WO2017221763A1 - Steel sheet for battery outer cylindrical canister, battery outer cylindrical canister, and battery - Google Patents
Steel sheet for battery outer cylindrical canister, battery outer cylindrical canister, and battery Download PDFInfo
- Publication number
- WO2017221763A1 WO2017221763A1 PCT/JP2017/021760 JP2017021760W WO2017221763A1 WO 2017221763 A1 WO2017221763 A1 WO 2017221763A1 JP 2017021760 W JP2017021760 W JP 2017021760W WO 2017221763 A1 WO2017221763 A1 WO 2017221763A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery outer
- diffusion layer
- battery
- steel sheet
- amount
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 131
- 239000010959 steel Substances 0.000 title claims abstract description 131
- 239000010410 layer Substances 0.000 claims abstract description 108
- 238000009792 diffusion process Methods 0.000 claims abstract description 89
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims abstract description 88
- 239000002344 surface layer Substances 0.000 claims abstract description 11
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 239000008151 electrolyte solution Substances 0.000 claims description 4
- 238000007747 plating Methods 0.000 abstract description 44
- 230000007797 corrosion Effects 0.000 abstract description 24
- 238000005260 corrosion Methods 0.000 abstract description 24
- 238000000465 moulding Methods 0.000 abstract description 11
- 230000008021 deposition Effects 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 24
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 15
- 239000000463 material Substances 0.000 description 15
- 238000012360 testing method Methods 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000000137 annealing Methods 0.000 description 10
- 229910000760 Hardened steel Inorganic materials 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 238000002791 soaking Methods 0.000 description 6
- 238000005097 cold rolling Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000011088 calibration curve Methods 0.000 description 4
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 2
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000012611 container material Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- QOSATHPSBFQAML-UHFFFAOYSA-N hydrogen peroxide;hydrate Chemical compound O.OO QOSATHPSBFQAML-UHFFFAOYSA-N 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/107—Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
- C25D5/50—After-treatment of electroplated surfaces by heat-treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a steel plate for a battery outer can, a battery outer can and a battery.
- a primary battery such as an alkaline manganese battery
- a secondary battery such as a lithium ion battery mounted on a notebook personal computer or a hybrid vehicle, etc. are known.
- Ni plating is applied to the surface of the steel sheet constituting the outer cylinder can (battery outer cylinder can) used in these batteries, and an Ni layer is formed. Due to the difference in the process of applying Ni plating, there are two types of manufacturing methods for battery outer cans. One is a pre-plating method in which a steel plate to which Ni plating is applied is press-formed into a battery outer can, and thereafter no plating treatment is performed. The other is a post-plating method in which Ni plating is applied to the surface of the battery outer can after press molding using a technique such as barrel plating.
- Patent Document 1 describes that “having a Fe—Ni diffusion layer having a thickness of 0.5 ⁇ m or more and 4 ⁇ m or less on the surface that becomes the inner surface of the container by press molding, further on the thickness 0.25 ⁇ m or more thereof, having the following Ni layer 4 [mu] m, the surface to be the outer surface of the container attachment amount 0.05 g / m 2 or more, has a 1.5 g / m 2 less than Ni, the A Ni-plated steel sheet for containers, characterized in that Ni is diffused inside and the surface layer has a Ni / (Fe + Ni) mass ratio of 0.1 to 0.9 (claim 1). ).
- such a steel plate for battery outer cylinder cans Ni-plated steel sheet for containers
- Ni plating is applied to the outer surface using a technique such as barrel plating. To do.
- ⁇ Cemented carbide is often used as the material of the mold (mold) used for post-plating press forming, but relatively brittle and hardened steel may also be used.
- the present invention is a steel plate for battery outer cans used in the post-plating method, the occurrence of scratches is suppressed even when press molding is repeatedly performed using a mold made of quenched steel, and
- An object of the present invention is to provide a steel plate for a battery outer can that is excellent in the corrosion resistance of the obtained battery outer can, and a battery outer can and a battery using the same.
- the present invention provides the following [1] to [8].
- [1] Fe-Ni diffusion layers are provided on both surface layers of the steel sheet, and the Fe-Ni diffusion layer has an Ni-concentrated adhesion amount on one side of the steel sheet of 50 mg / m 2 or more and 500 mg / m 2 or less.
- a steel plate for battery outer cans. [2] The steel plate for battery outer cans according to [1], wherein the Ni ratio on the outermost surface of the Fe—Ni diffusion layer is 1.0% or more and less than 20.0%. However, the Ni ratio is the ratio of the Ni amount to the total of Fe amount and Ni amount on the outermost surface of the Fe—Ni diffusion layer, and the unit of the Fe amount and the Ni amount is atomic%. .
- the steel plate for battery outer cans according to [1] or [2], wherein the thickness of the Fe—Ni diffusion layer is 0.01 ⁇ m or more and less than 0.5 ⁇ m.
- the battery outer cylinder-shaped steel plate has Fe—Ni diffusion layers on the inner and outer surface layers, and further has a Ni layer on the Fe—Ni diffusion layer on the outer surface side of the steel plate.
- a part of the Fe—Ni diffusion layer on the outer surface side of the steel sheet is an Fe—Ni diffusion layer A having an Ni conversion amount per side of the steel sheet of 50 mg / m 2 or more and 500 mg / m 2 or less. Tube can.
- a steel plate for a battery outer can used in a post-plating method, the occurrence of scratches is suppressed even when press molding is repeatedly performed using a mold made of quenched steel, and It is possible to provide a steel plate for a battery outer can that is excellent in corrosion resistance of the obtained battery outer can, and a battery outer can and a battery using the same.
- the steel sheet for battery outer cans of the present invention (hereinafter, also simply referred to as “the steel sheet for cans of the present invention”) has Fe—Ni diffusion layers on both surface layers of the steel sheet.
- the steel plate for cans of the present invention is a steel plate for battery outer cylinder cans used in post-plating methods, and even when press forming is repeatedly performed using a forming die made of quenched steel, the occurrence of scratches is suppressed.
- the obtained battery outer can has excellent corrosion resistance. The reason is presumed as follows.
- the steel sheet for a battery outer can used in the post-plating method described in Patent Document 1 has “Fe—Ni diffusion layer having a thickness of 0.5 ⁇ m or more on the surface that becomes the inner surface of the container by press molding”.
- the Ni adhesion amount of this Fe—Ni diffusion layer is 4500 mg / m 2 or more in terms of conversion.
- Such a steel sheet for battery outer cans of Patent Document 1 is a process in which a forming die made of a relatively brittle and hardened steel is repeatedly pressed by a Ni-adhering amount of the Fe—Ni diffusion layer is too hard. It is thought that it will gradually hurt. And since the shaping
- the Fe—Ni diffusion layer of the steel sheet for cans of the present invention has a reasonably small Ni adhesion amount of 500 mg / m 2 or less, and is considered to be soft enough not to damage a forming die made of hardened steel. For this reason, the generation
- the corrosion resistance when it is made into a battery outer can (hereinafter also simply referred to as “corrosion resistance”). Becomes better. More specifically, the content of the Fe-Ni diffusion layer is electrochemically stable on the inner surface of the battery outer can when compared with the case where the Fe-Ni diffusion layer is absent or too little. Corrosion resistance against is improved.
- Ni plating is applied to the outer surface by barrel plating or the like after forming to form a Ni layer.
- the Ni layer has some pinholes, and corrosion proceeds from here.
- the potential difference between the Ni layer and the underlayer can be reduced compared to the case where there is no Fe—Ni diffusion layer or too little, and the corrosion resistance. Will improve.
- the kind of steel plate is not particularly limited.
- a steel plate for example, a low carbon steel plate or an extremely low carbon steel plate
- the content of Cr in the steel sheet may cause the steel to harden and deteriorate formability, or may form a Cr oxide on the surface of the steel sheet during annealing, making it impossible to obtain a desired surface state.
- the Cr content of the steel sheet is preferably less than 3% by mass, and more preferably less than 1% by mass.
- the manufacturing method of the steel plate is not particularly limited. For example, it is manufactured through processes such as hot rolling, pickling, cold rolling, annealing, and temper rolling from a normal steel slab manufacturing process.
- the formation of the Fe—Ni diffusion layer is essential, it is possible to apply Ni plating to an unannealed steel sheet after cold rolling, and to diffuse the Ni plating inside the steel sheet together with the annealing treatment of the steel sheet. Above, the most efficient. For this reason, it is preferable to use an unannealed steel sheet after cold rolling as the steel sheet.
- the steel plate for cans of the present invention has Fe—Ni diffusion layers on the surface layers on both sides of the steel plate.
- Ni conversion amount (Ni adhesion amount) per one side of the steel sheet is 50 mg / m 2 or more and 500 mg / m 2 or less.
- the steel plate for cans of this invention is excellent in both scratch resistance and corrosion resistance.
- Ni deposition amount of Fe-Ni diffusion layer is preferably 350 mg / m 2 or less, 300 mg / m 2 or less is more preferable.
- the amount of Ni deposited on the Fe—Ni diffusion layer can be measured by surface analysis using fluorescent X-ray analysis.
- a calibration curve related to the Ni adhesion amount is specified in advance using a Ni adhesion sample with a known Ni adhesion amount, and the Ni adhesion amount is relatively specified using the calibration curve.
- the fluorescent X-ray analysis is performed, for example, under the following conditions.
- Apparatus X-ray fluorescence analyzer System 3270 manufactured by Rigaku Corporation ⁇ Measurement diameter: 30 mm ⁇ Measurement atmosphere: Vacuum ⁇ Spectrum: Ni-K ⁇ ⁇ Slit: COARSE -Spectral crystal: TAP The peak count number of Ni—K ⁇ in the fluorescent X-ray analysis of the Fe—Ni diffusion layer measured under the above conditions is used. Using a standard sample with a known adhesion amount measured by the gravimetric method, a calibration curve related to the Ni adhesion amount is specified in advance, and the Ni adhesion amount is relatively determined using the calibration curve.
- the thickness of the Fe—Ni diffusion layer is 0.01 ⁇ m or more because it is easy to maintain the Fe—Ni diffusion layer after forming and the scratch resistance and corrosion resistance are more excellent. 0.4 ⁇ m or less is more preferable, and 0.38 ⁇ m or less is still more preferable because it is preferably less than 0.5 ⁇ m and scratch resistance is further improved.
- the thickness of the Fe—Ni diffusion layer can be measured by GDS (glow discharge emission analysis). Specifically, first, sputtering is performed from the surface of the Fe—Ni diffusion layer toward the inside of the steel plate, analysis is performed in the depth direction, and a sputtering time at which the Ni intensity becomes 1/10 of the maximum value is obtained. Next, the relationship between the sputtering depth by GDS and the sputtering time is obtained using pure iron. Using this relationship, the sputtering depth is calculated in terms of pure iron from the sputtering time at which the Ni strength obtained previously becomes 1/10 of the maximum value, and the calculated value is taken as the thickness of the Fe—Ni diffusion layer. GDS was carried out under the following conditions.
- Ni ratio (hereinafter also simply referred to as “Ni ratio”) on the outermost surface of the Fe—Ni diffusion layer is 1.0% or more and 20.20 because it is more excellent in scratch resistance and corrosion resistance. Preferably it is less than 0%.
- the Ni ratio on the outermost surface of the Fe—Ni diffusion layer is important because Ni on the outermost surface of the Fe—Ni diffusion layer has a direct effect on the corrosion resistance, but Ni diffused in the steel has a small effect on improving the corrosion resistance. . On the other hand, if the Ni ratio is too high, the outermost surface becomes hard and scratch resistance may be insufficient.
- the suitable range of Ni ratio is 1.0% or more and less than 20.0% mentioned above.
- the lower limit of the Ni ratio is more preferably 3.0%.
- the upper limit of the Ni ratio is more preferably 15.0%, still more preferably 13.0%.
- the Ni ratio (unit:%) on the outermost surface of the Fe—Ni diffusion layer is the ratio of the Ni amount to the sum of the Fe amount and the Ni amount on the outermost surface of the Fe—Ni diffusion layer, that is, the formula “Ni amount / (Fe amount + Ni amount) ⁇ 100 ”.
- the unit of Fe amount and Ni amount is atomic%.
- the amount of Fe (unit: atomic%) and the amount of Ni (unit: atomic%) on the outermost surface of the Fe—Ni diffusion layer were determined by ultrasonically cleaning the steel sheet on which the Fe—Ni diffusion layer was formed in acetone for 10 minutes. It can be measured by performing Auger electron spectroscopy without performing sputtering.
- Auger electron spectroscopic measurement is performed at 10 points in different fields of view in the same sample, and the average value of the results of measurement at 10 points is used for the Fe amount and Ni amount, respectively.
- Auger electron spectroscopy measurement was performed under the following conditions.
- ⁇ Device ULVAC-PHI PHI660 Observation and analysis conditions: acceleration voltage 10.0 kV, current value 0.5 ⁇ A Observation magnification 1,000 times, measurement range 540-900eV
- the method for forming the Fe—Ni diffusion layers on the surface layers on both surfaces of the steel plate is not particularly limited, but the following method is given as an example.
- pre-treatment eg, degreasing and pickling
- a Ni plating bath examples include a watt bath, a sulfamic acid bath, a borofluoride bath, and a chloride bath.
- the Ni adhesion amount of the formed Fe—Ni diffusion layer can be set to 50 mg / m 2 or more and 500 mg / m 2 or less.
- annealing for the purpose of recrystallizing the steel sheet is performed on the steel sheet to which Ni plating has been applied.
- the Ni plating diffuses inside the steel sheet and an Fe—Ni diffusion layer is formed.
- the soaking temperature is preferably 600 ° C. or more and 800 ° C. or less, and the holding time at this soaking temperature is preferably 10 seconds or more and 60 seconds or less. The shorter the holding time at the soaking temperature, the more difficult Ni diffuses in the steel, and the Ni ratio on the outermost surface increases. From the viewpoint of corrosion resistance, the holding time at the soaking temperature is more preferably less than 30 seconds. .
- the thickness of the formed Fe—Ni diffusion layer is set to 0.01 ⁇ m or more and less than 0.5 ⁇ m, and the Ni ratio on the outermost surface is set to 1.0% or more and less than 20.0%. This is preferable.
- shape correction and surface roughness adjustment may be performed by temper rolling as necessary.
- the manufacturing method of the present invention includes, for example, a step of forming the steel plate for cans of the present invention into a battery outer can shape (for example, a cylindrical shape) by press forming using a forming die, and then into a battery outer can shape. And forming a Ni layer on the outer surface of the formed steel plate for a can of the present invention by applying Ni plating.
- the method of forming (press molding) is not particularly limited, and can be performed by a general method used for forming a battery outer can.
- the steel plate for cans of the present invention is punched into a circular shape, drawn into a cup shape, formed into a cylindrical shape or the like by a redrawing and DI (Drawing and Ironing) process.
- cemented carbide is often used as the material of the mold used, but relatively brittle and hardened steel may be used.
- the Fe—Ni diffusion layer of the steel sheet for cans of the present invention is considered not to damage the mold made of hardened steel, the generation of scratches on the steel sheet for battery outer cylinder can be suppressed.
- the Ni adhesion amount, thickness, and Ni ratio of the Fe—Ni diffusion layer subjected to press forming can be changed without maintaining the state before press forming.
- at least a part of the portion that becomes the outer surface side of the battery outer can (for example, the portion that becomes the end surface of the positive protrusion of the battery outer can) is not press-formed. It remains as processed. Therefore, at least a part of the outer surface side of the battery outer can obtained by using the steel plate for cans of the present invention (battery outer can of the present invention) is Fe-Ni diffusion in the steel plate for cans of the present invention before press forming.
- the Ni adhesion amount, thickness, and Ni ratio of the layer are maintained as they are.
- Ni plating after forming into battery outer tube can shape The method for applying Ni plating is not particularly limited, and a conventionally known method can be used.
- the steel plate for cans of the present invention formed into a battery outer can shape is subjected to Ni plating by a barrel plating method by appropriately adjusting conditions such as current density using a Ni plating bath.
- the Ni plating bath include a watt bath, a sulfamic acid bath, a borofluoride bath, and a chloride bath.
- Ni plating is performed on the Fe—Ni diffusion layer on at least the outer surface side of the steel plate for a can of the present invention formed into a battery outer cylinder can shape, thereby forming a Ni layer.
- the steel plate for cans of the present invention is formed into a battery outer cylinder can shape, Ni plating is less likely to enter inside, and the inner surface of the steel plate for cans of the present invention in the shape of a battery outer cylinder can is Ni. Plating is difficult to apply.
- the Ni layer may be formed on the inner surface of the battery steel plate for cans of the present invention having a battery outer can shape as well as the outer surface.
- the thickness of the Ni plating (Ni layer) formed on the Fe—Ni diffusion layer is preferably 1 ⁇ m or more and more preferably 2 ⁇ m or more from the viewpoint of corrosion resistance.
- the upper limit of the thickness of Ni layer is not specifically limited, For example, 7 micrometers or less are preferable from a viewpoint of economical efficiency.
- the battery outer can of the present invention is a battery outer can obtained using the steel plate for cans of the present invention. More specifically, the battery outer can of the present invention has a Fe—Ni diffusion layer on the inner surface and outer surface of the battery outer can-shaped steel plate, on the Fe—Ni diffusion layer on the outer surface side of the steel plate. Furthermore, it has a Ni layer, and a part of the Fe—Ni diffusion layer on the outer surface side of the steel sheet has a Ni-concentrated adhesion amount on one side of the steel sheet of 50 mg / m 2 or more and 500 mg / m 2 or less. This is a battery outer can that is an Fe—Ni diffusion layer A.
- a steel plate is formed into a battery outer can shape by press forming, and on both surfaces (inner surface and outer surface) of this steel plate, similarly to the steel plate for cans of the present invention, An Fe—Ni diffusion layer is formed. Then, Ni plating is performed on the Fe—Ni diffusion layer on at least the outer surface side of the steel plate to form a Ni layer.
- At least a part of the Fe—Ni diffusion layer on the outer surface side of the battery outer can of the present invention is the Fe—Ni diffusion layer (Ni adhesion amount) in the steel sheet for cans of the present invention before press forming. : 50 mg / m 2 or more and 500 mg / m 2 or less) is maintained as it is. That is, in the battery outer can of the present invention, at least a part of the Fe—Ni diffusion layer on the outer surface side of the battery outer can-shaped steel plate has an Fe deposition amount of Ni of 50 mg / m 2 or more and 500 mg / m 2 or less. -Ni diffusion layer A.
- the preferable range of the Ni adhesion amount, the thickness and the Ni ratio of the Fe—Ni diffusion layer A in the battery outer can of the present invention is the Ni adhesion amount, thickness and Ni of the Fe—Ni diffusion layer in the steel sheet for cans of the present invention. It is the same as the ratio.
- the thickness of the Ni layer on the Fe—Ni diffusion layer is as described above, preferably 1 ⁇ m or more, and more preferably 2 ⁇ m or more. Although an upper limit is not specifically limited, 7 micrometers or less are preferable.
- the battery of this invention is a battery provided with the battery outer cylinder can of this invention, and the electrolyte solution, electrode, and separator which are arrange
- the steel plate subjected to Ni plating was introduced into a continuous annealing line, the steel plate was annealed, and Ni was diffused inside the steel plate to form Fe—Ni diffusion layers on both surface layers of the steel plate.
- the thickness (unit: ⁇ m) and Ni ratio (unit:%) of the Fe—Ni diffusion layer were changed to the following Table 1 by using the annealing conditions (soaking temperature and holding time) shown in Table 1 below. It was made to become the numerical value of description.
- temper rolling was performed, and the test material no. 1 to 27 steel plates for battery outer cans were obtained.
- ⁇ Manufacture of battery outer can> ⁇ Molding> The obtained steel plate for battery outer can was punched into a circular shape, drawn into a cup, redrawed and formed into a cylindrical 18650 type battery outer can by a DI process. The plate thickness of the side wall portion was reduced to 0.15 mm by the DI process. ⁇ Ni plating >> Then, Ni plating was performed by barrel plating on at least the outer surface of the steel sheet for battery outer cylinder cans formed into a battery outer cylinder can shape to form a Ni layer having a thickness of 4 ⁇ m. In this way, a battery outer can was obtained.
- the test material No. 1 in which the Ni adhesion amount of the Fe—Ni diffusion layer exceeded 500 mg / m 2 was used. 10-11 and 22-23 were inferior in scratch resistance. The test material No. whose Ni adhesion amount of the Fe—Ni diffusion layer is less than 50 mg / m 2 12 and 24 were inferior in corrosion resistance.
- Test material No. 1 When comparing 1 to 9, 13 to 21, and 25 to 27, the test material No. 1 in which the Ni ratio on the outermost surface of the Fe—Ni diffusion layer is 1.0% or more and less than 20.0% Nos. 1 to 9, 13 to 21, and 26 to 27 are test materials having Ni ratios of 20.0% or more. The scratch resistance was better than 25.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Electroplating Methods And Accessories (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Provided are: a steel sheet for a battery outer cylindrical canister, the steel sheet being subjected to post-plating, able to suppress damage even if press molding is repeated using a mold made of quenched steel, and providing a battery outer cylindrical canister with good corrosion resistance; a battery outer cylindrical canister; and a battery using the battery outer cylindrical canister. The steel sheet for the battery outer cylindrical canister comprises Fe-Ni diffusion layers on surface layers on both sides of the steel sheet. The amount of deposition of the Fe-Ni diffusion layers in terms of Ni is 50-500 mg/m2 on each surface of the steel sheet.
Description
本発明は、電池外筒缶用鋼板、電池外筒缶および電池に関する。
The present invention relates to a steel plate for a battery outer can, a battery outer can and a battery.
電池として、例えば、アルカリマンガン電池などの一次電池;ノート型パソコンまたはハイブリッド型自動車などに搭載されているリチウムイオン電池などの二次電池;等が知られている。
As the battery, for example, a primary battery such as an alkaline manganese battery; a secondary battery such as a lithium ion battery mounted on a notebook personal computer or a hybrid vehicle, etc. are known.
これらの電池に使用される外筒缶(電池外筒缶)を構成する鋼板の表面には、耐食性の観点から、Niめっきが付与されて、Ni層が形成されている。
Niめっきを付与する工程の違いから、電池外筒缶には、2種類の製造方法がある。
1つは、Niめっきが付与された鋼板を電池外筒缶にプレス成形して、その後めっき処理を行なわない先めっき法である。もう1つは、プレス成形後の電池外筒缶の表面に、バレルめっき等の手法を用いて、Niめっきを付与する後めっき法である。 From the viewpoint of corrosion resistance, Ni plating is applied to the surface of the steel sheet constituting the outer cylinder can (battery outer cylinder can) used in these batteries, and an Ni layer is formed.
Due to the difference in the process of applying Ni plating, there are two types of manufacturing methods for battery outer cans.
One is a pre-plating method in which a steel plate to which Ni plating is applied is press-formed into a battery outer can, and thereafter no plating treatment is performed. The other is a post-plating method in which Ni plating is applied to the surface of the battery outer can after press molding using a technique such as barrel plating.
Niめっきを付与する工程の違いから、電池外筒缶には、2種類の製造方法がある。
1つは、Niめっきが付与された鋼板を電池外筒缶にプレス成形して、その後めっき処理を行なわない先めっき法である。もう1つは、プレス成形後の電池外筒缶の表面に、バレルめっき等の手法を用いて、Niめっきを付与する後めっき法である。 From the viewpoint of corrosion resistance, Ni plating is applied to the surface of the steel sheet constituting the outer cylinder can (battery outer cylinder can) used in these batteries, and an Ni layer is formed.
Due to the difference in the process of applying Ni plating, there are two types of manufacturing methods for battery outer cans.
One is a pre-plating method in which a steel plate to which Ni plating is applied is press-formed into a battery outer can, and thereafter no plating treatment is performed. The other is a post-plating method in which Ni plating is applied to the surface of the battery outer can after press molding using a technique such as barrel plating.
後めっき法に用いる電池外筒缶用鋼板として、例えば、特許文献1には、「プレス成型により容器内面となる面に厚さ0.5μm以上、4μm以下のFe-Ni拡散層を有し、さらにその上に厚さ0.25μm以上、4μm以下のNi層を有し、容器外面となる面に付着量0.05g/m2以上、1.5g/m2未満のNiを有し、そのNiが内部に拡散しており、表層のNi/(Fe+Ni)質量比が0.1以上、0.9以下であることを特徴とする容器用Niめっき鋼板」が開示されている(請求項1)。
特許文献1においては、このような電池外筒缶用鋼板(容器用Niめっき鋼板)をプレス成形して電池外筒缶にした後、バレルめっき等の手法を用いて、外面にNiめっきを付与する。 As a steel sheet for battery outer cans used in the post-plating method, for example, Patent Document 1 describes that “having a Fe—Ni diffusion layer having a thickness of 0.5 μm or more and 4 μm or less on the surface that becomes the inner surface of the container by press molding, further on the thickness 0.25μm or more thereof, having the following Ni layer 4 [mu] m, the surface to be the outer surface of the container attachment amount 0.05 g / m 2 or more, has a 1.5 g / m 2 less than Ni, the A Ni-plated steel sheet for containers, characterized in that Ni is diffused inside and the surface layer has a Ni / (Fe + Ni) mass ratio of 0.1 to 0.9 (claim 1). ).
In Patent Document 1, such a steel plate for battery outer cylinder cans (Ni-plated steel sheet for containers) is press-molded into a battery outer cylinder can, and then Ni plating is applied to the outer surface using a technique such as barrel plating. To do.
特許文献1においては、このような電池外筒缶用鋼板(容器用Niめっき鋼板)をプレス成形して電池外筒缶にした後、バレルめっき等の手法を用いて、外面にNiめっきを付与する。 As a steel sheet for battery outer cans used in the post-plating method, for example, Patent Document 1 describes that “having a Fe—Ni diffusion layer having a thickness of 0.5 μm or more and 4 μm or less on the surface that becomes the inner surface of the container by press molding, further on the thickness 0.25μm or more thereof, having the following Ni layer 4 [mu] m, the surface to be the outer surface of the container attachment amount 0.05 g / m 2 or more, has a 1.5 g / m 2 less than Ni, the A Ni-plated steel sheet for containers, characterized in that Ni is diffused inside and the surface layer has a Ni / (Fe + Ni) mass ratio of 0.1 to 0.9 (claim 1). ).
In Patent Document 1, such a steel plate for battery outer cylinder cans (Ni-plated steel sheet for containers) is press-molded into a battery outer cylinder can, and then Ni plating is applied to the outer surface using a technique such as barrel plating. To do.
後めっき法のプレス成形に使用する成形型(金型)の材料としては、超硬合金が用いられることが多いが、比較的もろい焼入れ鋼が使用される場合もある。
超 Cemented carbide is often used as the material of the mold (mold) used for post-plating press forming, but relatively brittle and hardened steel may also be used.
焼入れ鋼で作られた成形型を使用して、特許文献1の電池外筒缶用鋼板(容器用Niめっき鋼板)のプレス成形を繰り返し行なうと、次第に成形型に傷が付き、その結果、成形される電池外筒缶用鋼板に傷を与えてしまう場合がある。この場合、得られる電池外筒缶は、傷を有するため、耐食性に劣るおそれがある。
Using a mold made of hardened steel and repeatedly pressing the steel sheet for battery outer cylinder cans (Ni-plated steel sheet for containers) of Patent Document 1, the mold is gradually damaged, and as a result, the mold is formed. In some cases, the steel plate for the battery outer cylinder can be damaged. In this case, since the obtained battery outer cylinder can has a damage | wound, there exists a possibility that it may be inferior to corrosion resistance.
そこで、本発明は、後めっき法に用いる電池外筒缶用鋼板であって、焼入れ鋼で作られた成形型を使用してプレス成形を繰り返し行なう場合にも傷付きの発生が抑制され、かつ、得られる電池外筒缶の耐食性にも優れる電池外筒缶用鋼板、ならびに、これを用いた電池外筒缶および電池を提供することを目的とする。
Therefore, the present invention is a steel plate for battery outer cans used in the post-plating method, the occurrence of scratches is suppressed even when press molding is repeatedly performed using a mold made of quenched steel, and An object of the present invention is to provide a steel plate for a battery outer can that is excellent in the corrosion resistance of the obtained battery outer can, and a battery outer can and a battery using the same.
本発明者らが、鋭意検討した結果、鋼板の両面の表層に特定のFe-Ni拡散層を有する電池外筒缶用鋼板を用いることによって、上記目的が達成されることを見出し、本発明を完成させた。
As a result of intensive studies by the present inventors, it has been found that the above object can be achieved by using a steel sheet for a battery outer can having a specific Fe—Ni diffusion layer on both surface layers of the steel sheet. Completed.
すなわち、本発明は、以下の[1]~[8]を提供する。
[1]鋼板の両面の表層にFe-Ni拡散層を有し、上記Fe-Ni拡散層は、上記鋼板の片面あたりのNi換算の付着量が、50mg/m2以上500mg/m2以下である、電池外筒缶用鋼板。
[2]上記Fe-Ni拡散層の最表面におけるNi比率が、1.0%以上20.0%未満である、上記[1]に記載の電池外筒缶用鋼板。ただし、上記Ni比率は、上記Fe-Ni拡散層の最表面における、Fe量とNi量との合計に対する上記Ni量の割合であり、上記Fe量および上記Ni量の単位は、原子%である。
[3]上記Fe-Ni拡散層の厚さが、0.01μm以上0.5μm未満である、上記[1]または[2]に記載の電池外筒缶用鋼板。
[4]電池外筒缶形状の鋼板の内面および外面の表層にFe-Ni拡散層を有し、上記鋼板の外面側の上記Fe-Ni拡散層上に、更に、Ni層を有し、上記鋼板の外面側の上記Fe-Ni拡散層の一部が、上記鋼板の片面あたりのNi換算の付着量が50mg/m2以上500mg/m2以下のFe-Ni拡散層Aである、電池外筒缶。
[5]上記Fe-Ni拡散層Aの最表面におけるNi比率が、1.0%以上20.0%未満である、上記[4]に記載の電池外筒缶。ただし、上記Ni比率は、上記Fe-Ni拡散層の最表面における、Fe量とNi量との合計に対する上記Ni量の割合であり、上記Fe量および上記Ni量の単位は、原子%である。
[6]上記Fe-Ni拡散層Aの厚さが、0.01μm以上0.5μm未満である、上記[4]または[5]に記載の電池外筒缶。
[7]上記Ni層の厚さが、1μm以上である、上記[4]~[6]のいずれかに記載の電池外筒缶。
[8]上記[4]~[7]のいずれかに記載の電池外筒缶と、上記電池外筒缶の内部に配置された電解液、電極およびセパレータと、を備える電池。 That is, the present invention provides the following [1] to [8].
[1] Fe-Ni diffusion layers are provided on both surface layers of the steel sheet, and the Fe-Ni diffusion layer has an Ni-concentrated adhesion amount on one side of the steel sheet of 50 mg / m 2 or more and 500 mg / m 2 or less. A steel plate for battery outer cans.
[2] The steel plate for battery outer cans according to [1], wherein the Ni ratio on the outermost surface of the Fe—Ni diffusion layer is 1.0% or more and less than 20.0%. However, the Ni ratio is the ratio of the Ni amount to the total of Fe amount and Ni amount on the outermost surface of the Fe—Ni diffusion layer, and the unit of the Fe amount and the Ni amount is atomic%. .
[3] The steel plate for battery outer cans according to [1] or [2], wherein the thickness of the Fe—Ni diffusion layer is 0.01 μm or more and less than 0.5 μm.
[4] The battery outer cylinder-shaped steel plate has Fe—Ni diffusion layers on the inner and outer surface layers, and further has a Ni layer on the Fe—Ni diffusion layer on the outer surface side of the steel plate. A part of the Fe—Ni diffusion layer on the outer surface side of the steel sheet is an Fe—Ni diffusion layer A having an Ni conversion amount per side of the steel sheet of 50 mg / m 2 or more and 500 mg / m 2 or less. Tube can.
[5] The battery outer can according to [4], wherein the Ni ratio on the outermost surface of the Fe—Ni diffusion layer A is 1.0% or more and less than 20.0%. However, the Ni ratio is the ratio of the Ni amount to the total of Fe amount and Ni amount on the outermost surface of the Fe—Ni diffusion layer, and the unit of the Fe amount and the Ni amount is atomic%. .
[6] The battery outer can according to [4] or [5], wherein the thickness of the Fe—Ni diffusion layer A is 0.01 μm or more and less than 0.5 μm.
[7] The battery outer can according to any one of [4] to [6], wherein the Ni layer has a thickness of 1 μm or more.
[8] A battery comprising the battery outer can according to any one of [4] to [7], and an electrolyte solution, an electrode, and a separator disposed inside the battery outer can.
[1]鋼板の両面の表層にFe-Ni拡散層を有し、上記Fe-Ni拡散層は、上記鋼板の片面あたりのNi換算の付着量が、50mg/m2以上500mg/m2以下である、電池外筒缶用鋼板。
[2]上記Fe-Ni拡散層の最表面におけるNi比率が、1.0%以上20.0%未満である、上記[1]に記載の電池外筒缶用鋼板。ただし、上記Ni比率は、上記Fe-Ni拡散層の最表面における、Fe量とNi量との合計に対する上記Ni量の割合であり、上記Fe量および上記Ni量の単位は、原子%である。
[3]上記Fe-Ni拡散層の厚さが、0.01μm以上0.5μm未満である、上記[1]または[2]に記載の電池外筒缶用鋼板。
[4]電池外筒缶形状の鋼板の内面および外面の表層にFe-Ni拡散層を有し、上記鋼板の外面側の上記Fe-Ni拡散層上に、更に、Ni層を有し、上記鋼板の外面側の上記Fe-Ni拡散層の一部が、上記鋼板の片面あたりのNi換算の付着量が50mg/m2以上500mg/m2以下のFe-Ni拡散層Aである、電池外筒缶。
[5]上記Fe-Ni拡散層Aの最表面におけるNi比率が、1.0%以上20.0%未満である、上記[4]に記載の電池外筒缶。ただし、上記Ni比率は、上記Fe-Ni拡散層の最表面における、Fe量とNi量との合計に対する上記Ni量の割合であり、上記Fe量および上記Ni量の単位は、原子%である。
[6]上記Fe-Ni拡散層Aの厚さが、0.01μm以上0.5μm未満である、上記[4]または[5]に記載の電池外筒缶。
[7]上記Ni層の厚さが、1μm以上である、上記[4]~[6]のいずれかに記載の電池外筒缶。
[8]上記[4]~[7]のいずれかに記載の電池外筒缶と、上記電池外筒缶の内部に配置された電解液、電極およびセパレータと、を備える電池。 That is, the present invention provides the following [1] to [8].
[1] Fe-Ni diffusion layers are provided on both surface layers of the steel sheet, and the Fe-Ni diffusion layer has an Ni-concentrated adhesion amount on one side of the steel sheet of 50 mg / m 2 or more and 500 mg / m 2 or less. A steel plate for battery outer cans.
[2] The steel plate for battery outer cans according to [1], wherein the Ni ratio on the outermost surface of the Fe—Ni diffusion layer is 1.0% or more and less than 20.0%. However, the Ni ratio is the ratio of the Ni amount to the total of Fe amount and Ni amount on the outermost surface of the Fe—Ni diffusion layer, and the unit of the Fe amount and the Ni amount is atomic%. .
[3] The steel plate for battery outer cans according to [1] or [2], wherein the thickness of the Fe—Ni diffusion layer is 0.01 μm or more and less than 0.5 μm.
[4] The battery outer cylinder-shaped steel plate has Fe—Ni diffusion layers on the inner and outer surface layers, and further has a Ni layer on the Fe—Ni diffusion layer on the outer surface side of the steel plate. A part of the Fe—Ni diffusion layer on the outer surface side of the steel sheet is an Fe—Ni diffusion layer A having an Ni conversion amount per side of the steel sheet of 50 mg / m 2 or more and 500 mg / m 2 or less. Tube can.
[5] The battery outer can according to [4], wherein the Ni ratio on the outermost surface of the Fe—Ni diffusion layer A is 1.0% or more and less than 20.0%. However, the Ni ratio is the ratio of the Ni amount to the total of Fe amount and Ni amount on the outermost surface of the Fe—Ni diffusion layer, and the unit of the Fe amount and the Ni amount is atomic%. .
[6] The battery outer can according to [4] or [5], wherein the thickness of the Fe—Ni diffusion layer A is 0.01 μm or more and less than 0.5 μm.
[7] The battery outer can according to any one of [4] to [6], wherein the Ni layer has a thickness of 1 μm or more.
[8] A battery comprising the battery outer can according to any one of [4] to [7], and an electrolyte solution, an electrode, and a separator disposed inside the battery outer can.
本発明によれば、後めっき法に用いる電池外筒缶用鋼板であって、焼入れ鋼で作られた成形型を使用してプレス成形を繰り返し行なう場合にも傷付きの発生が抑制され、かつ、得られる電池外筒缶の耐食性にも優れる電池外筒缶用鋼板、ならびに、これを用いた電池外筒缶および電池を提供することができる。
According to the present invention, a steel plate for a battery outer can used in a post-plating method, the occurrence of scratches is suppressed even when press molding is repeatedly performed using a mold made of quenched steel, and It is possible to provide a steel plate for a battery outer can that is excellent in corrosion resistance of the obtained battery outer can, and a battery outer can and a battery using the same.
[電池外筒缶用鋼板]
本発明の電池外筒缶用鋼板(以下、単に「本発明の缶用鋼板」ともいう)は、鋼板の両面の表層にFe-Ni拡散層を有し、上記Fe-Ni拡散層は、上記鋼板の片面あたりのNi換算の付着量(以下、「Ni付着量」ともいう)が、50mg/m2以上500mg/m2以下である、電池外筒缶用鋼板である。 [Steel plate for battery outer can]
The steel sheet for battery outer cans of the present invention (hereinafter, also simply referred to as “the steel sheet for cans of the present invention”) has Fe—Ni diffusion layers on both surface layers of the steel sheet. This is a steel sheet for battery outer cans, in which the amount of adhesion in terms of Ni per one side of the steel sheet (hereinafter also referred to as “Ni adhesion amount”) is 50 mg / m 2 or more and 500 mg / m 2 or less.
本発明の電池外筒缶用鋼板(以下、単に「本発明の缶用鋼板」ともいう)は、鋼板の両面の表層にFe-Ni拡散層を有し、上記Fe-Ni拡散層は、上記鋼板の片面あたりのNi換算の付着量(以下、「Ni付着量」ともいう)が、50mg/m2以上500mg/m2以下である、電池外筒缶用鋼板である。 [Steel plate for battery outer can]
The steel sheet for battery outer cans of the present invention (hereinafter, also simply referred to as “the steel sheet for cans of the present invention”) has Fe—Ni diffusion layers on both surface layers of the steel sheet. This is a steel sheet for battery outer cans, in which the amount of adhesion in terms of Ni per one side of the steel sheet (hereinafter also referred to as “Ni adhesion amount”) is 50 mg / m 2 or more and 500 mg / m 2 or less.
本発明の缶用鋼板は、後めっき法に用いる電池外筒缶用鋼板であって、焼入れ鋼で作られた成形型を使用してプレス成形を繰り返し行なう場合にも傷付きの発生が抑制され、かつ、得られる電池外筒缶の耐食性にも優れる。
その理由は、以下のように推測される。 The steel plate for cans of the present invention is a steel plate for battery outer cylinder cans used in post-plating methods, and even when press forming is repeatedly performed using a forming die made of quenched steel, the occurrence of scratches is suppressed. In addition, the obtained battery outer can has excellent corrosion resistance.
The reason is presumed as follows.
その理由は、以下のように推測される。 The steel plate for cans of the present invention is a steel plate for battery outer cylinder cans used in post-plating methods, and even when press forming is repeatedly performed using a forming die made of quenched steel, the occurrence of scratches is suppressed. In addition, the obtained battery outer can has excellent corrosion resistance.
The reason is presumed as follows.
まず、特許文献1に記載された、後めっき法に用いる電池外筒缶用鋼板は、「プレス成型により容器内面となる面に厚さ0.5μm以上…のFe-Ni拡散層」を有する。このFe-Ni拡散層のNi付着量は、換算すると、4500mg/m2以上となる。
このような特許文献1の電池外筒缶用鋼板は、Fe-Ni拡散層のNi付着量が多すぎて硬くなり、比較的もろい焼入れ鋼で作られた成形型を、プレス成形を繰り返し行なう過程で、次第に傷付けてしまうと考えられる。そして、傷の付いた成形型が使用されるので、成形される電池外筒缶用鋼板に傷を与えてしまうと考えられる。 First, the steel sheet for a battery outer can used in the post-plating method described in Patent Document 1 has “Fe—Ni diffusion layer having a thickness of 0.5 μm or more on the surface that becomes the inner surface of the container by press molding”. The Ni adhesion amount of this Fe—Ni diffusion layer is 4500 mg / m 2 or more in terms of conversion.
Such a steel sheet for battery outer cans of Patent Document 1 is a process in which a forming die made of a relatively brittle and hardened steel is repeatedly pressed by a Ni-adhering amount of the Fe—Ni diffusion layer is too hard. It is thought that it will gradually hurt. And since the shaping | molding die with a damage | wound is used, it is thought that it will give a damage | wound to the steel plate for battery outer cylinder cans shape | molded.
このような特許文献1の電池外筒缶用鋼板は、Fe-Ni拡散層のNi付着量が多すぎて硬くなり、比較的もろい焼入れ鋼で作られた成形型を、プレス成形を繰り返し行なう過程で、次第に傷付けてしまうと考えられる。そして、傷の付いた成形型が使用されるので、成形される電池外筒缶用鋼板に傷を与えてしまうと考えられる。 First, the steel sheet for a battery outer can used in the post-plating method described in Patent Document 1 has “Fe—Ni diffusion layer having a thickness of 0.5 μm or more on the surface that becomes the inner surface of the container by press molding”. The Ni adhesion amount of this Fe—Ni diffusion layer is 4500 mg / m 2 or more in terms of conversion.
Such a steel sheet for battery outer cans of Patent Document 1 is a process in which a forming die made of a relatively brittle and hardened steel is repeatedly pressed by a Ni-adhering amount of the Fe—Ni diffusion layer is too hard. It is thought that it will gradually hurt. And since the shaping | molding die with a damage | wound is used, it is thought that it will give a damage | wound to the steel plate for battery outer cylinder cans shape | molded.
しかしながら、本発明の缶用鋼板のFe-Ni拡散層は、そのNi付着量が500mg/m2以下と適度に少なく、焼入れ鋼で作られた成形型を傷付けない程度に軟らかいと考えられる。このため、成形される電池外筒缶用鋼板の傷発生が抑制される(以下、「耐傷性に優れる」ともいう)。そして、本発明の缶用鋼板は、このように耐傷性に優れるから、得られる電池外筒缶の耐食性も優れる。
However, the Fe—Ni diffusion layer of the steel sheet for cans of the present invention has a reasonably small Ni adhesion amount of 500 mg / m 2 or less, and is considered to be soft enough not to damage a forming die made of hardened steel. For this reason, the generation | occurrence | production of the damage | wound of the steel plate for battery outer cylinder cans is suppressed (henceforth "it is excellent also in scratch resistance"). And since the steel plate for cans of this invention is excellent in scratch resistance in this way, the corrosion resistance of the battery outer cylinder can obtained is also excellent.
本発明の缶用鋼板のFe-Ni拡散層のNi付着量が少なすぎる場合、得られる電池外筒缶の耐食性に劣ることが懸念される。しかし、本発明の缶用鋼板は、Fe-Ni拡散層のNi付着量が50mg/m2以上と適度に多いため、電池外筒缶にしたときの耐食性(以下、単に「耐食性」ともいう)が良好となる。
より詳細には、電池外筒缶にしたとき、その内面においては、Fe-Ni拡散層は電気化学的に安定なため、Fe-Ni拡散層が無い場合または少なすぎる場合と比べて、内容物に対する耐食性が向上する。
一方、外面においては、成形後にバレルめっき等によってNiめっきが付与されてNi層が形成されるが、このNi層には、ピンホールが多少なりとも存在し、ここから腐食が進行する。しかし、Ni層の下地層として適度にFe-Ni拡散層があることで、Ni層と下地層との電位差を、Fe-Ni拡散層が無い場合または少なすぎる場合と比べて、縮小でき、耐食性が向上する。 When the amount of Ni deposited on the Fe—Ni diffusion layer of the steel sheet for cans of the present invention is too small, there is a concern that the resulting battery outer can can have poor corrosion resistance. However, since the steel sheet for cans of the present invention has a reasonably high Ni adhesion amount of 50 mg / m 2 or more in the Fe—Ni diffusion layer, the corrosion resistance when it is made into a battery outer can (hereinafter also simply referred to as “corrosion resistance”). Becomes better.
More specifically, the content of the Fe-Ni diffusion layer is electrochemically stable on the inner surface of the battery outer can when compared with the case where the Fe-Ni diffusion layer is absent or too little. Corrosion resistance against is improved.
On the other hand, Ni plating is applied to the outer surface by barrel plating or the like after forming to form a Ni layer. The Ni layer has some pinholes, and corrosion proceeds from here. However, since there is an appropriate Fe—Ni diffusion layer as the underlayer for the Ni layer, the potential difference between the Ni layer and the underlayer can be reduced compared to the case where there is no Fe—Ni diffusion layer or too little, and the corrosion resistance. Will improve.
より詳細には、電池外筒缶にしたとき、その内面においては、Fe-Ni拡散層は電気化学的に安定なため、Fe-Ni拡散層が無い場合または少なすぎる場合と比べて、内容物に対する耐食性が向上する。
一方、外面においては、成形後にバレルめっき等によってNiめっきが付与されてNi層が形成されるが、このNi層には、ピンホールが多少なりとも存在し、ここから腐食が進行する。しかし、Ni層の下地層として適度にFe-Ni拡散層があることで、Ni層と下地層との電位差を、Fe-Ni拡散層が無い場合または少なすぎる場合と比べて、縮小でき、耐食性が向上する。 When the amount of Ni deposited on the Fe—Ni diffusion layer of the steel sheet for cans of the present invention is too small, there is a concern that the resulting battery outer can can have poor corrosion resistance. However, since the steel sheet for cans of the present invention has a reasonably high Ni adhesion amount of 50 mg / m 2 or more in the Fe—Ni diffusion layer, the corrosion resistance when it is made into a battery outer can (hereinafter also simply referred to as “corrosion resistance”). Becomes better.
More specifically, the content of the Fe-Ni diffusion layer is electrochemically stable on the inner surface of the battery outer can when compared with the case where the Fe-Ni diffusion layer is absent or too little. Corrosion resistance against is improved.
On the other hand, Ni plating is applied to the outer surface by barrel plating or the like after forming to form a Ni layer. The Ni layer has some pinholes, and corrosion proceeds from here. However, since there is an appropriate Fe—Ni diffusion layer as the underlayer for the Ni layer, the potential difference between the Ni layer and the underlayer can be reduced compared to the case where there is no Fe—Ni diffusion layer or too little, and the corrosion resistance. Will improve.
以下、本発明の缶用鋼板が備える各部について、より詳細に説明する。
Hereafter, each part with which the steel plate for cans of this invention is provided is demonstrated in detail.
〈鋼板〉
鋼板の種類は特に限定されない。通常、電池容器材料として使用される鋼板(例えば、低炭素鋼板または極低炭素鋼板)を用いることができる。ただし、鋼板中のCrの含有は、鋼を硬化させて成形性を低下させたり、焼鈍時に鋼板の表面にCr酸化物を形成して、所望の表面状態を得られなくさせたりする恐れがある。このため、鋼板のCr含有量は、3質量%未満が好ましく、1質量%未満がより好ましい。
鋼板の製造方法も特に限定されない。例えば、通常の鋼片製造工程から熱間圧延、酸洗、冷間圧延、焼鈍、調質圧延等の工程を経て製造される。 <steel sheet>
The kind of steel plate is not particularly limited. Usually, a steel plate (for example, a low carbon steel plate or an extremely low carbon steel plate) used as a battery container material can be used. However, the content of Cr in the steel sheet may cause the steel to harden and deteriorate formability, or may form a Cr oxide on the surface of the steel sheet during annealing, making it impossible to obtain a desired surface state. . For this reason, the Cr content of the steel sheet is preferably less than 3% by mass, and more preferably less than 1% by mass.
The manufacturing method of the steel plate is not particularly limited. For example, it is manufactured through processes such as hot rolling, pickling, cold rolling, annealing, and temper rolling from a normal steel slab manufacturing process.
鋼板の種類は特に限定されない。通常、電池容器材料として使用される鋼板(例えば、低炭素鋼板または極低炭素鋼板)を用いることができる。ただし、鋼板中のCrの含有は、鋼を硬化させて成形性を低下させたり、焼鈍時に鋼板の表面にCr酸化物を形成して、所望の表面状態を得られなくさせたりする恐れがある。このため、鋼板のCr含有量は、3質量%未満が好ましく、1質量%未満がより好ましい。
鋼板の製造方法も特に限定されない。例えば、通常の鋼片製造工程から熱間圧延、酸洗、冷間圧延、焼鈍、調質圧延等の工程を経て製造される。 <steel sheet>
The kind of steel plate is not particularly limited. Usually, a steel plate (for example, a low carbon steel plate or an extremely low carbon steel plate) used as a battery container material can be used. However, the content of Cr in the steel sheet may cause the steel to harden and deteriorate formability, or may form a Cr oxide on the surface of the steel sheet during annealing, making it impossible to obtain a desired surface state. . For this reason, the Cr content of the steel sheet is preferably less than 3% by mass, and more preferably less than 1% by mass.
The manufacturing method of the steel plate is not particularly limited. For example, it is manufactured through processes such as hot rolling, pickling, cold rolling, annealing, and temper rolling from a normal steel slab manufacturing process.
本発明においては、Fe-Ni拡散層の形成が必須となるから、冷間圧延後の未焼鈍の鋼板にNiめっきを施し、鋼板の焼鈍処理と共にNiめっきを鋼板内部に拡散させることが、生産上、最も効率が良い。このため、鋼板としては、冷間圧延後の未焼鈍の鋼板を用いることが好ましい。
In the present invention, since the formation of the Fe—Ni diffusion layer is essential, it is possible to apply Ni plating to an unannealed steel sheet after cold rolling, and to diffuse the Ni plating inside the steel sheet together with the annealing treatment of the steel sheet. Above, the most efficient. For this reason, it is preferable to use an unannealed steel sheet after cold rolling as the steel sheet.
〈Fe-Ni拡散層〉
本発明の缶用鋼板は、鋼板の両面の表層に、Fe-Ni拡散層を有する。 <Fe-Ni diffusion layer>
The steel plate for cans of the present invention has Fe—Ni diffusion layers on the surface layers on both sides of the steel plate.
本発明の缶用鋼板は、鋼板の両面の表層に、Fe-Ni拡散層を有する。 <Fe-Ni diffusion layer>
The steel plate for cans of the present invention has Fe—Ni diffusion layers on the surface layers on both sides of the steel plate.
《Ni付着量》
Fe-Ni拡散層は、鋼板の片面あたりのNi換算の付着量(Ni付着量)が、50mg/m2以上500mg/m2以下である。これにより、本発明の缶用鋼板は、上述したように、耐傷性および耐食性が共に優れる。耐傷性がより優れるという理由から、Fe-Ni拡散層のNi付着量は、350mg/m2以下が好ましく、300mg/m2以下がより好ましい。 《Ni adhesion amount》
In the Fe—Ni diffusion layer, the Ni conversion amount (Ni adhesion amount) per one side of the steel sheet is 50 mg / m 2 or more and 500 mg / m 2 or less. Thereby, as above-mentioned, the steel plate for cans of this invention is excellent in both scratch resistance and corrosion resistance. For the reason that scratch resistance more excellent, Ni deposition amount of Fe-Ni diffusion layer is preferably 350 mg / m 2 or less, 300 mg / m 2 or less is more preferable.
Fe-Ni拡散層は、鋼板の片面あたりのNi換算の付着量(Ni付着量)が、50mg/m2以上500mg/m2以下である。これにより、本発明の缶用鋼板は、上述したように、耐傷性および耐食性が共に優れる。耐傷性がより優れるという理由から、Fe-Ni拡散層のNi付着量は、350mg/m2以下が好ましく、300mg/m2以下がより好ましい。 《Ni adhesion amount》
In the Fe—Ni diffusion layer, the Ni conversion amount (Ni adhesion amount) per one side of the steel sheet is 50 mg / m 2 or more and 500 mg / m 2 or less. Thereby, as above-mentioned, the steel plate for cans of this invention is excellent in both scratch resistance and corrosion resistance. For the reason that scratch resistance more excellent, Ni deposition amount of Fe-Ni diffusion layer is preferably 350 mg / m 2 or less, 300 mg / m 2 or less is more preferable.
Fe-Ni拡散層のNi付着量は、蛍光X線分析により表面分析して測定できる。この場合、Ni付着量既知のNi付着サンプルを用いて、Ni付着量に関する検量線をあらかじめ特定しておき、同検量線を用いて相対的にNi付着量を特定する。蛍光X線分析は、例えば、下記条件により実施される。
・装置:リガク社製蛍光X線分析装置System3270
・測定径:30mm
・測定雰囲気:真空
・スペクトル:Ni-Kα
・スリット:COARSE
・分光結晶:TAP
上記条件により測定したFe-Ni拡散層の蛍光X線分析のNi-Kαのピークカウント数を用いる。重量法で付着量を測定した付着量既知の標準サンプルを用いて、Ni付着量に関する検量線をあらかじめ特定しておき、同検量線を用いて相対的にNi付着量を求める。 The amount of Ni deposited on the Fe—Ni diffusion layer can be measured by surface analysis using fluorescent X-ray analysis. In this case, a calibration curve related to the Ni adhesion amount is specified in advance using a Ni adhesion sample with a known Ni adhesion amount, and the Ni adhesion amount is relatively specified using the calibration curve. The fluorescent X-ray analysis is performed, for example, under the following conditions.
Apparatus: X-ray fluorescence analyzer System 3270 manufactured by Rigaku Corporation
・ Measurement diameter: 30 mm
・ Measurement atmosphere: Vacuum ・ Spectrum: Ni-Kα
・ Slit: COARSE
-Spectral crystal: TAP
The peak count number of Ni—Kα in the fluorescent X-ray analysis of the Fe—Ni diffusion layer measured under the above conditions is used. Using a standard sample with a known adhesion amount measured by the gravimetric method, a calibration curve related to the Ni adhesion amount is specified in advance, and the Ni adhesion amount is relatively determined using the calibration curve.
・装置:リガク社製蛍光X線分析装置System3270
・測定径:30mm
・測定雰囲気:真空
・スペクトル:Ni-Kα
・スリット:COARSE
・分光結晶:TAP
上記条件により測定したFe-Ni拡散層の蛍光X線分析のNi-Kαのピークカウント数を用いる。重量法で付着量を測定した付着量既知の標準サンプルを用いて、Ni付着量に関する検量線をあらかじめ特定しておき、同検量線を用いて相対的にNi付着量を求める。 The amount of Ni deposited on the Fe—Ni diffusion layer can be measured by surface analysis using fluorescent X-ray analysis. In this case, a calibration curve related to the Ni adhesion amount is specified in advance using a Ni adhesion sample with a known Ni adhesion amount, and the Ni adhesion amount is relatively specified using the calibration curve. The fluorescent X-ray analysis is performed, for example, under the following conditions.
Apparatus: X-ray fluorescence analyzer System 3270 manufactured by Rigaku Corporation
・ Measurement diameter: 30 mm
・ Measurement atmosphere: Vacuum ・ Spectrum: Ni-Kα
・ Slit: COARSE
-Spectral crystal: TAP
The peak count number of Ni—Kα in the fluorescent X-ray analysis of the Fe—Ni diffusion layer measured under the above conditions is used. Using a standard sample with a known adhesion amount measured by the gravimetric method, a calibration curve related to the Ni adhesion amount is specified in advance, and the Ni adhesion amount is relatively determined using the calibration curve.
《厚さ》
本発明の缶用鋼板において、Fe-Ni拡散層の厚さは、成形後においてもFe-Ni拡散層を維持しやすく、かつ、耐傷性および耐食性がより優れるという理由から、0.01μm以上0.5μm未満が好ましく、耐傷性が更に優れるという理由から、0.4μm以下がより好ましく、0.38μm以下が更に好ましい。 "thickness"
In the steel sheet for cans of the present invention, the thickness of the Fe—Ni diffusion layer is 0.01 μm or more because it is easy to maintain the Fe—Ni diffusion layer after forming and the scratch resistance and corrosion resistance are more excellent. 0.4 μm or less is more preferable, and 0.38 μm or less is still more preferable because it is preferably less than 0.5 μm and scratch resistance is further improved.
本発明の缶用鋼板において、Fe-Ni拡散層の厚さは、成形後においてもFe-Ni拡散層を維持しやすく、かつ、耐傷性および耐食性がより優れるという理由から、0.01μm以上0.5μm未満が好ましく、耐傷性が更に優れるという理由から、0.4μm以下がより好ましく、0.38μm以下が更に好ましい。 "thickness"
In the steel sheet for cans of the present invention, the thickness of the Fe—Ni diffusion layer is 0.01 μm or more because it is easy to maintain the Fe—Ni diffusion layer after forming and the scratch resistance and corrosion resistance are more excellent. 0.4 μm or less is more preferable, and 0.38 μm or less is still more preferable because it is preferably less than 0.5 μm and scratch resistance is further improved.
Fe-Ni拡散層の厚さは、GDS(グロー放電発光分析)によって測定できる。具体的には、まず、Fe-Ni拡散層の表面から鋼板の内部に向かって、スパッタリングし、深さ方向の分析を行ない、Niの強度が最大値の1/10となるスパッタリング時間を求める。次いで、純鉄を用いてGDSによるスパッタリング深さとスパッタリング時間との関係を求める。この関係を用いて、先に求めたNiの強度が最大値の1/10となるスパッタリング時間から純鉄換算でスパッタリング深さを算出し、算出した値をFe-Ni拡散層の厚さとする。GDSは、下記に条件において実施したものである。
・装置:リガク社製GDA750
・陽極内径:4mm
・分析モード:高周波低電圧モード
・放電電力:40W
・制御圧力:2.9hPa
・検出器:フォトマル
・検出波長:Ni=341.4nm The thickness of the Fe—Ni diffusion layer can be measured by GDS (glow discharge emission analysis). Specifically, first, sputtering is performed from the surface of the Fe—Ni diffusion layer toward the inside of the steel plate, analysis is performed in the depth direction, and a sputtering time at which the Ni intensity becomes 1/10 of the maximum value is obtained. Next, the relationship between the sputtering depth by GDS and the sputtering time is obtained using pure iron. Using this relationship, the sputtering depth is calculated in terms of pure iron from the sputtering time at which the Ni strength obtained previously becomes 1/10 of the maximum value, and the calculated value is taken as the thickness of the Fe—Ni diffusion layer. GDS was carried out under the following conditions.
・ Device: GDA750 manufactured by Rigaku Corporation
・ Anode inner diameter: 4mm
・ Analysis mode: High frequency low voltage mode ・ Discharge power: 40W
・ Control pressure: 2.9 hPa
・ Detector: Photomal ・ Detection wavelength: Ni = 341.4 nm
・装置:リガク社製GDA750
・陽極内径:4mm
・分析モード:高周波低電圧モード
・放電電力:40W
・制御圧力:2.9hPa
・検出器:フォトマル
・検出波長:Ni=341.4nm The thickness of the Fe—Ni diffusion layer can be measured by GDS (glow discharge emission analysis). Specifically, first, sputtering is performed from the surface of the Fe—Ni diffusion layer toward the inside of the steel plate, analysis is performed in the depth direction, and a sputtering time at which the Ni intensity becomes 1/10 of the maximum value is obtained. Next, the relationship between the sputtering depth by GDS and the sputtering time is obtained using pure iron. Using this relationship, the sputtering depth is calculated in terms of pure iron from the sputtering time at which the Ni strength obtained previously becomes 1/10 of the maximum value, and the calculated value is taken as the thickness of the Fe—Ni diffusion layer. GDS was carried out under the following conditions.
・ Device: GDA750 manufactured by Rigaku Corporation
・ Anode inner diameter: 4mm
・ Analysis mode: High frequency low voltage mode ・ Discharge power: 40W
・ Control pressure: 2.9 hPa
・ Detector: Photomal ・ Detection wavelength: Ni = 341.4 nm
《Ni比率》
本発明の缶用鋼板において、Fe-Ni拡散層の最表面におけるNi比率(以下、単に「Ni比率」ともいう)は、耐傷性および耐食性がより優れるという理由から、1.0%以上20.0%未満であることが好ましい。
Fe-Ni拡散層の最表面のNi比率が重要なのは、Fe-Ni拡散層の最表面のNiは耐食性に直接効果があるが、鋼中に拡散したNiは耐食性向上の効果が小さいからである。一方、Ni比率が高すぎると最表面が硬くなり耐傷性が不十分となる場合がある。このため、Ni比率の好適範囲は、上述した1.0%以上20.0%未満である。
耐傷性が更に優れるという理由から、Ni比率の下限は、3.0%がより好ましい。同様の理由から、Ni比率の上限は、15.0%がより好ましく、13.0%が更に好ましい。 << Ni ratio >>
In the steel sheet for cans of the present invention, the Ni ratio (hereinafter also simply referred to as “Ni ratio”) on the outermost surface of the Fe—Ni diffusion layer is 1.0% or more and 20.20 because it is more excellent in scratch resistance and corrosion resistance. Preferably it is less than 0%.
The Ni ratio on the outermost surface of the Fe—Ni diffusion layer is important because Ni on the outermost surface of the Fe—Ni diffusion layer has a direct effect on the corrosion resistance, but Ni diffused in the steel has a small effect on improving the corrosion resistance. . On the other hand, if the Ni ratio is too high, the outermost surface becomes hard and scratch resistance may be insufficient. For this reason, the suitable range of Ni ratio is 1.0% or more and less than 20.0% mentioned above.
For the reason that scratch resistance is further excellent, the lower limit of the Ni ratio is more preferably 3.0%. For the same reason, the upper limit of the Ni ratio is more preferably 15.0%, still more preferably 13.0%.
本発明の缶用鋼板において、Fe-Ni拡散層の最表面におけるNi比率(以下、単に「Ni比率」ともいう)は、耐傷性および耐食性がより優れるという理由から、1.0%以上20.0%未満であることが好ましい。
Fe-Ni拡散層の最表面のNi比率が重要なのは、Fe-Ni拡散層の最表面のNiは耐食性に直接効果があるが、鋼中に拡散したNiは耐食性向上の効果が小さいからである。一方、Ni比率が高すぎると最表面が硬くなり耐傷性が不十分となる場合がある。このため、Ni比率の好適範囲は、上述した1.0%以上20.0%未満である。
耐傷性が更に優れるという理由から、Ni比率の下限は、3.0%がより好ましい。同様の理由から、Ni比率の上限は、15.0%がより好ましく、13.0%が更に好ましい。 << Ni ratio >>
In the steel sheet for cans of the present invention, the Ni ratio (hereinafter also simply referred to as “Ni ratio”) on the outermost surface of the Fe—Ni diffusion layer is 1.0% or more and 20.20 because it is more excellent in scratch resistance and corrosion resistance. Preferably it is less than 0%.
The Ni ratio on the outermost surface of the Fe—Ni diffusion layer is important because Ni on the outermost surface of the Fe—Ni diffusion layer has a direct effect on the corrosion resistance, but Ni diffused in the steel has a small effect on improving the corrosion resistance. . On the other hand, if the Ni ratio is too high, the outermost surface becomes hard and scratch resistance may be insufficient. For this reason, the suitable range of Ni ratio is 1.0% or more and less than 20.0% mentioned above.
For the reason that scratch resistance is further excellent, the lower limit of the Ni ratio is more preferably 3.0%. For the same reason, the upper limit of the Ni ratio is more preferably 15.0%, still more preferably 13.0%.
Fe-Ni拡散層の最表面におけるNi比率(単位:%)は、Fe-Ni拡散層の最表面における、Fe量とNi量との合計に対するNi量の割合であり、すなわち式「Ni量/(Fe量+Ni量)×100」で算出される。Fe量およびNi量の単位は、原子%である。
Fe-Ni拡散層の最表面におけるFe量(単位:原子%)およびNi量(単位:原子%)は、Fe-Ni拡散層が形成された鋼板を、アセトン中で10分間超音波洗浄した後、スパッタを行なうことなく、オージェ電子分光測定を行なうことにより測定できる。オージェ電子分光測定は同一試料中の別視野で10箇所測定を行ない、Fe量およびNi量はそれぞれ10箇所測定結果の平均値を用いる。オージェ電子分光測定は下記条件において実施したものである。
・装置:ULVAC-PHI社製PHI660
・観察および分析条件:加速電圧10.0kV、電流値0.5μA
観察倍率1,000倍、測定範囲540~900eV The Ni ratio (unit:%) on the outermost surface of the Fe—Ni diffusion layer is the ratio of the Ni amount to the sum of the Fe amount and the Ni amount on the outermost surface of the Fe—Ni diffusion layer, that is, the formula “Ni amount / (Fe amount + Ni amount) × 100 ”. The unit of Fe amount and Ni amount is atomic%.
The amount of Fe (unit: atomic%) and the amount of Ni (unit: atomic%) on the outermost surface of the Fe—Ni diffusion layer were determined by ultrasonically cleaning the steel sheet on which the Fe—Ni diffusion layer was formed in acetone for 10 minutes. It can be measured by performing Auger electron spectroscopy without performing sputtering. Auger electron spectroscopic measurement is performed at 10 points in different fields of view in the same sample, and the average value of the results of measurement at 10 points is used for the Fe amount and Ni amount, respectively. Auger electron spectroscopy measurement was performed under the following conditions.
・ Device: ULVAC-PHI PHI660
Observation and analysis conditions: acceleration voltage 10.0 kV, current value 0.5 μA
Observation magnification 1,000 times, measurement range 540-900eV
Fe-Ni拡散層の最表面におけるFe量(単位:原子%)およびNi量(単位:原子%)は、Fe-Ni拡散層が形成された鋼板を、アセトン中で10分間超音波洗浄した後、スパッタを行なうことなく、オージェ電子分光測定を行なうことにより測定できる。オージェ電子分光測定は同一試料中の別視野で10箇所測定を行ない、Fe量およびNi量はそれぞれ10箇所測定結果の平均値を用いる。オージェ電子分光測定は下記条件において実施したものである。
・装置:ULVAC-PHI社製PHI660
・観察および分析条件:加速電圧10.0kV、電流値0.5μA
観察倍率1,000倍、測定範囲540~900eV The Ni ratio (unit:%) on the outermost surface of the Fe—Ni diffusion layer is the ratio of the Ni amount to the sum of the Fe amount and the Ni amount on the outermost surface of the Fe—Ni diffusion layer, that is, the formula “Ni amount / (Fe amount + Ni amount) × 100 ”. The unit of Fe amount and Ni amount is atomic%.
The amount of Fe (unit: atomic%) and the amount of Ni (unit: atomic%) on the outermost surface of the Fe—Ni diffusion layer were determined by ultrasonically cleaning the steel sheet on which the Fe—Ni diffusion layer was formed in acetone for 10 minutes. It can be measured by performing Auger electron spectroscopy without performing sputtering. Auger electron spectroscopic measurement is performed at 10 points in different fields of view in the same sample, and the average value of the results of measurement at 10 points is used for the Fe amount and Ni amount, respectively. Auger electron spectroscopy measurement was performed under the following conditions.
・ Device: ULVAC-PHI PHI660
Observation and analysis conditions: acceleration voltage 10.0 kV, current value 0.5 μA
Observation magnification 1,000 times, measurement range 540-900eV
《Fe-Ni拡散層の形成方法》
鋼板の両面の表層にFe-Ni拡散層を形成する方法は、特に限定されないが、一例として、次の方法が挙げられる。 << Method for forming Fe-Ni diffusion layer >>
The method for forming the Fe—Ni diffusion layers on the surface layers on both surfaces of the steel plate is not particularly limited, but the following method is given as an example.
鋼板の両面の表層にFe-Ni拡散層を形成する方法は、特に限定されないが、一例として、次の方法が挙げられる。 << Method for forming Fe-Ni diffusion layer >>
The method for forming the Fe—Ni diffusion layers on the surface layers on both surfaces of the steel plate is not particularly limited, but the following method is given as an example.
まず、冷間圧延後の未焼鈍の鋼板に対して、必要に応じて前処理(脱脂および酸洗など)を行なった後、Niめっき浴を用いて、電流密度等の条件を適宜調整して、Niめっきを施す。Niめっき浴としては、例えば、ワット浴、スルファミン酸浴、ほうフッ化物浴および塩化物浴などが挙げられる。
このとき、Niめっきの付着量は、鋼板の片面あたり、50mg/m2以上500mg/m2以下とする。これにより、形成されるFe-Ni拡散層のNi付着量を、50mg/m2以上500mg/m2以下にすることができる。 First, pre-treatment (eg, degreasing and pickling) is performed on an unannealed steel sheet after cold rolling as necessary, and then conditions such as current density are appropriately adjusted using a Ni plating bath. Ni plating is applied. Examples of the Ni plating bath include a watt bath, a sulfamic acid bath, a borofluoride bath, and a chloride bath.
At this time, deposition of Ni plating, per side of the steel sheet, and 50 mg / m 2 or more 500 mg / m 2 or less. Thereby, the Ni adhesion amount of the formed Fe—Ni diffusion layer can be set to 50 mg / m 2 or more and 500 mg / m 2 or less.
このとき、Niめっきの付着量は、鋼板の片面あたり、50mg/m2以上500mg/m2以下とする。これにより、形成されるFe-Ni拡散層のNi付着量を、50mg/m2以上500mg/m2以下にすることができる。 First, pre-treatment (eg, degreasing and pickling) is performed on an unannealed steel sheet after cold rolling as necessary, and then conditions such as current density are appropriately adjusted using a Ni plating bath. Ni plating is applied. Examples of the Ni plating bath include a watt bath, a sulfamic acid bath, a borofluoride bath, and a chloride bath.
At this time, deposition of Ni plating, per side of the steel sheet, and 50 mg / m 2 or more 500 mg / m 2 or less. Thereby, the Ni adhesion amount of the formed Fe—Ni diffusion layer can be set to 50 mg / m 2 or more and 500 mg / m 2 or less.
次に、Niめっきを施した鋼板に対して、鋼板の再結晶処理を目的とした焼鈍(好ましくは連続焼鈍)を行なう。これにより、鋼板の焼鈍に伴って、Niめっきが鋼板内部に拡散し、Fe-Ni拡散層が形成される。
焼鈍条件としては、均熱温度は600℃以上800℃以下が好ましく、この均熱温度での保持時間は10秒以上60秒以下が好ましい。均熱温度での保持時間が短いほど鋼中にNiが拡散しにくくなり、最表面のNi比率が大きくなることから、耐食性の観点から、均熱温度での保持時間は30秒未満がより好ましい。
この焼鈍条件であれば、形成されるFe-Ni拡散層について、その厚さを0.01μm以上0.5μm未満にし、かつ、最表面におけるNi比率を1.0%以上20.0%未満にすることができるため、好ましい。 Next, annealing (preferably continuous annealing) for the purpose of recrystallizing the steel sheet is performed on the steel sheet to which Ni plating has been applied. Thereby, with the annealing of the steel sheet, the Ni plating diffuses inside the steel sheet and an Fe—Ni diffusion layer is formed.
As annealing conditions, the soaking temperature is preferably 600 ° C. or more and 800 ° C. or less, and the holding time at this soaking temperature is preferably 10 seconds or more and 60 seconds or less. The shorter the holding time at the soaking temperature, the more difficult Ni diffuses in the steel, and the Ni ratio on the outermost surface increases. From the viewpoint of corrosion resistance, the holding time at the soaking temperature is more preferably less than 30 seconds. .
With this annealing condition, the thickness of the formed Fe—Ni diffusion layer is set to 0.01 μm or more and less than 0.5 μm, and the Ni ratio on the outermost surface is set to 1.0% or more and less than 20.0%. This is preferable.
焼鈍条件としては、均熱温度は600℃以上800℃以下が好ましく、この均熱温度での保持時間は10秒以上60秒以下が好ましい。均熱温度での保持時間が短いほど鋼中にNiが拡散しにくくなり、最表面のNi比率が大きくなることから、耐食性の観点から、均熱温度での保持時間は30秒未満がより好ましい。
この焼鈍条件であれば、形成されるFe-Ni拡散層について、その厚さを0.01μm以上0.5μm未満にし、かつ、最表面におけるNi比率を1.0%以上20.0%未満にすることができるため、好ましい。 Next, annealing (preferably continuous annealing) for the purpose of recrystallizing the steel sheet is performed on the steel sheet to which Ni plating has been applied. Thereby, with the annealing of the steel sheet, the Ni plating diffuses inside the steel sheet and an Fe—Ni diffusion layer is formed.
As annealing conditions, the soaking temperature is preferably 600 ° C. or more and 800 ° C. or less, and the holding time at this soaking temperature is preferably 10 seconds or more and 60 seconds or less. The shorter the holding time at the soaking temperature, the more difficult Ni diffuses in the steel, and the Ni ratio on the outermost surface increases. From the viewpoint of corrosion resistance, the holding time at the soaking temperature is more preferably less than 30 seconds. .
With this annealing condition, the thickness of the formed Fe—Ni diffusion layer is set to 0.01 μm or more and less than 0.5 μm, and the Ni ratio on the outermost surface is set to 1.0% or more and less than 20.0%. This is preferable.
Fe-Ni拡散層を形成した後、必要に応じて、調質圧延することによって、形状矯正および表面粗度調整などを行なってもよい。
After forming the Fe—Ni diffusion layer, shape correction and surface roughness adjustment may be performed by temper rolling as necessary.
[電池外筒缶の製造方法]
次に、本発明の缶用鋼板を用いた電池外筒缶の製造方法(以下、便宜的に「本発明の製造方法」ともいう)について説明する。
本発明の製造方法は、例えば、本発明の缶用鋼板を、成形型を用いたプレス成形によって電池外筒缶形状(例えば、円筒状)に成形する工程と、その後、電池外筒缶形状に成形された本発明の缶用鋼板の外面に、Niめっきを施すことによってNi層を形成する工程と、を備える方法が挙げられる。 [Method of manufacturing battery outer can]
Next, a method for manufacturing a battery outer can using the steel plate for cans of the present invention (hereinafter also referred to as “the manufacturing method of the present invention” for convenience) will be described.
The manufacturing method of the present invention includes, for example, a step of forming the steel plate for cans of the present invention into a battery outer can shape (for example, a cylindrical shape) by press forming using a forming die, and then into a battery outer can shape. And forming a Ni layer on the outer surface of the formed steel plate for a can of the present invention by applying Ni plating.
次に、本発明の缶用鋼板を用いた電池外筒缶の製造方法(以下、便宜的に「本発明の製造方法」ともいう)について説明する。
本発明の製造方法は、例えば、本発明の缶用鋼板を、成形型を用いたプレス成形によって電池外筒缶形状(例えば、円筒状)に成形する工程と、その後、電池外筒缶形状に成形された本発明の缶用鋼板の外面に、Niめっきを施すことによってNi層を形成する工程と、を備える方法が挙げられる。 [Method of manufacturing battery outer can]
Next, a method for manufacturing a battery outer can using the steel plate for cans of the present invention (hereinafter also referred to as “the manufacturing method of the present invention” for convenience) will be described.
The manufacturing method of the present invention includes, for example, a step of forming the steel plate for cans of the present invention into a battery outer can shape (for example, a cylindrical shape) by press forming using a forming die, and then into a battery outer can shape. And forming a Ni layer on the outer surface of the formed steel plate for a can of the present invention by applying Ni plating.
〈成形(プレス成形)〉
成形(プレス成形)の方法は、特に限定されず、電池外筒缶の成形に用いられている一般的な方法で行なうことができる。例えば、本発明の缶用鋼板を円形に打ち抜くと共に、カップ状に絞り、再絞りおよびDI(Drawing and Ironing)工程によって、円筒状等の形状に成形する。 <Molding (press molding)>
The method of forming (press forming) is not particularly limited, and can be performed by a general method used for forming a battery outer can. For example, the steel plate for cans of the present invention is punched into a circular shape, drawn into a cup shape, formed into a cylindrical shape or the like by a redrawing and DI (Drawing and Ironing) process.
成形(プレス成形)の方法は、特に限定されず、電池外筒缶の成形に用いられている一般的な方法で行なうことができる。例えば、本発明の缶用鋼板を円形に打ち抜くと共に、カップ状に絞り、再絞りおよびDI(Drawing and Ironing)工程によって、円筒状等の形状に成形する。 <Molding (press molding)>
The method of forming (press forming) is not particularly limited, and can be performed by a general method used for forming a battery outer can. For example, the steel plate for cans of the present invention is punched into a circular shape, drawn into a cup shape, formed into a cylindrical shape or the like by a redrawing and DI (Drawing and Ironing) process.
このとき、使用される成形型の材料としては、超硬合金が用いられることが多いが、比較的もろい焼入れ鋼が使用されてもよい。上述したように、本発明の缶用鋼板のFe-Ni拡散層は、焼入れ鋼で作られた成形型を傷付けないと考えられるため、成形される電池外筒缶用鋼板の傷発生が抑制される。
At this time, cemented carbide is often used as the material of the mold used, but relatively brittle and hardened steel may be used. As described above, since the Fe—Ni diffusion layer of the steel sheet for cans of the present invention is considered not to damage the mold made of hardened steel, the generation of scratches on the steel sheet for battery outer cylinder can be suppressed. The
プレス成形を受けたFe-Ni拡散層のNi付着量、厚さおよびNi比率は、プレス成形前の状態は維持されず、変更され得る。
しかしながら、本発明の缶用鋼板において、電池外筒缶の外面側となる部分の少なくとも一部(例えば、電池外筒缶のプラス側の突起の端面となる部分)は、プレス成形されず、無加工のままである。
したがって、本発明の缶用鋼板を用いて得られる電池外筒缶(本発明の電池外筒缶)の外面側の少なくとも一部は、プレス成形前の本発明の缶用鋼板におけるFe-Ni拡散層のNi付着量、厚さおよびNi比率が、そのまま維持されている。 The Ni adhesion amount, thickness, and Ni ratio of the Fe—Ni diffusion layer subjected to press forming can be changed without maintaining the state before press forming.
However, in the steel sheet for cans of the present invention, at least a part of the portion that becomes the outer surface side of the battery outer can (for example, the portion that becomes the end surface of the positive protrusion of the battery outer can) is not press-formed. It remains as processed.
Therefore, at least a part of the outer surface side of the battery outer can obtained by using the steel plate for cans of the present invention (battery outer can of the present invention) is Fe-Ni diffusion in the steel plate for cans of the present invention before press forming. The Ni adhesion amount, thickness, and Ni ratio of the layer are maintained as they are.
しかしながら、本発明の缶用鋼板において、電池外筒缶の外面側となる部分の少なくとも一部(例えば、電池外筒缶のプラス側の突起の端面となる部分)は、プレス成形されず、無加工のままである。
したがって、本発明の缶用鋼板を用いて得られる電池外筒缶(本発明の電池外筒缶)の外面側の少なくとも一部は、プレス成形前の本発明の缶用鋼板におけるFe-Ni拡散層のNi付着量、厚さおよびNi比率が、そのまま維持されている。 The Ni adhesion amount, thickness, and Ni ratio of the Fe—Ni diffusion layer subjected to press forming can be changed without maintaining the state before press forming.
However, in the steel sheet for cans of the present invention, at least a part of the portion that becomes the outer surface side of the battery outer can (for example, the portion that becomes the end surface of the positive protrusion of the battery outer can) is not press-formed. It remains as processed.
Therefore, at least a part of the outer surface side of the battery outer can obtained by using the steel plate for cans of the present invention (battery outer can of the present invention) is Fe-Ni diffusion in the steel plate for cans of the present invention before press forming. The Ni adhesion amount, thickness, and Ni ratio of the layer are maintained as they are.
〈電池外筒缶形状に成形した後のNiめっき〉
Niめっきを施す方法は、特に限定されず、従来公知の方法を用いることができる。例えば、電池外筒缶形状に成形された本発明の缶用鋼板に対して、Niめっき浴を用いて、電流密度等の条件を適宜調整して、バレルめっき法によって、Niめっきを施す。Niめっき浴としては、例えば、ワット浴、スルファミン酸浴、ほうフッ化物浴および塩化物浴などが挙げられる。 <Ni plating after forming into battery outer tube can shape>
The method for applying Ni plating is not particularly limited, and a conventionally known method can be used. For example, the steel plate for cans of the present invention formed into a battery outer can shape is subjected to Ni plating by a barrel plating method by appropriately adjusting conditions such as current density using a Ni plating bath. Examples of the Ni plating bath include a watt bath, a sulfamic acid bath, a borofluoride bath, and a chloride bath.
Niめっきを施す方法は、特に限定されず、従来公知の方法を用いることができる。例えば、電池外筒缶形状に成形された本発明の缶用鋼板に対して、Niめっき浴を用いて、電流密度等の条件を適宜調整して、バレルめっき法によって、Niめっきを施す。Niめっき浴としては、例えば、ワット浴、スルファミン酸浴、ほうフッ化物浴および塩化物浴などが挙げられる。 <Ni plating after forming into battery outer tube can shape>
The method for applying Ni plating is not particularly limited, and a conventionally known method can be used. For example, the steel plate for cans of the present invention formed into a battery outer can shape is subjected to Ni plating by a barrel plating method by appropriately adjusting conditions such as current density using a Ni plating bath. Examples of the Ni plating bath include a watt bath, a sulfamic acid bath, a borofluoride bath, and a chloride bath.
これにより、電池外筒缶形状に成形された本発明の缶用鋼板の少なくとも外面側のFe-Ni拡散層上に、Niめっきが施されて、Ni層が形成される。
Thereby, Ni plating is performed on the Fe—Ni diffusion layer on at least the outer surface side of the steel plate for a can of the present invention formed into a battery outer cylinder can shape, thereby forming a Ni layer.
このとき、本発明の缶用鋼板は、電池外筒缶形状に成形されているため、その内部にNiめっきが侵入しにくく、電池外筒缶形状の本発明の缶用鋼板の内面にはNiめっきは施されにくい。もっとも、電池外筒缶形状の本発明の缶用鋼板の内面にも、外面と同様に、Niめっきが施されてNi層が形成されてもよい。
At this time, since the steel plate for cans of the present invention is formed into a battery outer cylinder can shape, Ni plating is less likely to enter inside, and the inner surface of the steel plate for cans of the present invention in the shape of a battery outer cylinder can is Ni. Plating is difficult to apply. However, similarly to the outer surface, the Ni layer may be formed on the inner surface of the battery steel plate for cans of the present invention having a battery outer can shape as well as the outer surface.
Fe-Ni拡散層上に形成されるNiめっき(Ni層)の厚さは、耐食性の観点から、1μm以上が好ましく、2μm以上がより好ましい。Ni層の厚さの上限は特に限定されないが、例えば、経済性の観点から、7μm以下が好ましい。
The thickness of the Ni plating (Ni layer) formed on the Fe—Ni diffusion layer is preferably 1 μm or more and more preferably 2 μm or more from the viewpoint of corrosion resistance. Although the upper limit of the thickness of Ni layer is not specifically limited, For example, 7 micrometers or less are preferable from a viewpoint of economical efficiency.
[電池外筒缶]
本発明の電池外筒缶は、本発明の缶用鋼板を用いて得られる電池外筒缶である。
より詳細には、本発明の電池外筒缶は、電池外筒缶形状の鋼板の内面および外面の表層にFe-Ni拡散層を有し、上記鋼板の外面側の上記Fe-Ni拡散層上に、更に、Ni層を有し、上記鋼板の外面側の上記Fe-Ni拡散層の一部が、上記鋼板の片面あたりのNi換算の付着量が50mg/m2以上500mg/m2以下のFe-Ni拡散層Aである、電池外筒缶である。 [Battery outer can]
The battery outer can of the present invention is a battery outer can obtained using the steel plate for cans of the present invention.
More specifically, the battery outer can of the present invention has a Fe—Ni diffusion layer on the inner surface and outer surface of the battery outer can-shaped steel plate, on the Fe—Ni diffusion layer on the outer surface side of the steel plate. Furthermore, it has a Ni layer, and a part of the Fe—Ni diffusion layer on the outer surface side of the steel sheet has a Ni-concentrated adhesion amount on one side of the steel sheet of 50 mg / m 2 or more and 500 mg / m 2 or less. This is a battery outer can that is an Fe—Ni diffusion layer A.
本発明の電池外筒缶は、本発明の缶用鋼板を用いて得られる電池外筒缶である。
より詳細には、本発明の電池外筒缶は、電池外筒缶形状の鋼板の内面および外面の表層にFe-Ni拡散層を有し、上記鋼板の外面側の上記Fe-Ni拡散層上に、更に、Ni層を有し、上記鋼板の外面側の上記Fe-Ni拡散層の一部が、上記鋼板の片面あたりのNi換算の付着量が50mg/m2以上500mg/m2以下のFe-Ni拡散層Aである、電池外筒缶である。 [Battery outer can]
The battery outer can of the present invention is a battery outer can obtained using the steel plate for cans of the present invention.
More specifically, the battery outer can of the present invention has a Fe—Ni diffusion layer on the inner surface and outer surface of the battery outer can-shaped steel plate, on the Fe—Ni diffusion layer on the outer surface side of the steel plate. Furthermore, it has a Ni layer, and a part of the Fe—Ni diffusion layer on the outer surface side of the steel sheet has a Ni-concentrated adhesion amount on one side of the steel sheet of 50 mg / m 2 or more and 500 mg / m 2 or less. This is a battery outer can that is an Fe—Ni diffusion layer A.
本発明の電池外筒缶は、まず、プレス成形によって鋼板が電池外筒缶形状に成形されており、この鋼板の両面(内面および外面)の表層に、本発明の缶用鋼板と同様に、Fe-Ni拡散層が形成されている。そして、鋼板の少なくとも外面側のFe-Ni拡散層上に、Niめっきが施されて、Ni層が形成されている。
In the battery outer can of the present invention, first, a steel plate is formed into a battery outer can shape by press forming, and on both surfaces (inner surface and outer surface) of this steel plate, similarly to the steel plate for cans of the present invention, An Fe—Ni diffusion layer is formed. Then, Ni plating is performed on the Fe—Ni diffusion layer on at least the outer surface side of the steel plate to form a Ni layer.
ここで、上述したように、本発明の電池外筒缶の外面側の少なくとも一部のFe-Ni拡散層は、プレス成形前の本発明の缶用鋼板におけるFe-Ni拡散層(Ni付着量:50mg/m2以上500mg/m2以下)が、そのまま維持されている。
すなわち、本発明の電池外筒缶においては、電池外筒缶形状の鋼板の外面側のFe-Ni拡散層の少なくとも一部が、Ni付着量が50mg/m2以上500mg/m2以下のFe-Ni拡散層Aである。 Here, as described above, at least a part of the Fe—Ni diffusion layer on the outer surface side of the battery outer can of the present invention is the Fe—Ni diffusion layer (Ni adhesion amount) in the steel sheet for cans of the present invention before press forming. : 50 mg / m 2 or more and 500 mg / m 2 or less) is maintained as it is.
That is, in the battery outer can of the present invention, at least a part of the Fe—Ni diffusion layer on the outer surface side of the battery outer can-shaped steel plate has an Fe deposition amount of Ni of 50 mg / m 2 or more and 500 mg / m 2 or less. -Ni diffusion layer A.
すなわち、本発明の電池外筒缶においては、電池外筒缶形状の鋼板の外面側のFe-Ni拡散層の少なくとも一部が、Ni付着量が50mg/m2以上500mg/m2以下のFe-Ni拡散層Aである。 Here, as described above, at least a part of the Fe—Ni diffusion layer on the outer surface side of the battery outer can of the present invention is the Fe—Ni diffusion layer (Ni adhesion amount) in the steel sheet for cans of the present invention before press forming. : 50 mg / m 2 or more and 500 mg / m 2 or less) is maintained as it is.
That is, in the battery outer can of the present invention, at least a part of the Fe—Ni diffusion layer on the outer surface side of the battery outer can-shaped steel plate has an Fe deposition amount of Ni of 50 mg / m 2 or more and 500 mg / m 2 or less. -Ni diffusion layer A.
本発明の電池外筒缶におけるFe-Ni拡散層AのNi付着量、厚さおよびNi比率の好適範囲は、本発明の缶用鋼板におけるFe-Ni拡散層のNi付着量、厚さおよびNi比率と同様である。
The preferable range of the Ni adhesion amount, the thickness and the Ni ratio of the Fe—Ni diffusion layer A in the battery outer can of the present invention is the Ni adhesion amount, thickness and Ni of the Fe—Ni diffusion layer in the steel sheet for cans of the present invention. It is the same as the ratio.
本発明の電池外筒缶において、Fe-Ni拡散層上のNi層の厚さは、上述したとおりであり、1μm以上が好ましく、2μm以上がより好ましい。上限は特に限定されないが、7μm以下が好ましい。
In the battery outer can of the present invention, the thickness of the Ni layer on the Fe—Ni diffusion layer is as described above, preferably 1 μm or more, and more preferably 2 μm or more. Although an upper limit is not specifically limited, 7 micrometers or less are preferable.
[電池]
本発明の電池は、本発明の電池外筒缶と、本発明の電池外筒缶の内部に配置された電解液、電極およびセパレータと、を備える電池である。
すなわち、本発明の電池は、本発明の電池外筒缶の内部に、電池として必要な構成である電解液、電極およびセパレータが少なくとも充填されており、更に、必要に応じて、その他の構成が充填されていてもよい。
本発明の電池は、本発明の電池外筒缶を使用しているため、耐食性に優れる。 [battery]
The battery of this invention is a battery provided with the battery outer cylinder can of this invention, and the electrolyte solution, electrode, and separator which are arrange | positioned inside the battery outer cylinder can of this invention.
That is, the battery of the present invention is filled with at least the electrolyte solution, the electrode, and the separator, which are necessary components for the battery, inside the battery outer can of the present invention. It may be filled.
Since the battery of the present invention uses the battery outer can of the present invention, it has excellent corrosion resistance.
本発明の電池は、本発明の電池外筒缶と、本発明の電池外筒缶の内部に配置された電解液、電極およびセパレータと、を備える電池である。
すなわち、本発明の電池は、本発明の電池外筒缶の内部に、電池として必要な構成である電解液、電極およびセパレータが少なくとも充填されており、更に、必要に応じて、その他の構成が充填されていてもよい。
本発明の電池は、本発明の電池外筒缶を使用しているため、耐食性に優れる。 [battery]
The battery of this invention is a battery provided with the battery outer cylinder can of this invention, and the electrolyte solution, electrode, and separator which are arrange | positioned inside the battery outer cylinder can of this invention.
That is, the battery of the present invention is filled with at least the electrolyte solution, the electrode, and the separator, which are necessary components for the battery, inside the battery outer can of the present invention. It may be filled.
Since the battery of the present invention uses the battery outer can of the present invention, it has excellent corrosion resistance.
以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。
Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.
〈電池外筒缶用鋼板の製造〉
鋼板として、板厚0.25mmの冷間圧延後の未焼鈍状態のNb添加極低炭素鋼(鋼成分は、質量%で、C:0.002%,Si:0.02%,Mn:0.15%,P:0.01%,S:0.008%,Ni:0.02%,Nb:0.01%)を用いた。この鋼板に、脱脂および酸洗を含む前処理を行なった。
前処理後の鋼板に対して、ワット浴を用いて、Niめっきを施した。このとき、下記表1に記載のNi付着量(単位:mg/m2)となるように、電流密度などの条件を適宜調整した。
次いで、Niめっきを施した鋼板を、連続焼鈍ラインに導入して、鋼板を焼鈍すると共に、鋼板内部にNiを拡散させて、鋼板の両面の表層にFe-Ni拡散層を形成した。このとき、下記表1に記載の焼鈍条件(均熱温度および保持時間)にすることによって、Fe-Ni拡散層の厚さ(単位:μm)およびNi比率(単位:%)が、下記表1に記載の数値になるようにした。
Fe-Ni拡散層を形成した後、調質圧延を施して、試験材No.1~27の電池外筒缶用鋼板を得た。 <Manufacture of steel sheet for battery outer can>
As a steel plate, an unannealed Nb-added ultra-low carbon steel having a thickness of 0.25 mm after cold rolling (the steel components are mass%, C: 0.002%, Si: 0.02%, Mn: 0 15%, P: 0.01%, S: 0.008%, Ni: 0.02%, Nb: 0.01%). This steel plate was pretreated including degreasing and pickling.
Ni plating was applied to the steel sheet after the pretreatment using a Watt bath. At this time, conditions such as current density were appropriately adjusted so that the Ni adhesion amount (unit: mg / m 2 ) described in Table 1 below was obtained.
Next, the steel plate subjected to Ni plating was introduced into a continuous annealing line, the steel plate was annealed, and Ni was diffused inside the steel plate to form Fe—Ni diffusion layers on both surface layers of the steel plate. At this time, the thickness (unit: μm) and Ni ratio (unit:%) of the Fe—Ni diffusion layer were changed to the following Table 1 by using the annealing conditions (soaking temperature and holding time) shown in Table 1 below. It was made to become the numerical value of description.
After forming the Fe—Ni diffusion layer, temper rolling was performed, and the test material no. 1 to 27 steel plates for battery outer cans were obtained.
鋼板として、板厚0.25mmの冷間圧延後の未焼鈍状態のNb添加極低炭素鋼(鋼成分は、質量%で、C:0.002%,Si:0.02%,Mn:0.15%,P:0.01%,S:0.008%,Ni:0.02%,Nb:0.01%)を用いた。この鋼板に、脱脂および酸洗を含む前処理を行なった。
前処理後の鋼板に対して、ワット浴を用いて、Niめっきを施した。このとき、下記表1に記載のNi付着量(単位:mg/m2)となるように、電流密度などの条件を適宜調整した。
次いで、Niめっきを施した鋼板を、連続焼鈍ラインに導入して、鋼板を焼鈍すると共に、鋼板内部にNiを拡散させて、鋼板の両面の表層にFe-Ni拡散層を形成した。このとき、下記表1に記載の焼鈍条件(均熱温度および保持時間)にすることによって、Fe-Ni拡散層の厚さ(単位:μm)およびNi比率(単位:%)が、下記表1に記載の数値になるようにした。
Fe-Ni拡散層を形成した後、調質圧延を施して、試験材No.1~27の電池外筒缶用鋼板を得た。 <Manufacture of steel sheet for battery outer can>
As a steel plate, an unannealed Nb-added ultra-low carbon steel having a thickness of 0.25 mm after cold rolling (the steel components are mass%, C: 0.002%, Si: 0.02%, Mn: 0 15%, P: 0.01%, S: 0.008%, Ni: 0.02%, Nb: 0.01%). This steel plate was pretreated including degreasing and pickling.
Ni plating was applied to the steel sheet after the pretreatment using a Watt bath. At this time, conditions such as current density were appropriately adjusted so that the Ni adhesion amount (unit: mg / m 2 ) described in Table 1 below was obtained.
Next, the steel plate subjected to Ni plating was introduced into a continuous annealing line, the steel plate was annealed, and Ni was diffused inside the steel plate to form Fe—Ni diffusion layers on both surface layers of the steel plate. At this time, the thickness (unit: μm) and Ni ratio (unit:%) of the Fe—Ni diffusion layer were changed to the following Table 1 by using the annealing conditions (soaking temperature and holding time) shown in Table 1 below. It was made to become the numerical value of description.
After forming the Fe—Ni diffusion layer, temper rolling was performed, and the test material no. 1 to 27 steel plates for battery outer cans were obtained.
〈電池外筒缶の製造〉
《成形》
得られた電池外筒缶用鋼板を、円形に打ち抜くと共に、カップ状に絞り、再絞りおよびDI工程によって、円筒状である18650型の電池外筒缶形状に成形した。側壁部分の板厚は、DI工程により薄肉化を行ない、0.15mmとした。
《Niめっき》
その後、電池外筒缶形状に成形された電池外筒缶用鋼板の少なくとも外面に、バレルめっき法によって、Niめっきを施し、厚さ4μmのNi層を形成した。こうして、電池外筒缶を得た。 <Manufacture of battery outer can>
<Molding>
The obtained steel plate for battery outer can was punched into a circular shape, drawn into a cup, redrawed and formed into a cylindrical 18650 type battery outer can by a DI process. The plate thickness of the side wall portion was reduced to 0.15 mm by the DI process.
<< Ni plating >>
Then, Ni plating was performed by barrel plating on at least the outer surface of the steel sheet for battery outer cylinder cans formed into a battery outer cylinder can shape to form a Ni layer having a thickness of 4 μm. In this way, a battery outer can was obtained.
《成形》
得られた電池外筒缶用鋼板を、円形に打ち抜くと共に、カップ状に絞り、再絞りおよびDI工程によって、円筒状である18650型の電池外筒缶形状に成形した。側壁部分の板厚は、DI工程により薄肉化を行ない、0.15mmとした。
《Niめっき》
その後、電池外筒缶形状に成形された電池外筒缶用鋼板の少なくとも外面に、バレルめっき法によって、Niめっきを施し、厚さ4μmのNi層を形成した。こうして、電池外筒缶を得た。 <Manufacture of battery outer can>
<Molding>
The obtained steel plate for battery outer can was punched into a circular shape, drawn into a cup, redrawed and formed into a cylindrical 18650 type battery outer can by a DI process. The plate thickness of the side wall portion was reduced to 0.15 mm by the DI process.
<< Ni plating >>
Then, Ni plating was performed by barrel plating on at least the outer surface of the steel sheet for battery outer cylinder cans formed into a battery outer cylinder can shape to form a Ni layer having a thickness of 4 μm. In this way, a battery outer can was obtained.
〈評価〉
《耐食性》
塩化ナトリウム5gおよび30%過酸化水素水1.5ccを純水100gに混合して得られた水溶液を準備した。この水溶液に、得られた電池外筒缶を、室温下で16時間浸漬した。浸漬後、電池外筒缶を引き上げて、穴あきの有無を目視で確認し、穴あきが確認された場合には「B」を、穴あきが確認されなかった場合には「A」を、下記表1に記載した。「A」であれば耐食性に優れる。 <Evaluation>
《Corrosion resistance》
An aqueous solution obtained by mixing 5 g of sodium chloride and 1.5 cc of 30% hydrogen peroxide water with 100 g of pure water was prepared. The obtained battery outer cylinder can was immersed in this aqueous solution at room temperature for 16 hours. After soaking, the battery outer can is pulled up and visually checked for the presence or absence of perforations. If perforations are confirmed, “B” is indicated. If no perforations are confirmed, “A” is indicated below. It described in Table 1. If it is "A", it is excellent in corrosion resistance.
《耐食性》
塩化ナトリウム5gおよび30%過酸化水素水1.5ccを純水100gに混合して得られた水溶液を準備した。この水溶液に、得られた電池外筒缶を、室温下で16時間浸漬した。浸漬後、電池外筒缶を引き上げて、穴あきの有無を目視で確認し、穴あきが確認された場合には「B」を、穴あきが確認されなかった場合には「A」を、下記表1に記載した。「A」であれば耐食性に優れる。 <Evaluation>
《Corrosion resistance》
An aqueous solution obtained by mixing 5 g of sodium chloride and 1.5 cc of 30% hydrogen peroxide water with 100 g of pure water was prepared. The obtained battery outer cylinder can was immersed in this aqueous solution at room temperature for 16 hours. After soaking, the battery outer can is pulled up and visually checked for the presence or absence of perforations. If perforations are confirmed, “B” is indicated. If no perforations are confirmed, “A” is indicated below. It described in Table 1. If it is "A", it is excellent in corrosion resistance.
《耐傷性》
焼入れ鋼で作られた成形型を用いて、上述した成形を繰り返し行ない、電池外筒缶形状に成形された電池外筒缶用鋼板の表面に目視で傷が確認されるまでの回数(製缶数)をカウントした。
傷が確認されるまでの製缶数が50,000缶以下であった場合には「D」を、50,000缶超70,000缶以下であった場合には「C」を、70,000缶超100,000缶以下であった場合には「B」を、製缶数が100,000缶を超えても傷が確認されなかった場合は「A」を、下記表1に記載した。
「A」、「B」または「C」であれば耐傷性に優れる。実用上、「A」または「B」が好ましく、「A」がより好ましい。 《Scratch resistance》
Using a mold made of hardened steel, the above-described molding is repeated, and the number of times until the surface of the battery outer can steel plate formed into a battery outer can shape is visually checked for scratches (can manufacturing Count).
When the number of cans until the scratch is confirmed is 50,000 cans or less, “D” is indicated. When the number of cans exceeds 50,000 cans and 70,000 cans or less, “C” is indicated as 70,70. Table 1 below shows “B” when the number of cans exceeds 100,000 cans, and “A” when the number of cans exceeds 100,000 cans. .
“A”, “B” or “C” is excellent in scratch resistance. Practically, “A” or “B” is preferable, and “A” is more preferable.
焼入れ鋼で作られた成形型を用いて、上述した成形を繰り返し行ない、電池外筒缶形状に成形された電池外筒缶用鋼板の表面に目視で傷が確認されるまでの回数(製缶数)をカウントした。
傷が確認されるまでの製缶数が50,000缶以下であった場合には「D」を、50,000缶超70,000缶以下であった場合には「C」を、70,000缶超100,000缶以下であった場合には「B」を、製缶数が100,000缶を超えても傷が確認されなかった場合は「A」を、下記表1に記載した。
「A」、「B」または「C」であれば耐傷性に優れる。実用上、「A」または「B」が好ましく、「A」がより好ましい。 《Scratch resistance》
Using a mold made of hardened steel, the above-described molding is repeated, and the number of times until the surface of the battery outer can steel plate formed into a battery outer can shape is visually checked for scratches (can manufacturing Count).
When the number of cans until the scratch is confirmed is 50,000 cans or less, “D” is indicated. When the number of cans exceeds 50,000 cans and 70,000 cans or less, “C” is indicated as 70,70. Table 1 below shows “B” when the number of cans exceeds 100,000 cans, and “A” when the number of cans exceeds 100,000 cans. .
“A”, “B” or “C” is excellent in scratch resistance. Practically, “A” or “B” is preferable, and “A” is more preferable.
上記表1に示すように、Fe-Ni拡散層のNi付着量が500mg/m2を超える試験材No.10~11および22~23は、耐傷性が劣っていた。Fe-Ni拡散層のNi付着量が50mg/m2未満である試験材No.12および24は、耐食性が劣っていた。
As shown in Table 1 above, the test material No. 1 in which the Ni adhesion amount of the Fe—Ni diffusion layer exceeded 500 mg / m 2 was used. 10-11 and 22-23 were inferior in scratch resistance. The test material No. whose Ni adhesion amount of the Fe—Ni diffusion layer is less than 50 mg / m 2 12 and 24 were inferior in corrosion resistance.
これに対して、Fe-Ni拡散層のNi付着量が50mg/m2以上500mg/m2以下である試験材No.1~9、13~21および25~27は、耐傷性および耐傷性が共に良好であった。
On the other hand, the test material No. in which the Ni adhesion amount of the Fe—Ni diffusion layer is 50 mg / m 2 or more and 500 mg / m 2 or less. Nos. 1-9, 13-21 and 25-27 both had good scratch resistance and scratch resistance.
試験材No.1~9、13~21および25~27を対比すると、Fe-Ni拡散層の最表面におけるNi比率が1.0%以上20.0%未満である試験材No.1~9、13~21および26~27は、Ni比率が20.0%以上である試験材No.25よりも、耐傷性がより良好であった。
Test material No. When comparing 1 to 9, 13 to 21, and 25 to 27, the test material No. 1 in which the Ni ratio on the outermost surface of the Fe—Ni diffusion layer is 1.0% or more and less than 20.0% Nos. 1 to 9, 13 to 21, and 26 to 27 are test materials having Ni ratios of 20.0% or more. The scratch resistance was better than 25.
試験材No.1~9を対比すると、試験材No.5~7よりも、Ni比率がより低い試験材No.1~4および8~9の方が、耐傷性が更に良好であった。
同様に、試験材No.13~21を対比すると、試験材No.17~19よりも、Ni比率がより低い試験材No.13~16および20~21の方が、耐傷性が更に良好であった。 Test material No. When comparing 1 to 9, the test material No. Test material No. 5 with a lower Ni ratio than 5-7. 1 to 4 and 8 to 9 had better scratch resistance.
Similarly, the test material No. When comparing 13 to 21, test material No. Test material No. 17 with a lower Ni ratio than 17-19. 13-16 and 20-21 had better scratch resistance.
同様に、試験材No.13~21を対比すると、試験材No.17~19よりも、Ni比率がより低い試験材No.13~16および20~21の方が、耐傷性が更に良好であった。 Test material No. When comparing 1 to 9, the test material No. Test material No. 5 with a lower Ni ratio than 5-7. 1 to 4 and 8 to 9 had better scratch resistance.
Similarly, the test material No. When comparing 13 to 21, test material No. Test material No. 17 with a lower Ni ratio than 17-19. 13-16 and 20-21 had better scratch resistance.
Claims (8)
- 鋼板の両面の表層にFe-Ni拡散層を有し、
前記Fe-Ni拡散層は、前記鋼板の片面あたりのNi換算の付着量が、50mg/m2以上500mg/m2以下である、電池外筒缶用鋼板。 It has Fe-Ni diffusion layers on the surface layers on both sides of the steel plate,
The Fe—Ni diffusion layer is a steel sheet for battery outer cans, wherein the amount of Ni converted per one side of the steel sheet is 50 mg / m 2 or more and 500 mg / m 2 or less. - 前記Fe-Ni拡散層の最表面におけるNi比率が、1.0%以上20.0%未満である、請求項1に記載の電池外筒缶用鋼板。
ただし、前記Ni比率は、前記Fe-Ni拡散層の最表面における、Fe量とNi量との合計に対する前記Ni量の割合であり、前記Fe量および前記Ni量の単位は、原子%である。 The steel plate for a battery outer can according to claim 1, wherein the Ni ratio on the outermost surface of the Fe-Ni diffusion layer is 1.0% or more and less than 20.0%.
However, the Ni ratio is the ratio of the Ni amount to the total of the Fe amount and the Ni amount at the outermost surface of the Fe—Ni diffusion layer, and the unit of the Fe amount and the Ni amount is atomic%. . - 前記Fe-Ni拡散層の厚さが、0.01μm以上0.5μm未満である、請求項1または2に記載の電池外筒缶用鋼板。 The steel plate for battery outer cans according to claim 1 or 2, wherein the thickness of the Fe-Ni diffusion layer is 0.01 µm or more and less than 0.5 µm.
- 電池外筒缶形状の鋼板の内面および外面の表層にFe-Ni拡散層を有し、
前記鋼板の外面側の前記Fe-Ni拡散層上に、更に、Ni層を有し、
前記鋼板の外面側の前記Fe-Ni拡散層の一部が、前記鋼板の片面あたりのNi換算の付着量が50mg/m2以上500mg/m2以下のFe-Ni拡散層Aである、電池外筒缶。 Fe-Ni diffusion layers on the inner and outer surface layers of the battery outer can-shaped steel plate,
On the Fe-Ni diffusion layer on the outer surface side of the steel plate, further, there is a Ni layer,
A part of the Fe—Ni diffusion layer on the outer surface side of the steel sheet is a Fe—Ni diffusion layer A having an Ni conversion amount per side of the steel sheet of 50 mg / m 2 or more and 500 mg / m 2 or less. Outer cylinder can. - 前記Fe-Ni拡散層Aの最表面におけるNi比率が、1.0%以上20.0%未満である、請求項4に記載の電池外筒缶。
ただし、前記Ni比率は、前記Fe-Ni拡散層の最表面における、Fe量とNi量との合計に対する前記Ni量の割合であり、前記Fe量および前記Ni量の単位は、原子%である。 The battery outer can according to claim 4, wherein the Ni ratio on the outermost surface of the Fe-Ni diffusion layer A is 1.0% or more and less than 20.0%.
However, the Ni ratio is the ratio of the Ni amount to the total of the Fe amount and the Ni amount at the outermost surface of the Fe—Ni diffusion layer, and the unit of the Fe amount and the Ni amount is atomic%. . - 前記Fe-Ni拡散層Aの厚さが、0.01μm以上0.5μm未満である、請求項4または5に記載の電池外筒缶。 The battery outer can according to claim 4 or 5, wherein a thickness of the Fe-Ni diffusion layer A is 0.01 µm or more and less than 0.5 µm.
- 前記Ni層の厚さが、1μm以上である、請求項4~6のいずれか1項に記載の電池外筒缶。 The battery outer can according to any one of claims 4 to 6, wherein the Ni layer has a thickness of 1 µm or more.
- 請求項4~7のいずれか1項に記載の電池外筒缶と、
前記電池外筒缶の内部に配置された電解液、電極およびセパレータと、を備える電池。 A battery outer can according to any one of claims 4 to 7,
A battery comprising an electrolyte solution, an electrode, and a separator disposed inside the battery outer can.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017544977A JP6260752B1 (en) | 2016-06-24 | 2017-06-13 | Steel plate for battery outer can, battery outer can and battery |
CN201780027816.5A CN109072449B (en) | 2016-06-24 | 2017-06-13 | Steel plate for outer can of battery, outer can of battery and battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-125251 | 2016-06-24 | ||
JP2016125251 | 2016-06-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017221763A1 true WO2017221763A1 (en) | 2017-12-28 |
Family
ID=60783953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/021760 WO2017221763A1 (en) | 2016-06-24 | 2017-06-13 | Steel sheet for battery outer cylindrical canister, battery outer cylindrical canister, and battery |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6260752B1 (en) |
CN (1) | CN109072449B (en) |
TW (1) | TWI650892B (en) |
WO (1) | WO2017221763A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019021909A1 (en) * | 2017-07-28 | 2019-01-31 | Jfeスチール株式会社 | Steel sheet for battery outer tube cans, battery outer tube can and battery |
WO2020044714A1 (en) * | 2018-08-29 | 2020-03-05 | Jfeスチール株式会社 | Steel sheet for cans, and method for producing same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102339193B1 (en) * | 2017-07-28 | 2021-12-13 | 제이에프이 스틸 가부시키가이샤 | Steel plate for battery cans, cans and batteries |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002212778A (en) * | 2001-01-19 | 2002-07-31 | Nippon Steel Corp | Ni PLATED STEEL SHEET FOR POSITIVE ELECTRODE CAN OF ALKALI MANGANESE BATTERY HAVING EXCELLENT BATTERY CHARACTERISTIC, AND PRODUCTION METHOD THEREFOR |
JP2008041527A (en) * | 2006-08-09 | 2008-02-21 | Matsushita Electric Ind Co Ltd | Battery can, and battery using it |
JP4995140B2 (en) * | 2008-04-25 | 2012-08-08 | 新日本製鐵株式会社 | Ni-plated steel sheet for containers, container manufactured thereby, and method for manufacturing the same |
JP2014205884A (en) * | 2013-04-12 | 2014-10-30 | 東洋鋼鈑株式会社 | STEEL MATERIAL HAVING Mn LAYER |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011083562A1 (en) * | 2010-01-08 | 2011-07-14 | 東洋鋼鈑株式会社 | Ni-plated steel sheet with excellent pressability for battery can |
TWI510362B (en) * | 2013-04-30 | 2015-12-01 | Nippon Steel & Sumitomo Metal Corp | Ni-plated steel sheet and production method thereof |
TWI549812B (en) * | 2013-05-21 | 2016-09-21 | 新日鐵住金股份有限公司 | Steel sheet for container and production method thereof |
-
2017
- 2017-06-13 WO PCT/JP2017/021760 patent/WO2017221763A1/en active Application Filing
- 2017-06-13 JP JP2017544977A patent/JP6260752B1/en active Active
- 2017-06-13 CN CN201780027816.5A patent/CN109072449B/en active Active
- 2017-06-21 TW TW106120781A patent/TWI650892B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002212778A (en) * | 2001-01-19 | 2002-07-31 | Nippon Steel Corp | Ni PLATED STEEL SHEET FOR POSITIVE ELECTRODE CAN OF ALKALI MANGANESE BATTERY HAVING EXCELLENT BATTERY CHARACTERISTIC, AND PRODUCTION METHOD THEREFOR |
JP2008041527A (en) * | 2006-08-09 | 2008-02-21 | Matsushita Electric Ind Co Ltd | Battery can, and battery using it |
JP4995140B2 (en) * | 2008-04-25 | 2012-08-08 | 新日本製鐵株式会社 | Ni-plated steel sheet for containers, container manufactured thereby, and method for manufacturing the same |
JP2014205884A (en) * | 2013-04-12 | 2014-10-30 | 東洋鋼鈑株式会社 | STEEL MATERIAL HAVING Mn LAYER |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019021909A1 (en) * | 2017-07-28 | 2019-01-31 | Jfeスチール株式会社 | Steel sheet for battery outer tube cans, battery outer tube can and battery |
US11946121B2 (en) | 2017-07-28 | 2024-04-02 | Jfe Steel Corporation | Steel sheet for battery outer tube cans, battery outer tube can and battery |
WO2020044714A1 (en) * | 2018-08-29 | 2020-03-05 | Jfeスチール株式会社 | Steel sheet for cans, and method for producing same |
JPWO2020044714A1 (en) * | 2018-08-29 | 2020-09-03 | Jfeスチール株式会社 | Steel sheet for cans and its manufacturing method |
KR20210035274A (en) * | 2018-08-29 | 2021-03-31 | 제이에프이 스틸 가부시키가이샤 | Steel sheet for cans and manufacturing method thereof |
CN112639172A (en) * | 2018-08-29 | 2021-04-09 | 杰富意钢铁株式会社 | Steel sheet for can and method for producing same |
EP3808878A4 (en) * | 2018-08-29 | 2021-08-25 | JFE Steel Corporation | Steel sheet for cans, and method for producing same |
KR102507717B1 (en) * | 2018-08-29 | 2023-03-07 | 제이에프이 스틸 가부시키가이샤 | Steel sheet for cans and its manufacturing method |
CN112639172B (en) * | 2018-08-29 | 2023-11-07 | 杰富意钢铁株式会社 | Steel sheet for cans and method for producing same |
US11939692B2 (en) | 2018-08-29 | 2024-03-26 | Jfe Steel Corporation | Steel sheet for can making and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
CN109072449B (en) | 2023-07-14 |
JP6260752B1 (en) | 2018-01-17 |
TWI650892B (en) | 2019-02-11 |
JPWO2017221763A1 (en) | 2018-06-28 |
TW201813158A (en) | 2018-04-01 |
CN109072449A (en) | 2018-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6803852B2 (en) | Nickel-plated heat-treated steel sheet for battery cans | |
JP7187469B2 (en) | Surface-treated steel sheet and manufacturing method thereof | |
CN111699567B (en) | Surface-treated steel sheet for battery container and method for producing surface-treated steel sheet for battery container | |
KR102366582B1 (en) | Steel foil for power storage device container, container for power storage device, power storage device, and method for manufacturing steel foil for power storage device container | |
KR20140033058A (en) | Surface-treated steel sheet for battery cases, battery case, and battery | |
JPWO2010143374A1 (en) | Ni-plated steel sheet and battery can manufacturing method using the Ni-plated steel sheet | |
CN113748225B (en) | Surface-treated steel sheet and method for producing same | |
JP6260752B1 (en) | Steel plate for battery outer can, battery outer can and battery | |
TW201610178A (en) | Steel foil for electricity storage device container, container for electricity storage device, electricity storage device, and manufacturing method of steel foil for electricity storage device container | |
JP2009263727A (en) | Ni-PLATED STEEL SHEET FOR CONTAINER, CONTAINER MANUFACTURED FROM THE SAME AND MANUFACTURING METHOD THEREFOR | |
JP2007335205A (en) | Steel sheet for forming battery can with superior leakage resistance and heavy-load discharge performance, its manufacturing method, battery can, and alkaline dry cell | |
JP6451919B1 (en) | Steel plate for battery outer can, battery outer can and battery | |
US11946121B2 (en) | Steel sheet for battery outer tube cans, battery outer tube can and battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017544977 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17815232 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17815232 Country of ref document: EP Kind code of ref document: A1 |