JP2002087833A - Optical quartz glass for uv and process for producing the same glass - Google Patents

Optical quartz glass for uv and process for producing the same glass

Info

Publication number
JP2002087833A
JP2002087833A JP2000276298A JP2000276298A JP2002087833A JP 2002087833 A JP2002087833 A JP 2002087833A JP 2000276298 A JP2000276298 A JP 2000276298A JP 2000276298 A JP2000276298 A JP 2000276298A JP 2002087833 A JP2002087833 A JP 2002087833A
Authority
JP
Japan
Prior art keywords
quartz glass
concentration
ppm
less
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000276298A
Other languages
Japanese (ja)
Other versions
JP4420306B2 (en
Inventor
Yoshihisa Ohashi
善久 大橋
Kensuke Fukushima
謙輔 福島
Takashi Arakawa
尚 荒川
Kazuhiro Minagawa
和弘 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000276298A priority Critical patent/JP4420306B2/en
Publication of JP2002087833A publication Critical patent/JP2002087833A/en
Application granted granted Critical
Publication of JP4420306B2 publication Critical patent/JP4420306B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • C03B2201/075Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/21Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/21Doped silica-based glasses containing non-metals other than boron or halide containing molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/23Doped silica-based glasses containing non-metals other than boron or halide containing hydroxyl groups

Abstract

PROBLEM TO BE SOLVED: To provide optical quartz glass for UV which shows excellent initial transmittance and smaller transmittance reduction by irradiation with respect to an excimer laser beam such as that of KrF or ArF and also to provide a process for producing the optical quartz glass. SOLUTION: This optical quartz glass has a 10-30 ppm OH group concentration expressed in terms of a mass ratio, a <=10 ppm difference between the maximum and minimum OH group concentrations within the glass, a <=0.10 ppm/mm concentration gradient, a >=1018 mol/cm3 hydrogen content and a refractive index of 1.50860 at 248.25 nm wavelength. The production process comprises steps of preparing a synthetic quartz glass material by subjecting a silica porous body to OH group removal treatment at 1,100-1,500 deg.C under reduced pressure and thereafter subjecting the treated material to sintering to make a material transparent, subjecting the prepared synthetic quartz glass material to compression at 1,500-1,700 deg.C so as to provide a >=40% degree of compression, subjecting, after completion of the compression, the compressed material to strain removal treatment that comprises cooling the compressed material to <=600 deg.C at a 1-10 deg.C/hr cooling rate, and subsequently subjecting the cooled material to hydrogen-doping treatment in a hydrogen atmosphere under a <=1 MPa pressure at 400-1,000 deg.C for 10-200 hr.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明はエキシマレーザ光
等、紫外域の高出力レーザ光を利用する光学装置に使用
される透明合成石英ガラスおよびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent synthetic quartz glass used for an optical device utilizing a high-power laser beam in the ultraviolet region such as an excimer laser beam and a method for producing the same.

【0002】[0002]

【従来の技術】近年、半導体素子の縮小化や高密度化要
求に伴い、ウェーハ上の回路パターンにおける超微細化
が進み、光リソグラフィに用いられる光線として、紫外
線からより波長の短い真空紫外域の光が用いられるよう
になっている。紫外域の光に対するレンズ、プリズム、
ウィンドウ、エタロン板、あるいはLSI製造のリソグ
ラフィ用マスク等の光学用材料として、従来この波長域
にて光の透過性のすぐれた石英ガラスが適用されてき
た。石英ガラス中には不純物が多く含まれていると特定
波長の吸収があったりや蛍光を発したりするので、これ
には高純度の合成石英ガラスが用いられる。
2. Description of the Related Art In recent years, with the demand for miniaturization and high-density of semiconductor elements, circuit patterns on wafers have become ultrafine, and the light used in photolithography has a shorter wavelength from ultraviolet to vacuum ultraviolet. Light is being used. Lenses, prisms for ultraviolet light,
As an optical material such as a window, an etalon plate, or a lithography mask for LSI manufacture, quartz glass having excellent light transmittance in this wavelength region has been conventionally applied. If quartz glass contains a large amount of impurities, it absorbs light of a specific wavelength or emits fluorescent light. For this purpose, high-purity synthetic quartz glass is used.

【0003】しかし使用される光がさらに短波長側に移
行し、しかも高エネルギー密度のKrF(波長:248n
m)やArF(波長:193nm)のエキシマレーザ光が適用
されるようになると、この合成石英ガラスもダメージを
受けるようになり、透過率の低下を生じて耐用時間が短
くなってくる。これは、ガラスを構成している珪素と酸
素との結合が切断されたり、切断されて他の位置に再結
合したりして、ガラスの構造そのものが損傷を受けるた
めである。
However, the light used shifts to the shorter wavelength side and has a high energy density of KrF (wavelength: 248 nm).
When m) or ArF (wavelength: 193 nm) excimer laser light is applied, the synthetic quartz glass is also damaged, the transmittance is reduced, and the service life is shortened. This is because the bond between silicon and oxygen constituting the glass is cut or cut and recombined at another position, thereby damaging the glass structure itself.

【0004】このような、電離作用の強い短波長の紫外
線による反復使用時間経過にともなう石英ガラスの透過
率低下に関して、種々の対策が報告されているが、その
主要な手段に、OH基濃度を適量に制御すること、およ
び水素を含有させることがある。OH基や水素は損傷を
受けた部分の補修効果があり、透過率の低下を少なくす
る。
[0004] Various measures have been reported to reduce the transmittance of quartz glass with repeated passage of time due to short-wavelength ultraviolet light having a strong ionizing action. It may be controlled to an appropriate amount and may contain hydrogen. OH groups and hydrogen have the effect of repairing damaged parts and reduce the decrease in transmittance.

【0005】たとえば、特公平6-53593号公報に開示さ
れた発明では、波長250nm以下の高出力レーザ光に用い
る石英ガラスとして、OH基量が100ppm以上、水素の含
有量が5×1016mol/cm3以上としている。またこの公報に
は、脈理のないことおよびアルカリ金属元素、アルカリ
土類金属元素および遷移金属元素等の不純物のいずれも
が多くても50ppb以下のであることなどが規制されてい
る。
[0005] For example, in the invention disclosed in Japanese Patent Publication No. 6-53593, quartz glass having an OH group content of 100 ppm or more and a hydrogen content of 5 × 10 16 mol is used as a quartz glass used for a high-output laser beam having a wavelength of 250 nm or less. / cm 3 or more. This publication also regulates that there is no striae and that all of the impurities such as alkali metal elements, alkaline earth metal elements and transition metal elements are at most 50 ppb or less.

【0006】不純物の各金属元素は、紫外線域での光の
透過性低下させるのでできるだけ少なくしておく必要が
あり、合成石英ガラスを酸水素火炎加水分解法で製造す
る際の原料である四塩化珪素など珪素化合物を、十分精
製することによって低減される。また脈理は屈折率の変
動を大きくするので好ましくなく、上記公報では水素含
有量を増すための水素ガスドープ処理の際、均一な濃度
分布が得られないため脈理を除去するとしており、脈理
は浮遊帯域融解法にて除去できるとしている。
[0006] Each metallic element of impurities must be kept as small as possible because it reduces the light transmittance in the ultraviolet region, and tetrachloride, which is a raw material for producing synthetic quartz glass by an oxyhydrogen flame hydrolysis method. It can be reduced by sufficiently purifying a silicon compound such as silicon. Also, striae are not preferable because they increase the fluctuation of the refractive index, and the above publication states that striae is removed because a uniform concentration distribution cannot be obtained during hydrogen gas doping treatment for increasing the hydrogen content. Can be removed by the floating zone melting method.

【0007】OH基の存在は上述のように、短波長の紫
外線照射による透過率低下を抑止する効果がある。しか
し、濃度が高くなると耐熱性が低下し、その濃度分布も
不均一になりやすく、それにともない脈理も発生してく
る。また、紫外線が透過しなくなる下限の波長すなわち
吸収端を長波長側にずらす作用があり、ArFエキシマ
レーザ光など短波長の紫外線の初期透過率を低下させ
る。したがって、OH基濃度は目的によりその含有範囲
を選定する必要がある。
As described above, the presence of the OH group has an effect of suppressing a decrease in transmittance due to irradiation with ultraviolet light having a short wavelength. However, as the concentration increases, the heat resistance decreases, the concentration distribution tends to be non-uniform, and striae also occur accordingly. In addition, it has the effect of shifting the lower limit wavelength at which ultraviolet light does not pass, that is, the absorption edge to the longer wavelength side, and lowers the initial transmittance of short wavelength ultraviolet light such as ArF excimer laser light. Therefore, it is necessary to select the OH group concentration range depending on the purpose.

【0008】珪素化合物の酸素水素火炎加水分解による
主要な合成ガラスの製造方法には、火炎中でSiO2
合成すると共に溶融して緻密で透明な石英ガラスを得る
直接法や、分解反応でできたSiO2の微粒子を堆積さ
せて一旦多孔体を作り、これを加熱焼結し緻密化して透
明化するスート法(またはVAD−Vapor-phase Axial
Deposition−法)などがある。OH基濃度は、この酸水
素炎の組成やそれに対する珪素化合物の供給比率を変え
ることによりある程度制御できる。直接法の場合は高濃
度のものになりがちであるが、VAD法では得られた多
孔体の焼結を、さらに減圧下でおこなうなどの手段によ
り種々変えることが可能である。
The main methods for producing synthetic glass by oxygen-hydrogen flame hydrolysis of a silicon compound include a direct method of synthesizing and melting SiO 2 in a flame to obtain a dense and transparent quartz glass, and a decomposition reaction. and once deposited a SiO 2 particles make a porous body, which heat sintered soot method of clearing densified (or VAD-Vapor-phase Axial
Deposition-method). The OH group concentration can be controlled to some extent by changing the composition of the oxyhydrogen flame and the supply ratio of the silicon compound thereto. In the case of the direct method, the concentration tends to be high, but in the case of the VAD method, the sintering of the obtained porous body can be changed variously by means such as further reducing the pressure.

【0009】VAD法にて多孔体を減圧下で加熱処理す
ると、OH基濃度を大幅に低下させることができる。と
ころがその場合、Si−O−Siとなるべき結合が一部
Si−Si結合となり、この結合が増すと163nm近傍に
中心を持つ吸収ピークが大きくなって吸収端が長波長側
にずれる。これに対して、たとえば特開平8-91867号公
報には、OH基濃度低下のための減圧下加熱処理に先立
って、酸素含有雰囲気中で加熱する発明が開示されてい
る。この場合、多孔体を10vol%以上の酸素を含む雰囲
気中1000〜1300℃で熱処理後、減圧下1100〜1400℃にて
10時間以上の脱OH処理をおこない、その後透明化のた
めの焼結をおこなうとしている。このようにして吸収端
を短波長側に拡大し、155nmより長波長の紫外線に対す
る初期透過率を向上させているが、紫外線照射による透
過率低下については明らかではない。
When the porous body is heat-treated under reduced pressure by the VAD method, the OH group concentration can be greatly reduced. In this case, however, a part of the bond to become Si-O-Si becomes a Si-Si bond. When this bond increases, the absorption peak having a center near 163 nm increases, and the absorption edge shifts to the longer wavelength side. On the other hand, for example, Japanese Patent Application Laid-Open No. Hei 8-91867 discloses an invention in which heating is performed in an oxygen-containing atmosphere prior to heat treatment under reduced pressure to reduce the OH group concentration. In this case, the porous body is heat-treated at 1000 to 1300 ° C. in an atmosphere containing oxygen of 10 vol% or more, and then at 1100 to 1400 ° C. under reduced pressure.
The company claims to perform de-OH treatment for 10 hours or more, and then perform sintering for transparency. In this way, the absorption edge is expanded to the shorter wavelength side to improve the initial transmittance for ultraviolet light having a wavelength longer than 155 nm, but it is not clear how the transmittance is reduced by irradiation with ultraviolet light.

【0010】[0010]

【発明が解決しようとする課題】光学用の石英ガラスと
しては、適用する紫外線に対し、透明度または初期透過
率ができるだけ高く、しかもその光の透過ないしは照射
による損傷が少なく、長期にわたる使用による透過率低
下が極力抑止されていなければならない。本発明の目的
は波長193nmのArF、同248nmのKrF等のエキシマレ
ーザ光に対し初期透過率が高く、使用による透過率低下
の少ないVAD法による合成石英ガラスとその製造方法
の提供にある。
The quartz glass for optics has a transparency or an initial transmittance as high as possible with respect to the ultraviolet rays to be applied, and has little damage due to the transmission or irradiation of the light. The decline must be kept to a minimum. An object of the present invention is to provide a synthetic quartz glass having a high initial transmittance with respect to excimer laser beams such as ArF having a wavelength of 193 nm and KrF having a wavelength of 248 nm, and having a small decrease in transmittance due to use, and a method for producing the same.

【0011】[0011]

【課題を解決するための手段】本発明者らは、とくに波
長248nmのエキシマレーザ光を主な対象とし、初期透過
率が高く、しかもその照射量増加に伴う透過率低下が極
めて少ない合成石英ガラスを得るための製造方法を種々
検討した。
Means for Solving the Problems The inventors of the present invention have made a synthetic quartz glass mainly intended for excimer laser light having a wavelength of 248 nm, which has a high initial transmittance and a very small decrease in transmittance with an increase in the irradiation amount. Various production methods for obtaining the same were studied.

【0012】まず、OH基濃度は少ないほど短波長の紫
外線の初期透過率を高くできると考えられたので、多孔
体を5×104Paの減圧不活性雰囲気下で1300℃、5時間の
脱OH基処理をおこなった後、真空中にて透明化焼結を
おこなってみた。その結果、OH基濃度は30ppm以下に
なり、163nm近傍の吸収が無くなって短波長の紫外線の
初期透過率を十分向上させ得ることがわかった。
First, it was considered that the lower the OH group concentration, the higher the initial transmittance of ultraviolet light having a short wavelength. Thus, the porous body was degassed at 1300 ° C. for 5 hours under a reduced pressure inert atmosphere of 5 × 10 4 Pa. After performing the OH group treatment, transparent sintering was performed in a vacuum. As a result, it was found that the OH group concentration was 30 ppm or less, the absorption near 163 nm was eliminated, and the initial transmittance of short-wavelength ultraviolet rays could be sufficiently improved.

【0013】ところが、このような合成石英ガラスを調
査してみると、初期透過率の必ずしもよくないものや、
紫外線照射による透過率低下の大きいものなどが見いだ
された。これらの特性のよくない石英ガラスについてさ
らに調査した結果、このように特性の劣るガラスに共通
して見いだされたのは、いずれもOH基濃度の場所によ
る差が大きいこと、そして屈折率が高いことであった。
However, when investigating such synthetic quartz glass, it was found that the initial transmittance was not always good,
Some were found to have a large decrease in transmittance due to ultraviolet irradiation. As a result of further investigation on quartz glass with poor properties, it was found that such inferior glass has a large difference depending on the location of the OH group concentration and a high refractive index. Met.

【0014】OH基濃度の分布や屈折率が紫外線の透過
率や照射による劣化に対し、何故影響しているのかその
理由は必ずしも明らかではない。しかしながら、OH基
濃度の分布が均一になり、屈折率が低くなるような製造
条件が好ましい結果をもたらしたと考えられるので、こ
の2つを製造条件選定の指針として、種々検討を進める
ことにした。
It is not always clear why the distribution of the OH group concentration and the refractive index affect the transmittance of ultraviolet rays and the deterioration due to irradiation. However, it is considered that the production conditions under which the distribution of the OH group concentration becomes uniform and the refractive index becomes low have produced favorable results. Therefore, various studies have been carried out using these two as guidelines for selecting the production conditions.

【0015】VAD法の場合、脱OH基処理をおこなう
と円柱状に形成されたスート体の軸方向に沿った中心部
分の濃度が高く、周辺部の濃度が低くなることが多い。
すなわち軸に垂直な断面上の濃度分布は高低差が大き
い。また、このような中心部と周辺部との濃度差の他
に、局所的に濃度の高い部分や低い部分が見出されるこ
とがある。その濃度の高い部分と低い部分との距離がわ
かれば、濃度勾配を求めることができる。
In the case of the VAD method, the concentration of the central portion along the axial direction of the soot body formed in a columnar shape is high and the concentration of the peripheral portion is low when the deOH group treatment is performed.
That is, the concentration distribution on the cross section perpendicular to the axis has a large difference in elevation. In addition to the difference in density between the central part and the peripheral part, a part with a high density or a part with a low density may be found locally. If the distance between the high density part and the low density part is known, a density gradient can be obtained.

【0016】このような濃度勾配の大きさと照射による
劣化との関係を調べると、濃度勾配が小さいほど劣化が
少ないことがわかった。そしてこのような大きい濃度勾
配は、ほとんどの場合中心部から周辺部へ向かう方向に
現れる。そこで、このような濃度勾配をできるだけ小さ
くするため、脱OH基処理の温度、時間あるいは雰囲気
圧など変えてみると、OH基濃度そのものが低下しすぎ
たり、脱OHに長時間要したりして、必ずしも安定して
濃度分布を均一化できなかった。
Examination of the relationship between the magnitude of such a concentration gradient and the deterioration due to irradiation revealed that the smaller the concentration gradient, the less the deterioration. Such a large concentration gradient appears in most cases in a direction from the center to the periphery. Therefore, in order to reduce such a concentration gradient as much as possible, when the temperature, time, or atmospheric pressure of the deOH group treatment is changed, the OH group concentration itself may be too low, or it may take a long time to remove the OH group. However, the concentration distribution could not always be stably uniformed.

【0017】しかし軸に対し平行な断面における軸に垂
直な方向の濃度分布では、最高値と最低値との差は比較
的小さい。そこで次に、透明化焼結をおこなった石英ガ
ラスの円柱状のプリフォーム材にて、軸方向に垂直の熱
間での圧縮加工をおこなってみた。圧縮変形させること
により最高値と最低値など濃度の値は変えることはでき
ないが、軸に垂直な断面における濃度勾配は低減させる
ことが可能である。
However, in the concentration distribution in a direction perpendicular to the axis in a cross section parallel to the axis, the difference between the highest value and the lowest value is relatively small. Then, next, compression processing was performed by using a quartz glass column-shaped preform material that had been subjected to transparent sintering, in a direction perpendicular to the axial direction. The density value such as the maximum value and the minimum value cannot be changed by compressive deformation, but the density gradient in a cross section perpendicular to the axis can be reduced.

【0018】さらにこの圧縮加工後の冷却の過程におい
て、歪み取りを目的として徐冷してみた結果、濃度勾配
の低減によると推測されるよりもはるかに大きい照射に
よる透過率低下の軽減と、屈折率の低下および均質化と
が得られることがわかったのである。
Further, in the cooling process after the compression working, as a result of slow cooling for the purpose of removing distortion, reduction in transmittance decrease due to irradiation which is much larger than expected due to reduction in concentration gradient, and refraction It was found that a reduction in the rate and homogenization were obtained.

【0019】通常VAD法にて作られた石英ガラスの波
長248nmの紫外線による屈折率は1.50870〜1.5890程度で
ある。これに対し、OH基濃度を下げ、圧縮加工を加
え、その後徐冷するという処理を加えることにより、屈
折率が大きく低下した。屈折率の低下が影響する理由は
不明であるが、レーザ照射による透過率低減は、屈折率
が低いほど軽減する傾向がある。屈折率は例えば仮想温
度が低下すると低くなるとされており、仮想温度の低下
は石英ガラス構造の安定化を増すと考えられるので、O
H基濃度の低減、および熱間加工とその後の歪み取りの
ための徐冷によって、石英のガラス構造が改善されたの
であろうと推測される。
Normally, the refractive index of quartz glass produced by the VAD method with ultraviolet light having a wavelength of 248 nm is about 1.50870 to 1.5890. On the other hand, the refractive index was significantly reduced by lowering the OH group concentration, adding compression, and then gradually cooling. It is not clear why the decrease in the refractive index has an effect, but the reduction in the transmittance due to laser irradiation tends to decrease as the refractive index decreases. It is said that the refractive index decreases when the virtual temperature decreases, for example, and it is considered that the reduction in the virtual temperature increases the stabilization of the quartz glass structure.
It is speculated that the reduction of the H-group concentration and the slow cooling for hot working and subsequent strain relief may have improved the glass structure of quartz.

【0020】しかしながら、OH基濃度の低減は、やは
り照射による透過率低下を抑止する上で、多少の不安定
さが残ることがある。これは水素濃度を十分高くするこ
とにより補うことが可能であった。
However, a decrease in the OH group concentration may still cause some instability in suppressing a decrease in transmittance due to irradiation. This could be compensated for by making the hydrogen concentration sufficiently high.

【0021】以上のようにして、初期透過率ができるだ
け高く、しかもその光の照射による損傷が少なく、長期
にわたる使用による透過率低下が極力抑止された合成石
英を得ることができた。そこでさらにこの合成石英ガラ
スの特性の範囲やその製造条件の限界を明らかにして、
本発明を完成させた。本発明の要旨は次のとおりであ
る。
As described above, it was possible to obtain a synthetic quartz having an initial transmittance as high as possible, less damage due to the irradiation of the light, and a decrease in transmittance due to long-term use being suppressed as much as possible. Therefore, we further clarified the range of characteristics of this synthetic quartz glass and the limits of its manufacturing conditions,
The present invention has been completed. The gist of the present invention is as follows.

【0022】(1) OH基の濃度が質量比で10〜30ppm、
最高濃度と最低濃度との差が10ppm以下、濃度勾配が0.1
0ppm/mm以下、水素が1018mol/cm3以上で、かつ波長248.
25nmの光に対する屈折率が1.50860以下であることを特
徴とする紫外線用光学石英ガラス。
(1) The concentration of OH groups is 10 to 30 ppm by mass,
The difference between the highest concentration and the lowest concentration is 10 ppm or less, and the concentration gradient is 0.1
0 ppm / mm or less, hydrogen is 10 18 mol / cm 3 or more, and wavelength 248.
An optical silica glass for ultraviolet light, having a refractive index of 1.50860 or less for 25 nm light.

【0023】(2) 珪素化合物の酸水素炎での加水分解に
より得たSiO2微粒子で構成される多孔体を、減圧下1
100〜1500℃にて脱OH基処理してから透明化焼結した
合成石英ガラス素材に、1500〜1700℃の温度範囲にて40
%以上の圧縮加工を施し、圧縮加工終了温度から1〜10
℃/hrの冷却速度で600℃以下の温度にまで冷却する歪み
取り処理をおこない、ついで1MPa以下の水素雰囲気中に
て400〜1000℃の温度範囲で10〜200時間の水素ドープ処
理をほどこすことを特徴とする上記(1)の紫外線用光学
石英ガラスの製造方法。
(2) A porous body composed of SiO 2 fine particles obtained by hydrolysis of a silicon compound in an oxyhydrogen flame is subjected to
A synthetic quartz glass material that has been dehydrated at 100 to 1500 ° C and then clarified and sintered at a temperature of 1500 to 1700 ° C
% Of compression processing, and 1-10
Perform a strain relief process of cooling to a temperature of 600 ° C or less at a cooling rate of ° C / hr, and then perform a hydrogen doping process for 10 to 200 hours in a temperature range of 400 to 1000 ° C in a hydrogen atmosphere of 1 MPa or less. (1) The method for producing an optical quartz glass for ultraviolet light according to the above (1).

【0024】[0024]

【発明の実施の形態】本発明の合成石英ガラスのOH基
の濃度は、質量比にて10〜30ppmで、一つの部品となる
石英ガラスブロックの中での最高濃度と最低濃度との差
が10ppm以下、ブロック内に存在する濃度勾配が0.10ppm
/mm以下であることとする。 OH基濃度を10〜30ppmと
するのは、30ppmを超えるOH基濃度の場合、合成石英
ガラスの紫外線の吸収端が長波長側にずれ、波長193nm
のArFエキシマレーザ光においても初期透過率が低下
するためである。また、OH基濃度が10ppm未満になる
と、Si−O−Si結合の酸素が離脱した酸素欠乏欠陥
が多数発生して、紫外線照射による透過率低下が大きく
なる。
BEST MODE FOR CARRYING OUT THE INVENTION The concentration of OH groups in the synthetic quartz glass of the present invention is 10 to 30 ppm by mass ratio, and the difference between the highest concentration and the lowest concentration in a quartz glass block as one component is different. 10 ppm or less, concentration gradient existing in the block is 0.10 ppm
/ mm or less. The reason why the OH group concentration is set to 10 to 30 ppm is that if the OH group concentration exceeds 30 ppm, the UV absorption edge of the synthetic quartz glass shifts to the longer wavelength side, and the wavelength 193 nm
This is because the initial transmittance also decreases with the ArF excimer laser light. Further, when the OH group concentration is less than 10 ppm, a large number of oxygen deficiency defects in which the oxygen of the Si—O—Si bond has been released are generated, and the decrease in transmittance due to irradiation with ultraviolet rays is large.

【0025】使用する光学部材の一部品となる石英ガラ
スブロックの中での、OH基濃度の最高濃度と最低濃度
との差を10ppm以下、隣接する濃度の異なる部位間の濃
度勾配を0.10ppm/mm以下とするのは、これを超える濃度
差または濃度勾配の石英ガラスでは、強力な短波長のエ
キシマレーザ光照射による透過率低下が大きくなるから
である。
In the quartz glass block which is one component of the optical member to be used, the difference between the maximum and minimum OH group concentrations is 10 ppm or less, and the concentration gradient between adjacent portions having different concentrations is 0.10 ppm / The reason why the thickness is not more than mm is that in quartz glass having a concentration difference or a concentration gradient exceeding this range, the transmittance is greatly reduced due to the irradiation of a strong short-wavelength excimer laser beam.

【0026】合成石英ガラス中の水素含有量は1018mol/
cm3以上とする。これは水素含有量が1018mol/cm3を下回
る場合、レーザ光照射による透過率低下が大きくなるお
それがあるからである。OH基濃度をできるだけ低くし
ているので、水素含有量を高くすることにより、OH基
による透過率低下の抑止効果が補われていると推測され
る。水素含有量の上限はとくには限定しないが、通常の
雰囲気からのドーピングでは、1020mol/cm3程度までの
含有が限界である。
The hydrogen content in the synthetic quartz glass is 10 18 mol /
cm 3 or more. This is because, if the hydrogen content is less than 10 18 mol / cm 3 , the transmittance may be significantly reduced by laser light irradiation. Since the OH group concentration is made as low as possible, it is presumed that the effect of suppressing the decrease in transmittance due to the OH group is compensated for by increasing the hydrogen content. Although the upper limit of the hydrogen content is not particularly limited, the doping from a normal atmosphere has a limit of about 10 20 mol / cm 3 .

【0027】不純物のアルカリ金属元素(Li、Na、
K)、アルカリ土類金属元素(Mg、Ca)および遷移
金属元素(Ti、Cr、Fe、Ni,Cu)の含有量
は、それぞれいずれも質量比で50ppb以下とするのが望
ましい。これらの元素はいずれも屈折率を大きくする作
用があり、それとともにレーザ光照射による透過率低下
を促進する傾向がある。このような作用は50ppb以下の
含有とするとほぼ無視できる。
The alkali metal elements of impurities (Li, Na,
K), the content of the alkaline earth metal elements (Mg, Ca) and the content of the transition metal elements (Ti, Cr, Fe, Ni, Cu) are each desirably 50 ppb or less by mass. Each of these elements has an effect of increasing the refractive index, and tends to promote a decrease in transmittance due to laser beam irradiation. Such effects can be almost ignored when the content is 50 ppb or less.

【0028】合成石英ガラスの波長248nmの紫外線によ
る屈折率は1.50860以下であることとする。これは、屈
折率が1.50860を超えるガラスの場合、レーザ光照射に
よる透過率低下が大きく好ましくないからである。屈折
率は低ければ低いほどレーザ光照射による透過率低下は
減少するので、とくに下限は限定しないが、熱間加工や
熱処理を種々おこなって低下させたとしても、1.50830
程度までしか低くならない。
The refractive index of the synthetic quartz glass by ultraviolet rays having a wavelength of 248 nm is assumed to be 1.50860 or less. This is because in the case of glass having a refractive index of more than 1.50860, a decrease in transmittance due to laser beam irradiation is large, which is not preferable. Since the lower the refractive index is, the lower the transmittance decrease due to laser beam irradiation is, the lower limit is not particularly limited. However, even if various reductions are performed by hot working or heat treatment, 1.50830
It is only low to the extent.

【0029】高純ガスの酸水素炎による加水分解反応に
おいては、アルカリ金属元素、アルカリ土類金属元素お
よび遷移金属元素などの不純物が混入することはなく、
またこれら不純物が低減されることもないので、合成石
英ガラスにおいてこれら不純物を低減するには、珪素化
合物原料は十分に精製したものを用いる必要がある。
In the hydrolysis reaction of the high-purity gas by the oxyhydrogen flame, impurities such as alkali metal elements, alkaline earth metal elements and transition metal elements are not mixed.
In addition, since these impurities are not reduced, it is necessary to use a sufficiently purified silicon compound raw material to reduce these impurities in synthetic quartz glass.

【0030】OH基濃度を10〜30ppmとするには、多孔
体を減圧下で1100〜1500℃に加熱して脱OH基処理をお
こなう。これは1100℃未満の温度では30ppm以下に低下
させることが容易でなくなり、1500℃を超える温度では
ガラス化が進み、10ppmを下回ってしまうおそれがある
からである。減圧下とするときの雰囲気は、不純物の混
入抑止からヘリウムやアルゴンなどの希ガス、あるいは
窒素などの不活性ガスとするのがよく、できれば2.5〜7
×104Pa程度の圧力とするのが望ましい。これは、7×10
4Paを超える圧力では、OH基濃度の減少が十分でな
く、2.5×104Pa未満では濃度分布がよくなかったり、O
H基濃度が低下しすぎたりする傾向があるためである。
In order to adjust the OH group concentration to 10 to 30 ppm, the porous body is heated to 1100 to 1500 ° C. under reduced pressure to carry out a deOH group treatment. This is because it is not easy to lower the temperature to 30 ppm or less at a temperature lower than 1100 ° C., and vitrification proceeds at a temperature higher than 1500 ° C., and the temperature may be lower than 10 ppm. The atmosphere when the pressure is reduced is preferably a rare gas such as helium or argon, or an inert gas such as nitrogen to suppress the contamination of impurities.
It is desirable to set the pressure to about × 10 4 Pa. This is 7 × 10
At a pressure exceeding 4 Pa, the reduction of the OH group concentration is not sufficient, and at a pressure of less than 2.5 × 10 4 Pa, the concentration distribution is poor,
This is because the H group concentration tends to be too low.

【0031】脱OH基処理はガラス内平均濃度を低下さ
せるだけであれば、圧力を下げ短時間でおこなうことが
できる。しかし、処理後のOH基濃度分布をできるだけ
均一にするには、上記のように雰囲気圧力を大きくは低
下させず、時間をかけてゆっくりおこなうことが好まし
い。すなわち、最高濃度と最低濃度との差が10ppm以
下、ガラス内の濃度勾配が0.10ppm/mm以下とするために
は、次に説明する圧縮加工の適用も含めて、脱OH基処
理は5〜100時間程度でおこなうのがよい。これは5時間
未満では上記濃度分布が得られず、100時間を超える処
理は、生産性の低下を来すばかりでなく。OH基濃度が
低下しすぎるおそれがある。望ましいのは10〜50時間で
10〜30ppmとなるよう、上記範囲で脱OH基の処理温度
および雰囲気圧力を適宜選択することである。
If the deOH group treatment only lowers the average concentration in glass, the pressure can be reduced and the treatment can be performed in a short time. However, in order to make the OH group concentration distribution after the treatment as uniform as possible, it is preferable to carry out the treatment slowly over a long time without greatly reducing the atmospheric pressure as described above. That is, in order to make the difference between the highest concentration and the lowest concentration 10 ppm or less, and the concentration gradient in the glass to 0.10 ppm / mm or less, the deOH group treatment is 5 to It should be done in about 100 hours. This is because the above-mentioned concentration distribution cannot be obtained in less than 5 hours, and the treatment exceeding 100 hours not only lowers the productivity. The OH group concentration may be too low. Preferably 10 to 50 hours
The treatment temperature and the atmospheric pressure of the deOH group are appropriately selected within the above range so as to be 10 to 30 ppm.

【0032】透明化は、通常おこなわれる1550℃以上で
の焼結でよい。透明化後の円柱状のプリフォーム材は、
軸方向に40%以上の熱間の圧縮加工をおこなう。その場
合の加工温度は1500〜1700℃とする。
Transparency can be achieved by sintering at 1550 ° C. or higher, which is usually performed. The columnar preform material after transparency is
Perform hot compression processing of 40% or more in the axial direction. The processing temperature in that case is 1500 to 1700 ° C.

【0033】圧縮加工の加工度は、40%以上とすること
により、最終的にはOH基の石英ガラス内濃度分布にお
ける濃度勾配を、0.10ppm/mm以下と小さくすることがで
き、それによって短波長紫外線照射による透過率低下が
低減される。この圧縮加工は単に幾何学的変形により濃
度勾配を低下させるだけでなく、屈折率を1.50860以下
に低下させる効果があり、屈折率の低下はレーザ光照射
による透過率低下抑止の傾向を強くする。圧縮の加工度
が40%未満では、このような効果が不十分である。加工
度は40%以上であればとくに限定する必要はないが、実
施に困難がない範囲として80%程度までがよい。加工温
度は1500℃以下では変形が容易でなく、1700℃を超える
と流動化が始まって加工し難くなる。
By setting the working degree of the compression working to 40% or more, the concentration gradient in the concentration distribution of OH groups in the quartz glass can be finally reduced to 0.10 ppm / mm or less. A decrease in transmittance due to irradiation with ultraviolet light of a wavelength is reduced. This compression processing has the effect of lowering the refractive index to 1.50860 or less as well as lowering the concentration gradient simply by geometric deformation, and the lowering of the refractive index strengthens the tendency of suppressing the decrease in transmittance due to laser beam irradiation. When the working ratio of compression is less than 40%, such an effect is insufficient. The working ratio is not particularly limited as long as it is 40% or more, but is preferably up to about 80% as a range in which implementation is not difficult. If the processing temperature is 1500 ° C or lower, deformation is not easy, and if it exceeds 1700 ° C, fluidization starts and processing becomes difficult.

【0034】なお、圧縮の加工度とは、圧縮により減少
した高さを圧縮前の高さで除した値を%で示したもの
で、圧縮方向に垂直な方向における断面積の増加率とし
ても同じである。
The working ratio of compression is a value obtained by dividing the height reduced by compression by the height before compression in%, and can be expressed as the rate of increase of the cross-sectional area in the direction perpendicular to the compression direction. Is the same.

【0035】この圧縮加工終了時の高温の状態から600
℃までは、1〜10℃/hrの冷却速度で徐冷する。これは、
圧縮加工により生じた歪みを十分排除するためである。
10℃/hrを超えて速く冷却すると、歪みの除去が十分で
なく形状によっては歪みが再導入されるおそれがあり、
他方1℃/hr未満のゆっくりした冷却をおこなっても、冷
却時間が増すだけでそれ以上の効果は得られない。また
600℃を下回る温度に達した後は、歪み除去に対し冷却
速度は影響しなくなる。
From the high temperature state at the end of the compression working, 600
Slowly cool to 1 ° C at a cooling rate of 1 to 10 ° C / hr. this is,
This is in order to sufficiently remove the distortion caused by the compression processing.
If cooled faster than 10 ° C / hr, the strain may not be sufficiently removed and the strain may be re-introduced depending on the shape.
On the other hand, even if the cooling is performed slowly at a rate of less than 1 ° C./hr, no further effect can be obtained only by increasing the cooling time. Also
After reaching a temperature below 600 ° C., the cooling rate has no effect on the strain relief.

【0036】合成石英ガラス中の水素含有量は1018mol/
cm3以上とするが、水素を含有させるため、常圧のほぼ1
00%の水素雰囲気にて、400〜1000℃にて10時間以上の
加熱が必要である。加熱温度は400未満では目標濃度に
到達するまでに時間がかかりすぎ、実用的ではない。ま
た1000℃を超えると水素の石英ガラス中の溶解度が低下
してくるので、水素含有量を増すことができない。した
がって400〜1000℃の範囲とする。加熱時間は、長くし
てもそれ以上の含有量増加は期待し難いので、200時間
程度までである。なお、常圧ではなく加圧水素雰囲気と
すると、含有させる時間を短縮できるが、その場合は1M
Pa以下とするのがよい。これは、圧力を高くするほど処
理時間は短くできるが、1MPaを超えると装置の構造強化
やや耐久性確保に多くの費用が必要となり、実用性に乏
しくなるからである。
The hydrogen content in the synthetic quartz glass is 10 18 mol /
cm 3 or more, but to contain hydrogen, almost 1 at normal pressure
Heating at 400 to 1000 ° C. for 10 hours or more in a hydrogen atmosphere of 00% is required. If the heating temperature is less than 400, it takes too much time to reach the target concentration, which is not practical. If the temperature exceeds 1000 ° C., the solubility of hydrogen in quartz glass decreases, so that the hydrogen content cannot be increased. Therefore, the temperature is set in the range of 400 to 1000C. Even if the heating time is long, it is difficult to expect a further increase in the content, so that the heating time is up to about 200 hours. In addition, if the pressure is not normal pressure but a pressurized hydrogen atmosphere, the time for inclusion can be shortened.
It is better to be Pa or less. This is because the processing time can be shortened as the pressure is increased, but if the pressure exceeds 1 MPa, much cost is required for strengthening the structure of the apparatus and ensuring durability, and the practicality is poor.

【0037】[0037]

【実施例】高純度の四塩化珪素を原料とし、酸素・水素
炎中加水分解によりSiO2粒子の多孔体とした。この
多孔体に条件を変えて脱OH基処理を施した後、1Paを
下回るHe雰囲気中で1550℃にて透明化処理をおこな
い、直径200mmの円柱状合成石英ガラスのプリフォーム
材を得た。
EXAMPLE A high-purity silicon tetrachloride material was used as a raw material, and a porous SiO 2 particle was obtained by hydrolysis in an oxygen / hydrogen flame. After subjecting the porous body to dehydration treatment under different conditions, it was subjected to a transparency treatment at 1550 ° C. in a He atmosphere of less than 1 Pa to obtain a preform material of a cylindrical synthetic quartz glass having a diameter of 200 mm.

【0038】これらプリフォーム材を加熱して円柱の中
心軸方向に圧縮加工をおこない、加工終了後その温度か
ら600℃まで冷却速度を制御して冷却し、その後水素ド
ープをおこなった。これらの脱OH処理の温度、圧力、
時間、圧縮加工の温度、加工度、圧縮加工後の冷却速
度、水素ドープ処理条件等について、まとめて表1に示
す。
The preform material was heated to perform compression working in the direction of the center axis of the cylinder, and after working, was cooled from the temperature to 600 ° C. by controlling the cooling rate, followed by hydrogen doping. The temperature, pressure,
Table 1 summarizes the time, the temperature of the compression processing, the degree of processing, the cooling rate after the compression processing, the hydrogen doping conditions, and the like.

【0039】[0039]

【表1】 [Table 1]

【0040】得られた石英ガラス材から圧縮軸に平行な
断面でウェーハ状に試片を切り出し、断面各位置におけ
るOH基濃度を赤外線吸収法により測定した。OH基濃
度は、いずれの場合も局所的な偏在は認められず、中心
部が最高で周辺部が最低であった。そこで、製品の採取
できない最縁部は除き、中心部から周辺部へ向けての線
上にて3位置ないしは4位置のOH基濃度を測定し、最
大のOH濃度勾配を求めた。
A specimen was cut out from the obtained quartz glass material in a cross section parallel to the compression axis in a wafer shape, and the OH group concentration at each position of the cross section was measured by an infrared absorption method. Regarding the OH group concentration, no local uneven distribution was observed in any case, and the OH group concentration was highest in the central portion and lowest in the peripheral portion. Therefore, the OH group concentration at three or four positions was measured on the line from the center to the periphery except for the outermost edge where the product could not be collected, and the maximum OH concentration gradient was determined.

【0041】水素分子の濃度はレーザラマン散乱測定法
によった。また、屈折率は中心部と周辺部にて、波長24
8nmのKrFエキシマレーザ光を用い最小偏角法で測定
し、その平均値を求めた。紫外線透過または照射による
劣化の測定は、1辺が20mmの正立方体形状のブロックを
切り出し、元の石英ガラス材の軸方向に垂直な2つの対
向平行面を鏡面研磨した試験片を用いた。KrFエキシ
マレーザ光の発生装置と紫外線分光光度計とを用いて、
この研磨面に垂直な方向に光を透過させ、照射劣化は、
種々のエネルギ密度のレーザを照射して、3×1010ショ
ット照射後の透過率低下が0.1%となる最大のエネルギ
密度を求めた。
The concentration of hydrogen molecules was determined by laser Raman scattering measurement. In addition, the refractive index is 24
It was measured by the minimum declination method using 8 nm KrF excimer laser light, and the average value was obtained. For the measurement of deterioration due to ultraviolet transmission or irradiation, a block having a shape of a cube having a side of 20 mm was cut out, and a test piece in which two opposing parallel surfaces perpendicular to the axial direction of the original quartz glass material were mirror-polished was used. Using a KrF excimer laser light generator and an ultraviolet spectrophotometer,
Light is transmitted in the direction perpendicular to the polished surface,
Lasers of various energy densities were irradiated, and the maximum energy density at which the transmittance reduction after irradiation of 3 × 10 10 shots was 0.1% was determined.

【0042】表2に表1で示した試験番号の石英ガラス
材の調査結果を示す。OH基濃度が所要量含まれ、かつ
その濃度勾配が小さく、水素濃度は十分高く、そして屈
折率の小さい試験番号2および4は、他のガラス材に比
し初期透過率が高く、レーザ照射による劣化の耐性が大
きいことがわかる。
Table 2 shows the results of examination of the quartz glass materials of the test numbers shown in Table 1. Test Nos. 2 and 4 in which the required amount of OH group concentration is contained, the concentration gradient is small, the hydrogen concentration is sufficiently high, and the refractive index is small, are higher in initial transmittance than other glass materials, It can be seen that the resistance to deterioration is large.

【0043】また、このすぐれた初期透過率と耐レーザ
照射性を持つ、試験番号2または4の石英ガラスの製造
方法について、表1を見ると脱OH基処理、圧縮加工、
加工後の徐冷および水素ドープのそれぞれの条件が、本
発明にて定める範囲に入っていることがあきらかであ
る。
Table 1 shows the method of producing the quartz glass of Test No. 2 or 4 having excellent initial transmittance and laser irradiation resistance.
It is apparent that the respective conditions of the slow cooling and the hydrogen doping after the processing are within the ranges defined by the present invention.

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【発明の効果】本発明の合成石英ガラスは、KrFやA
rFエキシマレーザ等からの高出力の紫外線に対し初期
透過率にすぐれ、紫外線の透過における光学的特性劣化
に対して、すぐれた耐久性を有する。この合成石英ガラ
スは、とくに使用光の波長が短波長かつ高出力化しつつ
ある超LSI用光リソグラフィーの光学系等に効果的に
活用できる。
The synthetic quartz glass of the present invention is made of KrF or A
It has excellent initial transmittance with respect to high-output ultraviolet light from an rF excimer laser or the like, and has excellent durability against deterioration of optical characteristics due to transmission of ultraviolet light. This synthetic quartz glass can be effectively used particularly for an optical system of a photolithography for a super LSI in which the wavelength of light used is short and the output is increasing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒川 尚 兵庫県尼崎市扶桑町1番8号住友金属工業 株式会社エレクトロニクス技術研究所内 (72)発明者 皆川 和弘 兵庫県尼崎市扶桑町1番8号住友金属工業 株式会社エレクトロニクス技術研究所内 Fターム(参考) 4G014 AH21 AH23 4G062 AA04 BB02 CC07 MM31 MM40 NN16 NN20 5F046 CB10 CB12 CB17 CB19  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takashi Arakawa 1-8 Fuso-cho, Amagasaki City, Hyogo Prefecture Inside Sumitomo Metal Industries, Ltd. Electronics Technology Research Laboratory (72) Inventor Kazuhiro Minagawa 1-8 Fuso-cho, Amagasaki City, Hyogo Prefecture Sumitomo Metal Industries, Ltd. Electronics Technology Laboratory F-term (reference) 4G014 AH21 AH23 4G062 AA04 BB02 CC07 MM31 MM40 NN16 NN20 5F046 CB10 CB12 CB17 CB19

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】OH基の濃度が質量比で10〜30ppm、最高
濃度と最低濃度との差が10ppm以下、濃度勾配が0.10ppm
/mm以下、水素濃度が1018mol/cm3以上で、かつ波長248.
25nmの光に対する屈折率が1.50860以下であることを特
徴とする紫外線用光学石英ガラス。
1. The concentration of an OH group is 10 to 30 ppm by mass, the difference between the highest concentration and the lowest concentration is 10 ppm or less, and the concentration gradient is 0.10 ppm.
/ mm or less, hydrogen concentration is 10 18 mol / cm 3 or more, and wavelength 248.
An optical silica glass for ultraviolet light, having a refractive index of 1.50860 or less for 25 nm light.
【請求項2】珪素化合物を酸素水素炎で加水分解して得
たSiO2微粒子で構成される多孔体を、減圧下1100〜1
500℃にて脱OH基処理してから透明化焼結した合成石
英ガラス素材に、1500〜1700℃の温度範囲にて40%以上
の圧縮加工を施し、圧縮加工終了温度から1〜10℃/hrの
冷却速度で600℃以下の温度にまで冷却する歪み取り処
理をおこない、ついで1MPa以下の水素雰囲気中にて400
〜1000℃の温度範囲で10〜200時間の水素ドープ処理を
することを特徴とする請求項1に記載の紫外線用光学石
英ガラスの製造方法。
2. A porous body composed of SiO 2 fine particles obtained by hydrolyzing a silicon compound in an oxygen-hydrogen flame is reduced under reduced pressure to 1100 to 1
A synthetic quartz glass material that has been dehydrated at 500 ° C and then transparentized and sintered is subjected to compression processing of 40% or more in a temperature range of 1500 to 1700 ° C, and 1 to 10 ° C / Perform strain relief processing to cool to a temperature of 600 ° C or less at a cooling rate of hr, and then in a hydrogen atmosphere of 1 MPa or less for 400
The method for producing optical silica glass for ultraviolet light according to claim 1, wherein hydrogen doping treatment is performed for 10 to 200 hours in a temperature range of -1000 ° C.
JP2000276298A 2000-09-12 2000-09-12 Optical quartz glass for ultraviolet rays and manufacturing method thereof Expired - Lifetime JP4420306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000276298A JP4420306B2 (en) 2000-09-12 2000-09-12 Optical quartz glass for ultraviolet rays and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000276298A JP4420306B2 (en) 2000-09-12 2000-09-12 Optical quartz glass for ultraviolet rays and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002087833A true JP2002087833A (en) 2002-03-27
JP4420306B2 JP4420306B2 (en) 2010-02-24

Family

ID=18761793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000276298A Expired - Lifetime JP4420306B2 (en) 2000-09-12 2000-09-12 Optical quartz glass for ultraviolet rays and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4420306B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004013061A1 (en) * 2002-07-31 2004-02-12 Heraeus Quarzglas Gmbh & Co. Kg Synthetic quartz glass optical material for yag laser with higher harmonic
EP1568666A1 (en) * 2004-02-25 2005-08-31 Heraeus Quarzglas GmbH & Co. KG Method for producing an optical component made of quartz glass
JP2006188424A (en) * 2004-12-29 2006-07-20 Corning Inc High transmission synthetic silica glass and method of making same
WO2006082983A3 (en) * 2005-02-04 2006-10-26 Asahi Glass Co Ltd Process for producing synthetic quartz glass and synthetic quartz glass for optical member
WO2007086617A1 (en) * 2006-01-30 2007-08-02 Asahi Glass Co., Ltd. Synthetic quartz glass with fast axes of birefringence distributed in concentric-circle tangent directions and process for producing the same
WO2007086611A1 (en) * 2006-01-30 2007-08-02 Asahi Glass Co., Ltd. Synthetic quartz glass with radial distribution of fast axes of birefringence and process for producing the same
JP2007223888A (en) * 2006-01-30 2007-09-06 Asahi Glass Co Ltd Synthetic quartz glass with fast axes of birefringence distributed in concentric-circle tangent directions and process for producing the same
JP2008535764A (en) * 2005-04-15 2008-09-04 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー Cage made of quartz glass for processing semiconductor wafers and method of manufacturing the cage

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004013061A1 (en) * 2002-07-31 2004-02-12 Heraeus Quarzglas Gmbh & Co. Kg Synthetic quartz glass optical material for yag laser with higher harmonic
US7288775B2 (en) 2002-07-31 2007-10-30 Heraeus Quarzglas Gmbh & Co. Kg Synthetic quartz glass optical material for YAG laser with higher harmonic
EP1568666A1 (en) * 2004-02-25 2005-08-31 Heraeus Quarzglas GmbH & Co. KG Method for producing an optical component made of quartz glass
JP2006188424A (en) * 2004-12-29 2006-07-20 Corning Inc High transmission synthetic silica glass and method of making same
WO2006082983A3 (en) * 2005-02-04 2006-10-26 Asahi Glass Co Ltd Process for producing synthetic quartz glass and synthetic quartz glass for optical member
US7975507B2 (en) 2005-02-04 2011-07-12 Asahi Glass Company, Limited Process for producing synthetic quartz glass and synthetic quartz glass for optical member
JP2008535764A (en) * 2005-04-15 2008-09-04 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー Cage made of quartz glass for processing semiconductor wafers and method of manufacturing the cage
WO2007086617A1 (en) * 2006-01-30 2007-08-02 Asahi Glass Co., Ltd. Synthetic quartz glass with fast axes of birefringence distributed in concentric-circle tangent directions and process for producing the same
WO2007086611A1 (en) * 2006-01-30 2007-08-02 Asahi Glass Co., Ltd. Synthetic quartz glass with radial distribution of fast axes of birefringence and process for producing the same
JP2007223888A (en) * 2006-01-30 2007-09-06 Asahi Glass Co Ltd Synthetic quartz glass with fast axes of birefringence distributed in concentric-circle tangent directions and process for producing the same

Also Published As

Publication number Publication date
JP4420306B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
JP4453939B2 (en) Optical silica glass member for F2 excimer laser transmission and manufacturing method thereof
US7491475B2 (en) Photomask substrate made of synthetic quartz glass and photomask
EP1900694B1 (en) Method for making a synthetic quartz glass substrate for excimer lasers
EP1035084B1 (en) Synthetic fused silica glass member
EP1754689B1 (en) Synthetic quartz glass substrate for excimer lasers and making method
US20110053059A1 (en) Mask blanks
US7312170B2 (en) Optical synthetic quartz glass and method for producing the same
JP3228676B2 (en) High purity silica glass for far ultraviolet rays and method for producing the same
JPH09124337A (en) Production of optical material of quartz glass for ultraviolet laser
JP2009530217A (en) Production of large articles with synthetic vitreous silica
JP2006251781A (en) Mask blank
JP3865039B2 (en) Method for producing synthetic quartz glass, synthetic quartz glass and synthetic quartz glass substrate
JP2002087833A (en) Optical quartz glass for uv and process for producing the same glass
JP4193358B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP2004123420A (en) Synthetic silica glass member for optical use and its manufacturing process
JPH0627014B2 (en) Synthetic silica glass optical body for ultraviolet laser and manufacturing method thereof
JP4011217B2 (en) Manufacturing method of optical quartz glass for excimer laser
JPH0627013B2 (en) Synthetic silica glass optical body for ultraviolet laser and manufacturing method thereof
JP4500411B2 (en) Quartz glass for ultraviolet rays and method for producing the same
JP3510224B2 (en) Silica glass optical material for projection lens used in vacuum ultraviolet lithography and projection lens
US20020046580A1 (en) Synthetic quartz glass article and process of production
JP4485031B2 (en) Quartz glass for ultraviolet rays and method for producing the same
JPH11335140A (en) Production of optical synthetic quartz glass
JP4159852B2 (en) Synthetic quartz glass material for optical components
JP4744046B2 (en) Method for producing synthetic quartz glass material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080616

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4420306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term