JP2002060899A - Steel plate for forming battery can, battery can, manufacturing method of battery can and battery - Google Patents

Steel plate for forming battery can, battery can, manufacturing method of battery can and battery

Info

Publication number
JP2002060899A
JP2002060899A JP2000245238A JP2000245238A JP2002060899A JP 2002060899 A JP2002060899 A JP 2002060899A JP 2000245238 A JP2000245238 A JP 2000245238A JP 2000245238 A JP2000245238 A JP 2000245238A JP 2002060899 A JP2002060899 A JP 2002060899A
Authority
JP
Japan
Prior art keywords
battery
layer
crystal grains
steel sheet
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000245238A
Other languages
Japanese (ja)
Inventor
Hirofumi Sugikawa
裕文 杉川
Reiko Sugihara
玲子 杉原
Susumu Sato
佐藤  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Katayama Special Industries Ltd
JFE Engineering Corp
Original Assignee
Katayama Special Industries Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katayama Special Industries Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Katayama Special Industries Ltd
Priority to JP2000245238A priority Critical patent/JP2002060899A/en
Publication of JP2002060899A publication Critical patent/JP2002060899A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the battery performance by increasing the surface roughness of an inner surface of a battery can in the axial direction of the can. SOLUTION: A steel plate for forming the bottomed cylindrical battery can by pressing contains coarse grains of the grain size of >=30 μm, the volumetric ratio of the coarse grains is >=5%, and the mean grain size is <=150 μm. A layer consisting mainly of coarse grains with mean grain size of 30 μm to 150 μm is provided on at least one surface layer part of the steel plate, and portions other than the layer consists of grains of the grain size of <30 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池缶形成用鋼
板、該電池缶形成用鋼板を用いた電池缶の製造方法、該
方法により製造された電池缶、および該電池缶を備えた
電池に関し、特に、電池缶の内面に粗面を設けて充填物
質の保持力を高めるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel sheet for forming a battery can, a method for manufacturing a battery can using the steel sheet for forming a battery can, a battery can manufactured by the method, and a battery provided with the battery can. Particularly, a rough surface is provided on the inner surface of the battery can to increase the holding power of the filling material.

【0002】[0002]

【従来の技術】従来、有底筒形状の電池缶の製造方法と
しては、表面にメッキ層を備えた鋼板を成形する場合
と、鋼板を電池缶に成形してから後にメッキ(所謂ガラ
メッキ)を行う場合とがある。上記鋼板あるいはメッキ
鋼板を有底筒形状の電池缶とする加工方法として、多段
絞り加工、多段絞りにしごき加工を組み合わせた所謂ト
ランスファー加工(多段絞りしごき加工)、DI(draw
ing and ironing)絞りしごき加工、ストレッチドロー加
工、あるいはストレッチドローにしごき加工を組み合わ
せた加工など、種々のプレス加工方法が用いられてい
る。
2. Description of the Related Art Conventionally, as a method for manufacturing a battery can having a bottomed cylindrical shape, a steel plate having a plating layer on its surface is formed, or a steel plate is formed into a battery can and then plated (so-called galvanization). There are times when you do. As a processing method of forming the above-mentioned steel plate or plated steel plate into a battery can having a cylindrical shape with a bottom, a so-called transfer process (multi-stage drawing and ironing process) combining multi-stage drawing, multi-stage drawing and ironing, DI (draw)
Various pressing methods are used, such as drawing and ironing, stretch draw, or a combination of stretch draw and ironing.

【0003】[0003]

【発明が解決しようとする課題】上記加工で形成された
電池缶の内面は、加工により平滑度が増大し、電池缶に
充填する活物質との接触面積が少なくなるため、電池性
能を向上させるのが困難である。具体的には、一次電池
では電池缶に充填する正極活物質の保持力が弱い問題が
あり、また、電池缶の内面には通常カーボン粉末を塗布
しているが、保持力が弱いためにカーボン粉末が底部に
脱落しやすく、よって、活物質とカーボン粉末との接触
面積が少なくなる。また、二次電池では、電極板を渦巻
き状に巻いて電池缶に充填するが、電極板の外周面が缶
内周面と平行にならない場合には、平滑面である缶内周
面と電極板との接触面積が減少し、電極板を安定保持で
きない問題がある。
The inner surface of the battery can formed by the above-described processing increases the smoothness due to the processing and reduces the contact area with the active material filled in the battery can, thereby improving the battery performance. Is difficult. Specifically, primary batteries have a problem that the holding power of the positive electrode active material filled in the battery can is weak.Also, the inner surface of the battery can is usually coated with carbon powder. The powder tends to fall off to the bottom, thus reducing the contact area between the active material and the carbon powder. In a secondary battery, the electrode plate is spirally wound and filled into the battery can. If the outer peripheral surface of the electrode plate is not parallel to the inner peripheral surface of the can, the inner peripheral surface of the can that is a smooth surface is There is a problem that the contact area with the plate is reduced and the electrode plate cannot be stably held.

【0004】上記した問題に対して、特開平60−18
0058号公報で、軸線と平行な縦筋を周面に有するパ
ンチを用いて絞り加工して、電池缶内面に缶軸方向の縦
溝を形成した電池缶の製造方法が開示されている。ま
た、本出願人も先に特許第2810257号で、電池缶
内面となる面を硬質メッキ層とし、絞り加工時に縦横斜
め方向の楔形状の多数発生させたものを提供している。
To solve the above problem, Japanese Patent Laid-Open No. 60-18 / 1990
No. 0058 discloses a method for manufacturing a battery can in which a longitudinal groove parallel to the axis is drawn using a punch having a circumferential surface on a peripheral surface to form a vertical groove in the inner surface of the battery can in the axial direction of the can. Also, the applicant of the present application has previously disclosed in Japanese Patent No. 280257 a battery in which a surface serving as an inner surface of a battery can is formed of a hard plating layer and a large number of wedges are formed in vertical and horizontal oblique directions during drawing.

【0005】しかしながら、電池缶内面に塗布するカー
ボン粉末は、内容物充填時に缶軸方向に脱落し易いた
め、前記特開平60−180058号公報に記載されて
いる電池缶内面に缶軸方向の縦溝を設ける方法では、カ
ーボン粉末の保持力強化には殆ど寄与せず、かつ、電池
缶に充填する内容物の保持にも寄与しないため、電池性
能の向上効果はごく小さい。また、特許第281025
7号記載の技術では、カーボン粉末の保持力改善や接触
面積増大を実現し、電池性能向上に効果があるものの、
電池性能向上に対する要求は年々強まっており、さらな
る改善が望まれている。
However, since the carbon powder applied to the inner surface of the battery can easily falls off in the axial direction of the can when filling the contents, the carbon powder described in Japanese Patent Application Laid-Open No. 60-180058 has a vertical surface in the axial direction of the can. The method of providing the groove hardly contributes to the enhancement of the holding power of the carbon powder and does not contribute to the holding of the contents filled in the battery can, so that the effect of improving the battery performance is very small. Patent No. 281025
The technology described in No. 7 achieves an improvement in the holding power of the carbon powder and an increase in the contact area, and is effective in improving the battery performance.
The demand for improved battery performance is increasing year by year, and further improvement is desired.

【0006】本発明は上記した問題に鑑みてなされたも
ので、電池缶に形成された際に、優れたカーボン粉末の
保持力を有するとともに充填内容物との接触面積を増大
させることにより、電池性能を大幅に向上し得る電池缶
形成用鋼板、電池缶、電池缶の製造方法および電池を提
供することを課題としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and has an excellent carbon powder holding force and an increased contact area with a filling content when formed into a battery can. It is an object of the present invention to provide a battery can-forming steel sheet, a battery can, a method for manufacturing a battery can, and a battery which can significantly improve performance.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明者らは、鋭意検討を重ねた結果、特定のサイ
ズの粗大結晶粒を有することにより、加工による缶内面
の平滑化を抑制して適度な粗さを付与し、電池性能を向
上させることが可能であることを見出した。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have made intensive studies and as a result, have coarse grains of a specific size, thereby suppressing the smoothing of the inner surface of the can by processing. It has been found that it is possible to impart appropriate roughness to improve battery performance.

【0008】上記結果に基づき、本発明は、第1に、粒
径が30μm以上の粗大結晶粒を含み、上記粗大結晶粒
の体積率が5%以上であって、該粗大結晶粒を含む全結
晶粒の平均結晶粒径が150μm以下であることを特徴
とする電池缶形成用鋼板を提供している。
[0008] Based on the above results, the present invention firstly comprises coarse crystal grains having a particle size of 30 µm or more, wherein the volume fraction of the coarse crystal grains is 5% or more, and The present invention provides a steel sheet for forming a battery can, wherein the average crystal grain size of the crystal grains is 150 μm or less.

【0009】従来、電池缶形成用鋼板の結晶粒径は、均
一な微細粒が望ましいというのが定説であり、平均粒径
が数μmから20μm程度の鋼板が一般的に用いられて
いる。結晶粒が粗大になると、鋼板強度が小さくなると
ともに電池缶形成時に不均一変形を生じて所謂「肌荒
れ」を起こし、加工性が劣化して缶体が破断しやすくな
るためである。しかしながら、本発明者の研究結果によ
ると、従来の鋼板の結晶粒よりも大きな粗大結晶粒を適
正量有することにより、十分な加工性を保持して缶体破
断を抑制した上、加工後の缶内面粗さを増大させ、カー
ボン粉末および活物質の保持力強化を達成できることを
見出した。
Conventionally, it is a conventional theory that the crystal grain size of a steel sheet for forming a battery can is desirably uniform and fine, and a steel sheet having an average grain size of several μm to about 20 μm is generally used. When the crystal grains are coarse, the strength of the steel sheet is reduced, and non-uniform deformation occurs at the time of forming the battery can, so-called "skin roughness" is caused, the workability is deteriorated and the can is easily broken. However, according to the research results of the present inventor, by having an appropriate amount of coarse crystal grains larger than the crystal grains of the conventional steel sheet, sufficient workability is maintained and can body breakage is suppressed, and the processed can It has been found that the inner surface roughness can be increased, and the holding power of the carbon powder and the active material can be enhanced.

【0010】この効果を得るためには、上記の如く、粒
径30μm以上の結晶粒を体積率で5%以上含むことが
必要である。一方で、電池缶形成に最低限必要な強度と
加工性を確保するためには、平均結晶粒径が150μm
以下であることが望ましい。平均結晶粒径が150μm
を超えると、電池缶形成時に破断することがあり、好ま
しくない。同様の観点から、個別の結晶粒径の上限は2
00μm以下であることが好ましい。平均結晶粒径が1
50μm以下の場合には、電池缶形成時の破断は抑制さ
れ、30μm以上の粗大結晶粒体積率が100%、即
ち、粗大結晶粒のみで構成される鋼板であっても内面粗
さ増大の効果が得られるため、粗大結晶粒体積率の上限
は特に規定されない。
In order to obtain this effect, it is necessary to contain crystal grains having a particle size of 30 μm or more in a volume ratio of 5% or more as described above. On the other hand, in order to secure the minimum strength and workability necessary for forming the battery can, the average crystal grain size is 150 μm.
It is desirable that: Average grain size is 150μm
If it exceeds, it may be broken at the time of forming the battery can, which is not preferable. From a similar viewpoint, the upper limit of the individual crystal grain size is 2
It is preferably not more than 00 μm. Average grain size is 1
When the thickness is 50 μm or less, the fracture during the formation of the battery can is suppressed, and the effect of increasing the inner surface roughness is 100% for the volume fraction of coarse grains of 30 μm or more, that is, even for a steel sheet composed of only coarse grains. Thus, the upper limit of the volume fraction of coarse crystal grains is not particularly defined.

【0011】本発明は、第2に、少なくとも一方の表層
部に粗大結晶粒を主体とする層を有し、該層を構成する
結晶粒の平均粒径が30μm以上150μm以下であ
り、該層の厚さが全板厚の5%以上40%以下であっ
て、該層以外の部分を構成する結晶粒の平均粒径が30
μm未満であることを特徴とする電池缶形成用鋼板を提
供している。
[0011] Secondly, the present invention has a second feature that at least one surface layer has a layer mainly composed of coarse crystal grains, and the average grain size of the crystal grains constituting the layer is 30 μm or more and 150 μm or less. Is not less than 5% and not more than 40% of the total plate thickness, and the average grain size of the crystal grains constituting the portion other than the layer is 30%.
The present invention provides a battery can-forming steel sheet having a thickness of less than μm.

【0012】即ち、上記粗大結晶粒は、電池缶形成材料
の表層部に層状となって存在することがより好ましい。
この層状の部分は粗大結晶粒を主体とするが、粒径が3
0μm未満の結晶粒を含んでいても問題ない。具体的に
は、層状部分における平均結晶粒径が30μm以上15
0μm以下の範囲であればよい。粗大結晶粒を主体とす
る層(以下、粗大結晶粒層と略記する)が層状に存在
し、該層以外の部分が30μm未満の結晶粒で構成され
ることにより、鋼板の強度および加工性を損なうことな
く、電池缶形成時に、粗大結晶粒層を缶内面とすると、
内面全体に渡って平滑化を抑制し、適度な粗さを付与す
ることが可能となる。
That is, it is more preferable that the coarse crystal grains exist in a layered form on the surface layer of the material for forming a battery can.
This layered portion is mainly composed of coarse crystal grains,
There is no problem even if crystal grains smaller than 0 μm are included. Specifically, the average crystal grain size in the layer portion is 30 μm or more and 15 μm or more.
The range may be 0 μm or less. A layer mainly composed of coarse crystal grains (hereinafter, abbreviated as a coarse crystal grain layer) is present in a layered form, and a portion other than the layer is composed of crystal grains having a size of less than 30 μm. Without damage, when forming the battery can, if the coarse crystal grain layer is the inner surface of the can,
It is possible to suppress smoothing over the entire inner surface and provide an appropriate roughness.

【0013】上記粗大結晶粒層の厚さは全板厚の5%以
上であることが必要である。上記粗大結晶粒層の厚さと
は、鋼板の片側の表層部に存在する層状部分の厚さを指
す。即ち、鋼板両面の表層部に該層を有する場合、それ
ぞれの層の厚さが全板厚の5%以上、両面の層厚さを合
計すると10%以上必要であることを意味する。
It is necessary that the thickness of the coarse crystal grain layer is at least 5% of the total thickness. The thickness of the coarse crystal grain layer refers to the thickness of the layered portion existing on the surface layer on one side of the steel sheet. That is, when the layers are provided on the surface layer portions on both sides of the steel sheet, the thickness of each layer is required to be 5% or more of the total sheet thickness, and the total thickness of the layers on both surfaces is required to be 10% or more.

【0014】上記粗大結晶粒層の厚さが全板厚の5%未
満の場合には、電池缶として加工後の粗さ増大に対する
寄与がごく小さく、電池性能向上に効果を発揮しない。
さらに望ましくは、10%以上である。優れた加工性を
確保するためには、該層の厚さの上限は40%以下であ
ることが好ましい。さらに好ましくは30%以下であ
る。
When the thickness of the coarse crystal grain layer is less than 5% of the total plate thickness, the contribution to the increase in roughness after processing as a battery can is very small, and the battery performance is not improved.
More preferably, it is 10% or more. In order to ensure excellent workability, the upper limit of the thickness of the layer is preferably 40% or less. More preferably, it is 30% or less.

【0015】上記した第1および第2の発明からなる電
池缶形成用鋼板を、プレス加工で電池缶として加工後
に、メッキを施し、電池缶を形成してもよい。あるい
は、上記電池缶形成用鋼板に先メッキを施してメッキ鋼
板としてからプレス加工で電池缶を形成してもよい。こ
のメッキ鋼板をプレス加工する場合には、表層に粗大結
晶粒層を有する鋼板では、粗大結晶粒層を有する面が少
なくとも缶内面側となるようにして加工している。
The steel sheet for battery can formation according to the first and second aspects of the present invention may be formed into a battery can by press working, followed by plating to form a battery can. Alternatively, the battery can may be formed by pre-plating the steel sheet for forming a battery can to form a plated steel sheet and then pressing. When the plated steel sheet is pressed, the steel sheet having a coarse crystal grain layer on the surface layer is processed such that the surface having the coarse crystal grain layer is at least the inner surface of the can.

【0016】プレス加工方法は特に限定されず、前述し
た多段絞り加工、多段絞りにしごき加工を組み合わせた
所謂トランスファー加工(多段絞りしごき加工)、DI
(drawing and ironing)絞りしごき加工、ストレッチ
ドロー加工、あるいはストレッチドローにしごき加工を
組み合わせた加工などのいずれの加工方法も採用し得
る。
The pressing method is not particularly limited, and the so-called transfer processing (multi-step drawing and ironing) combining the above-described multi-step drawing, multi-step drawing and ironing, DI
(Drawing and ironing) Any processing method such as drawing and ironing, stretch draw, or processing combining stretch draw and ironing can be adopted.

【0017】先メッキを行う場合には、上記第1の発明
からなる電池缶形成用鋼板の少なくとも一方の面にメッ
キ層を設けている。また、上記第2の発明からなる電池
缶形成用鋼板では、少なくとも上記粗大結晶粒層の表面
にメッキ層を設けている。
When pre-plating is performed, a plating layer is provided on at least one surface of the steel sheet for forming a battery can according to the first invention. In the steel sheet for forming a battery can according to the second aspect, a plating layer is provided on at least a surface of the coarse crystal grain layer.

【0018】電池缶形成用鋼板を加工後に後メッキで設
けるメッキ層は、Ni単体または、Ni、Mn、Co、
Sn、Se、B、P、Si、Fe、Zn、In、Biの
うち二種以上の合金から構成し、そのメッキ厚さは0.
5μm〜10μmとすることが好ましい。必要に応じ
て、缶内面側と外面側に厚さが異なるメッキ層を設ける
ことが好ましい。
The plating layer provided by post-plating after processing the steel sheet for forming a battery can is composed of Ni alone, Ni, Mn, Co,
It is composed of two or more alloys of Sn, Se, B, P, Si, Fe, Zn, In, and Bi, and has a plating thickness of 0.1.
It is preferably from 5 μm to 10 μm. If necessary, it is preferable to provide plating layers having different thicknesses on the inner surface side and the outer surface side of the can.

【0019】電池缶加工前に電池缶形成用鋼板に先メッ
キを施す場合は、電池缶形成用鋼板の少なくとも一方の
表面に、厚さが0.5〜10μmの、Ni単体または、
Ni、Mn、Co、Sn、Se、B、P、Si、Fe、
Zn、In、Biのうち二種以上の合金から成るメッキ
層を形成することが好ましい。必要に応じて、缶内面側
と外面側に厚さが異なるメッキ層を設けてもよい。一方
の面のみにメッキ層を形成させる場合には、その表面が
缶内面側となるよう加工している。表層に粗大結晶粒層
を有する鋼板を用いる場合には、少なくとも該層を有す
る側の表面にメッキを施し、メッキ面を缶内面側として
加工している。
In the case where the steel plate for forming a battery can is pre-plated before processing the battery can, at least one surface of the steel plate for forming a battery can has a thickness of 0.5 to 10 μm, Ni alone or
Ni, Mn, Co, Sn, Se, B, P, Si, Fe,
It is preferable to form a plating layer made of two or more alloys of Zn, In, and Bi. If necessary, a plating layer having a different thickness may be provided on the inner surface side and the outer surface side of the can. When the plating layer is formed only on one surface, the surface is processed to be the inner surface of the can. When a steel sheet having a coarse crystal grain layer as a surface layer is used, plating is performed on at least the surface having the layer, and the plating surface is processed so as to be the inner surface of the can.

【0020】電池缶形成用鋼板をプレス加工し、後メッ
キを施した電池缶、および先メッキを施した電池缶形成
用メッキ鋼板をプレス加工して形成した電池缶は、いず
れも、鋼板の粗大結晶粒の粒径および体積率、粗大結晶
粒層の厚さ上記した適性範囲に設定していることによ
り、加工後の缶内面軸方向平均粗さ(Ra)を7μm以
上とすることができる。このように、電池缶内面に粗大
結晶粒の存在により肌荒れを発生させることにより、カ
ーボン粉末および充填活物質の保持力を高めることがで
きる。特に、内容物充填時に脱落しやすいカーボン粉末
の保持には缶軸方向の粗さが大きいことが重要であり、
軸方向平均粗さ(Ra)が7μm以上とすることによ
り、カーボン粉末の脱落を防止することができる。この
点より、軸方向平均粗さを10μm以上とすることがよ
り好ましい。一方、電池缶外面に粗大結晶粒層を設けて
いない面とすると、電池缶外面は平滑性を保持して、美
麗な外観を得ることができる。なお、電池缶内面の粗さ
をより大きくするために、上記電池缶形成用鋼板あるい
は電池缶形成用メッキ鋼板の電池缶内面側となる面に凹
凸加工を予め施しておいてもよいし、電池缶形成時に割
れを発生させるメッキ層を設けておいてもよい。
A battery can formed by pressing a steel plate for forming a battery can and then performing post-plating, and a battery can formed by pressing a plated steel plate for forming a battery can that has been pre-plated are both coarse and large. By setting the grain size and volume ratio of the crystal grains and the thickness of the coarse crystal grain layer in the above-described appropriate ranges, the average roughness (Ra) in the axial direction of the inner surface of the can after processing can be made 7 μm or more. As described above, by causing the rough surface due to the presence of the coarse crystal grains on the inner surface of the battery can, it is possible to increase the holding power of the carbon powder and the filled active material. In particular, it is important that the roughness in the axial direction of the can be large in order to hold the carbon powder that easily falls off when filling the contents.
When the average roughness (Ra) in the axial direction is 7 μm or more, the carbon powder can be prevented from falling off. From this point, it is more preferable that the average roughness in the axial direction is 10 μm or more. On the other hand, when the outer surface of the battery can is not provided with the coarse crystal grain layer, the outer surface of the battery can maintains smoothness and can obtain a beautiful appearance. In order to further increase the roughness of the inner surface of the battery can, the surface of the steel plate for forming the battery can or the plated steel sheet for forming the battery can, which is on the inner surface side of the battery can, may be subjected to unevenness in advance. A plating layer that generates cracks during can formation may be provided.

【0021】さらに、上記電池缶を用いて製造される電
池は、カーボン粉末が健全に保持される上、活物質と缶
内面との接触面積が大きいため、優れた性能を有する。
電池性能向上に寄与できる。上記電池としては、一次電
池ではアルカリ乾電池、リチウム一次電池、空気電池、
酸化銀電池等が挙げられ、二次電池ではNi−Ca電
池、Ni−MH電池、リチウムイオン電池等が挙げられ
る。
Further, the battery manufactured using the battery can has excellent performance because the carbon powder is kept healthy and the contact area between the active material and the inner surface of the can is large.
It can contribute to battery performance improvement. As the above batteries, primary batteries are alkaline dry batteries, lithium primary batteries, air batteries,
Examples of the secondary battery include a Ni-Ca battery, a Ni-MH battery, and a lithium ion battery.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施形態を説明す
る。図1に第一実施形態の電池缶形成用鋼板の圧延方向
断面の光学顕微鏡像の一例を示す。この電池缶形成用鋼
板10は、低炭素鋼からなり、粒径が30μm以上の粗
大結晶粒11を含んでいる。鋼板10は上記粗大結晶粒
11と略30μm未満の比較的微細な結晶粒(以下、微
細結晶粒と称す)21とが鋼板10の全体にわたって偏
在しており、粗大結晶粒11の体積率は5%以上であ
る。鋼板の全体結晶粒(粗大結晶粒11と微細結晶粒を
含む)の平均結晶粒径は150μm以下である。
Embodiments of the present invention will be described below. FIG. 1 shows an example of an optical microscope image of a cross section in the rolling direction of the steel sheet for forming a battery can of the first embodiment. The battery can-forming steel sheet 10 is made of low-carbon steel and includes coarse crystal grains 11 having a particle size of 30 μm or more. In the steel sheet 10, the coarse crystal grains 11 and relatively fine crystal grains (hereinafter, referred to as fine crystal grains) 21 having a size of less than about 30 μm are unevenly distributed over the entire steel sheet 10, and the volume ratio of the coarse crystal grains 11 is 5%. % Or more. The average crystal grain size of the entire crystal grains (including the coarse crystal grains 11 and the fine crystal grains) of the steel sheet is 150 μm or less.

【0023】図2は第二実施形態の電池缶形成用鋼板の
圧延方向断面光学顕微鏡像の一例を示す。この電池缶形
成用鋼板は、上記第一実施形態と同様に低炭素鋼からな
る。第一実施形態との相違点は、鋼板10’の表層部に
設けられる粗大結晶粒11を主体とする層(粗大結晶粒
層と称す)20と、微細結晶粒21からなる層(微細結
晶粒層と称す)22とで構成している点である。
FIG. 2 shows an example of an optical microscope image of a cross section in the rolling direction of the steel sheet for forming a battery can of the second embodiment. This battery can-forming steel sheet is made of low-carbon steel as in the first embodiment. The difference from the first embodiment is that a layer (referred to as a coarse crystal grain layer) 20 mainly composed of coarse crystal grains 11 provided on the surface layer portion of the steel sheet 10 ′ and a layer (fine crystal grains) 22).

【0024】上記粗大結晶粒層20は、鋼板10’の表
裏両面に設けられ、電池缶形成時に内面側となる面に構
成された粗大結晶粒層20aと、外面側となる面に構成
された粗大結晶粒層20bからなる。なお、図2は鋼板
両面に粗大結晶粒層を有しているが、電池缶形成時に内
面側となる面にのみ粗大結晶粒層20aのみを有する形
態でもよい。
The coarse crystal grain layer 20 is provided on both the front and back surfaces of the steel plate 10 ′, and is formed on the coarse crystal grain layer 20 a formed on the inner surface when the battery can is formed, and on the outer surface. It consists of a coarse crystal grain layer 20b. Although FIG. 2 has a coarse crystal grain layer on both surfaces of the steel sheet, a mode in which only the coarse crystal grain layer 20a is provided only on the inner surface when the battery can is formed may be used.

【0025】上記粗大結晶粒層20(20a、20b)
を構成する結晶粒の平均結晶粒径は30μm以上150
μm以下としている。また、各粗大結晶粒層20a、2
0bの厚さt2はそれぞれ全板厚t1の5%以上40%
以下としている。また、微細結晶21は、平均粒径30
μm未満の結晶粒で構成している。
The coarse crystal grain layer 20 (20a, 20b)
Has an average crystal grain size of 30 μm or more and 150 or more.
μm or less. In addition, each coarse crystal grain layer 20a,
The thickness t2 of Ob is 5% or more and 40% of the total thickness t1, respectively.
It is as follows. The fine crystals 21 have an average particle size of 30.
It is composed of crystal grains of less than μm.

【0026】図3(A)は第三実施形態のメッキ鋼板3
0の概略図であり、上記第一実施形態の鋼板10の一面
にメッキ層31を設けたものであり、該メッキ層31を
電池缶形成時に内面側としている。図3(B)は第三実
施形態の変形例であり、第一実施形態の鋼板10の両面
にメッキ層31、32を設けたメッキ鋼板30’からな
る。電池缶形成時に内面側となるメッキ層31と外面側
となるメッキ層32はメッキの種類を変えている。本実
施形態では、メッキ層31はニッケルメッキ層とし、メ
ッキ層32は光沢ニッケルメッキ層とし、メッキ層3
1、32の厚さは0.5μm〜10μmとしている。
FIG. 3A shows a plated steel sheet 3 according to the third embodiment.
FIG. 2 is a schematic view of the first embodiment, in which a plating layer 31 is provided on one surface of the steel sheet 10 of the first embodiment, and the plating layer 31 is set to an inner surface side when a battery can is formed. FIG. 3B is a modification of the third embodiment, and is made of a plated steel plate 30 ′ in which plated layers 31 and 32 are provided on both surfaces of the steel plate 10 of the first embodiment. The plating layer 31 on the inner side and the plating layer 32 on the outer side when forming the battery can have different types of plating. In the present embodiment, the plating layer 31 is a nickel plating layer, the plating layer 32 is a bright nickel plating layer, and the plating layer 3
The thickness of each of the first and the second 32 is 0.5 μm to 10 μm.

【0027】図4(A)は第四実施形態のメッキ鋼板4
0の概略図であり、上記第二実施形態の鋼板10’の一
面の粗大結晶粒層20aの表面にメッキ層31’を設け
たものであり、該メッキ層31’を電池缶形成時に内面
側としている。図4(B)は第四実施形態の変形例であ
り、第二実施形態の鋼板10’の両面の粗大結晶粒層2
0a、20bの表面にメッキ層31’、32’を設けた
メッキ鋼板40’からなり、電池缶形成時に内面側とな
るメッキ層31’と外面側となるメッキ層32’はメッ
キの種類を変えている。本実施形態では、メッキ層3
1’はニッケルメッキ層とし、メッキ層32’は光沢ニ
ッケルメッキ層とし、メッキ層31’、32’の厚さは
0.5μm〜10μmとしている。
FIG. 4A shows a plated steel sheet 4 according to the fourth embodiment.
FIG. 2 is a schematic diagram of a steel sheet 10 ′ of the second embodiment, in which a plating layer 31 ′ is provided on the surface of a coarse crystal grain layer 20a on one surface, and the plating layer 31 ′ is formed on the inner surface side when a battery can is formed. And FIG. 4B is a modification of the fourth embodiment, in which the coarse crystal grain layers 2 on both surfaces of the steel plate 10 ′ of the second embodiment are shown.
A plating steel plate 40 'provided with plating layers 31' and 32 'on the surfaces of 0a and 20b. The plating layer 31' on the inner surface side and the plating layer 32 'on the outer surface side when the battery can is formed change the type of plating. ing. In this embodiment, the plating layer 3
1 ′ is a nickel plating layer, the plating layer 32 ′ is a bright nickel plating layer, and the thickness of the plating layers 31 ′ and 32 ′ is 0.5 μm to 10 μm.

【0028】なお、メッキの種類はニッケルメッキに限
定されず、Ni単体または、Ni、Mn、Co、Sn、
Se、B、P、Si、Fe、Zn、In、Biのうち二
種以上の合金から形成してもよい。
The type of plating is not limited to nickel plating, but may be Ni alone, Ni, Mn, Co, Sn, or Ni.
It may be formed from two or more alloys of Se, B, P, Si, Fe, Zn, In, and Bi.

【0029】上記第一、第二実施形態の電池缶形成材料
10、10’は、図5に示すように、D1絞りしごき加
工して、底壁35aと周壁35bとを備えた有底円筒缶
35として加工している。
As shown in FIG. 5, the battery can-forming materials 10, 10 'of the first and second embodiments are drawn and ironed by D1 to obtain a bottomed cylindrical can having a bottom wall 35a and a peripheral wall 35b. It is processed as 35.

【0030】なお、加工方法としては、上記DI絞りし
ごき加工のほか、多段絞り加工、多段絞りにしごき加工
を組み合わせた所謂トランスファー加工(多段絞りしご
き加工)、ストレッチドロー加工、あるいはストレッチ
ドローにしごき加工を組み合わせた加工などのいずれの
加工方法を選択してもよい。
In addition to the above-mentioned DI drawing and ironing processing, multi-drawing processing, so-called transfer processing (multi-step drawing and ironing processing) which combines multi-step drawing and ironing processing, stretch draw processing, or stretch draw and ironing processing is used. Any processing method, such as a processing combining the above, may be selected.

【0031】第一、第二実施形態の鋼板10、10’で
は、鋼板表面に粗大結晶粒11が存在しているため、加
工後の円筒缶35の周壁35bでは、その内面側35b
−1と外面側35bー2の両面の表面粗さが大きくな
る。鋼板の変形は粒界から始まることが多いので、30
μm以上の粗大結晶粒11が存在することにより、絞り
加工時の変形が不均一となり、その結果、表面に凹凸を
生じる。プレス加工の方法としてしごき工程を含む方法
を選択した場合、しごき工程以前に発生した周壁表面の
凹凸が変化する。周壁内面35b−1の表面凹凸変化は
比較的小さいが、周壁外面の35bー2は、プレス工具
によりしごかれるためにこの凹凸が小さくなり、光沢度
の高い外観となりやすい。
In the steel plates 10, 10 'of the first and second embodiments, since the coarse crystal grains 11 are present on the surface of the steel plate, the inner wall 35b of the peripheral wall 35b of the cylindrical can 35 after processing is formed.
-1 and the surface roughness of both surfaces of the outer surface side 35b-2 are increased. Since the deformation of the steel sheet often starts at the grain boundary,
Due to the presence of the coarse crystal grains 11 of μm or more, deformation during drawing becomes non-uniform, and as a result, irregularities are generated on the surface. When the method including the ironing step is selected as the pressing method, the unevenness of the peripheral wall surface generated before the ironing step changes. Although the change in the surface irregularities of the inner peripheral surface 35b-1 is relatively small, the irregularities of the outer peripheral surface 35b-2 are reduced by the pressing tool, so that the appearance tends to be high in glossiness.

【0032】第一、第二の鋼板10、10’を上記加工
後、円筒缶35に後メッキ(ガラメッキ)を施し、円筒
缶35の周壁の内面35b−1、外面35bー2および
底壁35aの内外面にメッキ層38を設けて、図6に示
す電池缶50を製造している。 メッキ種は用途に応じ
てNi単体または、Ni、Mn、Co、Sn、Se、
B、P、Si、Fe、Zn、In、Biのうち二種以上
の合金から形成し、メッキ厚さは0.5μm〜10μm
としている。
After the first and second steel plates 10 and 10 'are processed as described above, post-plating (glass plating) is performed on the cylindrical can 35, and the inner surface 35b-1, outer surface 35b-2, and bottom wall 35a of the peripheral wall of the cylindrical can 35 are formed. The battery can 50 shown in FIG. 6 is manufactured by providing the plating layers 38 on the inner and outer surfaces of the battery can. The plating type is Ni alone or Ni, Mn, Co, Sn, Se,
B, P, Si, Fe, Zn, In, Bi are formed from two or more alloys, and the plating thickness is 0.5 μm to 10 μm.
And

【0033】このように、円筒缶35に後メッキを施し
て電池缶50とするとき、缶内面35aの凹凸のある表
面に概ね均一な厚さにメッキ層が形成されるため、メッ
キ後の表面凹凸はメッキ前とほぼ同等であり、電池缶5
0の内面缶軸方向平均表面粗さ(Ra)は7μm以上と
なる。
As described above, when the cylindrical can 35 is subjected to post-plating to form the battery can 50, a plating layer having a substantially uniform thickness is formed on the uneven surface of the inner surface 35a of the can. The unevenness is almost the same as before plating.
The average surface roughness (Ra) of the inner can in the axial direction is 0 μm or more.

【0034】上記第三、第四実施形態の、メッキ鋼板3
0(30’)、40(40’)を用いて電池缶を形成す
る方法は、前述の第一、第二実施形態と同様で、適宜選
択した方法によりプレス加工する。これらはプレス加工
前にすでにメッキ層を有しているので、加工後には前記
図6と同様の電池缶50が得られる。この電池缶50の
内面缶軸方向平均表面粗さ(Ra)は7μm以上であ
る。
The plated steel sheet 3 according to the third and fourth embodiments
The method of forming a battery can using 0 (30 ') and 40 (40') is the same as in the first and second embodiments described above, and press working is performed by an appropriately selected method. Since these already have a plating layer before the press working, a battery can 50 similar to that of FIG. 6 is obtained after the working. The average surface roughness (Ra) of the inner surface of the battery can 50 in the axial direction of the can is 7 μm or more.

【0035】上記第一乃至第四実施形態に示す電池缶形
成用鋼板をプレス加工して形成した電池缶50は、内面
に適度な表面粗さを有するため、電池缶内面に塗布され
るカーボン粉末60および充填活物質(図示せず)の保
持力が優れている。特に、内容物充填時に脱落しやすい
カーボン粉末の保持には缶軸方向の表面粗さが大きいこ
とが重要であり、軸方向平均粗さ(Ra)を7μm以上
としているため、カーボン粉末を脱落させることなく安
定して保持できる。さらに上記電池缶を用いて製造され
る電池は、カーボン粉末を強く保持できるとともに、活
物質と缶内面との接触面積が大きいため、優れた性能を
有する。
The battery can 50 formed by pressing the steel sheet for forming a battery can shown in the first to fourth embodiments has an appropriate surface roughness on the inner surface, so that the carbon powder applied to the inner surface of the battery can is 60 and a filling active material (not shown). In particular, it is important that the surface roughness in the axial direction of the can is large for holding carbon powder which is likely to fall off during filling of the contents. Since the average roughness (Ra) in the axial direction is 7 μm or more, the carbon powder is dropped. It can be stably held without any. Furthermore, a battery manufactured using the battery can has excellent performance because it can strongly hold carbon powder and has a large contact area between the active material and the inner surface of the can.

【0036】[0036]

【実施例】一般の電池缶用途に用いられる低炭素鋼を溶
製後、熱間圧延、酸洗、冷間圧延を行った。次いで再結
晶温度以上、変態点以下で再結晶焼鈍し、さらに下記の
表1に示す条件で調質圧延および焼鈍を施した後、得ら
れた鋼板の両面に、厚さ3μmのNiメッキを施して、
上記第三実施形態からなる実施例3および7、第四実施
形態からなる実施例1、2、4〜6、比較例1〜3の電
池缶形成用鋼板を作製した。
EXAMPLES Low-carbon steel used for general battery can applications was melted and then subjected to hot rolling, pickling and cold rolling. Next, after recrystallization annealing at a temperature equal to or higher than the recrystallization temperature and equal to or lower than the transformation point, temper rolling and annealing are performed under the conditions shown in Table 1 below, and both surfaces of the obtained steel plate are subjected to Ni plating with a thickness of 3 μm. hand,
The steel sheets for forming battery cans of Examples 3 and 7 of the third embodiment, Examples 1, 2, 4 to 6 of the fourth embodiment, and Comparative Examples 1 to 3 were produced.

【0037】[0037]

【表1】 [Table 1]

【0038】以上の要領で得られた供試材について、圧
延方向の断面を各実施例、比較例について5視野づつ顕
微鏡観察し、各視野について30μm以上の粗大粒の体
積率を測定し、5視野の平均を求めた。
With respect to the test material obtained in the above manner, the section in the rolling direction was observed with a microscope for each of the examples and comparative examples in five visual fields, and the volume ratio of coarse particles of 30 μm or more was measured for each visual field. The average of the visual field was determined.

【0039】実施例3、7については、平均結晶粒径を
測定し、150μm以下であることを確認した。また、
表層部に粗大結晶粒を主体とする平均粒径30μm以上
150μm以下の層が存在する実施例1、2、4〜6に
ついては、該層の厚さを任意の5点で測定し、全板厚に
対する割合の平均値を求めた。さらに、これらの鋼板に
DI加工を施して電池缶を形成し、缶内面の缶体長手方
向中央部での缶軸方向平均粗さ(Ra)を測定した。R
aの測定は、レーザー粗さ測定器を用いて行った。粗大
粒体積率、缶内面Raの測定結果を表2に示す。表2
中、粗大結晶粒とは粒径30μm以上の結晶粒を指す。
For Examples 3 and 7, the average crystal grain size was measured and found to be 150 μm or less. Also,
In Examples 1, 2, 4 to 6 in which a layer mainly composed of coarse crystal grains and having an average particle size of 30 μm or more and 150 μm or less exists in the surface layer portion, the thickness of the layer was measured at any five points, and The average value of the ratio to the thickness was determined. Further, these steel plates were subjected to DI processing to form a battery can, and the average roughness (Ra) in the axial direction of the can at the center of the inner surface of the can in the longitudinal direction of the can was measured. R
The measurement of a was performed using a laser roughness measuring device. Table 2 shows the measurement results of the coarse particle volume ratio and the inner surface Ra of the can. Table 2
Medium and coarse crystal grains refer to crystal grains having a particle size of 30 μm or more.

【0040】[0040]

【表2】 [Table 2]

【0041】上記表2に示すように、実施例1〜7は粒
径30μm以上の粗大結晶粒の体積率が5%以上、具体
的には、11.4%(実施例5)〜93.4%(実施例
3)であった。実施例1、2、4〜7には、他の部分と
は明確に区別できる粗大結晶粒層が鋼板の両表層部に存
在し、該層の平均粒径は30μm以上150μm以下で
あった。なお、実施例3、7は板厚全体に粒径30μm
以上の粗大結晶粒が分布しており、明確に区別される粗
大結晶粒を主体とする層は存在していなかった。また、
全板厚に対する粗大結晶粒を主体とする層の厚さ比率
は、実施例1、2、4〜7は5%以上40%以下で、具
体的には12.9%(実施例5)〜25.8%(実施例
4)であった。これに対して、比較例1〜3は粒径が3
0μm以上の結晶粒の体積率が5%未満であり、かつ粗
大結晶粒を主体とする層の厚さの全板厚に対する割合が
5%未満であった。実施例1〜7、比較例1〜3をDI
加工して形成した電池缶の缶軸方向の平均表面粗さ(R
a)は、比較例が7μm未満であるのに対して、実施例
1〜7は7μm以上であった。
As shown in Table 2, in Examples 1 to 7, the volume ratio of coarse crystal grains having a particle size of 30 μm or more was 5% or more, specifically 11.4% (Example 5) to 93. 4% (Example 3). In Examples 1, 2, 4 to 7, coarse crystal grain layers which could be clearly distinguished from other parts were present in both surface layer portions of the steel sheet, and the average grain size of the layers was 30 μm or more and 150 μm or less. In Examples 3 and 7, the entire sheet thickness was 30 μm in particle size.
The above coarse crystal grains were distributed, and there was no clearly distinguished layer mainly composed of coarse crystal grains. Also,
The thickness ratio of the layer mainly composed of the coarse crystal grains to the total plate thickness is 5% or more and 40% or less in Examples 1, 2, 4 to 7, and specifically 12.9% (Example 5). It was 25.8% (Example 4). On the other hand, Comparative Examples 1 to 3 have a particle size of 3
The volume ratio of crystal grains of 0 μm or more was less than 5%, and the ratio of the thickness of the layer mainly composed of coarse crystal grains to the total plate thickness was less than 5%. Examples 1 to 7 and Comparative Examples 1 to 3 were DI
The average surface roughness (R
In a), Comparative Examples were less than 7 μm, whereas Examples 1 to 7 were 7 μm or more.

【0042】[評価試験]実施例1〜7の本発明の電池
缶と比較例1〜3の電池缶に活物質を充填して乾電池を
作製し、1.5Aの連続放電を行って、放電特性を評価
した。その結果を表3に示す。表3では、比較例1の放
電時間を100として、他の実施例および比較例の放電
時間を指数で表示した。
[Evaluation Test] A dry battery was prepared by filling the battery cans of Examples 1 to 7 and the battery cans of Comparative Examples 1 to 3 with active materials, and were continuously discharged at 1.5 A. The properties were evaluated. Table 3 shows the results. In Table 3, the discharge time of Comparative Example 1 was set to 100, and the discharge times of other Examples and Comparative Examples were indicated by indexes.

【0043】[0043]

【表3】 [Table 3]

【0044】表3に示すように、缶内面の缶軸方向平均
粗さが7μm以上の実施例1〜7は、放電特性が比較例
1〜3より優れていることが確認できた。
As shown in Table 3, it was confirmed that Examples 1 to 7 in which the average roughness of the inner surface of the can in the axial direction of the can was 7 μm or more had better discharge characteristics than Comparative Examples 1 to 3.

【0045】[0045]

【発明の効果】以上の説明より明らかなように、本発明
の電池缶形成用鋼板および電池缶形成用メッキ鋼板で
は、鋼板の結晶粒として粗大結晶粒を設けているため、
該粗大結晶粒の存在により、電池缶形成時に電池缶内面
が粗面となるため、カーボン粉末の保持力を高めること
が出来ると共に、活物質との接触面積を大きくすること
ができる。
As is apparent from the above description, the steel plate for forming a battery can and the plated steel plate for forming a battery can of the present invention are provided with coarse crystal grains as crystal grains of the steel sheet.
Due to the presence of the coarse crystal grains, the inner surface of the battery can becomes rough when the battery can is formed, so that the holding power of the carbon powder can be increased and the contact area with the active material can be increased.

【0046】即ち、電池缶が一次電池に用いられる場
合、缶内面にカーボン粉末が塗布される。その際、本発
明による電池缶では従来より缶内面の軸方向表面粗さが
大きいため、カーボン粉末の保持力を高めて内容物充填
工程での剥離や脱落を防止できる。さらに、電池缶に正
極合剤となる活物質が充填された際、本発明による電池
缶では内面粗さが大きく活物質との接触面積が従来より
も増大しているため、電池本体の抵抗が低くなり、電池
性能が向上する。二次電池においては、電池缶に収容す
る渦巻き状の電極板の外周面が電池缶内周面と平行でな
い場合でも、電池缶内面の表面粗さが大きい、すなわち
凹凸があるために接触面積を増加でき、一次電池の場合
と同様に電池本体の抵抗が低くなり、電池性能を向上さ
せることができる。このように、電池缶内面の表面粗さ
を増大させているため、一次電池、二次電池のいずれの
場合も、電池性能を高めることができる。
That is, when the battery can is used for a primary battery, carbon powder is applied to the inner surface of the can. At this time, in the battery can according to the present invention, since the inner surface of the can has a larger surface roughness in the axial direction than before, the holding power of the carbon powder is increased, and peeling or falling off in the content filling step can be prevented. Furthermore, when the battery can is filled with an active material serving as a positive electrode mixture, the battery can according to the present invention has a large inner surface roughness and a larger contact area with the active material than before, so that the resistance of the battery body is reduced. Battery performance. In a secondary battery, even when the outer peripheral surface of the spiral electrode plate housed in the battery can is not parallel to the inner peripheral surface of the battery can, the surface area of the inner surface of the battery can is large. As in the case of the primary battery, the resistance of the battery body decreases, and the battery performance can be improved. As described above, since the surface roughness of the inner surface of the battery can is increased, the battery performance can be improved in any of the primary battery and the secondary battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第一実施形態の電池缶形成用鋼板の
圧延方向断面写真の複写である。
FIG. 1 is a copy of a cross-sectional photograph in the rolling direction of a steel sheet for forming a battery can according to the first embodiment of the present invention.

【図2】 本発明の第二実施形態の電池缶形成用鋼板の
圧延方向断面写真の複写である。
FIG. 2 is a copy of a cross-sectional photograph in the rolling direction of a steel sheet for forming a battery can according to a second embodiment of the present invention.

【図3】 (A)は第三実施形態の電池缶形成用メッキ
鋼板の概略断面図、(B)は変形例の概略断面図であ
る。
FIG. 3A is a schematic sectional view of a plated steel sheet for forming a battery can according to a third embodiment, and FIG. 3B is a schematic sectional view of a modification.

【図4】 (A)は第四実施形態の電池缶形成用メッキ
鋼板の概略断面図、(B)は変形例の概略断面図であ
る。
FIG. 4A is a schematic sectional view of a plated steel sheet for forming a battery can according to a fourth embodiment, and FIG. 4B is a schematic sectional view of a modification.

【図5】 DI加工で電池缶を形成している途中工程の
鋼板の形状を示す概略図である。
FIG. 5 is a schematic view showing the shape of a steel sheet in an intermediate step of forming a battery can by DI processing.

【図6】 本発明の有底筒状電池缶を用いて作製された
電池の要部拡大断面図である。
FIG. 6 is an enlarged cross-sectional view of a main part of a battery manufactured using the bottomed cylindrical battery can of the present invention.

【符号の説明】[Explanation of symbols]

10、10’ 電池缶形成用鋼板 11 粗大結晶粒 20 粗大結晶粒層 21 微細結晶粒 22 微細結晶粒層 35 有底円筒缶 38 メッキ層 50 電池缶 60 カーボン粉末 10, 10 'Steel plate for forming battery can 11 Coarse crystal grain 20 Coarse crystal grain layer 21 Fine crystal grain 22 Fine crystal grain layer 35 Bottomed cylindrical can 38 Plating layer 50 Battery can 60 Carbon powder

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年8月25日(2000.8.2
5)
[Submission date] August 25, 2000 (2008.2
5)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 FIG. 2

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉原 玲子 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 佐藤 進 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 5H011 AA03 AA04 CC06 DD10 DD18 KK01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Reiko Sugihara 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Susumu Sato 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Sun F-term in Honko Tube Co., Ltd. (Reference) 5H011 AA03 AA04 CC06 DD10 DD18 KK01

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 粒径が30μm以上の粗大結晶粒を含
み、上記粗大結晶粒の体積率が5%以上であって、該粗
大結晶粒を含む全結晶粒の平均結晶粒径が150μm以
下であることを特徴とする電池缶形成用鋼板。
1. The method according to claim 1, wherein the coarse crystal grains have a grain size of 30 μm or more, and the volume fraction of the large crystal grains is 5% or more, and the average crystal grain size of all the crystal grains including the large crystal grains is 150 μm or less. A steel plate for forming a battery can.
【請求項2】 少なくとも一方の表層部に粗大結晶粒を
主体とする層を有し、該層を構成する結晶粒の平均粒径
が30μm以上150μm以下であり、該層の厚さが全
板厚の5%以上40%以下であって、該層以外の部分を
構成する結晶粒の平均粒径が30μm未満であることを
特徴とする電池缶形成用鋼板。
2. At least one surface layer has a layer mainly composed of coarse crystal grains, the average grain size of the crystal grains constituting the layer is 30 μm or more and 150 μm or less, and the thickness of this layer is A steel sheet for battery can formation, wherein the steel sheet has a thickness of 5% or more and 40% or less and an average grain size of crystal grains constituting a portion other than the layer is less than 30 μm.
【請求項3】 少なくとも一方の面にメッキ層を有する
請求項1に記載の電池缶形成用鋼板。
3. The steel sheet for forming a battery can according to claim 1, wherein the steel sheet has a plating layer on at least one surface.
【請求項4】 少なくとも上記粗大結晶粒を主体とする
層を有する側の表面に、メッキ層を有する請求項2に記
載の電池缶形成用鋼板。
4. The steel sheet for forming a battery can according to claim 2, wherein a plating layer is provided on at least a surface having a layer mainly composed of the coarse crystal grains.
【請求項5】 請求項1に記載の電池缶形成用鋼板をプ
レス加工して有底筒形状の電池缶を形成し、その後、メ
ッキを施す電池缶の製造方法。
5. A method for producing a battery can, wherein the steel sheet for battery can formation according to claim 1 is pressed to form a cylindrical battery can with a bottom, and then plated.
【請求項6】 請求項2に記載の電池缶形成用鋼板をプ
レス加工して有底筒形状の電池缶を形成する際、少なく
とも内面側を粗大結晶粒を主体とする層を有する面と
し、電池缶形成後、メッキを施す電池缶の製造方法。
6. When forming the bottomed cylindrical battery can by pressing the battery can-forming steel sheet according to claim 2, at least the inner surface has a surface having a layer mainly composed of coarse crystal grains, A method for manufacturing a battery can that is plated after the battery can is formed.
【請求項7】 請求項3に記載の電池缶形成用鋼板をプ
レス加工して有底筒形状の電池缶を形成し、其の際、少
なくとも内面側をメッキを有する面とする電池缶の製造
方法。
7. A battery can having a bottomed cylindrical shape by pressing the steel plate for battery can formation according to claim 3 to produce a battery can having a bottomed cylindrical shape. Method.
【請求項8】 請求項4に記載の電池缶形成用鋼板をプ
レス加工して有底筒形状の電池缶を形成し、其の際、少
なくとも内面側を粗大結晶粒を主体とする層を有する面
とする電池缶の製造方法。
8. The battery can-forming steel sheet according to claim 4, which is pressed to form a bottomed cylindrical battery can, wherein at least an inner surface side has a layer mainly composed of coarse crystal grains. A method for manufacturing a battery can as a surface.
【請求項9】 請求項5乃至請求項8のいずれか1項に
記載の製造方法により得られた電池缶であって、該電池
缶の内面の缶軸方向平均粗さ(Ra)が7μm以上であ
ることを特徴とする電池缶。
9. A battery can obtained by the manufacturing method according to claim 5, wherein the inner surface of the battery can has an average roughness (Ra) in the axial direction of the can of 7 μm or more. A battery can, characterized in that:
【請求項10】 請求項9に記載の電池缶を用いて形成
された電池。
10. A battery formed using the battery can according to claim 9.
JP2000245238A 2000-08-11 2000-08-11 Steel plate for forming battery can, battery can, manufacturing method of battery can and battery Withdrawn JP2002060899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000245238A JP2002060899A (en) 2000-08-11 2000-08-11 Steel plate for forming battery can, battery can, manufacturing method of battery can and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000245238A JP2002060899A (en) 2000-08-11 2000-08-11 Steel plate for forming battery can, battery can, manufacturing method of battery can and battery

Publications (1)

Publication Number Publication Date
JP2002060899A true JP2002060899A (en) 2002-02-28

Family

ID=18735801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000245238A Withdrawn JP2002060899A (en) 2000-08-11 2000-08-11 Steel plate for forming battery can, battery can, manufacturing method of battery can and battery

Country Status (1)

Country Link
JP (1) JP2002060899A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158004A1 (en) * 2015-03-31 2016-10-06 Fdkエナジー株式会社 Battery-can-forming steel sheet, and alkali battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158004A1 (en) * 2015-03-31 2016-10-06 Fdkエナジー株式会社 Battery-can-forming steel sheet, and alkali battery
JP2016195007A (en) * 2015-03-31 2016-11-17 Fdkエナジー株式会社 Steel for forming battery can and alkaline battery
US10217970B2 (en) 2015-03-31 2019-02-26 Fdk Corporation Steel plate for forming battery can and alkaline battery

Similar Documents

Publication Publication Date Title
US5576113A (en) Battery can, sheet for forming battery can, and method for manufacturing sheet
CN108368628B (en) Surface-treated steel sheet for battery container
JP5570078B2 (en) Ni-plated steel sheet and battery can manufacturing method using the Ni-plated steel sheet
WO2021020338A1 (en) Roughened nickel-plated material and method for producing same
KR102393707B1 (en) Surface-treated steel sheet and method for manufacturing surface-treated steel sheet
JPWO2018194135A1 (en) Cold-rolled steel sheet for squeezed can
WO2018052009A1 (en) Method for manufacturing surface treatment steel sheet for battery case
JP2002060899A (en) Steel plate for forming battery can, battery can, manufacturing method of battery can and battery
WO2017221763A1 (en) Steel sheet for battery outer cylindrical canister, battery outer cylindrical canister, and battery
JP3882103B2 (en) Low iron loss unidirectional electrical steel sheet with tension-applying anisotropic coating
CN1207142A (en) Steel sheet for double wound pipe and method of producing the pipe
JP2009256734A (en) Laminated steel plate, and method for producing the same
JP2810257B2 (en) Battery can and can forming material
JP3719661B2 (en) Aluminum alloy plate for battery case and battery case made of aluminum alloy
JPH09306438A (en) Battery can forming material, manufacture of this material and battery can formed by using this battery can forming material
JP6451919B1 (en) Steel plate for battery outer can, battery outer can and battery
JP5874771B2 (en) Steel plate for cans excellent in workability and rough skin resistance and method for producing the same
JP5491938B2 (en) Aluminum alloy plate for packaging container lid and manufacturing method thereof
JP2016180175A (en) Resin-coated aluminum alloy sheet for drawn ironed can excellent in glossiness after making can and resin coated aluminum alloy sheet for drawn ironed can
JP4392263B2 (en) Aluminum alloy plate for packaging container end and manufacturing method thereof
JP2000011966A (en) Battery can
JP4438758B2 (en) Cold rolled steel sheet for 2-piece cans
JP3845934B2 (en) Manufacturing method of cold rolled steel sheet for 2-piece can
KR100521571B1 (en) Method of manufacturing Al-Mg-Si alloy sheet with excellent formability
JP5653023B2 (en) Nickel rolled material, nickel rolled material manufacturing method, and cold cathode fluorescent lamp electrode

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106