JP2002086360A - Thin-blade grinding wheel produced by electroformation - Google Patents

Thin-blade grinding wheel produced by electroformation

Info

Publication number
JP2002086360A
JP2002086360A JP2000275574A JP2000275574A JP2002086360A JP 2002086360 A JP2002086360 A JP 2002086360A JP 2000275574 A JP2000275574 A JP 2000275574A JP 2000275574 A JP2000275574 A JP 2000275574A JP 2002086360 A JP2002086360 A JP 2002086360A
Authority
JP
Japan
Prior art keywords
grindstone
main body
thin blade
electroformed thin
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000275574A
Other languages
Japanese (ja)
Inventor
Junji Hoshi
純二 星
Yoshitaka Ikeda
吉隆 池田
Masanori Torisaka
昌徳 鳥坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2000275574A priority Critical patent/JP2002086360A/en
Publication of JP2002086360A publication Critical patent/JP2002086360A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thin-blade grinding wheel produced by electroformation whereby chipping of a work to be ground and the grinding resistance are reduced. SOLUTION: The body 1 of a grinding wheel is configured so that super- abrasive grains 4 of diamond, cBN, etc., and a filler 5 consisting of SiC, h-BN, and/or ceramics having a lower hardness and finer particle size than other abrasive grains are arranged dispersedly in a metal-bound phase 3 consisting of Ni, Co, and/or alloy thereof, wherein Young's modulus of the body of grinding wheel should lie within the range of 0.5-1.85×1011 N/m2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば電子材料や
半導体製品等の被削材を高精度に切断加工するのに用い
られる電鋳薄刃砥石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroformed thin blade used for cutting a workpiece such as an electronic material or a semiconductor product with high precision.

【0002】[0002]

【従来の技術】従来、この種の電鋳薄刃砥石(ブレー
ド)の一例として、略薄板リング状の砥石本体を有する
電鋳薄刃砥石がある。この電鋳薄刃砥石において、砥石
本体は、NiやCo或いはそれらの合金等からなる金属
めっき相内にダイヤモンドやcBN等の超砥粒を分散し
て形成された厚さ数十μm〜数百μmの輪環薄板状をな
している。ここで、このような砥石本体のヤング率は通
常2.5〜3.5×1011N/m2の範囲内にある。こ
の電鋳薄刃砥石は、砥石本体の内周側領域(または外周
側領域)を保持されて軸線回りに回転駆動されること
で、外周側領域(または内周側領域)で被削材の切断加
工を行うものである。このような電鋳薄刃砥石は強度と
剛性に優れているために、極薄の砥石の製造が可能であ
り、超精密加工が要求される電子部品材料の切断加工や
溝入れ加工等に用いられる。
2. Description of the Related Art Conventionally, as an example of this type of electroformed thin blade grindstone (blade), there is an electroformed thin blade grindstone having a substantially thin ring-shaped grindstone main body. In this electroformed thin blade grindstone, the grindstone main body has a thickness of several tens μm to several hundred μm formed by dispersing superabrasive grains such as diamond and cBN in a metal plating phase made of Ni, Co or an alloy thereof. Ring-shaped thin plate shape. Here, the Young's modulus of such a grindstone main body is usually in the range of 2.5 to 3.5 × 10 11 N / m 2 . This electroformed thin blade grindstone cuts the work material in the outer peripheral region (or inner peripheral region) by being rotated around the axis while holding the inner peripheral region (or outer peripheral region) of the grindstone body. Processing is performed. Since such an electroformed thin blade grindstone has excellent strength and rigidity, it is possible to produce an extremely thin grindstone, and it is used for cutting or grooving of electronic component materials requiring ultra-precision machining. .

【0003】[0003]

【発明が解決しようとする課題】しかし、このような電
鋳薄刃砥石は、剛性が高過ぎるため、被削材を切断する
際の直進性は高いものの、被削材にチッピング(欠け)
を生じさせてしまうことがあった。このことは、特に水
晶発振子等に用いられる水晶等、硬い材質の被削材を切
断する際に顕著となる。また、より良好な切断加工を行
うためには、被削材を切断する際の研削抵抗を低減させ
ることが望ましい。
However, such an electroformed thin blade grindstone has too high rigidity, so that it has high straightness when cutting a work material, but chipping (chip) occurs in the work material.
In some cases. This is particularly noticeable when cutting a hard material such as a crystal used for a crystal oscillator or the like. In order to perform better cutting, it is desirable to reduce the grinding resistance when cutting the work material.

【0004】本発明は、このような事情に鑑みてなされ
たもので、被削材のチッピング及び研削抵抗を低減した
電鋳薄刃砥石を提供することを目的としている。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide an electroformed thin blade grindstone with reduced chipping and grinding resistance of a work material.

【0005】[0005]

【課題を解決するための手段】本発明にかかる電鋳薄刃
砥石は、超砥粒を金属結合相中に分散配置してなる砥石
本体を有し、該砥石本体のヤング率が、0.5〜1.8
5×1011N/m2の範囲内とされていることを特徴と
している。このように構成される電鋳薄刃砥石において
は、砥石本体のヤング率が従来の電鋳薄刃砥石よりも低
く設定されているので、高硬度の被削材の切断時に砥石
本体が大きな応力を受けても、弾性変形してこれを吸収
することができる。また、このように砥石本体のヤング
率が従来の電鋳薄刃砥石よりも低く設定されることで、
金属結合相の結合力が小さくなり、被削材の切断時に、
砥石本体において被削材の切断に作用する部分が摩耗し
やすく、電鋳薄刃砥石の自生発刃が促進される。ここ
で、砥石本体のヤング率が0.5×1011N/m2より
も低いと、被削材を切断する際の直進性が低下して、高
精度な切断を行うことができなくなり、また砥石本体の
摩耗が速まって寿命が短くなる。一方、砥石本体のヤン
グ率が1.85×1011N/m2よりも高いと、被削材
の切断時に応力を吸収することができなくなるので被削
材にチッピングを生じやすい。このため、砥石本体のヤ
ング率は0.5〜1.85×1011N/m2の範囲内と
される。
The electroformed thin blade grindstone according to the present invention has a grindstone main body in which superabrasive grains are dispersed in a metal binder phase, and the Young's modulus of the grindstone main body is 0.5. ~ 1.8
It is characterized by being in the range of 5 × 10 11 N / m 2 . In the electroformed thin blade grindstone configured as described above, since the Young's modulus of the grindstone main body is set lower than that of the conventional electroformed thin blade grindstone, the grindstone main body receives a large stress when cutting a hard material. However, it can be elastically deformed and absorbed. Also, by setting the Young's modulus of the grinding wheel body lower than that of the conventional electroformed thin blade grinding wheel,
The bonding strength of the metal bonding phase decreases, and when cutting the work material,
The portion of the grindstone body that acts to cut the workpiece is easily worn, and the spontaneous cutting of the electroformed thin blade grindstone is promoted. Here, when the Young's modulus of the grindstone body is lower than 0.5 × 10 11 N / m 2 , the straightness at the time of cutting the work material decreases, and it becomes impossible to perform high-precision cutting. In addition, the wear of the grindstone body is accelerated, and the life is shortened. On the other hand, when the Young's modulus of the grindstone main body is higher than 1.85 × 10 11 N / m 2 , stress cannot be absorbed when cutting the work material, so that the work material is likely to chip. For this reason, the Young's modulus of the grindstone main body is set in the range of 0.5 to 1.85 × 10 11 N / m 2 .

【0006】また、砥石本体の金属結合相のめっき硬度
がビッカース硬さで550よりも小さいと、被削材の切
断時に発生する切屑に対しての耐磨耗性がなく、砥石寿
命が極端に短くなる。一方、金属結合相のめっき硬度が
ビッカース硬さで700よりも大きいと、金属結合相の
伸びがなく、砥石本体が割れやすくなる。このため、砥
石本体の金属結合相のめっき硬度は、ビッカース硬さで
550〜700の範囲内とすることが好ましい。砥石本
体のヤング率を上記の範囲内に設定した電鋳薄刃砥石
は、例えば砥石本体を、超砥粒と、超砥粒よりも低硬度
かつ細かなフィラーを金属結合相中に分散配置した構成
とし、砥石本体を、超砥粒とフィラーとを1:2〜2:
1の体積割合で金属結合相中に分散配置して形成するこ
とによって得ることができる。このように、金属結合相
中に、超砥粒に加え、さらに超砥粒よりも低硬度のフィ
ラーが分散配置されていることで、砥石本体は全体とし
て金属結合相の結合力が小さくなる。また、このフィラ
ーは超砥粒よりも細かいので、このフィラーが分散配置
される砥石本体のじん性が高められることとなる。ここ
で、金属結合相中において、超砥粒に対するフィラーの
体積割合が1:2よりも大きいと、フィラーの作用が強
すぎて砥石本体のヤング率が0.5×1011N/m2
りも低くなってしまう。一方、超砥粒に対するフィラー
の体積割合が2:1よりも小さいと、フィラーの作用が
小さすぎて砥石本体のヤング率が1.85×1011N/
2よりも高くなってしまう。このため、砥石本体の金
属結合相中には、超砥粒とフィラーとを1:2〜2:1
の体積割合で分散配置することが好ましい。ここで、砥
石本体において、超砥粒及びフィラーの金属結合相に対
する配合比は、1:10〜3:7とされている。また、
フィラーとしては、電鋳薄刃砥石の寿命を確保する観点
から、フィラー自体の耐磨耗性が高いセラミックスのフ
ィラーを用いることが好ましい。このような電鋳薄刃砥
石の砥石本体は、例えば超砥粒とフィラーとが1:2〜
2:1の割合で分散されるめっき液中で、超砥粒とフィ
ラーとを、めっき液中に含まれる金属とともに析出させ
て形成することで、そのヤング率を0.5〜1.85×
1011N/m2の範囲内とすることができる。
[0006] When the plating hardness of the metal bonding phase of the grinding wheel main body is smaller than 550 in Vickers hardness, there is no abrasion resistance to chips generated when cutting the work material, and the life of the grinding wheel becomes extremely long. Be shorter. On the other hand, if the plating hardness of the metal bonding phase is greater than 700 in Vickers hardness, the metal bonding phase does not elongate, and the grindstone main body is easily broken. For this reason, it is preferable that the plating hardness of the metal binding phase of the grindstone main body be in the range of 550 to 700 in Vickers hardness. The electroformed thin blade whetstone in which the Young's modulus of the whetstone main body is set within the above range is, for example, a whetstone main body, a super-abrasive grain, and a configuration in which a filler having a lower hardness and finer than the super-abrasive grain is dispersed and arranged in a metal binding phase. And the grindstone body is made of super abrasive grains and filler in a ratio of 1: 2 to 2:
It can be obtained by dispersing and forming in a metal binding phase at a volume ratio of 1. As described above, in addition to the super-abrasive grains, the filler having a lower hardness than the super-abrasive grains is dispersed and arranged in the metal binder phase, so that the bonding force of the metal binder phase is reduced as a whole in the grindstone body. Further, since the filler is finer than the super-abrasive grains, the toughness of the grindstone main body on which the filler is dispersed is increased. Here, when the volume ratio of the filler to the superabrasive grains is more than 1: 2 in the metal bonding phase, the effect of the filler is too strong and the Young's modulus of the grindstone main body is more than 0.5 × 10 11 N / m 2 . Will also be lower. On the other hand, if the volume ratio of the filler to the superabrasive is less than 2: 1, the effect of the filler is too small, and the Young's modulus of the grindstone main body is 1.85 × 10 11 N /.
higher than m 2 . For this reason, the super-abrasive grains and the filler are 1: 2 to 2: 1 in the metal binder phase of the grindstone main body.
It is preferable to disperse and arrange at a volume ratio of. Here, in the grindstone main body, the mixing ratio of the superabrasive grains and the filler to the metal binding phase is 1:10 to 3: 7. Also,
As the filler, from the viewpoint of ensuring the life of the electroformed thin blade grindstone, it is preferable to use a ceramic filler having high wear resistance of the filler itself. The main body of such an electroformed thin blade grindstone has, for example, a superabrasive grain and a filler of 1: 2 to 2: 1.
The super-abrasive grains and the filler are precipitated together with the metal contained in the plating solution in a plating solution dispersed at a ratio of 2: 1 to form a Young's modulus of 0.5 to 1.85 ×
It can be in the range of 10 11 N / m 2 .

【0007】[0007]

【発明の実施の形態】以下より、本発明の一実施の形態
にかかる電鋳薄刃砥石について、図1を用いて説明す
る。図1は本実施形態にかかる電鋳薄刃砥石を示す部分
縦断面図、図2は本実施形態にかかる電鋳薄刃砥石の製
造装置を概略的に示す正断面図である。本実施の形態の
電鋳薄刃砥石1は、略薄板リング状の砥石本体2を有し
ている。この砥石本体2は、NiやCo或いはそれらの
合金等からなる金属結合相3内に、ダイヤモンドやcB
N等の超砥粒4と、SiCやh−BN等のセラミックス
のフィラー、その他超砥粒よりも低硬度かつ細かなフィ
ラー5とを分散配置して形成された厚さ数十μm〜数百
μmの輪環薄板状をなしており、全体が砥粒層とされて
いる。ここで、本実施の形態では、フィラー5として
は、電鋳薄刃砥石1の寿命を確保する観点から、フィラ
ー自体の耐磨耗性が高いセラミックスのフィラーを用い
ている。また、図1では、フィラー5をブロック状のも
のとして図示しているが、フィラー5の形状や大きさは
一例であって、例えば球型、もしくは繊維状であっても
よい。この砥石本体2は、超砥粒4と、超砥粒4よりも
低硬度かつ細かなフィラー5とを1:2〜2:1の割合
で金属結合相3中に分散配置することで形成されてお
り、そのヤング率が、0.5〜1.85×1011N/m
2の範囲内とされている。ここで、砥石本体において、
超砥粒及びフィラーの金属結合相に対する配合比は、
1:10〜3:7とされている。また、砥石本体2の金
属結合相3のめっき硬度は、ビッカース硬さで550〜
700の範囲内とされている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An electroformed thin blade grindstone according to an embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a partial longitudinal sectional view showing an electroformed thin blade grindstone according to the present embodiment, and FIG. 2 is a front cross sectional view schematically showing a manufacturing apparatus of the electroformed thin blade grindstone according to the present embodiment. The electroformed thin blade grindstone 1 of the present embodiment has a substantially thin ring-shaped grindstone main body 2. The whetstone main body 2 contains diamond or cB in a metal bonding phase 3 made of Ni, Co, or an alloy thereof.
A few tens μm to several hundreds of thickness formed by dispersing and dispersing superabrasive grains 4 such as N, ceramic fillers such as SiC and h-BN, and other fillers 5 having a lower hardness and finer than superabrasive grains. It has a ring-shaped thin plate shape of μm, and the whole is an abrasive layer. Here, in the present embodiment, from the viewpoint of securing the life of the electroformed thin blade grindstone 1, a ceramic filler having a high wear resistance of the filler itself is used as the filler 5. Although FIG. 1 shows the filler 5 as a block, the shape and size of the filler 5 are merely examples, and may be, for example, spherical or fibrous. This grindstone main body 2 is formed by dispersing and distributing superabrasive grains 4 and fillers 5 having a lower hardness and finer than superabrasive grains 4 in a metal bonding phase 3 at a ratio of 1: 2 to 2: 1. And its Young's modulus is 0.5-1.85 × 10 11 N / m
It is within the range of 2 . Here, in the whetstone body,
The mixing ratio of the superabrasives and filler to the metal binder phase is
1:10 to 3: 7. The plating hardness of the metal bonding phase 3 of the grinding wheel body 2 is 550 to Vickers hardness.
700.

【0008】この電鋳薄刃砥石1は、砥石本体2を図示
しない砥石軸に固定される。この状態で、電鋳薄刃砥石
1を砥石軸の軸線まわりに回転させつつ砥石本体2の外
周面で被削材を切断(研削)加工する。
The electroformed thin blade grindstone 1 has a grindstone main body 2 fixed to a grindstone shaft (not shown). In this state, the workpiece is cut (grinded) on the outer peripheral surface of the grindstone main body 2 while the electroformed thin blade grindstone 1 is rotated around the axis of the grindstone shaft.

【0009】このように構成される電鋳薄刃砥石1は、
図2に概略的に示す砥石製造装置10を用いて製造され
る。砥石製造装置10は、攪拌機が配設されためっき槽
11を有している。めっき槽11内には、非導電性の台
座12が略水平に配置され、台座12上にはステンレス
製の平面基板13が載置され、めっき槽11内の平面基
板13の上方には、平面基板13と平行にして陽極板1
4が配置されている。平面基板13の上面には、製造す
べき電鋳薄刃砥石1の砥石本体2の原型形状をなす部分
を残してマスキングが施されている。この砥石製造装置
10により、電解めっきによって電鋳薄刃砥石1の製造
を行う場合には、平面基板13を電源の陰極に、陽極板
14を電源の陽極に接続し、超砥粒4とフィラー5とを
1:2〜2:1の割合で投入しためっき液M(めっき液
硬度Hv550〜700)を攪拌機によって攪拌しなが
ら通電する。そして、平面基板13のマスキングを施さ
なかった部分に、超砥粒4とフィラー5とを含む所定の
厚さの砥粒層15を析出させた後、これを平面基板13
から剥離させ、洗浄及び整形を経て、超砥粒4とフィラ
ー5とを1:2〜2:1の体積割合で金属結合相3中に
分散配置し、超砥粒4及びフィラー5の金属結合相3に
対する配合比が1:10〜3:7とされた円環状の電鋳
薄刃砥石1を得る。
The electroformed thin blade whetstone 1 thus configured is
It is manufactured using a grinding wheel manufacturing apparatus 10 schematically shown in FIG. The grinding wheel manufacturing apparatus 10 has a plating tank 11 provided with a stirrer. A non-conductive pedestal 12 is disposed substantially horizontally in the plating tank 11, and a stainless steel flat substrate 13 is placed on the pedestal 12. Anode plate 1 parallel to substrate 13
4 are arranged. Masking is performed on the upper surface of the flat substrate 13 except for a portion of the electroformed thin blade grindstone 1 to be manufactured, which forms the original shape of the grindstone main body 2. When the electroformed thin blade whetstone 1 is manufactured by electrolytic plating using the whetstone manufacturing apparatus 10, the flat substrate 13 is connected to the cathode of the power supply, the anode plate 14 is connected to the anode of the power supply, and the superabrasive particles 4 and the filler 5 are connected. And a plating solution M (plating solution hardness Hv 550 to 700) charged with a ratio of 1: 2 to 2: 1 is agitated by a stirrer and energized. Then, an abrasive layer 15 having a predetermined thickness including the superabrasives 4 and the filler 5 is deposited on a portion of the plane substrate 13 where the masking has not been performed.
After cleaning and shaping, the superabrasives 4 and the fillers 5 are dispersed and arranged in the metal bonding phase 3 in a volume ratio of 1: 2 to 2: 1, and the metal bonding of the superabrasives 4 and the fillers 5 is performed. An annular electroformed thin blade whetstone 1 having a compounding ratio to phase 3 of 1:10 to 3: 7 is obtained.

【0010】このような電鋳薄刃砥石1では、砥石本体
2の金属結合相3中に、超砥粒4に加え、超砥粒4より
も低硬度のセラミックスのフィラー5が分散配置されて
いることで、砥石本体2は全体として金属結合相3の結
合力が小さくなる。また、このフィラー5は超砥粒4よ
りも細かいので、このフィラー5が分散配置される砥石
本体2のじん性が高められることとなる。これによっ
て、砥石本体2のヤング率は、0.5〜1.85×10
11N/m2の範囲内とされる。ここで、金属結合相3中
において、超砥粒4に対するフィラー5の体積割合が
1:2よりも大きいと、フィラー5の作用が強すぎて砥
石本体2のヤング率が0.5×1011N/m2よりも低
くなってしまう。一方、超砥粒4に対するフィラー5の
体積割合が2:1よりも小さいと、フィラー5の作用が
小さすぎて砥石本体2のヤング率が1.85×1011
/m2よりも高くなってしまう。このため、砥石本体2
の金属結合相3中には、超砥粒4とフィラー5とを1:
2〜2:1の体積割合で分散配置することが好ましい。
このように、電鋳薄刃砥石1では、砥石本体2のヤング
率が従来の電鋳薄刃砥石よりも低く設定されているの
で、被削材の切断時に砥石本体2が大きな応力を受けて
も弾性変形して吸収することができる。また、このよう
に砥石本体2のヤング率が従来の電鋳薄刃砥石よりも低
く設定されることで、金属結合相3の結合力が小さくな
り、被削材の切断時に、砥石本体2において被削材の切
断に作用する部分が摩耗しやすく、電鋳薄刃砥石1の自
生発刃が促進される。ここで、砥石本体2のヤング率が
0.5×1011N/m2よりも低いと、被削材を切断す
る際の直進性が低下して高精度な切断を行うことができ
なくなり、また砥石本体2の摩耗が速まって寿命が短く
なる。一方、砥石本体2のヤング率が1.85×1011
N/m2よりも高いと、被削材の切断時に応力を吸収す
ることができなくなるので、被削材にチッピングを生じ
やすい。このため、砥石本体2のヤング率は、0.5〜
1.85×1011N/m2の範囲内とされる。また、砥
石本体2の金属結合相3のめっき硬度がビッカース硬さ
で550よりも小さいと、被削材の切断時に切屑に対し
ての耐磨耗性がなく、砥石寿命が極端に短くなる。一
方、金属結合相3のめっき硬度がビッカース硬さで70
0よりも大きいと、金属結合相3の伸びがなく、砥石本
体2が割れやすくなる。このため、砥石本体2の金属結
合相3のめっき硬度は、ビッカース硬さで550〜70
0の範囲内とすることが好ましい。
In such an electroformed thin blade grindstone 1, in addition to the superabrasive grains 4, a ceramic filler 5 having a lower hardness than the superabrasive grains 4 is dispersed and arranged in the metal bonding phase 3 of the grindstone main body 2. Thus, the bonding force of the metal bonding phase 3 is reduced as a whole in the whetstone main body 2. Moreover, since the filler 5 is finer than the superabrasive grains 4, the toughness of the grindstone main body 2 on which the filler 5 is dispersed is increased. Thereby, the Young's modulus of the grindstone main body 2 is 0.5 to 1.85 × 10
11 N / m 2 . Here, if the volume ratio of the filler 5 to the superabrasive grains 4 in the metal bonding phase 3 is larger than 1: 2, the effect of the filler 5 is too strong and the Young's modulus of the grindstone main body 2 is 0.5 × 10 11. It will be lower than N / m 2 . On the other hand, if the volume ratio of the filler 5 to the superabrasive grains 4 is smaller than 2: 1, the effect of the filler 5 is too small and the Young's modulus of the grindstone main body 2 is 1.85 × 10 11 N.
/ M 2 . For this reason, the whetstone body 2
In the metal bonding phase 3, the superabrasive grains 4 and the filler 5
It is preferable to disperse and arrange at a volume ratio of 2 to 2: 1.
As described above, in the electroformed thin blade grindstone 1, the Young's modulus of the grindstone main body 2 is set to be lower than that of the conventional electroformed thin blade grindstone. It can be deformed and absorbed. In addition, by setting the Young's modulus of the grindstone main body 2 lower than that of the conventional electroformed thin blade grindstone, the bonding force of the metal bonding phase 3 is reduced, and when the work material is cut, the grindstone main body 2 is coated with the same. The portion acting on the cutting of the work material is easily worn, and the spontaneous cutting of the electroformed thin blade grindstone 1 is promoted. Here, if the Young's modulus of the whetstone main body 2 is lower than 0.5 × 10 11 N / m 2 , the straightness when cutting the work material is reduced, and it becomes impossible to perform high-precision cutting. Further, the wear of the grindstone main body 2 is accelerated, and the life is shortened. On the other hand, the Young's modulus of the whetstone main body 2 is 1.85 × 10 11
If it is higher than N / m 2 , stress cannot be absorbed when cutting the work material, so that the work material tends to chip. For this reason, the Young's modulus of the whetstone main body 2 is 0.5 to
It is within the range of 1.85 × 10 11 N / m 2 . Further, when the plating hardness of the metal bonding phase 3 of the grinding wheel main body 2 is smaller than 550 in Vickers hardness, there is no abrasion resistance to chips when cutting the work material, and the grinding wheel life is extremely shortened. On the other hand, the plating hardness of the metal bonding phase 3 is 70 in Vickers hardness.
When it is larger than 0, the metal binder phase 3 does not elongate, and the grindstone main body 2 is easily broken. For this reason, the plating hardness of the metal binding phase 3 of the grinding wheel main body 2 is 550 to 70 in Vickers hardness.
It is preferable to be within the range of 0.

【0011】このように構成される電鋳薄刃砥石1によ
れば、砥石本体2のヤング率が従来の電鋳薄刃砥石より
も高く設定されているので、被削材の切断時に砥石本体
2が大きな応力を受けても弾性変形して吸収することが
できる。これによって被削材に無理な力が加わりにくく
なってチッピングが生じにくくなる。特に、水晶等の硬
い被削材を切断する場合には、応力を被削材側で吸収す
ることができないためにチッピングが生じやすかった
が、このように電鋳薄刃砥石1側で応力を吸収すること
で、チッピングの発生が抑制される。また、被削材の切
断時に、砥石本体2において被削材の切断に作用する部
分が摩耗しやすく、電鋳薄刃砥石1の自生発刃が促進さ
れるので、電鋳薄刃砥石1の切れ味を維持して研削抵抗
を低減させることができる。さらに、砥石本体2の金属
結合相3のめっき硬度はビッカース硬さで550〜70
0の範囲内とされているので、砥石本体2の耐磨耗性が
向上して寿命が延び、また金属結合相3に伸びが生じや
すくなって砥石本体2に割れが生じにくくなる。
According to the electroformed thin blade grindstone 1 configured as described above, since the Young's modulus of the grindstone main body 2 is set higher than that of the conventional electroformed thin blade grindstone, the grindstone main body 2 is cut when the work material is cut. Even if a large stress is received, it can be elastically deformed and absorbed. This makes it difficult for an excessive force to be applied to the work material, so that chipping hardly occurs. In particular, when cutting a hard work material such as crystal, chipping is likely to occur because the stress cannot be absorbed on the work material side, but the stress is absorbed by the electroformed thin blade 1 as described above. By doing so, the occurrence of chipping is suppressed. Further, when cutting the work material, the portion of the grindstone main body 2 that acts to cut the work material is liable to wear, and the spontaneous cutting of the electroformed thin blade grindstone 1 is promoted. It is possible to maintain and reduce the grinding resistance. Further, the plating hardness of the metal bonding phase 3 of the grinding wheel main body 2 is 550 to 70 in Vickers hardness.
Since it is within the range of 0, the wear resistance of the grindstone main body 2 is improved, the life is extended, and the metal binder phase 3 is easily elongated, so that the grindstone main body 2 is hardly cracked.

【0012】[0012]

【実施例】次に、本発明の電鋳薄刃砥石と従来の電鋳薄
刃砥石、及び比較例として本発明の電鋳薄刃砥石とは砥
石本体の金属結合相のめっき硬度のみを変えた電鋳薄刃
砥石のそれぞれについて切断試験を行った。本発明の実
施例による電鋳薄刃砥石、従来例の電鋳薄刃砥石、及び
比較例の電鋳薄刃砥石は、それぞれ外径52.0mm、
内径40.0mm、厚み0.1mmとし、超砥粒として
は東名ダイヤモンド工業製のダイヤモンド粒(IMM5
/10μm)を用いた。これら各電鋳薄刃砥石は、砥石
製造装置10において、めっき液Mとしてスルファミン
酸ニッケル溶液を用い、電解めっき条件として液温50
°C、陰極電流密度5A/dm2、めっき液Mに対する
ダイヤモンド粒の投入量を2g/Lとした。ここで、従
来例の電鋳薄刃砥石は、めっき液M中にダイヤモンド粒
のみを投入して製造したものである。これに対し、実施
例による電鋳薄刃砥石は、めっき液M中にダイヤモンド
粒に加えて、ダイヤモンド粒よりも低硬度かつ細かなセ
ラミックスフィラーを投入しており、本試験では、本発
明にかかる電鋳薄刃砥石として、めっき液M中にダイヤ
モンド粒とフィラーとを重量比で1:1の割合(すなわ
ちめっき液Mへのフィラーの投入量は2g/L)で投入
して製造した実施例1と、めっき液M中にダイヤモンド
粒とフィラーとを重量比で1:2の割合(すなわちめっ
き液Mへのフィラーの投入量は4g/L)で投入して製
造した実施例2の二種類を用意した。これら従来例及び
実施例1、2は、めっき液硬度Hv600のめっき液を
使用して形成した。そして、比較例の電鋳薄刃砥石は、
めっき液Mへのダイヤモンド粒及びフィラーの投入量等
の条件は実施例1と同一の条件とし、めっき液として、
めっき液硬度Hv450のめっき液を用いて形成した。
これら実施例1、2、従来例、及び比較例の電鋳薄刃砥
石の砥石本体のヤング率を測定した。この結果を図3の
グラフに示す。このグラフより、従来例ではヤング率は
2.5×1011N/m2であるのに対し、実施例1では
1.2×1011N/m2、実施例2では0.6×1011
N/m2と、ともに従来例よりもヤング率が低いことが
わかる。また、比較例のヤング率は、1.3×1011
/m2であり、実施例1よりも若干高いものの、従来例
よりは小さかった。
Next, the electroformed thin blade grindstone of the present invention and the conventional electroformed thin blade grindstone, and the electroformed thin blade grindstone of the present invention as a comparative example, are formed by changing only the plating hardness of the metal bonding phase of the grindstone body. A cutting test was performed on each of the thin blade whetstones. The electroformed thin blade grindstone according to the embodiment of the present invention, the electroformed thin blade grindstone of the conventional example, and the electroformed thin blade grindstone of the comparative example each have an outer diameter of 52.0 mm,
The inner diameter is 40.0 mm, the thickness is 0.1 mm, and the superabrasive grains are diamond grains (IMM5
/ 10 μm). In each of these electroformed thin blade grinding wheels, a nickel sulfamate solution is used as a plating solution M in a grinding wheel manufacturing apparatus 10 and a liquid temperature of 50 is used as an electrolytic plating condition.
° C, the cathode current density was 5 A / dm 2 , and the amount of diamond particles charged to the plating solution M was 2 g / L. Here, the conventional electroformed thin blade grindstone is manufactured by putting only diamond grains into the plating solution M. On the other hand, in the electroformed thin blade grinding wheel according to the example, in addition to the diamond particles, the ceramic filler having a lower hardness and finer than the diamond particles was added to the plating solution M. Example 1 in which diamond grains and a filler were introduced into the plating solution M at a weight ratio of 1: 1 (that is, the amount of the filler to be added to the plating solution M was 2 g / L) as a thin cast blade whetstone. The two types of Example 2 were prepared in which the diamond particles and the filler were put into the plating solution M at a weight ratio of 1: 2 (that is, the amount of the filler added to the plating solution M was 4 g / L). did. These conventional examples and Examples 1 and 2 were formed using a plating solution having a plating solution hardness of Hv600. And the electroformed thin blade grinding wheel of the comparative example is
The conditions such as the amount of the diamond particles and filler to be added to the plating solution M were the same as those in Example 1, and the plating solution was
It was formed using a plating solution having a plating solution hardness of Hv450.
The Young's modulus of the grindstone main bodies of the electroformed thin blade grindstones of Examples 1 and 2, the conventional example, and the comparative example were measured. The results are shown in the graph of FIG. From this graph, the Young's modulus is 2.5 × 10 11 N / m 2 in the conventional example, whereas it is 1.2 × 10 11 N / m 2 in Example 1 and 0.6 × 10 N / m 2 in Example 2. 11
And N / m 2, it can be seen that Young's modulus is lower than both the prior art. The Young's modulus of the comparative example is 1.3 × 10 11 N.
/ M 2 , which is slightly higher than Example 1 but smaller than the conventional example.

【0013】この切断試験では、被削材として、長さ5
0mm、幅50mm、厚さ0.7mmの水晶を用い、各
電鋳薄刃砥石を保持する主軸(砥石軸)の回転数は12
000/min、送り速度0.5mm/sec、切り込
みは0.75mmとし、クーラントとして水を用いて、
切断ピッチ1mmで20回の切断を行った。このような
切断条件下で実施例1、2、従来例、及び比較例の電鋳
薄刃砥石のそれぞれを用いて被削材の切断を行った。そ
の切断試験の結果を表1に示す。
In this cutting test, a work material of length 5
Using a crystal having a thickness of 0 mm, a width of 50 mm and a thickness of 0.7 mm, the number of rotations of a main shaft (grindstone shaft) holding each electroformed thin blade grindstone is 12
000 / min, feed rate 0.5 mm / sec, cut depth 0.75 mm, using water as coolant,
Twenty cuts were performed at a cutting pitch of 1 mm. Under these cutting conditions, the workpiece was cut using each of the electroformed thin blade wheels of Examples 1 and 2, the conventional example, and the comparative example. Table 1 shows the results of the cutting test.

【0014】[0014]

【表1】 [Table 1]

【0015】表1は、本試験において各電鋳薄刃砥石の
1回目の切断と20回目の切断について、被削材の切断
部に生じた欠けの長さ(μm)と、各電鋳薄刃砥石を回
転駆動する主軸に供給される電流値(A)と、本試験に
おける各電鋳薄刃砥石の砥石本体の摩耗量(μm)とを
示したものである。主軸に供給される電流値の大きさ
は、主軸にかかる負荷の大きさ、すなわち被削材を切断
する際に電鋳薄刃砥石に生じる抵抗の大きさを反映して
いる。
Table 1 shows the length (μm) of a chip formed in the cut portion of the work material and the length of each electroformed thin blade grindstone for the first cut and the 20th cut of each electroformed thin blade grindstone in this test. 2 shows the current value (A) supplied to the main shaft that rotationally drives and the wear amount (μm) of the grindstone main body of each electroformed thin blade grindstone in this test. The magnitude of the current supplied to the main spindle reflects the magnitude of the load applied to the main spindle, that is, the magnitude of the resistance generated in the electroformed thin blade grindstone when cutting the work material.

【0016】従来例は、1回目の切断では、被削材の切
断部に生じた欠けの長さは45μm、主軸に供給される
電流値は2.5Aである。そして、20回目の切断で
は、被削材の切断部に生じた欠けの長さは68μm、主
軸に供給される電流値は4.2Aとなり、切断を繰り返
すことで、被削材に生じた欠けが約二倍程度まで大きく
なり、研削抵抗も増加していることがわかる。そして、
本試験による砥石本体の摩耗量は3μmであった。これ
に対し、実施例1は、1回目の切断では、被削材の切断
部に生じた欠けの長さは20μm、主軸に供給される電
流値は2.3Aであり、いずれも従来例よりも良好な数
値を得ることができた。そして、20回目の切断では、
被削材の切断部に生じた欠けの長さは22μm、主軸に
供給される電流値は2.5Aとなり、いずれも従来例よ
りも良好な数値を得ることができた。また、切断を繰り
返しても、被削材に生じた欠けの長さ及び研削抵抗の増
加は、従来例よりもはるかに緩やかであった。そして、
本試験における砥石本体の摩耗量は5μmと従来例の摩
耗量よりも多く、従来例よりも自生発刃が良好に行われ
ていることがわかる。
In the conventional example, in the first cutting, the length of the notch generated in the cut portion of the work material is 45 μm, and the current value supplied to the main shaft is 2.5 A. In the twentieth cutting, the length of the notch generated in the cut portion of the work material was 68 μm, the current value supplied to the main shaft was 4.2 A, and the chip generated in the work material by repeating the cut. Is increased to about twice, and the grinding resistance is also increased. And
The wear amount of the grindstone main body in this test was 3 μm. On the other hand, in Example 1, in the first cutting, the length of the notch generated in the cut portion of the work material was 20 μm, and the current value supplied to the spindle was 2.3 A. Also, good numerical values could be obtained. And in the 20th cutting,
The length of the notch generated in the cut portion of the work material was 22 μm, and the current value supplied to the main shaft was 2.5 A. In each case, a better numerical value than the conventional example could be obtained. Further, even if cutting was repeated, the length of the chipped portion and the increase in the grinding resistance generated in the work material were much slower than in the conventional example. And
In this test, the wear amount of the grindstone main body was 5 μm, which was larger than the wear amount of the conventional example, and it can be seen that the spontaneous cutting was performed better than the conventional example.

【0017】同様に、実施例2は、一回目の切断では、
被削材の切断部に生じた欠けの長さは18μm、主軸に
供給される電流値は2.0Aであり、いずれも従来例よ
りも良好な数値を得ることができた。そして、20回目
の切断では、被削材の切断部に生じた欠けの長さは19
μm、主軸に供給される電流値は2.1Aとなり、いず
れも従来例よりも良好な数値を得ることができた。ま
た、切断を繰り返しても、被削材に生じた欠けの長さ及
び研削抵抗の増加は、従来例よりもはるかに緩やかであ
った。そして、本試験における砥石本体の摩耗量は7μ
mと従来例の摩耗量よりも多く、従来例よりも自生発刃
が良好に行われていることがわかる。比較例は、一回目
の切断では、被削材の切断部に生じた欠けの長さは27
μm、主軸に供給される電流値は2.5Aであり、欠け
の長さは従来例より短いものの、実施例1、2よりは切
断性能が劣っていた。そして、20回目の切断では、被
削材の切断部に生じた欠けの長さは37μm、主軸に供
給される電流値は3.3Aとなり、切断を繰り返した場
合の被削材に生じた欠けの長さ及び研削抵抗の増加量が
大きかった。また本試験における砥石本体の摩耗量は1
2μmと非常に多く、実施例1、2及び従来例に比べて
砥石の寿命が短いことがわかる。
Similarly, in the second embodiment, in the first cutting,
The length of the notch generated in the cut portion of the work material was 18 μm, and the current value supplied to the main shaft was 2.0 A. In each case, a better numerical value than the conventional example could be obtained. In the twentieth cutting, the length of the chip formed in the cut portion of the work material is 19
μm, and the current value supplied to the main shaft was 2.1 A. In each case, a better numerical value than the conventional example could be obtained. Further, even if cutting was repeated, the length of the chipped portion and the increase in the grinding resistance generated in the work material were much slower than in the conventional example. The wear amount of the grinding wheel body in this test was 7μ.
m, which is larger than the wear amount of the conventional example, and it can be seen that the spontaneous cutting is performed better than the conventional example. In the comparative example, in the first cutting, the length of the notch generated in the cut portion of the work material was 27.
μm, the current value supplied to the main shaft was 2.5 A, and although the length of the chip was shorter than the conventional example, the cutting performance was inferior to Examples 1 and 2. In the twentieth cutting, the length of the chip generated in the cut portion of the work material was 37 μm, the current value supplied to the spindle was 3.3 A, and the chip generated in the work material when the cutting was repeated. The increase in length and grinding resistance was large. In this test, the wear amount of the grinding wheel body was 1
2 μm, which is very large, which indicates that the life of the grindstone is shorter than those of Examples 1 and 2 and the conventional example.

【0018】以上の試験結果から理解できるように、本
発明にかかる実施例1、2の電鋳薄刃砥石によれば、従
来例の電鋳薄刃砥石に比べて砥石本体のヤング率が低い
ので、被削材のチッピング及び研削抵抗を低減すること
ができる。また、金属結合相3のビッカース硬さが60
0である実施例1の電鋳薄刃砥石は、金属結合相3のビ
ッカース硬さが450である比較例の電鋳薄刃砥石に比
べて摩耗しにくく、長寿命であることがわかる。
As can be understood from the above test results, according to the electroformed thin blade grindstones of Examples 1 and 2 according to the present invention, the Young's modulus of the grindstone main body is lower than that of the conventional electroformed thin blade grindstone. Chipping and grinding resistance of the work material can be reduced. The Vickers hardness of the metal binding phase 3 is 60.
It can be seen that the electroformed thin blade grindstone of Example 1, which is 0, is less likely to wear and has a longer life than the electroformed thin blade grindstone of the comparative example, in which the Vickers hardness of the metal bonding phase 3 is 450.

【0019】なお、上記各実施形態において、本発明に
よる電鋳薄刃砥石は外周刃による切断を行う外周刃切断
用の砥石について説明したが、これに限られることな
く、内周刃切断用の砥石にも採用することができる。
In each of the above-described embodiments, the electroformed thin blade grindstone according to the present invention has been described as a grindstone for cutting the outer peripheral blade, which performs cutting with the outer peripheral blade. However, the present invention is not limited to this. Can also be adopted.

【0020】[0020]

【発明の効果】以上説明したように、本発明にかかる電
鋳薄刃砥石では、砥石本体のヤング率が従来の電鋳薄刃
砥石よりも高く設定されているので、被削材の切断時に
砥石本体が大きな応力を受けても弾性変形して吸収する
ことができる。これによって被削材に無理な力が加わり
にくくなってチッピングが生じにくくなる。特に、水晶
等の硬い被削材を切断する場合にも、チッピングの発生
が抑制される。また、このように砥石本体のヤング率が
従来の電鋳薄刃砥石よりも低く設定されることで、金属
結合相の結合力が小さくなり、被削材の切断時に、砥石
本体において被削材の切断に作用する部分が摩耗しやす
く、電鋳薄刃砥石の自生発刃が促進されるので、電鋳薄
刃砥石の切れ味を維持して研削抵抗を低減させることが
できる。
As described above, in the electroformed thin blade grindstone according to the present invention, the Young's modulus of the grindstone body is set higher than that of the conventional electroformed thin blade grindstone. Can be elastically deformed and absorbed even if a large stress is applied. This makes it difficult for an excessive force to be applied to the work material, so that chipping hardly occurs. In particular, even when cutting a hard work material such as quartz, the occurrence of chipping is suppressed. In addition, by setting the Young's modulus of the grindstone main body lower than that of the conventional electroformed thin blade grindstone, the bonding force of the metal bonding phase is reduced, and when the work material is cut, the work material of the grindstone main body is cut. Since the portion acting on the cutting is easily worn and the spontaneous cutting of the electroformed thin blade grindstone is promoted, the sharpness of the electroformed thin blade grindstone can be maintained and the grinding resistance can be reduced.

【0021】また、砥石本体の金属結合相のめっき硬度
は、ビッカース硬さで550〜700の範囲内とされて
いるので、砥石本体の耐磨耗性が向上して寿命が延び、
また金属結合相に伸びが生じやすくなって砥石本体に割
れが生じにくくなる。そして、フィラーとして、フィラ
ー自体の耐磨耗性が高いセラミックスのフィラーを用い
ることで、電鋳薄刃砥石の寿命を確保することができ
る。
Further, the plating hardness of the metal bonding phase of the grindstone main body is in the range of 550 to 700 in Vickers hardness, so that the wear resistance of the grindstone main body is improved and the life is extended,
In addition, elongation is likely to occur in the metal binding phase, and cracks are less likely to occur in the grindstone main body. The life of the electroformed thin blade grindstone can be secured by using a ceramic filler having a high wear resistance as the filler itself.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施の形態にかかる電鋳薄刃砥石
を示す部分縦断面図である。
FIG. 1 is a partial longitudinal sectional view showing an electroformed thin blade grindstone according to an embodiment of the present invention.

【図2】 本発明の一実施の形態にかかる電鋳薄刃砥石
を製造する砥石製造装置の構成を概略的に示す正断面図
である。
FIG. 2 is a front sectional view schematically showing a configuration of a grinding wheel manufacturing apparatus for manufacturing an electroformed thin blade grinding wheel according to one embodiment of the present invention.

【図3】 本発明にかかる実施例1、2の電鋳薄刃砥
石、及び従来例、比較例の電鋳薄刃砥石の砥石本体のヤ
ング率を示すグラフである。
FIG. 3 is a graph showing the Young's modulus of the main body of the electroformed thin blade grindstones of Examples 1 and 2 according to the present invention and the electroformed thin blade grindstones of the conventional example and the comparative example.

【符号の説明】[Explanation of symbols]

1 電鋳薄刃砥石 2 砥石本体 3 金属結合相 4 超砥粒 5 フィラー M めっき液 Reference Signs List 1 electroformed thin blade whetstone 2 whetstone main body 3 metal bonding phase 4 super abrasive 5 filler M plating solution

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鳥坂 昌徳 福島県いわき市泉町黒須野字江越246−1 三菱マテリアル株式会社いわき製作所内 Fターム(参考) 3C063 AA02 BB02 BC02 BD04 CC13 EE31 FF30  ────────────────────────────────────────────────── ─── Continued from the front page (72) Inventor Masanori Torisaka 246-1 Egoshi Kuroshino, Izumi-cho, Iwaki-shi, Fukushima F-term in Mitsubishi Materials Corporation Iwaki Works (reference) 3C063 AA02 BB02 BC02 BD04 CC13 EE31 FF30

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 超砥粒を金属結合相中に分散配置してな
る砥石本体を有し、 該砥石本体のヤング率が、0.5〜1.85×1011
/m2の範囲内とされていることを特徴とする電鋳薄刃
砥石。
1. A grindstone main body in which superabrasive grains are dispersed and arranged in a metal binding phase, and the Young's modulus of the grindstone main body is 0.5 to 1.85 × 10 11 N.
/ M 2. An electroformed thin blade whetstone characterized by being in the range of / m 2 .
【請求項2】 前記砥石本体の金属結合相のめっき硬度
がビッカース硬さで550〜700の範囲内とされてい
ることを特徴とする請求項1記載の電鋳薄刃砥石。
2. The electroformed thin blade grinding wheel according to claim 1, wherein the plating hardness of the metal bonding phase of the grinding wheel main body is in the range of 550 to 700 in Vickers hardness.
【請求項3】 前記砥石本体には、前記超砥粒よりも低
硬度かつ細かなフィラーが分散配置されており、前記超
砥粒と前記フィラーとを1:2〜2:1の体積割合で前
記金属結合相中に分散配置してなることを特徴とする請
求項1または2に記載の電鋳薄刃砥石。
3. A finer filler having a lower hardness and finer than the superabrasive grains is dispersed in the grindstone main body, and the superabrasive grains and the filler are mixed in a volume ratio of 1: 2 to 2: 1. The electroformed thin blade wheel according to claim 1, wherein the electroformed thin blade wheel is dispersed in the metal binding phase.
【請求項4】 前記フィラーが、セラミックスのフィラ
ーであることを特徴とする請求項3記載の電鋳薄刃砥
石。
4. The electroformed thin-blade stone according to claim 3, wherein the filler is a ceramic filler.
JP2000275574A 2000-09-11 2000-09-11 Thin-blade grinding wheel produced by electroformation Pending JP2002086360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000275574A JP2002086360A (en) 2000-09-11 2000-09-11 Thin-blade grinding wheel produced by electroformation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000275574A JP2002086360A (en) 2000-09-11 2000-09-11 Thin-blade grinding wheel produced by electroformation

Publications (1)

Publication Number Publication Date
JP2002086360A true JP2002086360A (en) 2002-03-26

Family

ID=18761177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000275574A Pending JP2002086360A (en) 2000-09-11 2000-09-11 Thin-blade grinding wheel produced by electroformation

Country Status (1)

Country Link
JP (1) JP2002086360A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009172751A (en) * 2007-12-28 2009-08-06 Shin Etsu Chem Co Ltd External periphery cutting blade and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009172751A (en) * 2007-12-28 2009-08-06 Shin Etsu Chem Co Ltd External periphery cutting blade and its manufacturing method
JP2013082072A (en) * 2007-12-28 2013-05-09 Shin-Etsu Chemical Co Ltd Outer periphery cutting blade and method for manufacturing the same
US8459246B2 (en) 2007-12-28 2013-06-11 Shin-Etsu Chemical Co., Ltd. Outer blade cutting wheel and making method
US8733336B2 (en) 2007-12-28 2014-05-27 Shin-Etsu Chemical Co., Ltd. Outer blade cutting wheel and making method
TWI458596B (en) * 2007-12-28 2014-11-01 Shinetsu Chemical Co Peripheral cutter and manufacturing method thereof
US11364591B2 (en) 2007-12-28 2022-06-21 Shin-Etsu Chemical Co., Ltd. Outer blade cutting wheel and making method

Similar Documents

Publication Publication Date Title
CN1130274C (en) Abrasive tools
KR100789620B1 (en) Super abrasive grain tool and method for manufacturing the same
KR100359401B1 (en) Abrasive Tools
EP2843688B1 (en) Dicing blade
US20090084042A1 (en) Abrasive processing of hard and /or brittle materials
CN1666844A (en) Dresser for polishing cloth and method for producing the same
JPWO2002022310A1 (en) Super abrasive wheel for mirror finishing
CN108883517B (en) Super-hard abrasive grinding wheel
KR101151051B1 (en) Sharp-edge grinding wheel
JP2002086360A (en) Thin-blade grinding wheel produced by electroformation
JPH11333730A (en) Diamond lapping surface plate
JP2679178B2 (en) Electroplated whetstone
CN113329846B (en) Metal bond grindstone for high-hardness brittle material
JP2006218577A (en) Dresser for polishing cloth
JP2002187071A (en) Electrotype thin-blade grindstone
CN109195747B (en) Super-hard abrasive grinding wheel
JP4470559B2 (en) Ultra-thin blade and manufacturing method thereof
JP2002326166A (en) Electrodeposition thin blade grinding wheel, and method for manufacturing the same
JP3086670B2 (en) Super abrasive whetstone
JP3802884B2 (en) CMP conditioner
JPH0985627A (en) Grinding wheel
JPH08309666A (en) Electrodeposition grinding wheel and manufacture thereof
JP3132233B2 (en) Whetstone
JPH10329029A (en) Electrodepositioning super grain grinding wheel
JP2010173015A (en) Nickel-plated film, cutting tool using the nickel-plated film, and method of forming the nickel-plated film

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030624