JP2008081837A - Recovering method of insoluble electrode - Google Patents

Recovering method of insoluble electrode Download PDF

Info

Publication number
JP2008081837A
JP2008081837A JP2006290496A JP2006290496A JP2008081837A JP 2008081837 A JP2008081837 A JP 2008081837A JP 2006290496 A JP2006290496 A JP 2006290496A JP 2006290496 A JP2006290496 A JP 2006290496A JP 2008081837 A JP2008081837 A JP 2008081837A
Authority
JP
Japan
Prior art keywords
acid
electrode
recovering
titanium
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006290496A
Other languages
Japanese (ja)
Other versions
JP4465685B2 (en
Inventor
Takayuki Shimamune
孝之 島宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CS GIJUTSU KENKYUSHO KK
Original Assignee
CS GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CS GIJUTSU KENKYUSHO KK filed Critical CS GIJUTSU KENKYUSHO KK
Priority to JP2006290496A priority Critical patent/JP4465685B2/en
Publication of JP2008081837A publication Critical patent/JP2008081837A/en
Application granted granted Critical
Publication of JP4465685B2 publication Critical patent/JP4465685B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a recovering method for separating electrode materials and titanium or a titanium compound mainly from a used or using insoluble metal electrode to recover the base metal to be recycled as it is and the electrode material as precipitate easily recovered with sufficient concentration. <P>SOLUTION: The recovering method of the insoluble electrode is a method of separating and recovering the electrode material and a titanium base material from the insoluble metal electrode formed by covering the surface of the titanium base material with the electrode material containing iridium oxide and/or ruthenium oxide and includes a step [1] for cleaning the surface, a step [2] for applying caustic alkali solution at least on the coating surface of the electrode and spreading, a step [3] for heating and holding at about melting point of caustic alkali to cause reaction and a step [4] for dipping the insoluble metal electrode in an acid. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は主として使用済みのチタンやチタン合金基材の表面に白金族金属酸化物を含む被覆層を有する不溶性金属電極について該被覆層及び/またはチタンやチタン合金基材を回収して再使用するための電極の回収方法に関するものである。The present invention mainly recovers and reuses a coating layer and / or a titanium or titanium alloy substrate for an insoluble metal electrode having a coating layer containing a platinum group metal oxide on the surface of a used titanium or titanium alloy substrate. It is related with the collection | recovery method of the electrode for this.

チタンを基としてその表面に酸化ルテニウムや酸化イリジウム被覆を有する不溶性金属電極は工業電解の代表であるクロルアルカリ電解を主として広く使用されていることはよく知られている。この電極の寿命はきわめて長いのが普通であり、10年以上そのまま使い続けられることがしばしばである。しかしながら時としては装置故障などで電極物質のみの劣化が起こったり、あるいは酸素発生用電極の様に電極物質の劣化が無くても電極物質と基体チタンとの間に不導電性被覆を作ってしまい比較的短期間に電極としての作用が無くなってしまったり等ということがみられた。It is well known that an insoluble metal electrode based on titanium and having a ruthenium oxide or iridium oxide coating on its surface is mainly widely used in chloralkali electrolysis, which is representative of industrial electrolysis. The life of this electrode is usually very long, and it is often used as it is for more than 10 years. However, in some cases, only the electrode material is deteriorated due to a device failure, or a non-conductive coating is formed between the electrode material and the base titanium even if the electrode material is not deteriorated like the electrode for oxygen generation. It was observed that the electrode function disappeared in a relatively short period of time.

これらに対する電極の再生法は種々提案されており、基体が十分に厚い板状の場合は機械加工で削ったり、ブラスト等で表面付着物を除いた後、機械加工で残留物を除去したり、酸洗によって表面を減耗させて表面残留物を除去するなど方法が単独であるいは組み合わせて用いられてきた。更に再使用のためには基体の処理からやり直すと言うことが行われている。この様な加工を行う場合、基体であるチタンやチタン合金は再使用できるが、高価な電極物質はその量がわずかであり、機械加工やブラスト処理などの加工による加工資材や副生材の方が遙かに多いために実質的には回収ができなかった。つまりこれらについて回収の試みが行われ、その可能性は見出されたが、ほとんどは回収費の方が高価になり経済性の点から実質的には行われていない。また化学的にアルカリ溶融塩中に浸漬するということが行われていたが同じく基体チタンあるいはチタン合金は回収できるものの、電極物質は過剰の溶融塩に熔解してしまい、技術的には回収できるが、経済性の点から行われていないのが現状である。Various electrode regeneration methods for these have been proposed. If the substrate is a sufficiently thick plate, it is cut by machining, or after removing surface deposits by blasting, etc., the residue is removed by machining, Methods such as defaceting the surface by pickling to remove surface residues have been used alone or in combination. In addition, it is said that the substrate is processed again for reuse. When such processing is performed, the base titanium or titanium alloy can be reused, but the amount of expensive electrode materials is small, and the processing materials and by-products produced by processing such as machining and blasting are used. However, since there were much more, it was practically impossible to recover. In other words, attempts have been made to collect these, and the possibility has been found, but in most cases, the collection cost is higher and it is not practically performed from the viewpoint of economy. In addition, although the chemical immersion in the alkali molten salt has been carried out, the substrate titanium or titanium alloy can be recovered, but the electrode material is dissolved in an excessive molten salt, and technically recoverable. However, the current situation is that it is not carried out from the viewpoint of economy.

電極物質のみの回収であれば電極に対してロールがけなどを行い機械的にはがれやすくしておき、それを化学的にはがす方法や、高温に加熱し、それを急冷することによってはがしてしまう熱色による方法などが提案されている。これらはいずれも電極物質の回収は出来るがチタンをそのまま基体として使用することは出来ず、再溶解など原料としてしか使えなかった。If only the electrode material is recovered, the electrode can be easily peeled off by rolling, etc., and the heat can be removed by chemically peeling it or by heating it to a high temperature and rapidly cooling it. A method based on color has been proposed. In any case, the electrode material can be recovered, but titanium cannot be used as it is as a substrate, and can only be used as a raw material such as remelting.

近年チタンの価格高騰、供給不足からチタンやチタン合金基体の入手が困難になっており回収してそのまま使いたいというケースが多く出ている。また同時に希少金属であり極めて高価な白金属金属を合わせて回収したいという希望が出てきているが、従来の方法では特殊な場合を除いては回収が不可能であった。たとえば基材厚みが十分にあれば上記のように表面を研削して回収することが出来るが、1mm以下の厚みの場合はそれも実質的には不可能であり、たとえできても基体そのものが薄くなりすぎて通電がうまくできない、あるいはひずんでしまうなどと言う問題があり基材としての再利用が極めて限られてしまう。
これら回収技術は多く提案されているが、以下に代表的な特許技術を示す。
In recent years, titanium and titanium alloy bases have become difficult to obtain due to soaring price of titanium and supply shortage. At the same time, there is a desire to collect rare metals that are very expensive, but it is impossible to collect them using the conventional method except in special cases. For example, if the substrate thickness is sufficient, the surface can be ground and recovered as described above. However, if the thickness is 1 mm or less, this is substantially impossible. There is a problem that it becomes too thin to conduct electricity well, or it is distorted, and reuse as a base material is extremely limited.
Many of these recovery techniques have been proposed, but typical patent techniques are shown below.

つまり特許文献1では電極被覆の剥離方法として、電極基体表面を腐食性の酸により溶解して被覆を分離し、被覆、基体を回収することが示されている。しかし、現実には電極基体と被覆の間にある安定で強固な酸化物やしばしば電極被覆と基体金属の間に化学結合があるために、しばしば被覆の剥離が困難になるという問題があった。また特許文献2には高濃度のアルカリ水溶液を電極表面に塗布し、加熱して電極被覆をアルカリ中に溶解し、基体と被覆を回収する方法が示されている。しかしこれによっては、チタン基体も同時にアルカリ中に溶解するため基体の減耗が大きく、また被覆はアルカリマトリックス中に溶解してしまうために回収が困難となるとと言う問題があった。That is, Patent Document 1 discloses that the electrode substrate surface is dissolved by a corrosive acid to separate the coating, and the coating and the substrate are collected as a method for peeling the electrode coating. However, in reality, there is a problem that peeling of the coating is often difficult due to a stable and strong oxide between the electrode substrate and the coating and often a chemical bond between the electrode coating and the substrate metal. Patent Document 2 discloses a method in which a high concentration aqueous alkali solution is applied to the electrode surface, heated to dissolve the electrode coating in alkali, and the substrate and coating are recovered. However, depending on this, there is a problem that the titanium substrate is dissolved in the alkali at the same time, so that the substrate is greatly depleted, and the coating is dissolved in the alkali matrix, which makes it difficult to recover.

特許文献3,更に特許文献4には電極物質を物理的、化学的に剥離してからの電極物質の回収方法が示されているが、その剥離方法として酸による基体腐食や研磨による剥離などが示されてはいるものの、いずれも基体を消耗させて被覆を回収するようにしており、基体をそのまま再使用する為には基体の消耗が大きくなりすぎる可能性があった。Patent Document 3 and Patent Document 4 show a method for recovering the electrode material after physically and chemically peeling the electrode material. As the peeling method, corrosion of the substrate due to acid, peeling due to polishing, etc. are shown. Although shown, in all cases, the substrate was consumed to recover the coating, and there was a possibility that the consumption of the substrate would be too large to reuse the substrate as it was.

また特許文献5ではあらかじめ廃電極に対して圧延処理を行い物理的に電極物質とチタンとの間の付着性を悪くしておき、酸処理によってチタン表面を腐食させて電極物質を剥離させる方法が述べられている。この方法も有効ではあるがチタン基体と電極物質を同時に回収は出来るが、チタンを基体としてそのまま再使用することは出来ず回収には再溶解の必要があった。Patent Document 5 discloses a method in which a waste electrode is rolled in advance to physically deteriorate the adhesion between the electrode material and titanium, and the surface of the titanium is corroded by acid treatment to peel off the electrode material. It is stated. Although this method is also effective, the titanium substrate and the electrode material can be recovered at the same time, but titanium cannot be reused as the substrate as it is, and it has been necessary to redissolve the recovery.

特許文献6では電極を切り刻みバレル研磨などにより被覆を分離回収すると共に、基体チタンを回収することが示されている。比較的簡単に出来て有効ではあるが、基体をそのまま再使用できないという問題があった。
これらに示すように多くの検討がなされているが電極物質と基材金属を同時に回収する適当な方法は見いだせず、実質的に基体チタンまたはチタン合金をそのまま基体として回収し、電極物質を合わせて回収することは全く行われていないのが現状である。
Patent Document 6 discloses that the electrode is cut and the coating is separated and recovered by barrel polishing or the like, and the base titanium is recovered. Although it is relatively simple and effective, there is a problem that the substrate cannot be reused as it is.
As shown in these figures, many studies have been made, but no suitable method for simultaneously recovering the electrode material and the base metal has been found. The substrate titanium or the titanium alloy is substantially recovered as it is as the substrate, and the electrode material is combined. The current situation is that no collection is performed.

特開昭59−123730公報JP 59-123730 A 特開2002−88494公報JP 2002-88494 A 特開2002−212650公報JP 2002-212650 A 特開2002−194581公報JP 2002-194581 A 特開2001−294948公報JP 2001-294948 A 特開2001−303141公報JP 2001-303141 A

本発明は主として使用済みまたは使用過程の不溶性金属電極から電極物質とチタンまたはチタン合金基体を分離し基体金属はそのまま再使用可能な状態として回収し、また電極物質は十分な濃度で容易に回収出来る沈殿として回収する回収方法を提供することを課題とした。The present invention mainly separates the electrode material and the titanium or titanium alloy substrate from the used or in-use insoluble metal electrode and recovers the substrate metal as it can be reused, and the electrode material can be easily recovered at a sufficient concentration. It was an object to provide a recovery method for recovering as a precipitate.

本発明はチタン基体表面に酸化イリジウ厶及び又は酸化ルテニウムを含む電極物質を被覆してなる不溶性金属電極からの電極物質及びチタン基体の分離回収方法であって、▲1▲表面を清浄化する工程と、▲2▼少なくとも電極被覆表面に、苛性アルカリ溶液を塗布し、なじませる工程と、▲3▼加熱して該苛性アルカリを融点付近に保持して反応させる工程と、▲4▼酸に浸漬する工程とを有する不溶性電極の回収方法であって表面の付着物、不純物を取り除いた電極について、上記工程を行うことにより、基体金属と電極物質の間で基体金属と電極物質の腐蝕を最小限とし、その界面を選択的に腐蝕させるようにして、分離して基体を回収すると共に、電極物質は安定的に固体粉末として分離回収することが出来る。The present invention relates to a method for separating and recovering an electrode material and titanium substrate from an insoluble metal electrode obtained by coating the surface of a titanium substrate with an electrode material containing iridium oxide and / or ruthenium oxide, and (1) a step of cleaning the surface And (2) a step of applying a caustic alkali solution to at least the electrode coating surface and allowing it to blend, (3) a step of heating and maintaining the caustic in the vicinity of the melting point, and (4) immersion in an acid. A method for recovering an insoluble electrode having a step of performing the above steps on an electrode from which surface deposits and impurities have been removed, thereby minimizing the corrosion of the base metal and the electrode material between the base metal and the electrode material. In addition, the substrate can be separated and recovered by selectively corroding the interface, and the electrode material can be stably separated and recovered as a solid powder.

つまり、ここではまず表面の清浄化を行う。この方法としては特には指定されず付着物によって変えることが出来る。たとえばイオン交換膜法の苛性アルカリ電解に使用した電極ではほとんど付着物がないのが普通であるが表面の清浄化として水洗いあるいは希薄な塩酸などに浸漬する酸洗浄などを行う。また銅箔製造などに使われた電極では表面に硫酸鉛や酸化アンチモンなど重金属の化合物が付着している場合が多いので酸洗浄などを行うが、必要に応じて100から200℃程度のアルカリで洗浄することによりアルカリ塩とし更にそれを無機酸に浸漬することにより除去することも出来る。あるいはこれらを組み合わせることにより、より清浄な表面とすることが出来る。That is, the surface is first cleaned here. This method is not particularly specified and can be changed depending on the adhered matter. For example, an electrode used for caustic electrolysis of the ion exchange membrane method usually has almost no deposit, but as a surface cleaning, washing with water or acid washing dipped in dilute hydrochloric acid or the like is performed. Electrodes used for copper foil production, etc. often have heavy metal compounds such as lead sulfate and antimony oxide on the surface, so acid cleaning is performed, but if necessary, use an alkali at about 100 to 200 ° C. It can also be removed by washing to form an alkali salt and immersing it in an inorganic acid. Alternatively, by combining these, a cleaner surface can be obtained.

次いでこれに苛性アルカリを塗布する。苛性アルカリとしては特には指定されないが、反応性に富み、しかも容易に入手できる苛性ソーダが最適であるが、苛性ソーダと苛性カリとの混合物も有効に使用できる。この苛性アルカリを塗布するが、高濃度品であることが望ましく、現実の反応は溶融塩反応に近いので水分が比較的容易に飛び安定的に電極表面に付着していることが必要である。この塗布はたとえば苛性ソーダでは50%くらいの水溶液を電極の電極物質のあるところに塗布する。また同じ目的で20から50%程度の苛性アルカリの液中に浸漬して、表面にアルカリをなじませることによることも可能である。この塗布は、電極面を完全に覆うようにし、十分にしみこませるようにする。通常電極表面は苛性に対しては撥水性であり液をはじいてしまうことが多いがこれがきちんと濡れるまでブラシなどで処理する、あるいはある程度の時間液に浸漬するなどを行うことが望ましい。This is then coated with caustic. The caustic alkali is not particularly specified, but caustic soda which is highly reactive and easily available is optimal, but a mixture of caustic soda and caustic potash can also be used effectively. Although this caustic is applied, it is desirable that it is a high-concentration product, and since the actual reaction is close to the molten salt reaction, it is necessary that water jumps relatively easily and stably adheres to the electrode surface. For example, in the case of caustic soda, an aqueous solution of about 50% is applied to the electrode material. Also, for the same purpose, it is possible to immerse in a caustic alkali solution of about 20 to 50% to allow the surface to become familiar with alkali. This application is performed so that the electrode surface is completely covered and sufficiently soaked. Normally, the electrode surface is water repellent with respect to caustic and often repels liquid, but it is desirable to treat with a brush or the like until it gets wet properly, or to immerse in the liquid for a certain period of time.

通常は塗布後10から30分程度室温で保持した後60から200℃の温度で乾燥する。これによって苛性アルカリの水分の大部分は飛んでしまい、苛性アルカリ無水物が表面に析出した形となる。乾燥時間は特に指定されないが10分から30分程度が望ましい。ただこの乾燥工程は必須ではなく、アルカリ液体が電極表面に均一に保持されるような場合は次の加熱処理工程と兼ねさせる事も出来る。Usually, it is kept at room temperature for about 10 to 30 minutes after coating and then dried at a temperature of 60 to 200 ° C. As a result, most of the water content of the caustic alkali flies away, and caustic anhydride is deposited on the surface. The drying time is not particularly specified, but is preferably about 10 to 30 minutes. However, this drying step is not essential, and when the alkali liquid is uniformly held on the electrode surface, it can be combined with the next heat treatment step.

更にこれを苛性アルカリの融点より僅かに高い温度で加熱処理を行う。つまり苛性ソーダでは融点が約330℃であるので350から450℃程度が望ましくこの温度で10分から1時間程度、通常は30分程度反応させる。この反応のメカニズムははっきりしないが後に酸と反応して電極物質を分離させることから、苛性アルカリ中のアルカリイオンが電極物質、電極物質と基体との間にある酸化物並びに基体チタン表面と反応してアルカリ錯塩となるためであると考えられる。さらには電極物質やチタン基体の溶出が極めて少ないことから、電極物質と基体との間にある酸化物と選択的に反応するものと考えられる。このような処理を行った電極を放冷する。この冷却は炉内で行っても良いが能率の点からは炉外の大気中で放冷することが望ましい。もちろん冷却なしに次の無機酸への浸漬処理を行うことも可能であり、その場合は酸の飛び跳ねなどに注意することが必要である。Further, this is heat-treated at a temperature slightly higher than the melting point of the caustic. That is, since the melting point of caustic soda is about 330 ° C., it is preferably about 350 to 450 ° C., and the reaction is carried out at this temperature for about 10 minutes to 1 hour, usually about 30 minutes. Although the mechanism of this reaction is not clear, since it reacts with the acid to separate the electrode material later, alkali ions in caustic alkali react with the electrode material, the oxide between the electrode material and the substrate, and the surface of the substrate titanium. This is thought to be due to alkali complex salts. Furthermore, since the elution of the electrode material and the titanium substrate is extremely small, it is considered that the electrode material and the oxide existing between the substrate selectively react. The electrode subjected to such treatment is allowed to cool. Although this cooling may be performed in the furnace, it is desirable to cool in the atmosphere outside the furnace from the viewpoint of efficiency. Of course, it is also possible to perform the immersion treatment in the next inorganic acid without cooling, and in that case, it is necessary to pay attention to the jumping of the acid.

ついでこのようにアルカリ処理した電極を硝酸、塩酸あるいは硫酸などの無機酸に浸漬する。無機酸の濃度は特には指定されないが通常は10から20%程度の希酸が望ましい。無機酸の温度は特には指定されないが反応をより早くするために僅かに加温しておくことが望ましく、40℃程度が適当である。この浸漬によってチタン酸アルカリが酸中に溶解し、それと共に電極物質が剥離しチタン又はチタン合金からなる基体金属から分離する。この時に酸液を攪拌したり、電極表面をブラッシングしたりすることによって液流通を良くすることによって剥離を加速することが出来る。通常一度の処理で十分に分離できるが、必要に応じてアルカリ塗布から加熱焼成までを2ないし3回繰り返すことによってより完全に分離することが出来る。ここで電極物質自体は加熱により安定化しているために、ほとんど酸中に溶解することなく、沈殿として回収できる。これにより基体金属であるチタン又はチタン合金はほとんど消耗することなく、又電極物質は酸化物固体として回収することが出来る。Then, the alkali-treated electrode is immersed in an inorganic acid such as nitric acid, hydrochloric acid or sulfuric acid. The concentration of the inorganic acid is not particularly specified, but a dilute acid of about 10 to 20% is usually desirable. The temperature of the inorganic acid is not particularly specified, but it is desirable to warm it slightly in order to speed up the reaction, and about 40 ° C. is appropriate. By this immersion, the alkali titanate is dissolved in the acid, and at the same time, the electrode material is peeled off and separated from the base metal made of titanium or a titanium alloy. At this time, peeling can be accelerated by improving the flow of the liquid by stirring the acid liquid or brushing the electrode surface. Usually, it can be sufficiently separated by a single treatment, but it can be more completely separated by repeating the steps from alkali coating to heating and firing 2 to 3 times as necessary. Here, since the electrode substance itself is stabilized by heating, it can be recovered as a precipitate with almost no dissolution in the acid. As a result, the base metal titanium or titanium alloy is hardly consumed, and the electrode material can be recovered as an oxide solid.

使用する酸は上記の様に無機酸、つまり塩酸、硝酸、硫酸のいずれでもよく、またそれらの混酸であっても良い。ただ剥離溶解物の溶解度の点からは硝酸または塩酸が望ましい。硫酸の場合は繰り返し使用することにより、わずかに溶解する電極基体や電極物質中のチタンが硫酸チタンなどとして沈殿を生じることがあるので注意を要する。但しそれによって特に問題になることはない。ただ沈殿を生じると電極物質との分離が面倒になるので適宜このような沈殿を除去しながら作業を進めた方がよいことは明らかである。The acid to be used may be an inorganic acid, that is, hydrochloric acid, nitric acid or sulfuric acid as described above, or a mixed acid thereof. However, nitric acid or hydrochloric acid is desirable from the viewpoint of the solubility of the peeled dissolved product. In the case of sulfuric acid, care should be taken because the electrode substrate and the titanium in the electrode material which are slightly dissolved may precipitate as titanium sulfate or the like by repeated use. However, it does not cause any particular problem. However, since the separation from the electrode material becomes troublesome if precipitation occurs, it is clear that it is better to proceed while removing such precipitation as appropriate.

分離した電極物質である酸化物固体は通常の条件での回収が出来、たとえば水素還元により電極物質中の白金族金属分を還元し、金属化した後、ルテニウムであれば次亜塩素酸中で加熱酸化することによってRuOとして揮散させ塩酸にトラップすることによって塩化ルテニウム酸として回収することが出来る。またイリジウムであれば塩化アルカリと共に塩素ガスを通じて塩化イリジウム酸アルカリとし、それからアルカリを分離して塩化イリジウム酸や塩化イリジウムとして回収することが出来る。又その他では王水に溶解して回収することも出来る。もちろん電解的に回収することも可能である。この時に同じ電極物質である酸化チタンや酸化タンタルは水素で還元されないので塩素化することも無く溶解もしないので白金族金属とは完全に分離することが出来る。電極物質の一部酸に溶解することがあるが、これについては使用済みの酸にアンモニアを加えて中和することにより、白金族金属のアンモニウム塩として沈殿させそれを濾過分離することによってほぼ完全に回収することが出来る。これは上記初期の酸化物沈殿とは別に回収しても良いがアンモニア処理をした後に酸化物沈殿物と同時に沈殿濾過して回収を行っても良い。The separated oxide solid that is the electrode material can be recovered under normal conditions. For example, after reducing the platinum group metal in the electrode material by hydrogen reduction and metallizing it, ruthenium can be recovered in hypochlorous acid. It can be recovered as ruthenic acid chloride by volatilization as RuO 4 by heat oxidation and trapping in hydrochloric acid. Moreover, if it is iridium, it can be made into an chlorinated iridate through chlorine gas together with an alkali chloride, and then the alkali can be separated and recovered as chloroiridate or iridium chloride. Otherwise, it can be recovered by dissolving in aqua regia. Of course, it can also be recovered electrolytically. At this time, titanium oxide and tantalum oxide, which are the same electrode materials, are not reduced by hydrogen, and therefore are not chlorinated and dissolved, so that they can be completely separated from the platinum group metal. Part of the electrode material may be dissolved in acid, but this is neutralized by adding ammonia to the used acid to neutralize it, and precipitating it as an ammonium salt of a platinum group metal and filtering it off. Can be recovered. This may be recovered separately from the initial oxide precipitation, but after ammonia treatment, it may be recovered by precipitation filtration simultaneously with the oxide precipitate.

この様にして電極基体と電極物質とを分離し、しかも収率良く分離回収することが出来るようになる。このときに電極基体金属表面の酸化物が金属それ自身を保護するために基体金属の消耗が必要以上に進まずまた安定化した電極物質は比較的低い温度条件による溶融塩処理により、殆ど溶出することなく電極物質の破片ないし粉末として分離回収できる。またこのときのチタンを主とする基体金属あるいは電極物質の酸への溶出がほとんど無いために酸の消耗もチタン酸アルカリの溶出に使われるのみとなり、極めて低く出来るようになる。In this way, the electrode substrate and the electrode material can be separated and recovered with good yield. At this time, since the oxide on the surface of the electrode base metal protects the metal itself, the consumption of the base metal does not proceed more than necessary, and the stabilized electrode material is almost eluted by the molten salt treatment under relatively low temperature conditions. Without being separated and recovered as electrode material fragments or powder. Further, since there is almost no elution of the base metal or electrode material mainly composed of titanium into the acid at this time, the consumption of the acid is only used for elution of the alkali titanate, and can be made extremely low.

本発明における電極は板状、三次元的な形態を有する物からエクスパンドメッシュ、その他種々の形態をとるのでそれに合わせての作業になる。これについて、以下実施例にて説明するが、それに制約されるものではない。Since the electrode in the present invention takes a plate-like or three-dimensional form, an expanded mesh, and other various forms, the work is performed accordingly. This will be described in the following examples, but is not limited thereto.

「実施例1」
イオン交換膜法食塩水電解に5年間使用した、厚さ1mmのチタン製エクスパンドメッシュを基体とする電極からチタン基体と電極物質の回収を行った。イオン交換膜電解に使用された電極であるので表面付着物はほとんど無かったがより清浄化のために中性洗剤を用いて洗浄した後水洗した。また表面をより親水化するために300℃で15分間加熱処理を行った。このようにして前処理を行った電極について、表面に50%の苛性ソーダ(NaOH)水溶液を刷毛にて十分になじむように塗布した後、40℃に保持された乾燥器に入れて30分間乾燥した。このものについて400℃に保持したマッフル炉に入れて30分間加熱反応させた。加熱後は炉から取り出し、室温で冷却した後、15%塩酸水溶液中に浸漬した。浸漬時間は30分であった。浸漬後取り出したところ電極物質は電極基体である基体のチタンエクスパンドメッシュからほぼ完全に剥離して基体が露出しており、酸液中には黒色の沈殿が見られた。なお、酸液は黒色半透明となっており、わずかに電極物質が溶解したことがわかった。
"Example 1"
The titanium substrate and the electrode material were collected from an electrode having a 1 mm-thick titanium expanded mesh as a substrate, which was used for salt electrolysis in an ion exchange membrane method for 5 years. Since it was an electrode used for ion exchange membrane electrolysis, there was almost no deposit on the surface, but it was washed with a neutral detergent for cleaning, and then washed with water. In order to make the surface more hydrophilic, heat treatment was performed at 300 ° C. for 15 minutes. About the electrode which performed the pre-treatment in this way, 50% caustic soda (NaOH) aqueous solution was applied to the surface so as to be sufficiently blended with a brush, and then placed in a drier kept at 40 ° C. and dried for 30 minutes. . This was put into a muffle furnace maintained at 400 ° C. and reacted by heating for 30 minutes. After heating, it was taken out from the furnace, cooled at room temperature, and immersed in a 15% aqueous hydrochloric acid solution. The immersion time was 30 minutes. When the electrode material was taken out after immersion, the electrode material was almost completely peeled off from the titanium expanded mesh of the substrate, which was the electrode substrate, and the substrate was exposed, and a black precipitate was observed in the acid solution. The acid solution was black translucent, and it was found that the electrode material was slightly dissolved.

「実施例2」
銅箔製造電解に使用した厚さ1mmの板状電極からの電極物質の剥離を行うと共に基体チタンの再使用のための回収を行った。この電極の電極物質は酸化イリジウムと酸化タンタルの複合酸化物であった。この電極の表面には見かけ約0.5mmの厚さで硫酸鉛と酸化アンチモンが付着していたのでまずこの表面付着物の除去を行った。25%苛性ソーダ溶液に浸漬し、十分に液が付着物の中に浸透してから取り出して10分間放置し、次いで150℃に保持された加熱炉に入れて30分間保持した。此により表面に白色の皮膜が生成した。このものについて冷却後、20%硝酸に15分間浸漬したところ付着物が硝酸中に溶解してしまい、黒色の表面が出てきた。このものについて流水中でブラシがけを行い完全に表面付着物を取り除き乾燥した。次いで黒色の電極物質が現れた表面に苛性ソーダと苛性カリを重量比1:1に混合した濃度60重量%の混合水溶液を塗布し、10分間放置後360℃で30分間保持した。このものを炉から取り出し室内で冷却後25%重硫酸水溶液中に浸漬した。30分後に取り出したところ部分的に電極物質が残っていたので、更に、アルカリ塗布、加熱、酸浸漬を繰り返したところ電極物質は基材から完全に剥離した。また基材の表面を顕微鏡で観察したところ、基体チタンのアルカリ溶融による特徴的な腐食は殆ど見られなかった。また電極物質は硫酸液中に僅かな溶解は見られる物の、ほぼ完全に沈殿していた。
"Example 2"
The electrode material was peeled off from the 1 mm-thick plate electrode used for copper foil production electrolysis and recovered for reuse of the substrate titanium. The electrode material of this electrode was a composite oxide of iridium oxide and tantalum oxide. Since lead sulfate and antimony oxide adhered to the surface of the electrode with an apparent thickness of about 0.5 mm, the surface deposits were first removed. It was immersed in a 25% caustic soda solution, and after the liquid had sufficiently infiltrated into the deposit, it was taken out and allowed to stand for 10 minutes, and then placed in a heating furnace maintained at 150 ° C. for 30 minutes. This produced a white film on the surface. When this was cooled and immersed in 20% nitric acid for 15 minutes, the deposits were dissolved in the nitric acid, and a black surface appeared. This was brushed in running water to completely remove surface deposits and dried. Next, a 60 wt% mixed aqueous solution in which caustic soda and caustic potash were mixed at a weight ratio of 1: 1 was applied to the surface on which the black electrode material appeared, and the mixture was allowed to stand for 10 minutes and held at 360 ° C. for 30 minutes. This was taken out of the furnace, cooled in the room, and immersed in a 25% aqueous solution of bisulfuric acid. When the electrode material was partially removed after 30 minutes, the electrode material was completely peeled from the base material when alkaline coating, heating, and acid dipping were repeated. Further, when the surface of the substrate was observed with a microscope, characteristic corrosion due to alkali melting of the base titanium was hardly observed. The electrode material was almost completely precipitated although slight dissolution was observed in the sulfuric acid solution.

「実施例3」
実施例2と同じ試料片を使用し、同じ処理を行ったがアルカリ塗布、加熱、酸処理を一回のみ行った試料について蓚酸を使用して酸洗処理を行った。つまり実施例2に従って処理を行った試料では見かけ上表面に30%程度電極物質が残っており、これを除去回収する目的で50℃純水に飽和になるまで蓚酸を溶解した液を用い、これに電極物質の残留する電極を浸漬し、90℃で1時間保持したところ、電極物質が液中に沈殿し、チタン基体表面は均一な灰白色となり電極物質が除かれ、表面がわずかにエッチングされていることが見られた。なお蓚酸液にはチタンのわずかな溶出は見られたが白金属金属に起因する液の色調変化はわずかであった。
"Example 3"
The same sample piece as in Example 2 was used, and the same treatment was performed, but a sample subjected to alkali coating, heating, and acid treatment only once was pickled using oxalic acid. That is, in the sample treated according to Example 2, about 30% of the electrode material apparently remains on the surface. For the purpose of removing and recovering this, a solution in which oxalic acid is dissolved in 50 ° C. pure water is used. When the electrode in which the electrode material remains is immersed in and kept at 90 ° C. for 1 hour, the electrode material precipitates in the liquid, the surface of the titanium base becomes uniform grayish white, the electrode material is removed, and the surface is slightly etched. It was seen that In the oxalic acid solution, slight elution of titanium was observed, but the color tone change due to the white metal was slight.

「実施例4」
表面に酸化イリジウムと酸化タンタルの複合酸化物からなる電極物質をチタン表面に被覆した未使用の電極被覆の剥離を行った。この電極表面を中性洗剤で洗浄して清浄化し、乾燥した後に濃度40%の苛性ソーダ水溶液を電極物質部分に刷毛にて塗布した後、15分間なじませ、更に60℃で15分間乾燥した。このものを3点用意し、それぞれ温度が375℃、400℃、並びに425℃に保持した炉に入れて加熱処理を40分間行った。これらを取り出して放冷後20%硝酸水溶液中に浸漬した。この処理を2回繰り返した。その結果は以下であった。これにより、加熱温度によって僅かではあるが剥離に差の出ることがわかった。つまり温度の高い方が剥離の程度は良いが同時に電極物質の酸中への溶解も増加することがわかった。またこれらの処理を行った電極について80℃、25%塩酸中で15分間浸漬・酸洗処理を行った。この結果僅かに電極表面からガスの発生が見られた。またこれによりすべての試料にについて電極物質が剥離して酸中に沈殿となって移動した。またチタン基体はコーティングを行う前とほとんど同じ状態でありまた表面粗度もほとんど変化せず、このまま電極基体として使用できる状態となった。なおこれに使用した酸にアンモニアを加えて中和し、No.2濾紙で濾過したところ、炉液は僅かに黄色みを帯びた透明液となった。電極剥離物質と共に酸中に溶解したと考えられる酸化イリジウムは沈殿物として回収することが出来た。
Example 4
The unused electrode coating with the titanium surface coated with an electrode material composed of a composite oxide of iridium oxide and tantalum oxide was peeled off. The surface of the electrode was cleaned with a neutral detergent, dried, dried, and a 40% strength aqueous solution of caustic soda was applied to the electrode material portion with a brush, followed by fusing for 15 minutes and further drying at 60 ° C. for 15 minutes. Three of these were prepared and put in furnaces maintained at temperatures of 375 ° C., 400 ° C., and 425 ° C., respectively, and heat-treated for 40 minutes. These were taken out, allowed to cool and then immersed in a 20% aqueous nitric acid solution. This process was repeated twice. The results were as follows. As a result, it was found that there was a slight difference in peeling depending on the heating temperature. That is, it was found that the higher the temperature, the better the degree of peeling, but at the same time, the dissolution of the electrode substance in the acid also increased. The electrodes subjected to these treatments were immersed and pickled in 80%, 25% hydrochloric acid for 15 minutes. As a result, gas generation was slightly observed from the electrode surface. This also caused the electrode material to peel off from all the samples and move as precipitates in the acid. Further, the titanium substrate was almost in the same state as before coating, and the surface roughness was hardly changed, so that it could be used as an electrode substrate as it was. The acid used for this was neutralized by adding ammonia. When filtered through two filter papers, the furnace liquid became a slightly yellowish transparent liquid. The iridium oxide considered to have dissolved in the acid together with the electrode stripping substance could be recovered as a precipitate.

産業上の利用の可能性Industrial applicability

チタンを主とする金属基体を使用した不溶性金属電極について表面被覆層である高価で希少金属に属する白金族金属とチタンを変形することなく回収再利用することが出来る本発明は、従来の技術が基体か白金族金属のいずれかの回収にとどまっていたのに比較して極めて有利となることから急速に拡大していくと考える。The present invention, which can recover and reuse platinum group metals belonging to expensive and rare metals, which are surface coating layers, and titanium without deformation, is used for insoluble metal electrodes using a metal substrate mainly composed of titanium. Since it is extremely advantageous compared to the recovery of either the substrate or the platinum group metal, it will expand rapidly.

Claims (10)

チタン基体表面に酸化イリジウム及び又は酸化ルテニウムを含む電極物質を被覆してなる不溶性金属電極からの電極物質及びチタン基材の分離回収方法であって、▲1▼必要に応じて表面を清浄化する工程と、▲2▼少なくとも電極被覆表面に、苛性アルカリ溶液を塗布し、なじませる工程と、▲3▼加熱して該苛性アルカリの融点以上に保持して反応させる工程と、▲4▼酸に浸漬する工程とを有する不溶性電極の回収方法。A method for separating and recovering an electrode material and a titanium substrate from an insoluble metal electrode obtained by coating the surface of a titanium substrate with an electrode material containing iridium oxide and / or ruthenium oxide, and (1) cleans the surface as necessary. A step, (2) a step of applying a caustic alkali solution to at least the electrode coating surface and allowing it to blend, (3) a step of heating and maintaining at or above the melting point of the caustic alkali, and (4) an acid A method for recovering an insoluble electrode. チタン基体がチタン合金基体であることを特徴とする請求項1の不溶性電極の回収方法。2. The method for recovering an insoluble electrode according to claim 1, wherein the titanium substrate is a titanium alloy substrate. 苛性アルカリが苛性ソーダであり、苛性ソーダ水溶液を塗布しなじませた後、350から450℃で10分から60分反応させることを特徴とする請求項1の不溶性電極の回収方法。2. The method for recovering an insoluble electrode according to claim 1, wherein the caustic alkali is caustic soda, and after reacting with an aqueous caustic soda solution, the reaction is carried out at 350 to 450 ° C. for 10 to 60 minutes. 酸が無機酸であることを特徴とする請求項1の不溶性電極の回収方法。The method for recovering an insoluble electrode according to claim 1, wherein the acid is an inorganic acid. 無機酸が硝酸であることを特徴とする請求項4の不溶性電極の回収方法The method for recovering an insoluble electrode according to claim 4, wherein the inorganic acid is nitric acid. 無機酸が硫酸であることを特徴とする請求項4の不溶性電極の回収方法The method for recovering an insoluble electrode according to claim 4, wherein the inorganic acid is sulfuric acid. 苛性アルカリの塗布、加熱反応、並びに酸浸漬処理を複数回繰り返すことを特徴とする請求項1から6の不溶性電極の回収方法7. The method for recovering an insoluble electrode according to claim 1, wherein the caustic coating, heating reaction, and acid dipping treatment are repeated a plurality of times. 苛性アルカリの塗布、加熱反応、並びに酸浸漬処理を行った後に腐蝕性酸で酸洗処理を行うことを特徴とする請求項1から7の不溶性電極の回収方法8. The method for recovering an insoluble electrode according to claim 1, wherein the pickling treatment is performed with a corrosive acid after the application of caustic alkali, the heating reaction, and the acid immersion treatment. 腐食性酸が塩酸及び/または硫酸であり、80℃から110℃で酸洗することを特徴とする請求項8の不溶性電極の回収方法The method for recovering an insoluble electrode according to claim 8, wherein the corrosive acid is hydrochloric acid and / or sulfuric acid, and pickling is performed at 80 to 110 ° C. 腐食性酸が蓚酸であり90℃以上の温度で処理することを特徴とする請求項8の不溶性電極の回収方法The method for recovering an insoluble electrode according to claim 8, wherein the corrosive acid is succinic acid and the treatment is performed at a temperature of 90 ° C or higher.
JP2006290496A 2006-09-28 2006-09-28 Insoluble electrode recovery method Expired - Fee Related JP4465685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006290496A JP4465685B2 (en) 2006-09-28 2006-09-28 Insoluble electrode recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006290496A JP4465685B2 (en) 2006-09-28 2006-09-28 Insoluble electrode recovery method

Publications (2)

Publication Number Publication Date
JP2008081837A true JP2008081837A (en) 2008-04-10
JP4465685B2 JP4465685B2 (en) 2010-05-19

Family

ID=39352979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006290496A Expired - Fee Related JP4465685B2 (en) 2006-09-28 2006-09-28 Insoluble electrode recovery method

Country Status (1)

Country Link
JP (1) JP4465685B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021268A (en) * 2009-07-14 2011-02-03 Cs Gijutsu Kenkyusho:Kk Method for recovering insoluble metal electrode
CN102899496A (en) * 2011-07-26 2013-01-30 古屋金属株式会社 Insoluble electrode recovery method
WO2013077454A3 (en) * 2011-11-21 2013-07-18 Permelec Electrode Ltd. Method for exfoliating coating layer of electrode for electrolysis
CN110016676A (en) * 2019-04-15 2019-07-16 广州鸿葳科技股份有限公司 A kind of regeneration Ni―Ti anode and preparation method thereof
CN112795932A (en) * 2020-12-18 2021-05-14 西安泰金工业电化学技术有限公司 Method for removing titanium anode surface coating
CN115972102A (en) * 2022-12-19 2023-04-18 江苏亿安腾特种电极新材料科技有限公司 Regenerated titanium anode and preparation method thereof
JP2023062131A (en) * 2018-11-21 2023-05-02 株式会社大阪ソーダ Method for removing electrode surface deposit containing lead compound from electrolysis electrode to which lead compound is attached

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021268A (en) * 2009-07-14 2011-02-03 Cs Gijutsu Kenkyusho:Kk Method for recovering insoluble metal electrode
CN102899496A (en) * 2011-07-26 2013-01-30 古屋金属株式会社 Insoluble electrode recovery method
WO2013077454A3 (en) * 2011-11-21 2013-07-18 Permelec Electrode Ltd. Method for exfoliating coating layer of electrode for electrolysis
CN103946424A (en) * 2011-11-21 2014-07-23 培尔梅烈克电极股份有限公司 Method for exfoliating coating layer of electrode for electrolysis
KR20140098159A (en) 2011-11-21 2014-08-07 페르메렉덴꾜꾸가부시끼가이샤 Method for exfoliating coating layer of electrode for electrolysis
US20140305468A1 (en) * 2011-11-21 2014-10-16 Industrie De Nora S.P.A. Method for exfoliating coating layer of electrode for electrolysis
JP2023062131A (en) * 2018-11-21 2023-05-02 株式会社大阪ソーダ Method for removing electrode surface deposit containing lead compound from electrolysis electrode to which lead compound is attached
JP7462884B2 (en) 2018-11-21 2024-04-08 株式会社大阪ソーダ Method for removing electrode surface deposits containing lead compounds from an electrode for electrolysis to which lead compounds are attached
CN110016676A (en) * 2019-04-15 2019-07-16 广州鸿葳科技股份有限公司 A kind of regeneration Ni―Ti anode and preparation method thereof
CN110016676B (en) * 2019-04-15 2021-11-02 广州鸿葳科技股份有限公司 Regenerated titanium anode and preparation method thereof
CN112795932B (en) * 2020-12-18 2023-03-24 西安泰金新能科技股份有限公司 Method for removing titanium anode surface coating
CN112795932A (en) * 2020-12-18 2021-05-14 西安泰金工业电化学技术有限公司 Method for removing titanium anode surface coating
CN115972102A (en) * 2022-12-19 2023-04-18 江苏亿安腾特种电极新材料科技有限公司 Regenerated titanium anode and preparation method thereof
CN115972102B (en) * 2022-12-19 2023-09-12 江苏亿安腾特种电极新材料科技有限公司 Regenerated titanium anode and preparation method thereof

Also Published As

Publication number Publication date
JP4465685B2 (en) 2010-05-19

Similar Documents

Publication Publication Date Title
JP4465685B2 (en) Insoluble electrode recovery method
JP2007297662A (en) Method for producing high purity electrolytic copper from ammonia-based copper etching waste liquid
CN104775036B (en) The method that noble metal is reclaimed from the waste and old Ni―Ti anode with noble coatings
WO2005087968A1 (en) Al COMPOSITE MATERIAL BEING CRUMBLED WITH WATER, Al FILM AND Al POWDER COMPRISING THE MATERIAL AND METHODS FOR PREPARATION THEREOF, CONSTITUTIONAL MEMBER FOR FILM-FORMING CHAMBER METHOD FOR RECOVERING FILM-FORMING MATERIAL
JP5651252B2 (en) Method for peeling coating layer of electrode for electrolysis
JP4356519B2 (en) Method for recycling valuable metals
CN111349961B (en) Method for cleaning waste titanium anode plate for foil forming machine and removing and recycling precious metal
CN104152701B (en) The method that tin is reclaimed from tin refinement slag
JP4607303B2 (en) Method for recovering platinum group metals from metal electrodes
JP4700815B2 (en) Method for recovering platinum group metals from metal electrodes
JP2002088494A5 (en)
JP5115936B2 (en) Method for collecting insoluble metal electrode
CN112680749B (en) Noble metal recovery process based on vacuum sputtering chamber
JP4450945B2 (en) Method for recovering precious metals from metal electrodes
JPS6254849B2 (en)
JP2002194581A (en) Method for recovering platinum group metal from metal electrode
JP4450942B2 (en) Method for recovering precious metals from metal electrodes
JP4403259B2 (en) Method for recovering platinum group elements
CN102899496A (en) Insoluble electrode recovery method
JP2001303141A5 (en)
JP3998951B2 (en) Method and apparatus for recovering valuable metals from scrap
JP4996023B2 (en) Prevention of lead elution from lead-containing copper alloy materials
JPH0253497B2 (en)
JPS6340875B2 (en)
JP2003013275A (en) Method for treating dust of electric furnace

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090814

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090814

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160305

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees