production of electrolytic copper foil or in copper plating, lead compounds including lead sulfate or lead oxide adhere to the electrode surface of the electrode for electrolysis. During electrolysis, the lead contained in the electrolyte adheres to the electrode surface as lead oxide, which is a good conductor, but when electrolysis is stopped, the lead oxide, which is a conductor, changes to lead sulfate, which is a poor conductor. Furthermore, the lead compounds (lead sulfate or lead oxide) that adhere to the electrode surface fall off from the surface of the electrode for electrolysis when electrolysis starts or stops or during electrolysis. As a result, the above-mentioned oxygen generating electrode has a problem that the current distribution becomes non-uniform as an electrode for electrolysis, which causes a defective copper foil thickness, and it cannot be used continuously as an electrode for electrolysis for a long period of time.

このような場合、上記酸素発生用電極は、電解に使用した電解用電極の表面を物理的に研磨、洗浄することでこすり落とすか、あるいは濃硝酸と過酸化水素水の混合溶液に電解用電極を浸漬する酸処理工程の後、高圧で水洗することにより、鉛化合物を含む電極表面付着物を除去していた(特許文献1)。
しかるに、上記酸素発生用電極は、連続で3ヶ月使用した場合、前記研磨、洗浄処理による電解用電極表面から鉛化合物を含む電極付着物を除去することは困難であった。
また、前記酸処理工程を用いる電解用電極から鉛化合物を含む電極付着物の除去方法は、鉛化合物を含む電極付着物の除去性には優れるが、取扱いにくい過酸化水素水を用いる点、環境負荷が大きい硝酸を用いる点等の問題があった。
In such a case, the electrode surface deposits including lead compounds have been removed from the above-mentioned oxygen generating electrode by physically polishing and cleaning the surface of the electrode used for electrolysis, or by subjecting the electrode to an acid treatment step of immersing it in a mixed solution of concentrated nitric acid and hydrogen peroxide, followed by rinsing with water at high pressure (Patent Document 1).
However, when the above-mentioned oxygen generating electrode was used continuously for three months, it was difficult to remove the electrode deposits containing lead compounds from the surface of the electrolysis electrode by the polishing and cleaning treatment.
In addition, the method for removing electrode deposits containing lead compounds from electrodes for electrolysis using the acid treatment step is excellent in terms of removing electrode deposits containing lead compounds, but has problems such as the use of hydrogen peroxide solution, which is difficult to handle, and the use of nitric acid, which has a large environmental impact.

特許第4451471号公報Patent No. 4451471

本発明は、上記の従来法の課題を解消し、電解銅箔製造、または銅メッキ等の工業電解における電解により、表面に鉛化合物を含む電極表面付着物が付着した電解用電極、特に、バルブメタル、またはバルブメタル合金からなる電極基体の表面にタンタル、ニオブ等の金属または金属酸化物、若しくは金属合金を含む層(中間層)を形成し、該層(中間層)の表面に電極触媒層が被覆された電解用電極の表面に付着した、鉛化合物を含む電極表面付着物を効率的に除去することができ、安全且つ環境負荷の低い除去方法を提供することを目的とするものである。 The present invention aims to solve the problems of the conventional methods described above, and to provide a method for removing electrode surface deposits containing lead compounds that are attached to the surface of an electrode for electrolysis having electrode surface deposits containing lead compounds attached to the surface by electrolysis in industrial electrolysis such as electrolytic copper foil production or copper plating, particularly an electrode for electrolysis in which a layer (intermediate layer) containing a metal such as tantalum or niobium, or a metal oxide or a metal alloy is formed on the surface of an electrode substrate made of a valve metal or a valve metal alloy, and the surface of the layer (intermediate layer) is coated with an electrode catalyst layer, thereby efficiently removing the electrode surface deposits containing lead compounds that are attached to the surface of the electrode for electrolysis, which is safe and has a low environmental impact.

本発明は、上記目的を達成するために、下記の電解用電極表面からの鉛化合物を含む電極付着物の除去方法を提供することにある。 To achieve the above object, the present invention provides the following method for removing electrode deposits, including lead compounds, from the surface of an electrode for electrolysis.

項1. 表面に鉛化合物を含む電極表面付着物が付着した電解用電極を、
アルカリ水溶液に浸漬するアルカリ浸漬工程と、
有機酸に浸漬する酸処理工程に付することにより、電解用電極表面に付着した鉛化合物を含む電極表面付着物を除去する方法。
項2. アルカリ浸漬工程後、及び/または酸処理工程後に、表面洗浄工程に付することを特徴とする項1に記載の方法。
項3. 有機酸が、カルボン酸、またはスルホン酸である項1または2に記載の方法。
項4. 有機酸が酢酸、ギ酸、シュウ酸、クエン酸、酒石酸から選択される1種以上である項1から3の何れかに記載の方法。
項5. アルカリ水溶液が、アンモニア水、アルカリ金属、またはアルカリ土類金属の水酸化物若しくは炭酸塩の水溶液である項1から4の何れかに記載の方法。
項6. アルカリ水溶液が、水酸化ナトリウム、または水酸化カリウムの水溶液である項1から5の何れかに記載の方法。
項7. 鉛化合物が、硫酸鉛、または酸化鉛である項1から6の何れかに記載の方法。
項8. 電解用電極が、該電極表面に白金族金属、またはその酸化物を含有する電極触媒層が被覆された電解用電極である項1から7の何れかに記載の方法。
項9. 電解用電極が、バルブメタル、またはバルブメタル合金からなる電極基体の表面に金属、または金属酸化物、若しくは金属合金を含む層(中間層)が被覆された電解用電極である項1から8の何れかに記載の方法。
項10. 前記金属がチタン、タンタル、ニオブ、ジルコニウム及びハフニウムから選択される1種以上の金属または金属酸化物、若しくはその合金である項9に記載の方法。
項11. 表面に鉛化合物を含む電極表面付着物が付着した電解用電極を、
電解用電極表面にアルカリ水溶液を塗布するアルカリ塗布工程に付することにより、電解用電極表面に付着した鉛化合物を含む電極表面付着物を除去する方法。
項12. アルカリ塗布工程後に、電解用電極を乾燥工程に付することを特徴とする項11に記載の方法。
項13. 乾燥工程後に、表面洗浄工程に付することを特徴とする項11または項12に記載の方法。
項14. アルカリ水溶液が、アンモニア水、アルカリ金属またはアルカリ土類金属の水酸化物、若しくは炭酸塩の水溶液である項11から13の何れかに記載の方法。
項15. アルカリ水溶液が、水酸化ナトリウム、または水酸化カリウムの水溶液である項11から14の何れかに記載の方法。
項16. 鉛化合物が、硫酸鉛、または酸化鉛である項11から15の何れかに記載の方法。
項17. 電解用電極が、該電極表面に白金族金属、またはその酸化物を含有する電極触媒層が被覆された電解用電極である項11から16の何れかに記載の方法。
項18. 電解用電極が、バルブメタルまたはバルブメタル合金からなる電極基体の表面に金属、または金属酸化物、若しくは金属合金を含む層(中間層)が被覆された電解用電極である項11から17の何れかに記載の方法。
項19. 前記金属がチタン、タンタル、ニオブ、ジルコニウム及びハフニウムから選択される1種以上の金属または金属酸化物、若しくはその合金である項18に記載の方法。
Item 1. An electrode for electrolysis having a surface deposit containing a lead compound attached to the surface thereof,
an alkaline immersion step of immersing in an alkaline aqueous solution;
A method for removing electrode surface deposits, including lead compounds, adhered to the surface of an electrode for electrolysis by subjecting the electrode to an acid treatment step of immersing the electrode in an organic acid.
Item 2. The method according to item 1, further comprising subjecting the substrate to a surface cleaning step after the alkali immersion step and/or the acid treatment step.
Item 3. The method according to item 1 or 2, wherein the organic acid is a carboxylic acid or a sulfonic acid.
Item 4. The method according to any one of Items 1 to 3, wherein the organic acid is one or more selected from the group consisting of acetic acid, formic acid, oxalic acid, citric acid, and tartaric acid.
Item 5. The method according to any one of Items 1 to 4, wherein the alkaline aqueous solution is an aqueous solution of ammonia water, an alkali metal, or an alkaline earth metal hydroxide or carbonate.
Item 6. The method according to any one of Items 1 to 5, wherein the alkaline aqueous solution is an aqueous solution of sodium hydroxide or potassium hydroxide.
Item 7. The method according to any one of Items 1 to 6, wherein the lead compound is lead sulfate or lead oxide.
Item 8. The method according to any one of Items 1 to 7, wherein the electrode for electrolysis is an electrode for electrolysis having a surface coated with an electrode catalyst layer containing a platinum group metal or an oxide thereof.
Item 9. The method according to any one of Items 1 to 8, wherein the electrode for electrolysis is an electrode for electrolysis in which the surface of an electrode base made of a valve metal or a valve metal alloy is coated with a layer (intermediate layer) containing a metal, a metal oxide, or a metal alloy.
Item 10. The method according to Item 9, wherein the metal is one or more metals selected from titanium, tantalum, niobium, zirconium and hafnium, or metal oxides or alloys thereof.
Item 11. An electrode for electrolysis having an electrode surface deposit containing a lead compound attached to its surface,
A method for removing electrode surface deposits, including lead compounds, adhered to the surface of an electrode for electrolysis by subjecting the surface of the electrode for electrolysis to an alkali application step in which an alkaline aqueous solution is applied to the electrode surface.
Item 12. The method according to item 11, wherein the electrode for electrolysis is subjected to a drying step after the alkali application step.
Item 13. The method according to item 11 or 12, further comprising subjecting the substrate to a surface washing step after the drying step.
Item 14. The method according to any one of Items 11 to 13, wherein the alkaline aqueous solution is an aqueous solution of ammonia water, or a hydroxide or carbonate of an alkali metal or an alkaline earth metal.
Item 15. The method according to any one of Items 11 to 14, wherein the alkaline aqueous solution is an aqueous solution of sodium hydroxide or potassium hydroxide.
Item 16. The method according to any one of Items 11 to 15, wherein the lead compound is lead sulfate or lead oxide.
Item 17. The method according to any one of Items 11 to 16, wherein the electrode for electrolysis is an electrode for electrolysis having a surface coated with an electrode catalyst layer containing a platinum group metal or an oxide thereof.
Item 18. The method according to any one of Items 11 to 17, wherein the electrode for electrolysis is an electrode for electrolysis in which the surface of an electrode base made of a valve metal or a valve metal alloy is coated with a layer (intermediate layer) containing a metal, a metal oxide, or a metal alloy.
Item 19. The method according to item 18, wherein the metal is one or more metals selected from titanium, tantalum, niobium, zirconium and hafnium, or metal oxides or alloys thereof.

本発明の電解用電極表面から鉛化合物を含む電極付着物の除去方法によれば、電解用電極表面に付着した鉛化合物である硫酸鉛、または酸化鉛を含む電極表面付着物を水酸化ナトリウムまたは炭酸ナトリウム等のアルカリ水溶液に浸漬するアルカリ浸漬工程に付することよって、硫酸鉛または酸化鉛を水酸化鉛または炭酸鉛に変換させ、次いで水酸化鉛または炭酸鉛を含む電極表面付着物を有機酸(例えば、カルボン酸またはスルホン酸等)に浸漬する酸処理工程に付することによって、水酸化鉛または炭酸鉛を除去(溶解)することができる。
また、電解用電極表面に付着した鉛化合物(硫酸鉛または酸化鉛)を含む電極表面付着物に、水酸化ナトリウムまたは炭酸ナトリウム等のアルカリ水溶液を塗布するアルカリ塗布工程によって、硫酸鉛または酸化鉛を水酸化鉛または炭酸鉛に変化させ、水酸化鉛または炭酸鉛を除去可能となる。
According to the method for removing electrode deposits containing lead compounds from the surface of an electrode for electrolysis of the present invention, the electrode surface deposits containing lead sulfate or lead oxide, which are lead compounds attached to the surface of an electrode for electrolysis, are subjected to an alkali immersion step in which the electrode surface deposits containing lead sulfate or lead oxide are immersed in an alkaline aqueous solution of sodium hydroxide, sodium carbonate, or the like, thereby converting the lead sulfate or lead oxide into lead hydroxide or lead carbonate, and then the electrode surface deposits containing lead hydroxide or lead carbonate are subjected to an acid treatment step in which the electrode surface deposits containing lead hydroxide or lead carbonate are immersed in an organic acid (for example, a carboxylic acid or a sulfonic acid), thereby making it possible to remove (dissolve) the lead hydroxide or lead carbonate.
In addition, an alkali application step in which an aqueous alkali solution of sodium hydroxide, sodium carbonate, or the like is applied to the electrode surface deposits including lead compounds (lead sulfate or lead oxide) attached to the surface of the electrode for electrolysis changes the lead sulfate or lead oxide to lead hydroxide or lead carbonate, making it possible to remove the lead hydroxide or lead carbonate.

更に、アルカリ浸漬工程と酸処理工程、またはアルカリ塗布工程に付した後、電解用電極表面に残存する鉛化合物(水酸化鉛または炭酸鉛)を、ブラシ等を用いたブラッシングによる表面洗浄工程に付することによって、物理的に除去することが出来るため、鉛化合物である電極表面付着物を効果的に除去することが可能となる。 Furthermore, after the alkaline immersion process and the acid treatment process or the alkaline application process, the lead compounds (lead hydroxide or lead carbonate) remaining on the surface of the electrode for electrolysis can be physically removed by subjecting the electrode to a surface cleaning process in which the electrode is brushed with a brush or the like, making it possible to effectively remove the lead compounds adhering to the electrode surface.

本発明の除去方法は、酸処理工程を用いる場合、用いる酸は、鉱酸等の強酸ではなく、安全且つ環境負荷の低い有機酸を用いるか、または酸処理工程を用いないため、安全且つ環境負荷の低く、電解用電極表面から鉛化合物を含む電極付着物の除去効率に優れる除去方法である。 When the removal method of the present invention uses an acid treatment step, the acid used is not a strong acid such as a mineral acid, but an organic acid which is safe and has a low environmental impact, or an acid treatment step is not used, so this removal method is safe, has a low environmental impact, and is highly efficient in removing electrode deposits, including lead compounds, from the surface of the electrode for electrolysis.

以下に、本発明について詳細に説明する。 The present invention is described in detail below.

(アルカリ浸漬工程)
電解用電極が、金属箔製造用(例えば、銅箔製造用)である場合、電解用電極の表面には、鉛化合物を含む電極表面付着物が付着し、電解用電極の電極性能が阻害される。このような場合、表面に鉛化合物(例えば、硫酸鉛、または酸化鉛等)を含む電極表面付着物が付着した(電極性能が阻害されている)電解用電極を、アルカリ浸漬工程に付することで電解用電極表面に付着した鉛化合物を含む電極表面付着物を除去することができる。
(Alkaline immersion process)
When the electrode for electrolysis is used for producing metal foil (e.g., for producing copper foil), electrode surface deposits containing lead compounds are attached to the surface of the electrode for electrolysis, inhibiting the electrode performance of the electrode for electrolysis. In such a case, the electrode for electrolysis having electrode surface deposits containing lead compounds (e.g., lead sulfate, lead oxide, etc.) attached to the surface (electrode performance inhibited) can be subjected to an alkali immersion process to remove the electrode surface deposits containing lead compounds attached to the surface of the electrode for electrolysis.

具体的には、アンモニア水、アルカリ金属またはアルカリ土類金属の水酸化物、若しくは炭酸塩等のアルカリ水溶液に、電解用電極を数時間程度浸漬することで、鉛化合物を含む電極表面付着物中の硫酸鉛または酸化鉛を水酸化鉛または炭酸鉛へ変換させることができる。 Specifically, by immersing the electrode for electrolysis in an alkaline aqueous solution such as ammonia water, hydroxides of alkali metals or alkaline earth metals, or carbonates for several hours, the lead sulfate or lead oxide in the electrode surface deposits containing lead compounds can be converted to lead hydroxide or lead carbonate.

また、電解用電極が、金属メッキ用(例えば、銅メッキ用)である場合、電解用電極の表面には、鉛化合物である硫酸鉛を含む電極表面付着物が付着し、電解用電極の電極性能が阻害される。このような場合、表面に鉛化合物を含む電極付着物が付着した(電極性能が阻害されている)電解用電極を、アルカリ浸漬工程に付することで、電解用電極表面に付着した鉛化合物を含む電極表面付着物を除去することができる。 In addition, when the electrode for electrolysis is for metal plating (e.g., for copper plating), electrode surface deposits containing lead sulfate, which is a lead compound, adhere to the surface of the electrode for electrolysis, inhibiting the electrode performance of the electrode for electrolysis. In such a case, the electrode for electrolysis having electrode surface deposits containing lead compounds adhered thereto (electrode performance inhibited) can be subjected to an alkaline immersion process to remove the electrode surface deposits containing lead compounds adhered to the surface of the electrode for electrolysis.

具体的には、アンモニア水、アルカリ金属またはアルカリ土類金属の水酸化物、若しくは炭酸塩等のアルカリ水溶液に電解用電極を数時間程度浸漬することで、鉛化合物を含む電極表面付着物中の硫酸鉛を水酸化鉛または炭酸鉛へ変換させることができる。 Specifically, by immersing the electrolysis electrode in an alkaline aqueous solution such as ammonia water, hydroxides of alkali metals or alkaline earth metals, or carbonates for several hours, the lead sulfate in the electrode surface deposits containing lead compounds can be converted to lead hydroxide or lead carbonate.

なお、本発明において、電解用電極の電極性能が阻害されているとは、電解によって生成される金属箔またはメッキの単位面積当たり重量(厚み)公差が、電極表面に鉛化合物を含む電極表面付着物が付着することにより、基準値以上になったものを意味する。例えば、連続的に製造される銅箔の場合、1mあたりの銅箔重量が基準値より1%以上異なる場合、電解用電極の電極性能が阻害されていると判断する。電解によって生成される金属箔またはメッキの厚み公差が基準値以上になった電解用電極を本発明の除去方法に付することにより、電解用電極表面から鉛化合物を含む電極付着物を効率的に除去することができる。 In the present invention, the electrode performance of the electrode for electrolysis is impaired means that the weight (thickness) tolerance per unit area of the metal foil or plating produced by electrolysis is equal to or greater than a reference value due to the adhesion of electrode surface deposits containing lead compounds to the electrode surface. For example, in the case of continuously produced copper foil, if the copper foil weight per m2 differs from the reference value by 1% or more, the electrode performance of the electrode for electrolysis is judged to be impaired. By subjecting an electrode for electrolysis in which the thickness tolerance of the metal foil or plating produced by electrolysis is equal to or greater than a reference value to the removal method of the present invention, electrode deposits containing lead compounds can be efficiently removed from the surface of the electrode for electrolysis.

本発明のアルカリ浸漬工程に用いることのできるアルカリ水溶液は、電解用電極表面に付着した鉛化合物を含む電極表面付着物を効率的に除去できるものであれば、特に制限なく用いることができる。例えば、アルカリ水溶液としては、アンモニア水、アルカリ金属またはアルカリ土類金属の水酸化物若しくは炭酸塩の水溶液を例示することができる。 The alkaline aqueous solution that can be used in the alkaline immersion step of the present invention can be used without any particular restrictions, as long as it can efficiently remove electrode surface deposits, including lead compounds, that are attached to the surface of the electrode for electrolysis. For example, examples of the alkaline aqueous solution include ammonia water and aqueous solutions of hydroxides or carbonates of alkali metals or alkaline earth metals.

アルカリ金属、またはアルカリ土類金属の水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、水酸化ベリリウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム等を例示することができる。 Examples of hydroxides of alkali metals or alkaline earth metals include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, beryllium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, etc.

アルカリ金属、またはアルカリ土類金属の炭酸塩としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウム、炭酸ベリリウム、炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム等を例示することができる。上述したものの中でも、アルカリ金属、またはアルカリ土類金属の水酸化物が好ましく、水酸化ナトリウム、または水酸化カリウムがより好ましい。 Examples of carbonates of alkali metals or alkaline earth metals include lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, cesium carbonate, beryllium carbonate, magnesium carbonate, calcium carbonate, strontium carbonate, barium carbonate, etc. Among the above, hydroxides of alkali metals or alkaline earth metals are preferred, and sodium hydroxide or potassium hydroxide is more preferred.

本発明のアルカリ浸漬工程に用いるアルカリ水溶液の濃度は、目的に応じて適宜選択することができるが、例えば、1質量%から48質量%(室温25℃)の範囲のものであれば特に問題なく用いることができる。好ましくは3質量%~35質量%(室温25℃)の範囲であり、より好ましくは4質量%から30質量%(室温25℃)の範囲である。なお、アルカリ水溶液の濃度は、48質量%を超えると、電解用電極の触媒層が剥離する恐れがあり、1質量%未満では、鉛化合物を含む電極表面付着物中の硫酸鉛を水酸化鉛または炭酸鉛に変換する反応が十分におこらず、除去効率の点で不十分となる。 The concentration of the alkaline aqueous solution used in the alkaline immersion step of the present invention can be appropriately selected depending on the purpose, but for example, a concentration in the range of 1% by mass to 48% by mass (room temperature 25°C) can be used without any particular problems. It is preferably in the range of 3% by mass to 35% by mass (room temperature 25°C), and more preferably in the range of 4% by mass to 30% by mass (room temperature 25°C). If the concentration of the alkaline aqueous solution exceeds 48% by mass, the catalyst layer of the electrolysis electrode may peel off, and if it is less than 1% by mass, the reaction of converting lead sulfate in the electrode surface deposit containing lead compounds to lead hydroxide or lead carbonate does not occur sufficiently, resulting in insufficient removal efficiency.

本発明のアルカリ浸漬工程において、アルカリ水溶液の温度は特に制限されないが、例えば、0~90℃程度の範囲であればよく、好ましくは室温(25℃)~80℃程度の範囲であり、より好ましくは50℃から70℃程度の範囲である。また、アルカリ浸漬工程における、アルカリ水溶液への電解用電極の浸漬時間については、電解用電極表面に付着した鉛化合物が(硫酸鉛または酸化鉛が水酸化鉛または炭酸鉛等へ)変換する程度の時間であればよく、例えば、電解用電極表面に付着した鉛化合物が硫酸鉛である場合、アルカリ水溶液として、アルカリ金属、またはアルカリ土類金属の水酸化物、若しくは炭酸塩の水溶液を用いた際には、付着した硫酸鉛が水酸化鉛、または炭酸鉛に変換するために十分な時間であればよい。また、電解用電極表面に付着した鉛化合物が酸化鉛である場合、アルカリ水溶液として、アルカリ金属、またはアルカリ土類金属の水酸化物、若しくは炭酸塩の水溶液を用いた際には、付着した酸化鉛が水酸化鉛、または炭酸鉛に変換するために十分な時間であればよい。アルカリ水溶液への浸漬時間は通常、10分~10時間程度であればよく、好ましくは1時間から5時間程度である。 In the alkaline immersion step of the present invention, the temperature of the alkaline aqueous solution is not particularly limited, but may be, for example, in the range of about 0 to 90°C, preferably in the range of room temperature (25°C) to about 80°C, and more preferably in the range of about 50°C to 70°C. In addition, the immersion time of the electrode for electrolysis in the alkaline aqueous solution in the alkaline immersion step may be a time for which the lead compound attached to the surface of the electrode for electrolysis is converted (lead sulfate or lead oxide to lead hydroxide or lead carbonate, etc.). For example, when the lead compound attached to the surface of the electrode for electrolysis is lead sulfate, when an aqueous solution of an alkali metal or alkaline earth metal hydroxide or carbonate is used as the alkaline aqueous solution, the time may be sufficient for the attached lead sulfate to be converted to lead hydroxide or lead carbonate. In addition, when the lead compound attached to the surface of the electrode for electrolysis is lead oxide, when an aqueous solution of an alkali metal or alkaline earth metal hydroxide or carbonate is used as the alkaline aqueous solution, the time may be sufficient for the attached lead oxide to be converted to lead hydroxide or lead carbonate. The immersion time in the alkaline aqueous solution is usually about 10 minutes to 10 hours, and preferably about 1 to 5 hours.

アルカリ浸漬工程に付した電解用電極は、そのまま後述する酸処理工程に付してもよく、また、後述する表面洗浄工程に付した後、酸処理工程に付してもよい。アルカリ浸漬工程に付した後にどの工程に付すかは、電解用電極表面に付着した鉛化合物を含む電極表面付着物の付着量に応じて、適宜検討することができる。 The electrode for electrolysis that has been subjected to the alkaline immersion process may be subjected to the acid treatment process described below as it is, or may be subjected to the surface cleaning process described below and then to the acid treatment process. The process to which the electrode for electrolysis is subjected after the alkaline immersion process can be appropriately determined depending on the amount of electrode surface deposits, including lead compounds, that are attached to the surface of the electrode for electrolysis.

(酸処理工程)
本発明の除法方法において、アルカリ浸漬工程に次いで、電解用電極を酸処理工程に付することで、電解用電極表面に付着した鉛化合物を含む電極表面付着物を効率的に除去することができる。
(Acid treatment process)
In the process for removing the lead from the electrode for electrolysis according to the present invention, the electrode for electrolysis is subjected to an acid treatment step following the alkali immersion step, whereby the electrode surface deposits including lead compounds adhering to the surface of the electrode for electrolysis can be efficiently removed.

具体的には、電解用電極を有機酸に数時間程度浸漬し、アルカリ浸漬工程で変換した水酸化鉛または炭酸鉛を溶解させることで、電解用電極表面から鉛化合物を含む電極付着物を除去することができる Specifically, by immersing the electrolysis electrode in an organic acid for several hours and dissolving the lead hydroxide or lead carbonate converted in the alkaline immersion process, it is possible to remove electrode deposits containing lead compounds from the surface of the electrolysis electrode.

本発明の酸処理工程に用いることのできる有機酸は、特に限定されないが、例えば、カルボン酸、またはスルホン酸を用いることができる。 The organic acid that can be used in the acid treatment step of the present invention is not particularly limited, but for example, a carboxylic acid or a sulfonic acid can be used.

具体的ものとしては、シュウ酸、マロン酸、コハク酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、酢酸、酒石酸等のカルボン酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等のスルホン酸等を例示することができる。 Specific examples include carboxylic acids such as oxalic acid, malonic acid, succinic acid, adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, acetic acid, and tartaric acid, and sulfonic acids such as p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, and naphthalenedisulfonic acid.

中でも、酢酸、ギ酸、シュウ酸、クエン酸、酒石酸が好ましく、酢酸またはギ酸がより好ましい。用いる有機酸の濃度は特に限定されないが、50質量%以上(室温25℃)であればよく、75質量%以上(室温25℃)が好ましく、90質量%以上(室温25℃)がより好ましい。 Among these, acetic acid, formic acid, oxalic acid, citric acid, and tartaric acid are preferred, and acetic acid or formic acid is more preferred. The concentration of the organic acid used is not particularly limited, but may be 50% by mass or more (room temperature 25°C), preferably 75% by mass or more (room temperature 25°C), and more preferably 90% by mass or more (room temperature 25°C).

本発明の酸処理工程において、有機酸の温度は特に制限されないが、例えば、0~90℃程度の範囲であればよく、好ましくは室温(25℃)~80℃程度の範囲であり、より好ましくは50℃から70℃程度の範囲である。また、酸処理工程における、有機酸への電解用電極の浸漬時間については、電解用電極表面に付着した鉛化合物が溶解する程度の時間であればよく、例えば、電解用電極表面に付着した鉛化合物が水酸化鉛または炭酸鉛である場合、水酸化鉛、または炭酸鉛が溶解するために十分な時間であればよい。有機酸への浸漬時間は通常、10分~10時間程度であればよく、好ましくは1時間から5時間程度である。 In the acid treatment step of the present invention, the temperature of the organic acid is not particularly limited, but may be, for example, in the range of about 0 to 90°C, preferably in the range of room temperature (25°C) to about 80°C, and more preferably in the range of about 50 to 70°C. In addition, the immersion time of the electrode for electrolysis in the organic acid in the acid treatment step may be a time sufficient for the lead compound attached to the surface of the electrode for electrolysis to dissolve. For example, when the lead compound attached to the surface of the electrode for electrolysis is lead hydroxide or lead carbonate, the time may be sufficient for the lead hydroxide or lead carbonate to dissolve. The immersion time in the organic acid may usually be about 10 minutes to 10 hours, and preferably about 1 to 5 hours.

酸処理工程に付した電解用電極は、そのまま後述する表面洗浄工程に付してもよい。また、再度アルカリ浸漬工程に付することで効率的に電解用電極表面から鉛化合物を含む電極付着物を除去することができる。 The electrode for electrolysis that has been subjected to the acid treatment process may be subjected to the surface cleaning process described below as it is. In addition, by subjecting it to the alkali immersion process again, electrode deposits including lead compounds can be efficiently removed from the surface of the electrode for electrolysis.

(アルカリ塗布工程)
本発明における除去方法として、上述したアルカリ浸漬工程と酸処理工程に付する以外の態様として、電解用電極表面にアルカリ溶液を塗布するアルカリ塗布工程に付することにより、電解用電極表面に付着した鉛化合物を含む電極表面付着物を除去することができる。
(Alkaline coating process)
As a removal method in the present invention, as an embodiment other than the above-mentioned alkali immersion step and acid treatment step, the electrode surface deposits including lead compounds adhered to the surface of the electrode for electrolysis can be removed by applying an alkali application step in which an alkaline solution is applied to the surface of the electrode for electrolysis.

具体的には、表面に鉛化合物を含む電極表面付着物が付着した電解用電極の表面に、アンモニア水、アルカリ金属またはアルカリ土類金属の水酸化物、若しくは炭酸塩等のアルカリ水溶液を塗布することで、鉛化合物を含む電極表面付着物中の硫酸鉛、または酸化鉛を水酸化鉛または炭酸鉛へ変換させ、電極表面付着物を除去することができる。 Specifically, by applying an alkaline aqueous solution such as ammonia water or an alkali metal or alkaline earth metal hydroxide or carbonate to the surface of an electrolysis electrode having electrode surface deposits containing lead compounds attached to its surface, the lead sulfate or lead oxide in the electrode surface deposits containing lead compounds can be converted to lead hydroxide or lead carbonate, and the electrode surface deposits can be removed.

アルカリ塗布工程における電解用電極表面へのアルカリ水溶液を塗布する方法としては、特に制限されず、刷毛・ローラー等によって塗布する方法、スプレー法、ディップコート法等公知の方法を採用することができる。 The method for applying the alkaline aqueous solution to the surface of the electrode for electrolysis in the alkaline application step is not particularly limited, and known methods such as application with a brush or roller, spraying, and dip coating can be used.

本発明のアルカリ塗布工程に用いることのできるアルカリ水溶液は、電解用電極表面に付着した鉛化合物を含む電極表面付着物を効率的に除去できるものであれば、特に制限なく用いることができる。例えば、アルカリ水溶液としては、アンモニア水、アルカリ金属、またはアルカリ土類金属の水酸化物、または炭酸塩の水溶液を例示することができる。 The alkaline aqueous solution that can be used in the alkaline application step of the present invention can be used without any particular restrictions, as long as it can efficiently remove electrode surface deposits, including lead compounds, that are attached to the surface of the electrode for electrolysis. For example, examples of the alkaline aqueous solution include ammonia water, and aqueous solutions of hydroxides or carbonates of alkali metals or alkaline earth metals.

アルカリ金属、またはアルカリ土類金属の水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、水酸化ベリリウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム等を例示することができる。 Examples of hydroxides of alkali metals or alkaline earth metals include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, beryllium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, etc.

アルカリ金属、またはアルカリ土類金属の炭酸塩としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウム、炭酸ベリリウム、炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム等を例示することができる。上述したものの中でも、アルカリ金属、またはアルカリ土類金属の水酸化物が好ましく、水酸化ナトリウムまたは水酸化カリウムがより好ましい。 Examples of carbonates of alkali metals or alkaline earth metals include lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, cesium carbonate, beryllium carbonate, magnesium carbonate, calcium carbonate, strontium carbonate, barium carbonate, etc. Among the above, hydroxides of alkali metals or alkaline earth metals are preferred, and sodium hydroxide or potassium hydroxide is more preferred.

本発明のアルカリ塗布工程に用いるアルカリ水溶液は、1質量%から飽和濃度(例えば、20度では、52.2質量%等のように、各温度での最大溶解濃度を意味する)の範囲のものであれば特に問題なく用いることができる。好ましくは20質量%~48質量%(室温:25℃)の範囲であり、より好ましくは32%質量%~48質量%(室温:25℃)の範囲である。なお、1質量%未満では、鉛化合物を含む電極表面付着物中の硫酸鉛を水酸化鉛または炭酸鉛に変換する反応が十分におこらず、除去効率の点で不十分となる。 The alkaline aqueous solution used in the alkaline application step of the present invention can be used without any problem as long as it is in the range of 1% by mass to saturation concentration (meaning the maximum soluble concentration at each temperature, such as 52.2% by mass at 20 degrees). It is preferably in the range of 20% by mass to 48% by mass (room temperature: 25°C), and more preferably in the range of 32% by mass to 48% by mass (room temperature: 25°C). If it is less than 1% by mass, the reaction of converting lead sulfate in the electrode surface deposit containing lead compounds to lead hydroxide or lead carbonate does not occur sufficiently, resulting in insufficient removal efficiency.

アルカリ塗布工程におけるアルカリ水溶液の塗布量は、電解用電極表面に付着した鉛化合物を含む電極表面付着物を十分に変換できる量であればよく、具体的には、硫酸鉛または酸化鉛等の鉛化合物を水酸化鉛または炭酸鉛等へ変換することができる量であればよく、例えば、100ml/m~1000ml/mの範囲であればよく、好ましくは200ml/m~800ml/mの範囲である。 The amount of the alkaline aqueous solution applied in the alkaline application step may be any amount that is sufficient to convert the electrode surface deposits, including lead compounds, attached to the surface of the electrode for electrolysis. Specifically, the amount may be any amount that is sufficient to convert lead compounds such as lead sulfate or lead oxide to lead hydroxide or lead carbonate, for example, in the range of 100 ml/m 2 to 1000 ml/m 2 , and preferably in the range of 200 ml/m 2 to 800 ml/m 2 .

アルカリ塗布工程に付した電解用電極は、乾燥工程に付して電解用電極を乾燥させてもよい。乾燥工程は、塗布したアルカリ水溶液が蒸発する程度の条件で行えばよく、例えば、室温で10分から24時間程度乾燥すればよく、室温以上200℃以下の温度で5分から10数時間程度行うことが好ましい。 The electrode for electrolysis that has been subjected to the alkaline application process may be subjected to a drying process to dry the electrode for electrolysis. The drying process may be carried out under conditions such that the applied alkaline aqueous solution evaporates. For example, drying may be carried out at room temperature for about 10 minutes to 24 hours, and is preferably carried out at a temperature of room temperature or higher and 200°C or lower for about 5 minutes to 10 or so hours.

アルカリ塗布工程に付した電解用電極は、そのまま後述する表面洗浄工程に付してもよく、乾燥工程に付した後、表面洗浄工程に付してもよい。また、表面処理工程に付した後、電解用電極を再度アルカリ塗布工程と表面洗浄工程に繰り返し付することでより、効率的に電解用電極表面から鉛化合物を含む電極付着物を除去することができる。 The electrode for electrolysis that has been subjected to the alkali application process may be subjected to the surface cleaning process described below as is, or may be subjected to a drying process and then to a surface cleaning process. In addition, by repeatedly subjecting the electrode for electrolysis to the alkali application process and the surface cleaning process again after the surface treatment process, electrode deposits containing lead compounds can be more efficiently removed from the surface of the electrode for electrolysis.

(表面洗浄工程)
本発明の除去方法においては、アルカリ浸漬工程後、及び/または酸処理工程後、若しくはアルカリ塗布工程後に、表面洗浄工程に付することにより、電解用電極表面の鉛化合物を含む電極表面付着物を物理的に除去することができる。
(Surface cleaning process)
In the removal method of the present invention, the electrode surface deposits including lead compounds on the surface of the electrode for electrolysis can be physically removed by subjecting the electrode to a surface cleaning step after the alkali immersion step and/or the acid treatment step or the alkali application step.

表面洗浄工程としては、通常電極表面の表面洗浄に用いることのできる手法を用いることができる。例えば、5~100メガパスカル程度の圧力の高圧水を電極表面に吹き付けて表面洗浄を行う方法でもよく、ブラシや刷毛等を用いて研磨(ブラッシング)を行うことで表面洗浄を行う手法でもよい。電解用電極について、表面洗浄処理を行うことで、電解用電極表面に残存する鉛化合物を物理的に除去することによって、電解用電極表面からの鉛化合物を含む電極付着物の除去することができる。
なお、研磨(ブラッシング)により表面洗浄を行う際に、水(例えば、イオン交換水、蒸留水、純水、水道水等)を用いながらブラッシングを行ってもよい。
The surface cleaning step may be performed by a method that can be used for cleaning a normal electrode surface. For example, the surface may be cleaned by spraying high-pressure water at a pressure of about 5 to 100 megapascals onto the electrode surface, or by polishing (brushing) the electrode surface with a brush or a paintbrush. By performing a surface cleaning process on the electrode for electrolysis, the lead compounds remaining on the surface of the electrode for electrolysis are physically removed, and thus the electrode deposits containing lead compounds can be removed from the surface of the electrode for electrolysis.
When cleaning the surface by polishing (brushing), the brushing may be performed using water (e.g., ion-exchanged water, distilled water, pure water, tap water, etc.).

(電解用電極)
本発明の除去方法を適用することのできる電解用電極は、電解用電極の表面に付着する鉛化合物を含む電極表面付着物が付着しているものであり、鉛化合物を含む電極表面付着物は、電解めっきや金属箔製造電解によって、電解用電極表面に硫酸鉛または酸化鉛等を含む鉛化合物が付着しているものである。
(Electrode for electrolysis)
The electrodes for electrolysis to which the removal method of the present invention can be applied are those having an electrode surface deposit containing lead compounds attached to the surface of the electrode for electrolysis, and the electrode surface deposit containing lead compounds is one in which lead compounds containing lead sulfate or lead oxide, etc., are attached to the surface of the electrode for electrolysis by electrolytic plating or electrolysis in the production of metal foil.

電極表面付着物中の鉛化合物としては、硫酸鉛、または酸化鉛を含んでいれば、その含有量は特に制限されないが、少なくとも電極表面付着物中の50%以上が、鉛化合物である場合、本発明の除去方法を好適に適用することできる。また、電極表面付着物には、鉛化合物以外に各種の金属不純物を含んでいてもよい。即ち、本発明の除去方法は、電解めっきや金属箔製造電解に用いる電解用電極表面に酸化鉛、または硫酸鉛等の鉛化合物を含む電極表面付着物が付着することで電解用電極の電極性能が阻害されている電解用電極へ用いることができる。 The lead compounds in the electrode surface deposits are not particularly limited in content as long as they contain lead sulfate or lead oxide, but the removal method of the present invention can be suitably applied when at least 50% of the electrode surface deposits are lead compounds. The electrode surface deposits may also contain various metal impurities in addition to lead compounds. In other words, the removal method of the present invention can be used for electrolytic electrodes used in electrolytic plating and electrolysis for manufacturing metal foils, in which the electrode performance of the electrode for electrolysis is impaired by the adhesion of electrode surface deposits containing lead compounds such as lead oxide or lead sulfate to the surface of the electrode for electrolysis.

電解用電極に付着した電極表面付着物中の鉛化合物の除去量は、実施例に記載する方法により測定することができる。具体的には、電極表面を、蛍光X線分析装置を用いて鉛のピーク強度を測定し、除去方法に付する前の電極表面の鉛のピーク強度(初期強度)と除去方法に付した後の電極表面の鉛のピーク強度から求めることができる。 The amount of lead compounds removed from the electrode surface deposits attached to the electrolysis electrode can be measured by the method described in the Examples. Specifically, the electrode surface is measured for lead peak intensity using a fluorescent X-ray analyzer, and the amount can be determined from the lead peak intensity (initial intensity) of the electrode surface before being subjected to the removal method and the lead peak intensity of the electrode surface after being subjected to the removal method.

電解用電極の電極基体は、金属性材料が用いられ、導電性や適当な剛性を有するものであれば材質や形状は特に制限なく用いることができる。例えば、耐食性の良いチタン、タンタル、ニオブ、ジルコニウム等のバルブメタル、またはバルブメタルの合金が好ましい。また、電極基体は必要ならば予め焼鈍、ブラスト等による表面粗化、酸洗等による表面清浄化等の物理的、化学的前処理を適宜行ったものであってもよい。 The electrode substrate of the electrolysis electrode is made of a metallic material, and there are no particular restrictions on the material or shape as long as it has electrical conductivity and appropriate rigidity. For example, valve metals such as titanium, tantalum, niobium, zirconium, etc., which have good corrosion resistance, or valve metal alloys are preferred. If necessary, the electrode substrate may be appropriately pretreated with physical or chemical pretreatment such as annealing, surface roughening by blasting, etc., or surface cleaning by pickling, etc.

更に、電解用電極は、該電極基体の表面には、金属、または金属酸化物、若しくは金属合金を含む層(中間層)で被覆されていることが好ましい。該層(中間層)を形成する金属は、導電性や耐食性に優れ、基体や電極触媒層との密着が良好なものであれば特に限定されない。中間層に用いる代表的な金属として、耐食性に優れたチタン、タンタル、ニオブ、ジルコニウム、ハフニウム等、及びこれらの酸化物、若しくはこれらの合金等が挙げられ、これらはチタン等のバルブメタルからなる電極基体との密着性に優れる。なお、金属、または金属酸化物、若しくは金属合金を含む層(中間層)における金属は1種類のみでもよく、複数の金属を組み合わせたものでもよい。複数を組み合わせて用いる場合の比率は適宜調整することが可能である。中でも、タンタル、チタン、またはこれらの酸化物、若しくはこれらの合金が好ましい。 Furthermore, the surface of the electrode substrate for electrolysis is preferably coated with a layer (intermediate layer) containing a metal, a metal oxide, or a metal alloy. The metal forming the layer (intermediate layer) is not particularly limited as long as it has excellent electrical conductivity and corrosion resistance and good adhesion to the substrate and the electrode catalyst layer. Representative metals used in the intermediate layer include titanium, tantalum, niobium, zirconium, hafnium, etc., which have excellent corrosion resistance, and oxides thereof, or alloys thereof, which have excellent adhesion to the electrode substrate made of a valve metal such as titanium. The metal in the layer (intermediate layer) containing a metal, a metal oxide, or a metal alloy may be only one type, or may be a combination of multiple metals. When multiple metals are used in combination, the ratio can be appropriately adjusted. Among them, tantalum, titanium, oxides thereof, or alloys thereof are preferred.

電極基体上に層(中間層)を被覆させる方法としては、真空スパッタリングによる層形成方法が挙げられる。真空スパッタリングとしては、例えば、直流スパッタリング、高周波スパッタリング、アークイオンプレーティング、イオンビームプレーティング、クラスターイオンビーム法等、種々の装置を適用することが可能であり、真空度、基板温度、ターゲット板の組成や純度、析出速度(投入電力)等の条件を適宜設定することにより所望の物性の層(中間層)を形成することができる。該層(中間層)の厚さは、通常0.1~10μmの範囲でよく、耐食性や生産性等の実用的見地から適宜選定すればよい。かくして、表面が被覆された電極基体は、その表面の熱的酸化に対する優れた特性、即ち酸化皮膜の成長挙動に顕著な特色を有する。 A method for coating a layer (intermediate layer) on an electrode substrate includes a layer formation method by vacuum sputtering. For vacuum sputtering, various devices can be used, such as DC sputtering, high frequency sputtering, arc ion plating, ion beam plating, and cluster ion beam method, and a layer (intermediate layer) with desired physical properties can be formed by appropriately setting conditions such as the degree of vacuum, substrate temperature, composition and purity of the target plate, and deposition rate (input power). The thickness of the layer (intermediate layer) is usually in the range of 0.1 to 10 μm, and may be appropriately selected from practical standpoints such as corrosion resistance and productivity. Thus, the electrode substrate with the surface coated has excellent properties against thermal oxidation of the surface, i.e., a remarkable characteristic in the growth behavior of the oxide film.

電解用電極は、上述した手法により電極基体上に層(中間層)で被覆され、さらに電極触媒層で被覆されたものが好ましい。該電極触媒層は、用途に応じて既知の種々のものを適用することが可能であり、特に限定されないが、例えば、耐久性を特に要求される酸素発生反応用においては、イリジウム酸化物等の白金族金属酸化物を含むものが好ましい。 The electrolysis electrode is preferably one in which the electrode substrate is coated with a layer (intermediate layer) by the above-mentioned method, and further coated with an electrode catalyst layer. The electrode catalyst layer may be any known one depending on the application, and is not particularly limited. For example, for oxygen generation reactions, which require durability, it is preferable to use one that contains a platinum group metal oxide such as iridium oxide.

電解用電極に電極触媒層を被覆させる方法として、種々の方法が知られおり、目的に応じて適宜の選択することができる。例えば、熱分解法等を例示することができ、触媒層成分金属の塩化物、硝酸塩、アルコキシド、レジネート等の原料塩を塩酸、硝酸、アルコール、有機溶媒等の溶剤に溶解して被覆液とし、前記電極基体表面に塗布し、乾燥後空気中等の酸化性雰囲気で焼成炉中にて加熱処理することによって、電極触媒層を形成されることができる。なお、電極触媒層の厚みは通常0.1~30μmの範囲である。また、電極触媒層中における金属は1種のみでもよく、複数を組み合わせて用いてもよい。複数を組み合わせて用いる場合は各種金属の比率は適宜調整することができる。 There are various methods for coating an electrode for electrolysis with an electrode catalyst layer, and a suitable method can be selected according to the purpose. For example, a thermal decomposition method can be exemplified. A raw material salt such as chloride, nitrate, alkoxide, or resinate of the catalyst layer component metal is dissolved in a solvent such as hydrochloric acid, nitric acid, alcohol, or an organic solvent to form a coating liquid, which is applied to the surface of the electrode substrate and dried, followed by heating in a baking furnace in an oxidizing atmosphere such as air to form an electrode catalyst layer. The thickness of the electrode catalyst layer is usually in the range of 0.1 to 30 μm. The electrode catalyst layer may contain only one type of metal, or multiple types of metals may be used in combination. When multiple types of metals are used in combination, the ratio of the various metals can be appropriately adjusted.

また、予め金属酸化物を作製し、適当な有機バインダー、有機溶媒を加えてペースト状とし、電極基体上に印刷し焼成を行う厚膜法、或いはCVD法を用いて、電極基体上に電極触媒層を形成させることも可能である。 It is also possible to form an electrode catalyst layer on an electrode substrate by using a thick-film method in which a metal oxide is prepared in advance, an appropriate organic binder and an organic solvent are added to make a paste, and the paste is printed on the electrode substrate and fired, or by using a CVD method.

更に、本発明の除去方法において、電極表面付着物を除去した電解用電極に上述した手法により、電極触媒層を形成させることも可能である。 Furthermore, in the removal method of the present invention, it is also possible to form an electrode catalyst layer on the electrolysis electrode from which the electrode surface deposits have been removed, by the above-mentioned method.

本発明の除去方法に用いる電解用電極は、金属箔製造用電極、または金属メッキ用電極に用いるものであればよく。具体的には、金属箔製造用電極(例えば、銅箔製造用電極)は、円筒状の陰極上に銅をめっきし、それを剥離することによって銅箔を連続的に製造に用いられる電極のことである。また、金属メッキ用電極(例えば、銅めっき用電極)は、電解質中に含まれる任意の金属成分(例えば銅)を還元し、被めっき物上に電析させることによって薄膜層を形成させる電解に用いられる電極のことである。 The electrolysis electrode used in the removal method of the present invention may be any electrode used for metal foil production or metal plating. Specifically, an electrode for metal foil production (e.g., an electrode for copper foil production) is an electrode used for continuously producing copper foil by plating copper onto a cylindrical cathode and peeling it off. Also, an electrode for metal plating (e.g., an electrode for copper plating) is an electrode used in electrolysis to form a thin film layer by reducing any metal component (e.g., copper) contained in an electrolyte and electrolytically depositing it on the object to be plated.

次に、実施例により本発明を具体的に説明するが、本発明はこれに限定されるものではない。 Next, the present invention will be specifically explained using examples, but the present invention is not limited to these.

<実施例1>
下記試験電極を電解条件において、銅箔製造電解の模擬電解試験に使用した電解用電極を用いた。なお、電極表面付着物中の鉛化合物の除去量は後述する蛍光X線分析装置を用いて測定した。
Example 1
The electrolysis electrode used in the simulated electrolysis test for electrolysis of copper foil production was used under the following electrolysis conditions: The amount of lead compounds removed from the deposits on the electrode surface was measured using a fluorescent X-ray analyzer described below.

市販の金属箔製造用の電解用電極(ダイソーエンジニアリング株式会社製 品番:MD-220、基体:チタン、電極触媒層:イリジウム酸化物、中間層;チタンとタンタルの合金) Commercially available electrolytic electrodes for manufacturing metal foil (manufactured by Daiso Engineering Co., Ltd., product number: MD-220, base: titanium, electrode catalyst layer: iridium oxide, intermediate layer: titanium and tantalum alloy)

電解条件
・対極(陰極):Pt板
・電流密度:100A/dm
・電解温度:80℃
・電解液:50ppmのPb(NOを添加した 20重量% HSOと 10重量% NaSOの溶液
・電解時間:168時間
Electrolysis conditions Counter electrode (cathode): Pt plate Current density: 100 A/ dm2
Electrolysis temperature: 80°C
Electrolyte: 20 wt% H2SO4 and 10 wt % Na2SO4 solution with 50 ppm Pb( NO3 ) 2 added Electrolysis time: 168 hours

蛍光X線分析条件
測定機器:(株)リガク製、3270
ターゲット:Rh(ロジウム)
出力設定:20kV、30mA
測定時間:30秒
測定雰囲気:大気下
試料の調製:試験電極を縦10mm×横10mm×厚み1mmの大きさに切断した切片
X-ray fluorescence analysis conditions <br/> Measuring equipment: Rigaku 3270
Target: Rh (rhodium)
Output settings: 20 kV, 30 mA
Measurement time: 30 seconds Measurement atmosphere: Air Sample preparation: A test electrode cut into a piece measuring 10 mm long x 10 mm wide x 1 mm thick

上記電解条件で硫酸鉛を含む電極表面付着物が付着した電解用電極の切片(縦10mm×横10mm×厚み1mm)を24質量%の水酸化ナトリウム水溶液(東京化成工業株式会社製)に浸漬し、60℃で2時間浸漬し、電解用電極表面に付着した電極表面付着物中の硫酸鉛を水酸化鉛へ変換するアルカリ浸漬工程に付した。その後、電解用電極表面にイオン交換水を吹きかけながらブラシでブラッシングすることにより、アルカリ浸漬工程によって除去可能となった鉛化合物(主に水酸化鉛)の一部を物理的に除去し、表面洗浄工程を行った。次いで、電解用電極の切片を99.5質量%の酢酸(東京化成工業株式会社製)に浸漬し、60℃で1時間浸漬し、酸処理工程付し、水酸化鉛を溶解させた。更に、電解用電極表面にイオン交換水を吹きかけながらブラシでブラッシングし、残存する鉛化合物(主に水酸化鉛)を物理的に除去し、表面洗浄工程を行った。表面から鉛化合物を含む電極付着物の除去した電解用電極について、電極表面を、蛍光X線分析装置を用いて鉛のピーク強度を測定した。初期強度のピーク強度(表面から鉛化合物を含む電極付着物の除去前の電極表面における鉛のピーク強度を100とする)と比較して、鉛化合物が94.4%減少していた。 A piece of the electrode for electrolysis (length 10 mm x width 10 mm x thickness 1 mm) with electrode surface deposits containing lead sulfate attached under the above electrolysis conditions was immersed in a 24% by mass aqueous sodium hydroxide solution (manufactured by Tokyo Chemical Industry Co., Ltd.) and immersed at 60°C for 2 hours, and subjected to an alkaline immersion process in which the lead sulfate in the electrode surface deposits attached to the surface of the electrode for electrolysis is converted to lead hydroxide. Then, the surface of the electrode for electrolysis was sprayed with ion-exchanged water and brushed with a brush to physically remove some of the lead compounds (mainly lead hydroxide) that became removable by the alkaline immersion process, and a surface cleaning process was performed. Next, the piece of the electrode for electrolysis was immersed in 99.5% by mass acetic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) and immersed at 60°C for 1 hour, and subjected to an acid treatment process to dissolve the lead hydroxide. Furthermore, the surface of the electrode for electrolysis was brushed with a brush while spraying ion-exchanged water to physically remove the remaining lead compounds (mainly lead hydroxide), and a surface cleaning process was performed. The electrolysis electrode, from whose surface the electrode deposits containing lead compounds had been removed, was used to measure the peak intensity of lead on the electrode surface using a fluorescent X-ray analyzer. Compared to the initial peak intensity (the peak intensity of lead on the electrode surface before the electrode deposits containing lead compounds were removed from the surface is taken as 100), the amount of lead compounds had been reduced by 94.4%.

<実施例2>
実験に用いた水酸化ナトリウムを12質量%に変更した以外は、実施例1と同様に試験を行った。表面から鉛化合物を含む電極付着物の除去した電解用電極について、電極表面を、蛍光X線分析装置を用いて鉛のピーク強度を測定した。初期強度のピーク強度と比較して、鉛化合物が85.6%減少していた。
Example 2
A test was performed in the same manner as in Example 1, except that the sodium hydroxide used in the experiment was changed to 12 mass %. The electrode surface for electrolysis, from which electrode deposits containing lead compounds had been removed, was subjected to measurement of the peak intensity of lead using a fluorescent X-ray analyzer. Compared with the peak intensity of the initial intensity, the amount of lead compounds had been reduced by 85.6%.

<実施例3>
実験に用いた水酸化ナトリウムを6質量%に変更した以外は、実施例1と同様に試験を行った。表面から鉛化合物を含む電極付着物の除去した電解用電極について、電極表面を、蛍光X線分析装置を用いて鉛のピーク強度を測定した。初期強度のピーク強度と比較して、鉛化合物が78.1%減少していた。
Example 3
A test was performed in the same manner as in Example 1, except that the sodium hydroxide used in the experiment was changed to 6 mass %. The electrode surface for electrolysis from which the electrode deposits containing lead compounds had been removed was subjected to measurement of the peak intensity of lead using a fluorescent X-ray analyzer. Compared with the peak intensity of the initial intensity, the amount of lead compounds had decreased by 78.1%.

<実施例4>
上記電解条件で硫酸鉛を含む電極表面付着物が付着した電解用電極の切片上(縦10mm×横10mm×厚み1mm)に48質量%の水酸化ナトリウム水溶液(東京化成工業株式会社製)を400ml/mとなるように刷毛を用いて塗布し、電解用電極表面に付着した電極表面付着物中の硫酸鉛を水酸化鉛へ変換するアルカリ塗布工程に付した。その後、室温(25℃)で一晩自然乾燥し、乾燥工程に付した。更に、電解用電極表面にイオン交換水を吹きかけながらブラシでブラッシングし、鉛化合物(主に水酸化鉛)を物理的に除去し、表面洗浄工程を行った。表面から鉛化合物を含む電極付着物の除去した電解用電極について、電極表面を、蛍光X線分析装置を用いて鉛のピーク強度を測定した。初期強度のピーク強度(表面から鉛化合物を含む電極付着物の除去前の電極表面における鉛のピーク強度を100とする)と比較して、鉛化合物が65.6%減少していた。さらに、同様の手順で、アルカリ塗布工程、乾燥工程、表面洗浄工程に繰り返し行い、電極表面の鉛化合物の除去率を測定したところ、2サイクル後は、鉛化合物が初期強度のピーク強度と比較して81.5%減少しており、3サイクル後は、鉛化合物が初期強度のピーク強度と比較して94.4%減少していた。
Example 4
A 48% by mass aqueous solution of sodium hydroxide (manufactured by Tokyo Chemical Industry Co., Ltd.) was applied to a section (length 10 mm x width 10 mm x thickness 1 mm) of the electrode for electrolysis to which electrode surface deposits containing lead sulfate were attached under the above electrolysis conditions using a brush to an amount of 400 ml/ m2 , and the electrode was subjected to an alkali application process in which lead sulfate in the electrode surface deposits attached to the electrode surface for electrolysis was converted to lead hydroxide. Then, the electrode was naturally dried overnight at room temperature (25°C) and subjected to a drying process. Furthermore, the electrode surface for electrolysis was brushed with a brush while spraying ion-exchanged water, and lead compounds (mainly lead hydroxide) were physically removed, and a surface cleaning process was performed. The electrode surface for electrolysis from which electrode deposits containing lead compounds were removed was measured for lead peak intensity using a fluorescent X-ray analyzer. Compared with the peak intensity of the initial intensity (the peak intensity of lead on the electrode surface before the electrode deposits containing lead compounds were removed from the surface was taken as 100), the lead compounds were reduced by 65.6%. Furthermore, the alkali application process, drying process, and surface cleaning process were repeated in a similar manner, and the removal rate of lead compounds on the electrode surface was measured. After two cycles, the lead compounds had decreased by 81.5% compared to the initial peak intensity, and after three cycles, the lead compounds had decreased by 94.4% compared to the initial peak intensity.

<比較例1>
<実施例1>で用いたものと同様の電解試験に用いた電解用電極の切片(縦10mm×横10mm×厚み1mm)を、6質量%の水酸化ナトリウム水溶液に浸漬し、60℃で2時間浸漬し、電解用電極表面に付着した電極表面付着物中の硫酸鉛を水酸化鉛へ変換するアルカリ浸漬工程に付した。その後、電解用電極表面にイオン交換水を吹きかけながら(ブラシで)ブラッシングすることにより、アルカリ浸漬工程によって除去可能となった鉛化合物(主に水酸化鉛)の一部を物理的に除去し表面洗浄工程を行った。表面から鉛化合物を含む電極付着物の除去した電解用電極について、電極表面を、蛍光X線分析装置を用いて鉛のピーク強度を測定した。初期強度のピーク強度と比較して、鉛化合物が31.7%減少していた。
<Comparative Example 1>
A piece of the electrode for electrolysis used in the same electrolysis test as that used in <Example 1> (length 10 mm x width 10 mm x thickness 1 mm) was immersed in a 6% by mass aqueous solution of sodium hydroxide and immersed at 60°C for 2 hours, and subjected to an alkali immersion process in which lead sulfate in the electrode surface deposit attached to the surface of the electrode for electrolysis is converted to lead hydroxide. Thereafter, the surface of the electrode for electrolysis was physically removed by brushing (with a brush) while spraying ion-exchanged water on the surface of the electrode for electrolysis, thereby performing a surface cleaning process in which a part of the lead compounds (mainly lead hydroxide) that became removable by the alkali immersion process was physically removed. The peak intensity of lead was measured for the electrode surface of the electrode for electrolysis from which the electrode deposit containing lead compounds was removed, using a fluorescent X-ray analyzer. Compared to the peak intensity of the initial intensity, the lead compounds were reduced by 31.7%.

<比較例2>
<実施例1>で用いたものと同様の電解試験に用いた電解用電極の切片(縦10mm×横10mm×厚み1mm)を、98質量%の酢酸に浸漬し、90℃で3時間浸漬し、酸処理工程に付した。その後、電解用電極表面にイオン交換水を吹きかけながら(ブラシで)ブラッシングすることにより、酸処理工程によって除去可能となった鉛化合物の一部を物理的に除去し表面洗浄工程を行った。表面から鉛化合物を含む電極付着物の除去した電解用電極について、電極表面を、蛍光X線分析装置を用いて鉛のピーク強度を測定した。初期強度のピーク強度と比較して、鉛化合物が29.3%減少していた。
<Comparative Example 2>
A piece of the electrode for electrolysis used in the same electrolysis test as that used in <Example 1> (length 10 mm x width 10 mm x thickness 1 mm) was immersed in 98% by mass acetic acid and immersed at 90°C for 3 hours, and subjected to an acid treatment process. Thereafter, the surface of the electrode for electrolysis was brushed (with a brush) while spraying ion-exchanged water onto the surface of the electrode for electrolysis, thereby physically removing a part of the lead compounds that had become removable by the acid treatment process, and a surface cleaning process was performed. The electrode surface of the electrode for electrolysis from which the electrode deposits containing lead compounds had been removed was measured for the peak intensity of lead using a fluorescent X-ray analyzer. Compared to the peak intensity of the initial intensity, the amount of lead compounds had decreased by 29.3%.

本発明の除去方法は、電解銅粉、電解銅箔の製造または銅メッキだけでなく、各種の電解用電極表面から鉛化合物を含む電極付着物の除去することが可能である。
The removal method of the present invention is capable of removing electrode deposits containing lead compounds from the surfaces of various electrolytic electrodes as well as for producing electrolytic copper powder or electrolytic copper foil or for copper plating.

Claims (6)

表面に鉛化合物を含む電極表面付着物が付着した電解用電極を、
電解用電極表面に1質量%~48質量%の水酸化ナトリウム、または水酸化カリウムのアルカリ水溶液(増粘剤を含まない)を塗布するアルカリ塗布工程に付し、
アルカリ塗布工程後に、電解用電極を室温以上200度以下で10分から24時間の乾燥工程に付することにより、電解用電極表面に付着した鉛化合物を含む電極表面付着物を除去する方法。
An electrode for electrolysis having a surface deposit containing a lead compound attached to its surface is
An alkali coating step is performed in which an alkaline aqueous solution of 1% by mass to 48% by mass of sodium hydroxide or potassium hydroxide ( not including a thickener ) is coated on the surface of the electrode for electrolysis ;
A method for removing electrode surface deposits including lead compounds adhered to the surface of the electrode for electrolysis by subjecting the electrode for electrolysis to a drying process at a temperature between room temperature and 200°C for 10 minutes to 24 hours after the alkali application process .
乾燥工程後に、表面洗浄工程に付することを特徴とする請求項に記載の方法。 2. The method according to claim 1 , further comprising the step of subjecting the substrate to a surface cleaning step after the drying step. 鉛化合物が、硫酸鉛、または酸化鉛である請求項1または請求項2に記載の方法。 The method according to claim 1 or claim 2, wherein the lead compound is lead sulfate or lead oxide. 電解用電極が、該電極表面に白金族金属、またはその酸化物を含有する電極触媒層が被覆された電解用電極である請求項1または請求項2に記載の方法。 The method according to claim 1 or 2, wherein the electrode for electrolysis is an electrode for electrolysis in which the surface of the electrode is coated with an electrode catalyst layer containing a platinum group metal or an oxide thereof. 電解用電極が、バルブメタル、またはバルブメタル合金からなる電極基体の表面に金属、または金属酸化物、若しくは金属合金を含む層(中間層)が被覆された電解用電極である請求項1または請求項2に記載の方法。 The method according to claim 1 or claim 2, wherein the electrode for electrolysis is an electrode for electrolysis in which the surface of an electrode substrate made of a valve metal or a valve metal alloy is coated with a layer (intermediate layer) containing a metal, a metal oxide, or a metal alloy. 前記金属がチタン、タンタル、ニオブ、ジルコニウム及びハフニウムから選択される1種以上の金属または金属酸化物、若しくはその合金である請求項に記載の方法。 6. The method according to claim 5 , wherein the metal is one or more metals selected from titanium, tantalum, niobium, zirconium and hafnium, or metal oxides or alloys thereof.
JP2023024778A 2018-11-21 2023-02-21 Method for removing electrode surface deposits containing lead compounds from an electrode for electrolysis to which lead compounds are attached Active JP7462884B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018217922 2018-11-21
JP2018217922 2018-11-21
JP2019172596A JP7284938B2 (en) 2018-11-21 2019-09-24 Method for removing electrode surface deposits containing lead compounds from electrodes for electrolysis to which lead compounds are attached

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019172596A Division JP7284938B2 (en) 2018-11-21 2019-09-24 Method for removing electrode surface deposits containing lead compounds from electrodes for electrolysis to which lead compounds are attached

Publications (2)

Publication Number Publication Date
JP2023062131A JP2023062131A (en) 2023-05-02
JP7462884B2 true JP7462884B2 (en) 2024-04-08

Family

ID=70782624

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019172596A Active JP7284938B2 (en) 2018-11-21 2019-09-24 Method for removing electrode surface deposits containing lead compounds from electrodes for electrolysis to which lead compounds are attached
JP2023024778A Active JP7462884B2 (en) 2018-11-21 2023-02-21 Method for removing electrode surface deposits containing lead compounds from an electrode for electrolysis to which lead compounds are attached

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019172596A Active JP7284938B2 (en) 2018-11-21 2019-09-24 Method for removing electrode surface deposits containing lead compounds from electrodes for electrolysis to which lead compounds are attached

Country Status (3)

Country Link
JP (2) JP7284938B2 (en)
CN (1) CN111206278B (en)
TW (1) TWI821423B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111910189B (en) * 2020-07-14 2021-12-17 广东省科学院稀有金属研究所 Method for removing dirt on surface of noble metal oxide electrode
CN115305161B (en) * 2022-07-22 2023-06-20 福建紫金铜箔科技有限公司 Electrolytic copper foil anode plate cleaning agent and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088494A (en) 2000-09-13 2002-03-27 Furuya Kinzoku:Kk Method for recovering platinum group metal from metallic electrode
JP2008081837A (en) 2006-09-28 2008-04-10 Cs Gijutsu Kenkyusho:Kk Recovering method of insoluble electrode
JP2008150700A (en) 2006-11-20 2008-07-03 Permelec Electrode Ltd Method of reactivating electrode for electrolysis
JP2014509347A (en) 2011-11-21 2014-04-17 ペルメレック電極株式会社 Method for peeling coating layer of electrode for electrolysis

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586788B2 (en) * 1980-05-23 1983-02-07 日本カ−リツト株式会社 Recycling method for lead dioxide coated electrodes
JP3235216B2 (en) * 1992-10-15 2001-12-04 ダイソー株式会社 Cleaning method for insoluble electrode and / or electroplating tank
JPH09209194A (en) * 1996-02-06 1997-08-12 Trinity Ind Corp Electrodeposition coating device
JPH09256184A (en) * 1996-03-18 1997-09-30 Ishifuku Metal Ind Co Ltd Regenerating solution for electrolytic electrode and regenerating method therefor
ITVA20070007A1 (en) 2007-01-17 2008-07-18 Millbrook Lead Recycling Techn RECOVERY OF THE LEAD OF HIGH-PURITY CARBONATE UNIFORM PASTEL RECOVERY FROM THE CRUSHING OF EXHAUSTED LEAD ACCUMULATORS
JP6142848B2 (en) 2014-06-16 2017-06-07 住友金属鉱山株式会社 Method for removing deposits from insoluble electrodes
CN104730096A (en) * 2015-04-02 2015-06-24 天能集团江苏科技有限公司 Qualitative and quantitative analysis method for old negative plate of lead acid battery
CN105200452B (en) * 2015-11-02 2017-06-30 扬州大学 A kind of preparation method of titanium-based insoluble anode
US10316420B2 (en) * 2015-12-02 2019-06-11 Aqua Metals Inc. Systems and methods for continuous alkaline lead acid battery recycling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088494A (en) 2000-09-13 2002-03-27 Furuya Kinzoku:Kk Method for recovering platinum group metal from metallic electrode
JP2008081837A (en) 2006-09-28 2008-04-10 Cs Gijutsu Kenkyusho:Kk Recovering method of insoluble electrode
JP2008150700A (en) 2006-11-20 2008-07-03 Permelec Electrode Ltd Method of reactivating electrode for electrolysis
JP2014509347A (en) 2011-11-21 2014-04-17 ペルメレック電極株式会社 Method for peeling coating layer of electrode for electrolysis

Also Published As

Publication number Publication date
JP7284938B2 (en) 2023-06-01
CN111206278A (en) 2020-05-29
JP2023062131A (en) 2023-05-02
JP2020084319A (en) 2020-06-04
TWI821423B (en) 2023-11-11
CN111206278B (en) 2024-06-14
TW202022164A (en) 2020-06-16

Similar Documents

Publication Publication Date Title
JP7462884B2 (en) Method for removing electrode surface deposits containing lead compounds from an electrode for electrolysis to which lead compounds are attached
JP4560089B2 (en) Electrode used for electrolysis of aqueous solution to produce hypochlorite
JP4884333B2 (en) Electrode for electrolysis
JP2003503598A (en) Copper foil manufacturing method
JP2761751B2 (en) Electrode for durable electrolysis and method for producing the same
KR101321420B1 (en) Method of reactivating electrode for electrolysis
JP2505563B2 (en) Electrode for electrolysis
JP2505560B2 (en) Electrode for electrolysis
JP2019119930A (en) Chlorine generating electrode
US5665218A (en) Method of producing an oxygen generating electrode
JPH0790665A (en) Oxygen generating electrode
JP7168729B1 (en) Electrodes for industrial electrolytic processes
JP3422885B2 (en) Electrode substrate
EP1923487B1 (en) Method of reactivating electrode for electrolysis
CN112342566A (en) Method for manufacturing electrode for electrolysis
JP2729835B2 (en) Method for forming ceramic film on aluminum substrate surface
JP2003293196A (en) Electrode for electrolysis and production method therefor
JPH0987896A (en) Production of electrolytic electrode
JP2021028418A (en) Method for producing electrode for electrolysis
JP2024089822A (en) Chlorine Evolution Electrode
CN117987674A (en) Titanium-based electrode and preparation method thereof
JPH0925591A (en) Production of electrode for electrolysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240310

R150 Certificate of patent or registration of utility model

Ref document number: 7462884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150