JP4485031B2 - Quartz glass for ultraviolet rays and method for producing the same - Google Patents

Quartz glass for ultraviolet rays and method for producing the same Download PDF

Info

Publication number
JP4485031B2
JP4485031B2 JP2000239312A JP2000239312A JP4485031B2 JP 4485031 B2 JP4485031 B2 JP 4485031B2 JP 2000239312 A JP2000239312 A JP 2000239312A JP 2000239312 A JP2000239312 A JP 2000239312A JP 4485031 B2 JP4485031 B2 JP 4485031B2
Authority
JP
Japan
Prior art keywords
quartz glass
less
ultraviolet rays
refractive index
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000239312A
Other languages
Japanese (ja)
Other versions
JP2002053338A (en
Inventor
謙輔 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2000239312A priority Critical patent/JP4485031B2/en
Publication of JP2002053338A publication Critical patent/JP2002053338A/en
Application granted granted Critical
Publication of JP4485031B2 publication Critical patent/JP4485031B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products

Description

【0001】
【発明が属する技術分野】
本発明はエキシマレーザ光等、紫外域の高出力レーザ光を利用する光学装置に使用される紫外線用石英ガラスおよびその製造方法に関する。
【0002】
【従来の技術】
近年、半導体素子の縮小化や高密度化要求に伴い、ウェーハ上の回路パターンにおける超微細化が進み、光リソグラフィに用いられる光線として、紫外線からより波長の短い真空紫外域の光が用いられるようになっている。従来、紫外域の光に対するレンズ、プリズム、ウィンドウ、エタロン板、あるいはLSI製造のリソグラフィ用マスク等の光学用材料として、この波長域にて光の透過性のすぐれた石英ガラスが適用されてきた。しかし、石英ガラス中に不純物が多く含まれていると、特定波長の吸収があったり蛍光を発したりするので、とくに透明度などを要求される場合は高純度の合成石英ガラスが用いられる。合成石英ガラスでは、高純度の珪素化物を酸水素炎などにより加水分解してSiO2とすることにより、不純物を極めて少なくすることができる。
【0003】
しかし使用される光がさらに短波長側に移行し、しかも高エネルギー密度のKrF(波長:248nm)やArF(波長:193nm)のエキシマレーザ光が適用されるようになると、この合成石英ガラスもダメージを受けるようになり、透過率の低下を生じて耐用時間が短くなってくる。これは、ガラスを構成している珪素と酸素の結合が、切断されたり切断後他の位置に再結合したりして、ガラス構造そのものが損傷を受けるためで、その結果、E’センターやNBOHC(Non-Bridge Oxygen Hole Center)と呼ばれる各欠陥に基づく新たな吸収帯を発生したり、局所的な密度変化による屈折率の変化などを生じるからである。
【0004】
このような、電離作用の強い短波長の光による石英ガラスの反復使用時間経過にともなう透過率劣化の対策として、従来、OH基濃度を高め水素を含有させる方法が考えられてきた。OH基は多すぎると石英ガラスの耐熱性を悪くするが、適量の含有は、紫外線エキシマレーザ光照射による石英ガラス構造の損傷を修復する作用があり、透過率低下の抑止に有効であることが認められている。水素の含有もこの透過率低下抑止に効果的であり、OH基濃度の制御と併用し活用される。これらの作用は、紫外線照射により石英ガラス構造が切断された場所に結合して、OH基を形成することによるとも考えられる。
【0005】
上記のOH基濃度を高めたり水素を多く含有させる方法は、本質的には石英ガラスに内在する不安定構造を補完する手段であると推測される。これに対し、合成石英ガラスなどに多く含まれる、不安定な3員環構造や4員環構造を安定な6員環構造に変え、紫外線照射による劣化の耐性を高めようとする方法も提案されている。
【0006】
たとえば、特公平8-712号公報に開示された発明では、軟化点の1600℃以上の温度で500kgf/cm2以上の圧力を印加して、不安定なガラス構造を低減し、耐レーザ性を向上させる。さらに特開平5-43267号公報には、OH基濃度を制限し水素を含有させた合成石英ガラスにて、1000kgf/cm2以上の高圧下、1600℃以上に加熱する処理の発明が提示されている。これら2つの発明は、いずれも該ガラス体のラマンスペクトルの800cm-1の散乱ピーク強度に対する、495cm-1の散乱ピーク強度および606cm-1の散乱ピーク強度の比の低下を、不安定なガラス構造低減の指標としている。
【0007】
また、特開平9-241030号公報には、酸素含有雰囲気または水素含有雰囲気中で加熱し、酸素過剰型欠陥や酸素欠損型欠陥の濃度を低減させるとともに石英ガラスの仮想温度を500〜1000℃に下げ、紫外線照射の耐性を高めた石英ガラスおよびその製造方法の発明が開示されている。
【0008】
仮想温度とはガラスの履歴を示す指標である。ガラス構造は温度により変化し、そのおかれた温度においてそれぞれの安定な状態になろうとするが、冷却後にもその状態における構造が残存してくる。このガラスの構造をレーザラマンスペクトル法などで調査すると、その構造に対応すると考えられる温度が推定できるので、これを仮想温度とする。仮想温度は、石英ガラスの室温での密度、熱膨張率、屈折率などの性質に関係していることが知られており、ガラスの不安定構造と関連があると考えられる。
【0009】
このように、短波長の紫外線照射による劣化の耐性を高めるために、いくつかの手段が提案されており、それによって耐性の向上がもたらされている。しかしながらこれらの手段の適用は、場合によっては性能の向上が不十分であったり、その製造方法に多大のコストや時間を要するなどの難点を有している。
【0010】
また、回路パターンの微細化に伴い、0.2μmを切るような微細な線幅構造の描像が必要となるが、このような描像を、例えばウェーハ面全面に正確におこなわせるには、石英ガラス面内における屈折率の変動幅をできるだけ小さくしなければならない。この屈折率変動幅に対しても必ずしも十分対処できているとは言い難い。
【0011】
【発明が解決しようとする課題】
本発明の目的は、KrFやArFなどの紫外線エキシマレーザ光の照射による光透過率の劣化が小さく、かつ屈折率変動幅Δnの小さい石英ガラスとその製造方法の提供にある。
【0012】
【課題を解決するための手段】
本発明者は、短波長高エネルギの紫外線レーザ光使用機器に適用して、劣化の少ない石英ガラスを開発すべく種々調査を進める過程で、次のような傾向を見出した。
【0013】
石英ガラスのラマンスペクトル分光法での、波数800cm-1における散乱ピークは、Si−O結合の基本振動の一つであるSi−O−Si間の曲げ振動に由来すると考えられている。このピークを詳細に調べると、図1にその一例を示すように、790cm-1と820cm-1との2つのピークが重なったものであることがわかった。製造条件の種々異なる石英ガラスについて、この波数800cm-1のピークを2つに分け、それぞれのピーク高さを調べてみると、これら2つのピークは石英ガラスによってそれぞれ高さが異なっていた。そして、790cm-1のピーク高さが820cm-1のピーク高さと同じかより低いガラスは、紫外線レーザ光照射による劣化が小さい傾向を示していることがわかった。
【0014】
そこで、この波数800cm-1の散乱ピークから求まる、790cm-1または820cm-1のピーク高さないしはピーク強度を、それぞれI790またはI820とし、この2つの強度比「I790/I820」をRとしたときの、Rの値とレーザ光照射による劣化との関係をみてみると、Rが1以下のガラスではとくに劣化の耐性がすぐれていた。この知見から、次に安定してRが1以下となる石英ガラスの製造条件の検討をおこなった。その結果、石英ガラスが容易に変形する高温域で加工を加え、その後ゆっくり冷却することにより、安定してRを1以下にできることがわかった。
【0015】
この変形を施す加工の方法についてさらに調べてみると、冷却を開始する直前の加工を、得られた石英ガラスで紫外線が透過する方向と同じ方向の圧縮とすれば、石英ガラス面内の屈折率の変動幅Δnが極めて小さくなることが見出された。圧縮加工と、加工後の徐冷を組み合わせることによって、紫外線照射による劣化の耐性がより向上するばかりでなく、屈折率の変動幅Δnも低減でき、石英ガラスが均質化されることが明らかになったのである。
【0016】
ラマンスペクトル分光法での波数790cm-1と820cm-1との2つの散乱ピークは、具体的に何に起因しているのかはよくは分からない。しかし、この800cm-1近傍のピークはSi−O間の結合状態に由来するものであり、Rが1以下となることによって、紫外線照射による劣化の起こり難いより安定なガラス構造になったものと推測される。
【0017】
ガラス構造を安定化させるということは、一般的には仮想温度を低下させることにあると考えられる。しかしながら仮想温度の低下には、目標とする温度に長時間保持しなければならず、実施は必ずしも容易ではない。これに対しRを1以下にするという構造の安定化に対しては、加工変形後徐冷するという手段が効果的であり、加工による歪みがその後の徐冷過程における構造の安定化を促進させたのではないかと思われる。
【0018】
Δnの低減については次のように考えられる。一定の厚さおよび面積を持つ石英ガラス材を切り出す場合、素材が光の透過方向に圧縮されると、当初あった屈折率nの極大部分と極小部分との間の勾配が減少するので、得られたガラス材の屈折率の変動幅Δnは低減される傾向にある。これに、加工と徐冷によるガラス構造の安定化が加わったため、光の透過する面内における不均質も減少され、より一層Δnが小さくなったのであろう。
【0019】
以上のような結果に基づき、さらにそれぞれの限界を確かめて本発明を完成させた。本発明の要旨は次のとおりである。
(1) ラマンスペクトルの820cm-1における散乱ピーク強度をI820、790cm-1におけるそれをI790とするとき、I790/I820の比Rの値が1以下であることを特徴とする紫外線用石英ガラス。
(2) 屈折率の変動幅Δnが5×10-7以下であることを特徴とする請求項1に記載の紫外線用石英ガラス。
(3) 石英ガラス体を、1500℃以上の温度にて、使用時主に光を通過させる方向と平行に成形比が1.2〜10の圧縮加工をおこなった後、1000℃までの冷却速度を50℃/h以下として冷却することを特徴とする上記(1)または(2)の紫外線用石英ガラス。
【0020】
【発明の実施の形態】
本発明の石英ガラスは、ラマンスペクトルの800cm-1近傍の散乱ピークを構成する790cm-1と820cm-1cmとのピーク強度をそれぞれI790またはI820とするとき、I790/I820=Rで示される強度比Rが1以下であることとする。これはRが1を超えるときは、レーザ光照射による劣化が大きいからである。
【0021】
800cm-1近傍の散乱ピークを2つのピークに分離するには、分光装置付属のピーク分離機能を用いて実施すればよく、2つのガウシアンピークにより元のラマンピークが再現できるようにする。その分離したそれぞれのピーク高さから強度比Rを求める。さらに必要なら散乱ピークの形状を詳細に描かせ、この曲線からフーリエ解析をおこなって分離すればよい。
【0022】
本発明のもう一つの石英ガラスは、上記のR≦1であることに加えて屈折率の場所による変動幅、すなわち被測定面における最大と最小の屈折率の差Δnが5×10-7以下のものである。従来の紫外線用合成石英ガラスではΔnが5×10-6程度であり、高精細度の描像を狙いとして短波長の紫外光を用いても、その効果が十分発揮されないことがある。これに対し、屈折率の変動幅Δnが5×10-7以下であれば、微細な線幅に対しても十分鮮鋭な像を得ることができる。
【0023】
屈折率の分布の測定は、たとえばフィゾー型光干渉計を用い、オイルオンプレート法により、被測定面の面内における最大屈折率と最小屈折率の差Δnを求める。
【0024】
本発明の石英ガラスは、不純物の含有が少なく、特定波長の光の吸収がないことから、高純度の合成石英ガラスを用いるのがよい。また、紫外線照射に対する耐性向上などを目的として、OH基濃度や水素含有量を適宜制御することは好ましく、それによって本発明の効果が損なわれることはない。その製造方法は、素材の透明化した石英ガラス体を、1500℃以上の温度に加熱して、使用時に主に光を通過させる方向と平行に成形比が1.2〜10の圧縮加工をおこなった後、1000℃以下の温度まで50℃/h以下の冷却速度で徐冷する。
【0025】
素材石英ガラスは形状を整えるために種々の方向に加工変形させることや、密度向上のためのHIP処理など、途中の過程で適宜加工するのはかまわないが、冷却開始前の最終の加工は、1500℃以上の温度で、かつ主に光を通過させる方向に平行な圧縮加工が最大歪みの方向である必要がある。これによって紫外線照射による劣化に対しすぐれた耐性が得られるとともに、屈折率の変動幅Δnを小さくできるからである。
【0026】
この冷却開始前の最終の圧縮加工の成形比を1.2〜10とするのは、1.2未満では効果が不十分であったり、変形が内部に及ばず表面に集中するなど不均一になるおそれがあるからであり、10を超えると材料の座屈など、加工が困難になるからである。なお、この成形比とは、JIS-G-0701に規定される鍛錬成形比と同じで、最大歪みの方向の変形比、すなわち圧縮後の長さに対する圧縮前の長さの比である。
【0027】
この圧縮加工の温度は1500℃以上とするのは、1500℃未満では変形抵抗が大きく十分な加工ができないことがあるからであり、高すぎると流動状態に近づき、取り扱い困難となるので、高くても1800℃までとするのが望ましい。
【0028】
加工後、50℃/h以下の冷却速度で1000℃以下の温度にまで冷却する。このとき、少なくとも1000℃までは50℃/h以下の冷却速度とする。これを超えて速く冷却すると、Rの値が1を超え、Δnが目標とする値以下に低下しなくなるからである。この冷却速度は遅いほど効果があるが、ある程度以上遅くしてもその効果は飽和し、作業性も低下してくるので、5℃/h程度までに止めるのがよい。
【0029】
1000℃を下回った温度範囲での冷却速度にはとくには制約はなく、ゆっくり温度を低下させても、RやΔnを低下させる効果は小さくなる。冷却速度を遅く制御するのは低くても800℃まででよい。
【0030】
【実施例】
高純度の四塩化珪素を原料とし、酸素水素炎中1800℃で加水分解反応により石英合成し、多孔質合成石英ガラス体(スート体)を作製した。このスート体を20Paのヘリウム雰囲気下1350℃で10時間保持して焼結処理を施した後、0.5Paのヘリウム雰囲気にて1550℃に加熱して透明化処理し、直径150mmの円柱状石英ガラス体とした。この石英ガラス体を分析した結果、質量比にて金属不純物の含有量はいずれも1ppb以下で、Cl含有量は1ppm以下、OH基は20ppmであった。
【0031】
得られた石英ガラス体を10Paの窒素雰囲気中で、表1に示す種々の温度に加熱し、いずれも円柱の中心軸方向に圧縮変形させ、直径250mmの石英ガラスインゴットとした。この場合、成形比は2.8である。圧縮変形後表1に示す冷却速度にて800℃まで、冷却し、その後室温まで大気中にて放冷冷却した。
【0032】
【表1】

Figure 0004485031
【0033】
これらインゴットから直径220mm、厚さ20mmの円盤を切り出し、He−Neレーザを光源とするフィゾー光干渉計を用い、オイルオンプレート法にて屈折率の分布を測定し最大値と最小値の差Δnを求めた。また同じインゴットから、円柱の中心軸方向と平行に長さ50mmで20mm角の試片を切り出し、長さ方向に対向する面をRa5μm以下の鏡面に研磨して、ラマンスペクトル測定および紫外線照射による透過率劣化の測定をおこなった。
【0034】
790またはI820は、ラマンスペクトル分光装置(日本分光社製、NR-2100)にて測定した800cm-1近傍の散乱ピーク曲線からピーク分離をおこなって求めた。紫外線照射による透過率劣化は、1ショット400mJ/cm2のKrFエキシマレーザを5×105ショット照射し、照射前後の紫外線透過率を真空紫外分光計(日本分光社製、VUV-200)にて測定して求めた。
【0035】
比較のため透明化処理されたままの状態の石英ガラス体から試験片を切り出し、屈折率分布、ラマンスペクトルおよび紫外線照射による透過率劣化を測定した。この場合、屈折率分布の測定は、石英ガラス体の直径130mmの範囲としたが、他はすべて上記インゴットと同じ方法にて測定した。これらの測定結果を併せて表1に示す。
【0036】
表1の試番1〜10と試番11〜17との比較から明らかなように、I790/I820の比Rの値が1.0を下回る場合、いずれも紫外線エキシマレーザ照射による劣化が小さい。また、これらRの値が1.0を下回る試料では、いずれも屈折率の変動幅Δnが5×10-7以下となっており、均質性にすぐれていることがわかる。
【0037】
また、このようなRの値が1.0を下回る石英ガラス、あるいはΔnが小さい石英ガラスは、加圧縮加工とその後の徐冷によって得られることも明らかである。
【0038】
【発明の効果】
本発明に関わる紫外線用石英ガラスは、KrFやArFエキシマレーザ等からの高出力の短波長紫外線照射による透過率劣化に対して、すぐれた耐久性を有し、かつ石英ガラス内での屈折率の変動が小さい。この石英ガラスは、とくに使用光の波長が短波長かつ高出力化しつつある超LSI用光リソグラフィーの光学系等に効果的に活用できる。
【図面の簡単な説明】
【図1】波数800cm-1におけるラマンスペクトルの散乱ピークとそれをピーク分離した例を示す。[0001]
[Technical field to which the invention belongs]
The present invention relates to a quartz glass for ultraviolet rays used in an optical device using high-power laser light in the ultraviolet region, such as excimer laser light, and a method for producing the same.
[0002]
[Prior art]
In recent years, with miniaturization and higher density of semiconductor elements, ultra-miniaturization of circuit patterns on wafers has progressed, and light in the vacuum ultraviolet region, which has a shorter wavelength than ultraviolet light, is used as a light beam used in photolithography. It has become. Conventionally, quartz glass having excellent light transmittance in this wavelength range has been applied as an optical material such as a lens, prism, window, etalon plate, or LSI manufacturing lithography mask for ultraviolet light. However, if the silica glass contains a large amount of impurities, it absorbs at a specific wavelength or emits fluorescence. Therefore, high purity synthetic silica glass is used particularly when transparency is required. In synthetic quartz glass, impurities can be extremely reduced by hydrolyzing high-purity siliconide with an oxyhydrogen flame to form SiO 2 .
[0003]
However, if the light used further shifts to the shorter wavelength side and high-energy density KrF (wavelength: 248 nm) or ArF (wavelength: 193 nm) excimer laser light is applied, this synthetic quartz glass will also be damaged. As a result, the transmittance decreases and the service life is shortened. This is because the bond between silicon and oxygen constituting the glass is cut or recombined at other positions after cutting, and the glass structure itself is damaged. As a result, the E 'center and NBOHC This is because a new absorption band based on each defect called (Non-Bridge Oxygen Hole Center) is generated, or a refractive index change is caused by a local density change.
[0004]
As a countermeasure against the deterioration of transmittance with the passage of repeated use time of quartz glass due to such short-wavelength light having a strong ionization effect, a method of increasing the OH group concentration and containing hydrogen has been conventionally considered. If too many OH groups are used, the heat resistance of the quartz glass is deteriorated. However, the inclusion of an appropriate amount has the effect of repairing the damage of the quartz glass structure caused by the irradiation of the ultraviolet excimer laser beam, and is effective in suppressing the decrease in transmittance. It recognized. The inclusion of hydrogen is also effective in suppressing this decrease in transmittance, and is used in combination with the control of the OH group concentration. These effects are also considered to be due to bonding to the location where the quartz glass structure is cut by ultraviolet irradiation to form OH groups.
[0005]
It is presumed that the above-described method of increasing the OH group concentration or containing a large amount of hydrogen is essentially a means for complementing the unstable structure inherent in quartz glass. On the other hand, a method for increasing the resistance to deterioration by ultraviolet irradiation by changing an unstable three-membered ring structure or four-membered ring structure, which is often contained in synthetic quartz glass, to a stable six-membered ring structure has been proposed. ing.
[0006]
For example, in the invention disclosed in Japanese Patent Publication No. 8-712, a pressure of 500 kgf / cm 2 or more is applied at a temperature of 1600 ° C. or higher of the softening point to reduce unstable glass structure and to improve laser resistance. Improve. Further, Japanese Patent Laid-Open No. 5-43267 presents an invention of a process of heating to 1600 ° C. or higher under a high pressure of 1000 kgf / cm 2 or higher in a synthetic quartz glass containing hydrogen with a limited OH group concentration. Yes. These two invention, for the scattering peak intensity of 800 cm -1 in the Raman spectra of both the glass body, the reduction of the ratio of the scattering peak intensity of scattering peak intensity and 606 cm -1 of 495cm -1, unstable glass structure It is an indicator of reduction.
[0007]
JP-A-9-241030 discloses heating in an oxygen-containing atmosphere or hydrogen-containing atmosphere to reduce the concentration of oxygen-rich defects and oxygen-deficient defects, and to reduce the fictive temperature of quartz glass to 500-1000 ° C. An invention of quartz glass and a method for producing the same is disclosed.
[0008]
The virtual temperature is an index indicating the history of glass. The glass structure changes depending on the temperature, and tries to be in a stable state at the set temperature. However, the structure in that state remains after cooling. When the structure of the glass is investigated by a laser Raman spectrum method or the like, a temperature considered to correspond to the structure can be estimated, and this is assumed to be a virtual temperature. The fictive temperature is known to be related to properties of quartz glass such as density at room temperature, coefficient of thermal expansion, and refractive index, and is considered to be related to the unstable structure of glass.
[0009]
As described above, several means have been proposed in order to increase the resistance to deterioration due to the irradiation of short-wavelength ultraviolet rays, thereby improving the resistance. However, application of these means has problems such as insufficient performance improvement in some cases and a great cost and time required for the manufacturing method.
[0010]
In addition, with the miniaturization of circuit patterns, it is necessary to depict a fine line width structure of less than 0.2 μm. To accurately perform such an image on the entire wafer surface, for example, the quartz glass surface The refractive index fluctuation range must be as small as possible. It is difficult to say that the refractive index fluctuation range can be dealt with sufficiently.
[0011]
[Problems to be solved by the invention]
An object of the present invention is to provide quartz glass having a small deterioration in light transmittance due to irradiation with ultraviolet excimer laser light such as KrF or ArF and a small refractive index variation width Δn, and a method for producing the same.
[0012]
[Means for Solving the Problems]
The present inventor has found the following tendencies in the course of conducting various investigations to develop quartz glass with little deterioration by applying it to equipment using ultraviolet light having a short wavelength and high energy.
[0013]
It is considered that the scattering peak at a wave number of 800 cm −1 in the Raman spectrum spectroscopy of quartz glass is derived from the bending vibration between Si—O—Si, which is one of the fundamental vibrations of the Si—O bond. When this peak was examined in detail, it was found that two peaks of 790 cm −1 and 820 cm −1 overlap as shown in FIG. For quartz glass with different production conditions, the peak at a wave number of 800 cm −1 was divided into two and the peak heights were examined. The two peaks had different heights depending on the quartz glass. The peak height of 790 cm -1 glass less than or equal to the peak height of 820 cm -1 has been found to deteriorate due to ultraviolet laser light irradiation shows little tendency.
[0014]
Therefore, obtained from the scattering peak of wavenumber 800 cm -1, the peak heights or peak intensities of 790 cm -1 or 820 cm -1, respectively as I 790 or I 820, the two intensity ratio "I 790 / I 820" Looking at the relationship between the value of R and the deterioration due to laser light irradiation when R is used, the glass with R of 1 or less was particularly excellent in resistance to deterioration. From this knowledge, next, the production conditions of quartz glass where R was stably 1 or less were examined. As a result, it was found that R can be stably reduced to 1 or less by applying processing in a high temperature range where quartz glass is easily deformed and then slowly cooling it.
[0015]
Looking further into the processing method for applying this deformation, if the processing immediately before the start of cooling is compression in the same direction as the direction in which the obtained quartz glass transmits ultraviolet rays, the refractive index within the quartz glass surface It has been found that the fluctuation range Δn of is extremely small. Combining compression processing and slow cooling after processing not only improves resistance to deterioration due to ultraviolet irradiation, but also reduces the refractive index fluctuation range Δn, which makes it clear that quartz glass is homogenized. It was.
[0016]
Two scattering peaks in the wave number 790 cm -1 and 820 cm -1 in Raman spectroscopy is what is specifically due to what may not know. However, the peak in the vicinity of 800 cm −1 is derived from the bonding state between Si—O, and when R is 1 or less, the glass has a more stable glass structure that is hardly deteriorated by ultraviolet irradiation. Guessed.
[0017]
Stabilizing the glass structure is generally considered to lower the fictive temperature. However, in order to lower the virtual temperature, the target temperature must be maintained for a long time, and implementation is not always easy. On the other hand, for stabilization of the structure in which R is 1 or less, a means of slow cooling after deformation is effective, and distortion due to processing promotes stabilization of the structure in the subsequent slow cooling process. I think it was.
[0018]
The reduction of Δn can be considered as follows. When a quartz glass material having a certain thickness and area is cut out, if the material is compressed in the light transmission direction, the gradient between the maximum portion and the minimum portion of the original refractive index n is reduced. The fluctuation range Δn of the refractive index of the obtained glass material tends to be reduced. In addition to this, stabilization of the glass structure by processing and slow cooling added, so the inhomogeneity in the plane through which light passes was also reduced, and Δn would be even smaller.
[0019]
Based on the above results, the present invention was completed by further confirming the respective limitations. The gist of the present invention is as follows.
(1) An ultraviolet ray having a ratio R of I 790 / I 820 of 1 or less, where the scattering peak intensity at 820 cm −1 of the Raman spectrum is I 820 and that at 790 cm −1 is I 790 Quartz glass.
(2) The quartz glass for ultraviolet rays according to claim 1, wherein the refractive index fluctuation range Δn is 5 × 10 −7 or less.
(3) After the quartz glass body is compressed at a temperature of 1500 ° C or higher and the molding ratio is 1.2 to 10 in parallel with the direction of light mainly passing in use, the cooling rate to 1000 ° C is 50 The quartz glass for ultraviolet rays according to the above (1) or (2), wherein the quartz glass is cooled at a temperature of ° C / h or lower.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Silica glass of the present invention, when the peak intensity of 790 cm -1 and 820 cm -1 cm constituting the scattering peak of 800 cm -1 vicinity of the Raman spectrum and I 790 or I 820, respectively, I 790 / I 820 = R The intensity ratio R indicated by is assumed to be 1 or less. This is because when R exceeds 1, deterioration due to laser beam irradiation is large.
[0021]
In order to separate the scattering peak in the vicinity of 800 cm −1 into two peaks, the peak separation function attached to the spectroscope may be used so that the original Raman peak can be reproduced by the two Gaussian peaks. The intensity ratio R is obtained from the separated peak heights. Further, if necessary, the shape of the scattering peak can be drawn in detail, and Fourier analysis can be performed from this curve to separate them.
[0022]
In another quartz glass of the present invention, in addition to the above R ≦ 1, the fluctuation range depending on the location of the refractive index, that is, the difference Δn between the maximum and minimum refractive indexes on the surface to be measured is 5 × 10 −7 or less. belongs to. In conventional synthetic quartz glass for ultraviolet rays, Δn is about 5 × 10 −6 , and even if short-wavelength ultraviolet light is used for high-definition imaging, the effect may not be sufficiently exhibited. On the other hand, if the variation width Δn of the refractive index is 5 × 10 −7 or less, a sufficiently sharp image can be obtained even for a fine line width.
[0023]
The refractive index distribution is measured by, for example, using a Fizeau optical interferometer and obtaining the difference Δn between the maximum refractive index and the minimum refractive index within the surface of the surface to be measured by an oil-on-plate method.
[0024]
Since the quartz glass of the present invention contains little impurities and does not absorb light of a specific wavelength, it is preferable to use a high-purity synthetic quartz glass. Moreover, it is preferable to appropriately control the OH group concentration and the hydrogen content for the purpose of improving resistance to ultraviolet irradiation, and the effect of the present invention is not impaired thereby. The manufacturing method is that after heating the transparent quartz glass body of the material to a temperature of 1500 ° C. or higher and performing compression processing with a molding ratio of 1.2 to 10 in parallel with the direction in which light mainly passes during use. Then, it is gradually cooled to a temperature of 1000 ° C. or lower at a cooling rate of 50 ° C./h or lower.
[0025]
The material quartz glass may be processed and deformed in various directions to adjust the shape, or may be appropriately processed in the middle of the process, such as HIP processing for improving density, but the final processing before the start of cooling is It is necessary that the compression processing at a temperature of 1500 ° C. or more and mainly parallel to the direction in which light passes is the direction of maximum strain. This is because excellent resistance to deterioration due to ultraviolet irradiation can be obtained, and the refractive index fluctuation range Δn can be reduced.
[0026]
The final compression ratio before the start of cooling is set to a molding ratio of 1.2 to 10 if the ratio is less than 1.2, the effect may be insufficient, or the deformation may not reach the inside and concentrate on the surface. This is because if it exceeds 10, processing such as buckling of the material becomes difficult. This molding ratio is the same as the forging molding ratio defined in JIS-G-0701, and is the deformation ratio in the direction of maximum strain, that is, the ratio of the length before compression to the length after compression.
[0027]
The temperature of this compression processing is set to 1500 ° C or higher because if it is less than 1500 ° C, the deformation resistance is high and sufficient processing may not be possible. It is desirable that the temperature is up to 1800 ° C.
[0028]
After processing, it is cooled to a temperature of 1000 ° C. or less at a cooling rate of 50 ° C./h or less. At this time, the cooling rate is 50 ° C./h or less up to at least 1000 ° C. This is because if the cooling is performed faster than this, the value of R exceeds 1, and Δn does not decrease below the target value. The slower the cooling rate, the more effective, but even if it is slowed to some extent, the effect is saturated and the workability is lowered, so it is better to stop it at about 5 ° C./h.
[0029]
There is no particular restriction on the cooling rate in the temperature range below 1000 ° C. Even if the temperature is lowered slowly, the effect of reducing R and Δn is reduced. The low cooling rate may be controlled up to 800 ° C at the lowest.
[0030]
【Example】
Using high-purity silicon tetrachloride as a raw material, quartz was synthesized by hydrolysis at 1800 ° C in an oxygen-hydrogen flame to produce a porous synthetic quartz glass body (soot body). This soot body was sintered at 1350 ° C. for 10 hours in a 20 Pa helium atmosphere, then transparentized by heating to 1550 ° C. in a 0.5 Pa helium atmosphere, and a cylindrical quartz glass with a diameter of 150 mm The body. As a result of analyzing this quartz glass body, the content of metal impurities was 1 ppb or less in terms of mass ratio, the Cl content was 1 ppm or less, and the OH group was 20 ppm.
[0031]
The obtained quartz glass body was heated to various temperatures shown in Table 1 in a nitrogen atmosphere of 10 Pa, and all were compressed and deformed in the direction of the central axis of the cylinder to obtain a quartz glass ingot having a diameter of 250 mm. In this case, the molding ratio is 2.8. After compression deformation, it was cooled to 800 ° C. at the cooling rate shown in Table 1, and then allowed to cool to room temperature in the air.
[0032]
[Table 1]
Figure 0004485031
[0033]
A disk having a diameter of 220 mm and a thickness of 20 mm is cut out from these ingots, and a refractive index distribution is measured by an oil-on-plate method using a Fizeau interferometer using a He-Ne laser as a light source. The difference Δn between the maximum value and the minimum value Δn Asked. Also, from the same ingot, cut a 20mm square specimen with a length of 50mm parallel to the central axis direction of the cylinder, polished the surface facing the length direction to a mirror surface of Ra5μm or less, and transmitted by Raman spectrum measurement and ultraviolet irradiation. The rate degradation was measured.
[0034]
I 790 or I 820 was obtained by performing peak separation from a scattering peak curve in the vicinity of 800 cm −1 measured with a Raman spectrum spectrometer (manufactured by JASCO Corporation, NR-2100). Transmittance degradation due to UV irradiation is as follows: 1 shot 400mJ / cm 2 KrF excimer laser is irradiated with 5 × 10 5 shots, and UV transmittance before and after irradiation is measured with a vacuum ultraviolet spectrometer (manufactured by JASCO Corporation, VUV-200). Determined by measurement.
[0035]
For comparison, a test piece was cut out from a quartz glass body that had been transparentized, and refractive index distribution, Raman spectrum, and transmittance deterioration due to ultraviolet irradiation were measured. In this case, the refractive index distribution was measured in the range of 130 mm in diameter of the quartz glass body, but all other measurements were performed by the same method as the above ingot. These measurement results are shown together in Table 1.
[0036]
As is clear from the comparison between the trial numbers 1 to 10 and the trial numbers 11 to 17 in Table 1, when the ratio R of I 790 / I 820 is less than 1.0, the deterioration due to the irradiation with the ultraviolet excimer laser is small. Further, in all the samples in which the value of R is less than 1.0, the refractive index fluctuation range Δn is 5 × 10 −7 or less, indicating that the sample has excellent homogeneity.
[0037]
It is also clear that such quartz glass having an R value of less than 1.0, or quartz glass having a small Δn can be obtained by compressing and subsequent slow cooling.
[0038]
【The invention's effect】
The quartz glass for ultraviolet rays according to the present invention has excellent durability against transmittance deterioration due to irradiation with high-power short-wavelength ultraviolet rays from KrF, ArF excimer laser, etc., and has a refractive index within the quartz glass. Small fluctuation. This quartz glass can be effectively used particularly for optical systems for optical lithography for VLSI, where the wavelength of light used is shorter and the output is becoming higher.
[Brief description of the drawings]
FIG. 1 shows an example of a Raman spectrum scattering peak at a wave number of 800 cm −1 and a peak separation thereof.

Claims (3)

ラマンスペクトルの820cm-1における散乱ピーク強度をI820、790cm-1におけるそれをI790とするとき、I790/I820の比Rの値が1以下であることを特徴とする紫外線用石英ガラス。The quartz glass for ultraviolet rays, wherein the value of the ratio R of I 790 / I 820 is 1 or less, where the scattering peak intensity at 820 cm −1 of the Raman spectrum is I 820 and that at 790 cm −1 is I 790 . 屈折率の変動幅Δnが5×10-7以下であることを特徴とする請求項1に記載の紫外線用石英ガラス。The quartz glass for ultraviolet rays according to claim 1, wherein the refractive index fluctuation range Δn is 5 × 10 −7 or less. 石英ガラス体を、1500℃以上の温度にて、使用時主に光を通過させる方向と平行に成形比が1.2〜10の圧縮加工をおこなった後、1000℃までの冷却速度を50℃/h以下として冷却することを特徴とする請求項1または2に記載の紫外線用石英ガラスの製造方法。After the quartz glass body is compressed at a temperature of 1500 ° C or higher and the molding ratio is 1.2 to 10 in parallel with the direction of light mainly passing through, the cooling rate to 1000 ° C is 50 ° C / h. It cools as follows, The manufacturing method of the quartz glass for ultraviolet rays of Claim 1 or 2 characterized by the above-mentioned.
JP2000239312A 2000-08-08 2000-08-08 Quartz glass for ultraviolet rays and method for producing the same Expired - Lifetime JP4485031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000239312A JP4485031B2 (en) 2000-08-08 2000-08-08 Quartz glass for ultraviolet rays and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000239312A JP4485031B2 (en) 2000-08-08 2000-08-08 Quartz glass for ultraviolet rays and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002053338A JP2002053338A (en) 2002-02-19
JP4485031B2 true JP4485031B2 (en) 2010-06-16

Family

ID=18730870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000239312A Expired - Lifetime JP4485031B2 (en) 2000-08-08 2000-08-08 Quartz glass for ultraviolet rays and method for producing the same

Country Status (1)

Country Link
JP (1) JP4485031B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4835998B2 (en) * 2004-07-02 2011-12-14 株式会社ニコン Method of forming quartz glass
DE102005017739B4 (en) * 2005-04-15 2009-11-05 Heraeus Quarzglas Gmbh & Co. Kg Quartz glass holder for the processing of semiconductor wafers and method for the production of the holder
JP4760137B2 (en) * 2005-05-27 2011-08-31 株式会社ニコン Method of forming quartz glass
JP6073742B2 (en) * 2013-05-10 2017-02-01 信越石英株式会社 Molding method of synthetic quartz glass

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007349A (en) * 1998-06-18 2000-01-11 Asahi Glass Co Ltd Synthetic silica glass optical member and its production

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3203644B2 (en) * 1990-04-19 2001-08-27 東ソー株式会社 Method for producing highly homogeneous silica glass
JP2782131B2 (en) * 1990-11-26 1998-07-30 信越石英株式会社 Optical member made of transparent synthetic silica glass, method for manufacturing the optical member, and apparatus using the optical member
JPH08713B2 (en) * 1991-03-30 1996-01-10 信越石英株式会社 Optical body using silica glass
JP3965734B2 (en) * 1997-09-11 2007-08-29 株式会社ニコン Quartz glass and method for producing the same
JPH1164223A (en) * 1997-08-25 1999-03-05 Nikon Corp Method for measuring oh radical concentration of quartz glass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007349A (en) * 1998-06-18 2000-01-11 Asahi Glass Co Ltd Synthetic silica glass optical member and its production

Also Published As

Publication number Publication date
JP2002053338A (en) 2002-02-19

Similar Documents

Publication Publication Date Title
US5086352A (en) Optical members and blanks or synthetic silica glass and method for their production
US5325230A (en) Optical members and blanks of synthetic silica glass and method for their production
US6339033B2 (en) Silica glass having superior durability against excimer laser beams and method for manufacturing the same
US7312170B2 (en) Optical synthetic quartz glass and method for producing the same
EP1853971B1 (en) Mask blanks
JPH0653593B2 (en) Synthetic silica glass optical body and method for producing the same
JP4485031B2 (en) Quartz glass for ultraviolet rays and method for producing the same
JPH0627014B2 (en) Synthetic silica glass optical body for ultraviolet laser and manufacturing method thereof
JPH0627013B2 (en) Synthetic silica glass optical body for ultraviolet laser and manufacturing method thereof
JP2936138B2 (en) Quartz glass, optical member including the same, and method of manufacturing the same
JPH06166522A (en) Production of ultraviolet laser-resistant optical member
JP2000239040A (en) Quartz glass material for optical member for f2 excimer laser, and optical member
JP4191935B2 (en) Method for producing synthetic quartz glass member for excimer laser
JP4151109B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JPH03101282A (en) Optical system member for laser light
JP2001302274A (en) Quartz glass for ultraviolet light and method for producing the same
JP2002087833A (en) Optical quartz glass for uv and process for producing the same glass
JP4085490B2 (en) Synthetic quartz glass for optical members and manufacturing method thereof
JP2002012441A (en) Synthetic quartz glass and its manufacturing method
JP4174400B2 (en) Silica glass sorting method
JPH054830A (en) Production of optical silica glass
JP4093393B2 (en) Highly homogeneous synthetic quartz glass for vacuum ultraviolet light, method for producing the same, and mask substrate for vacuum ultraviolet light using the same
JP4177078B2 (en) Synthetic quartz glass material for optical components
JPWO2004065315A1 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP2023133894A (en) Optical member synthetic silica glass, method for manufacturing the same, and optical member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080616

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4485031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250