JP2007335205A - Steel sheet for forming battery can with superior leakage resistance and heavy-load discharge performance, its manufacturing method, battery can, and alkaline dry cell - Google Patents

Steel sheet for forming battery can with superior leakage resistance and heavy-load discharge performance, its manufacturing method, battery can, and alkaline dry cell Download PDF

Info

Publication number
JP2007335205A
JP2007335205A JP2006164998A JP2006164998A JP2007335205A JP 2007335205 A JP2007335205 A JP 2007335205A JP 2006164998 A JP2006164998 A JP 2006164998A JP 2006164998 A JP2006164998 A JP 2006164998A JP 2007335205 A JP2007335205 A JP 2007335205A
Authority
JP
Japan
Prior art keywords
layer
battery
plating
positive electrode
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006164998A
Other languages
Japanese (ja)
Inventor
Reiko Sugihara
玲子 杉原
Hirohide Furuya
博英 古屋
Kenji Tawara
健司 田原
Tatsuya Yamazaki
龍也 山崎
Kiyohide Tsutsui
清英 筒井
Hirofumi Sugikawa
裕文 杉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Katayama Special Industries Ltd
FDK Energy Co Ltd
Original Assignee
JFE Steel Corp
Katayama Special Industries Ltd
FDK Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Katayama Special Industries Ltd, FDK Energy Co Ltd filed Critical JFE Steel Corp
Priority to JP2006164998A priority Critical patent/JP2007335205A/en
Publication of JP2007335205A publication Critical patent/JP2007335205A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel sheet for forming a battery can equipped with both superior leakage resistance and heavy-load discharge performance (discharge performance after long term storage), its manufacturing method, a battery can, and an alkaline dry cell. <P>SOLUTION: This steel sheet includes: an Fe-Ni alloy plated layer or an Fe-Ni diffusion alloy layer 2 with an Fe concentration of an outermost surface layer which is a surface to be a can inner face set within the range of 10 atom% or more and 70 atom% or less; a recrystallized Ni layer 3 having a thickness of 0.2 μm or more formed therebelow; and an Fe-Ni diffusion alloy layer 4 further formed therebelow. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ニッケルまたはニッケル−鉄合金がメッキされた薄鋼板のプレス加工により形成される耐漏液性能及び重負荷放電性能に優れた電池缶形成用鋼板、その製造方法、電池缶およびアルカリ乾電池に係り、特に正極作用物質としてpHの高い強アルカリ溶液が使用されるアルカリ乾電池に関する。   The present invention relates to a steel plate for forming a battery can formed by pressing a thin steel plate plated with nickel or a nickel-iron alloy and having excellent leakage resistance and heavy load discharge performance, a manufacturing method thereof, a battery can and an alkaline battery. In particular, the present invention relates to an alkaline battery in which a strong alkaline solution having a high pH is used as a positive electrode active substance.

電解液としてpHの高い強アルカリ溶液が使用される電池の代表例として、アルカリマンガン乾電池が挙げられる。一般にアルカリ電池には、正極端子を兼ねた内容物を充填するための容器として、電池缶が用いられている。この電池缶の製造方法としては、表面にめっき層を備えた鋼板(所謂プレめっき鋼板)を成形する場合と、鋼板を電池缶に成形してから後めっき(所謂ガラメッキ)を行う場合とがあり、めっきには主として耐アルカリ腐食性の良好なNiが用いられている。成形後に電池缶をめっきする方法は、生産効率が低く、めっき付着量の均一性に乏しいため、近年では、あらかじめ表面にめっき層を備えた鋼板を成形する方法が主流となっている。   As a typical example of a battery in which a strong alkaline solution having a high pH is used as the electrolytic solution, an alkaline manganese dry battery can be given. In general, a battery can is used in an alkaline battery as a container for filling a content that also serves as a positive electrode terminal. As a method of manufacturing the battery can, there are a case where a steel plate (so-called pre-plated steel plate) having a plating layer on the surface is formed and a case where post-plating (so-called glass plating) is performed after the steel plate is formed into a battery can. In the plating, mainly Ni having good alkali corrosion resistance is used. The method of plating a battery can after forming has low production efficiency and poor uniformity of the amount of plating, and in recent years, a method of forming a steel plate having a plating layer on the surface in advance has become the mainstream.

アルカリ電池においては、経時劣化が進むと電池内で水素ガスが発生し、内圧が上昇するという現象がある。内圧が高くなりすぎると、電池内に設置されたガスケットが破断し、漏液を生じるため、電子機器に悪影響を及ぼす恐れがある。電池性能の一層の向上が図られ、より長い電池寿命が追究されている近年では、この耐漏液性能が従来品と同程度である場合、電池が使用可能であるにもかかわらず、漏液を発生する事態を招くと考えられる。従って、耐漏液性能を大幅に向上させることにより、実質的な電池寿命を安全に確保しなくてはならないという課題があった。   An alkaline battery has a phenomenon in which hydrogen gas is generated in the battery as the deterioration with time progresses, and the internal pressure increases. If the internal pressure becomes too high, the gasket installed in the battery breaks and leaks, which may adversely affect electronic equipment. In recent years, when battery performance has been further improved and a longer battery life has been pursued, if this leakage resistance performance is comparable to that of conventional products, leakage can be prevented even though the battery can be used. It is thought that it will cause a situation to occur. Therefore, there has been a problem that a substantial battery life must be secured safely by greatly improving the liquid leakage resistance.

電池缶の内面側は耐アルカリ腐食性に優れ、外面側は美麗な光沢を有し、かつ耐食性に優れていることが重要である。また、電池缶は容器であると同時に正極端子の役割も担っているため、安定して低い電気抵抗を示すことが放電性能の観点から重要である。   It is important that the inner surface side of the battery can has excellent alkali corrosion resistance, the outer surface side has a beautiful luster, and excellent corrosion resistance. In addition, since the battery can serves as a positive electrode terminal as well as a container, it is important from the viewpoint of discharge performance to stably exhibit a low electric resistance.

放電性能を向上させるために、従来から充填内容物に関する検討は多くなされてきたが、電池缶、特に電池缶内表面の状態が放電性能に及ぼす影響については、十分明確になっていないのが現状である。   In order to improve the discharge performance, many investigations have been made on the filling contents, but the influence of the state of the battery can, especially the inner surface of the battery can, on the discharge performance is not clear enough. It is.

例えば特許文献1では、缶体加工の際にNiめっき層に割れを生じるような硬質なめっきを施すことにより、缶体内面に塗布される導電性塗料との接触面積が増大し、放電性能が改善されるとしている。このような、缶内面となる面にNiあるいはNi合金めっき、さらにはそれらを熱処理して拡散合金層としたもの、あるいは硬度の異なる二層以上のめっき層や合金層等を設けることにより、加工時にめっきあるいは合金層に割れを生ぜしめ、導電性塗料との接触面積を増大させて放電性能を改善する従来技術としては、他に特許文献2、特許文献3、特許文献4、特許文献5、特許文献6、特許文献7、特許文献8、特許文献9等に記載の技術が開示されている。   For example, in Patent Document 1, the contact area with the conductive coating applied to the inner surface of the can body is increased by performing hard plating that causes cracking in the Ni plating layer during can body processing, and the discharge performance is improved. It is going to be improved. By forming Ni or Ni alloy plating on the surface that becomes the inner surface of the can, further heat treating them to form a diffusion alloy layer, or providing two or more plating layers or alloy layers having different hardnesses, Other conventional techniques for improving the discharge performance by sometimes causing cracks in the plating or alloy layer and increasing the contact area with the conductive paint include Patent Document 2, Patent Document 3, Patent Document 4, Patent Document 5, Techniques described in Patent Literature 6, Patent Literature 7, Patent Literature 8, Patent Literature 9, and the like are disclosed.

電池性能を向上させる他の方法としては、缶内面となる面の最表層を適宜合金化するか、あるいは合金めっき層を設けることにより放電性能を改善する方法として、特許文献10や特許文献11等に記載された技術が挙げられる。   As other methods for improving the battery performance, Patent Document 10, Patent Document 11 and the like are disclosed as methods for improving the discharge performance by appropriately alloying the outermost layer on the surface that becomes the inner surface of the can or by providing an alloy plating layer. The technique described in (1) is mentioned.

しかしながら、特に、最近の携帯電子機器の発展に伴い、乾電池には重負荷放電性能(長期保存後の放電性能)が高いこと、すなわち大電流を繰り返し放電できる回数が多く、より電池寿命が長いことが求められている。従来、電池の重負荷放電性能は、一定の抵抗(例えば2Ω、10Ω、75Ωなど)での連続放電試験や、電池の内部抵抗測定による評価が一般的であった。しかし、近年の電池の使用状況を鑑みると、従来より厳しい試験を行って、電池寿命を再評価する必要がある。なぜならば、従来の試験では同等性能の評価であっても、さらに重負荷条件の放電試験では必ずしも同程度の性能を示すとは限らず、より性能差が明確に顕れる場合があるためである。   However, especially with the recent development of portable electronic devices, dry batteries have high heavy-load discharge performance (discharge performance after long-term storage), that is, they can be repeatedly discharged with a large current and have a longer battery life. Is required. Conventionally, the heavy load discharge performance of a battery is generally evaluated by a continuous discharge test at a constant resistance (for example, 2Ω, 10Ω, 75Ω, etc.) or by measuring the internal resistance of the battery. However, in view of recent battery usage, it is necessary to re-evaluate the battery life by conducting a more stringent test than before. This is because even in the conventional test, even if the evaluation is equivalent, the discharge test under the heavy load condition does not always show the same level of performance, and the performance difference may be clearly manifested.

従来の技術においては、重負荷放電性能の向上に及ぼす缶体内表面状態の影響が不明確であるばかりでなく、重負荷放電性能向上に伴い特に重要となる耐漏液性能については、何ら検討がなされていないのが現状である。   In the conventional technology, not only the influence of the surface state of the can body on the improvement of the heavy load discharge performance is unclear, but also the leakage resistance performance, which is particularly important as the heavy load discharge performance is improved, has been studied. The current situation is not.

LR6(単3)などのアルカリ乾電池は、有底筒状の金属製正極缶にアルカリ電解液を含む発電要素を収容するとともに、その正極缶の開口部を金属製負極端子板と樹脂製封口ガスケットで気密封口して構成される。発電要素は、管状に成形固化された正極合剤、アルカリ電解液が含浸される筒状のセパレータ、およびゲル状の負極合剤により形成される。正極合剤は正極作用物質として金属酸化物たとえば二酸化マンガンを用い、負極合剤は負極作用物質として亜鉛を用いる。この2種類の作用物質の放電反応により発電が行われる。   An alkaline battery such as LR6 (AA) accommodates a power generating element containing an alkaline electrolyte in a bottomed cylindrical metal positive electrode can, and the opening of the positive electrode can has a metal negative terminal plate and a resin sealing gasket. It is configured with an air-tight mouth. The power generation element is formed of a positive electrode mixture formed and solidified in a tubular shape, a cylindrical separator impregnated with an alkaline electrolyte, and a gelled negative electrode mixture. The positive electrode mixture uses a metal oxide such as manganese dioxide as the positive electrode active substance, and the negative electrode mixture uses zinc as the negative electrode active substance. Electricity is generated by the discharge reaction of these two types of active substances.

正極合剤は正極缶内に圧入状態で嵌合挿入され、正極缶に直接接触する状態で収容されている。これにより、正極缶は正極集電体および正極端子を兼ねることができる。負極端子板は皿状(またはハット状)であって、その内側面すなわち電池側面には棒状の金属負極電子がスポット溶接等により立設されている。この集電子は負極合剤中に貫入させられている。ガスケットは電気絶縁性樹脂を略円盤状に金型成形したものであって、上記正極缶と負極端子板との間に介在して正極缶内気密封口する。   The positive electrode mixture is fitted and inserted into the positive electrode can in a press-fit state, and is accommodated in a state of being in direct contact with the positive electrode can. Thereby, a positive electrode can can serve as a positive electrode collector and a positive electrode terminal. The negative electrode terminal plate has a dish shape (or hat shape), and rod-shaped metal negative electrode electrons are erected on the inner side surface thereof, that is, the battery side surface by spot welding or the like. The current collector is penetrated into the negative electrode mixture. The gasket is formed by molding an electrically insulating resin in a substantially disk shape, and is interposed between the positive electrode can and the negative electrode terminal plate, and seals the air inside the positive electrode can.

正極缶は鉄を主材とする薄鋼板をプレス加工して形成される。鉄は強度およびコスト等において正極缶の素地に最も適した素材であるとともに、アルカリにより不働態化するという一般的性質がある。このため、電解液としてアルカリ溶液を使用するアルカリ電池では、正極缶の主材として鉄を使用している。   The positive electrode can is formed by pressing a thin steel plate mainly composed of iron. Iron is a material most suitable for the base of the positive electrode can in terms of strength and cost, and has a general property of being passivated by alkali. For this reason, in an alkaline battery using an alkaline solution as an electrolytic solution, iron is used as a main material of the positive electrode can.

一方、正極缶は正極集電体および正極端子も兼ねるので、その表面に安定かつ良好な導電性および電気接触性を確保するため、特許文献12に記載されているようにニッケルまたはニッケル−鉄合金のメッキが施される。   On the other hand, since the positive electrode can also serve as a positive electrode current collector and a positive electrode terminal, nickel or a nickel-iron alloy is used as described in Patent Document 12 in order to ensure stable and good conductivity and electrical contact on the surface. Plating is applied.

正極作用物質として使用される二酸化マンガンは酸化力の強い金属酸化物である。この酸化物は正極缶の鋼板素地を腐食させる原因となる。そこで、特許文献12に記載された正極缶では、その腐食を防ぐために、プレス加工前の鋼板にニッケルメッキ層を形成するとともに、そのメッキ層の最表面部における鉄の露出割合30%以下に規定している。   Manganese dioxide used as a positive electrode active substance is a metal oxide having strong oxidizing power. This oxide causes corrosion of the steel plate substrate of the positive electrode can. Therefore, in the positive electrode can described in Patent Document 12, in order to prevent the corrosion, a nickel plating layer is formed on the steel plate before press working, and the iron exposure ratio in the outermost surface portion of the plating layer is regulated to 30% or less. is doing.

鋼板素地の主成分である鉄は強アルカリに対して不働態化領域でアルカリ電解液に接触しても、それによる腐食はほとんど生じない。しかし、近傍に鉄よりも貴な金属であるニッケル、酸化剤である二酸化マンガン(金属酸化物)および酸素(空気)が存在する箇所では、鉄の溶解が激しくなる。この溶解した鉄イオンが負極作用物質(亜鉛)と反応するとガスが発生する。したがって、耐漏液性を向上させようとするならば、上記鉄割合は少なくしたほうがよいとされている。
特開平5−21044号公報 特開平7−122246号公報 特開平7−300695号公報 WO95/11527号公報 特開平8−138636号公報 特開平8−138636号公報 特開平10−172521号公報 特開平10−172521号公報 特開平11−102671号公報 特開2002−208382号公報 特開2003−328158号公報 特開平6−2104号公報
Iron, which is the main component of the steel sheet substrate, hardly corrodes even when it comes into contact with the alkaline electrolyte in the passivated region against strong alkali. However, in the vicinity where nickel which is a noble metal than iron, manganese dioxide (metal oxide) and oxygen (air) which are oxidants are present, the dissolution of iron becomes intense. When this dissolved iron ion reacts with the negative electrode active substance (zinc), gas is generated. Therefore, it is said that the iron ratio should be reduced if the leakage resistance is to be improved.
Japanese Patent Laid-Open No. 5-21044 JP-A-7-122246 Japanese Patent Laid-Open No. 7-300695 WO95 / 11527 Publication JP-A-8-138636 JP-A-8-138636 JP-A-10-172521 JP-A-10-172521 JP-A-11-102671 JP 2002-208382 A JP 2003-328158 A JP-A-6-2104

上記のように、特許文献1〜11に記載された従来技術においては耐漏液性能及び重負荷放電性能(長期保存後の放電性能)に関する検討がなされていないため、耐漏液性能及び重負荷放電性能を十分満足するかどうか不明である。   As described above, in the conventional techniques described in Patent Documents 1 to 11, since the leakage resistance performance and the heavy load discharge performance (discharge performance after long-term storage) have not been studied, the leakage resistance performance and the heavy load discharge performance. It is unclear whether or not you are satisfied enough.

本発明者らの検討によれば、アルカリ乾電池の発電要素を収容するとともに正極集電子および正極端子を兼ねる正極缶という特殊な使用状況下において、そのアルカリ乾電池に特有の課題である耐漏液性能と重負荷放電性能(長期保存後の放電性能)の向上を目的とした場合、特許文献12の従来技術は上記目的を達成する上で必ずしも有効ではないことが判明した。   According to the study by the present inventors, in a special use situation of a positive electrode can that also serves as a positive electrode current collector and a positive electrode terminal while containing a power generation element of an alkaline dry battery, leakage resistance performance that is a problem peculiar to the alkaline dry battery and In the case of aiming to improve heavy load discharge performance (discharge performance after long-term storage), it has been found that the prior art of Patent Document 12 is not necessarily effective in achieving the above object.

本発明は以上のようなアルカリ乾電池に特有の問題に鑑みてなされたものであり、その目的は、耐漏液性能と重負荷放電性能(長期保存後の放電性能)とを高いレベルで兼ね備えた電池缶形成用鋼板、その製造方法、電池缶およびアルカリ乾電池を提供することにある。   The present invention was made in view of the problems peculiar to the alkaline dry battery as described above, and its purpose is a battery having a high level of leakage resistance and heavy load discharge performance (discharge performance after long-term storage). It is providing the steel plate for can formation, its manufacturing method, a battery can, and an alkaline dry battery.

以下、前記課題を解決するためになされた本発明について説明する。   The present invention made to solve the above problems will be described below.

本発明者らは、前述の課題を解決するため鋭意研究を重ねた結果、耐漏液性能を向上させるには、缶内面となる面に再結晶Ni層を設けることが有効であることを見出した。ここで「再結晶Ni層」とは、Niめっき層を焼鈍することにより再結晶させた軟質のNi層のことをいう。この焼鈍時にNiめっき層と鋼板の界面では相互拡散が生じるため、鋼板側にはFe−Ni拡散合金層が形成される。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that it is effective to provide a recrystallized Ni layer on the surface that becomes the inner surface of the can in order to improve the leakage resistance performance. . Here, the “recrystallized Ni layer” refers to a soft Ni layer recrystallized by annealing the Ni plating layer. Since mutual diffusion occurs at the interface between the Ni plating layer and the steel plate during this annealing, an Fe—Ni diffusion alloy layer is formed on the steel plate side.

この方法により耐漏液性能が向上する理由は必ずしも明らかでないが、概ね以下のように推定される。   The reason why the leakage resistance performance is improved by this method is not necessarily clear, but is estimated as follows.

本発明者らは、缶体からのFe溶出が多いほど電池内ガスの発生量が増大し、短期間で漏液を発生するため耐漏液性能が劣ることを知見した。缶体からのFe溶出の原因は、主として缶内面となる面に設けられたNiめっき層や合金めっき層などの表面処理層が、加工時に亀裂や剥落を生じ、局部的に鋼板表面が内溶液に接することにより起こると考えられる。また、缶内面となる面の最表層にFeを含む合金めっき層や拡散合金層を有する場合は、合金めっきや合金層からのFe溶出も考慮する必要がある。缶内面となる面に軟質の再結晶Ni層を設けることにより、加工時の表面処理層の追従性を改善して亀裂の発生を抑制でき、主要因である鋼板からのFe溶出を抑制できた結果、耐漏液性能が向上したものと考えられる。さらに、再結晶Ni層を得るための焼鈍工程で生成したFe−Ni拡散合金層が、鋼板と表面処理層の密着性を強固にして剥落を防止したことと、硬質の拡散合金層が亀裂の鋼板への進展を妨げたことも、耐漏液性能の向上に寄与したものと考えられる。   The present inventors have found that as the amount of Fe elution from the can increases, the amount of gas generated in the battery increases, and the leakage resistance is inferior because the leakage occurs in a short period of time. The cause of Fe elution from the can body is that the surface treatment layer such as the Ni plating layer and the alloy plating layer provided mainly on the inner surface of the can is cracked or peeled off during processing, and the steel plate surface is locally in the solution. It is thought to occur by touching. Moreover, when it has the alloy plating layer and diffusion alloy layer which contain Fe in the outermost layer of the surface used as a can inner surface, it is necessary to consider Fe elution from alloy plating or an alloy layer. By providing a soft recrystallized Ni layer on the inner surface of the can, it was possible to improve the followability of the surface treatment layer during processing and to suppress the occurrence of cracks, and to suppress Fe elution from the steel sheet, which is the main factor. As a result, the liquid leakage resistance is considered to have improved. Furthermore, the Fe—Ni diffusion alloy layer generated in the annealing process for obtaining the recrystallized Ni layer strengthened the adhesion between the steel sheet and the surface treatment layer to prevent peeling, and the hard diffusion alloy layer was cracked. It was thought that the hindrance to the progress to the steel plate also contributed to the improvement of the liquid leakage resistance.

しかしながら、缶内面となる面に再結晶Ni層を設けることにより、耐漏液性能は格段に向上するが、一方で重負荷放電性能の経時劣化が大きくなり、電池寿命が短くなるという問題が明らかとなった。そこで、本発明者らは、耐漏液性能の格段の向上効果を維持しつつ、その一方では重負荷放電性能を改善する方法について鋭意研究した結果、缶内面となる面の最表層に、最表層Fe濃度が10〜70%のFe−Ni合金めっき層あるいはFe−Ni拡散合金層を設ける方法が有効であるという知見を得た。   However, by providing a recrystallized Ni layer on the inner surface of the can, the leak-proof performance is significantly improved, but on the other hand, the problem is that the heavy load discharge performance is greatly deteriorated with time and the battery life is shortened. became. Therefore, the present inventors conducted extensive research on a method for improving heavy load discharge performance while maintaining a remarkable improvement effect of leakage resistance performance, and as a result, the outermost layer on the surface that becomes the inner surface of the can It was found that a method of providing an Fe—Ni alloy plating layer or an Fe—Ni diffusion alloy layer having an Fe concentration of 10 to 70% is effective.

そこで、これらの性能をともに満たし、かつ安価で効率的に製造するための構成要件について、本発明者らはさらに研究を積み重ねた結果、本発明を完成するに至った。   Therefore, as a result of further researches on the constituent requirements for satisfying both of these performances and manufacturing efficiently at low cost, the present inventors have completed the present invention.

(1)本発明の電池缶形成用鋼板は、缶内面となる面の最表層Fe濃度が10原子%以上70原子%以下の範囲にあるFe−Ni合金めっき層またはFe−Ni拡散合金層と、その下層に形成された厚さ0.2μm以上の再結晶Ni層と、さらにその下層に形成されたFe−Ni拡散合金層と、を有することを特徴とし、耐漏液性能及び重負荷放電性能に優れる。図3に示すように、再結晶Ni層の厚さが0.2μm以上の範囲にあると、鋼板の耐漏液性能が優れたものになる。また、図4に示すように、最表層Fe濃度が10原子%以上70原子%以下の範囲にあると、鋼板の重負荷放電性能が優れたものになる。   (1) The steel sheet for forming a battery can according to the present invention includes an Fe—Ni alloy plating layer or an Fe—Ni diffusion alloy layer in which the outermost layer Fe concentration on the surface that becomes the inner surface of the can is in the range of 10 atomic% to 70 atomic%. And a recrystallized Ni layer having a thickness of 0.2 μm or more formed in the lower layer, and a Fe—Ni diffusion alloy layer formed in the lower layer, leakage resistance performance and heavy load discharge performance Excellent. As shown in FIG. 3, when the thickness of the recrystallized Ni layer is in the range of 0.2 μm or more, the leakage resistance performance of the steel sheet becomes excellent. Moreover, as shown in FIG. 4, when the outermost layer Fe concentration is in the range of 10 atomic% to 70 atomic%, the heavy load discharge performance of the steel sheet becomes excellent.

(2)本発明の電池缶形成用鋼板は、缶内面となる面の最表層Fe濃度が15原子%以上30原子%以下の範囲にあるFe−Ni合金めっき層またはFe−Ni拡散合金層と、その下層に形成された厚さ0.2μm以上の再結晶Ni層と、さらにその下層に形成されたFe−Ni拡散合金層と、を有することを特徴とし、耐漏液性能及び重負荷放電性能に優れる。図4に示すように、最表層Fe濃度が10原子%以上70原子%以下の範囲にある場合は、鋼板の重負荷放電性能が優れたものになる。特に、最表層Fe濃度が15原子%以上30原子%以下の範囲では、鋼板の重負荷放電性能がさらに優れたものになる。   (2) The steel sheet for forming a battery can according to the present invention includes an Fe—Ni alloy plating layer or an Fe—Ni diffusion alloy layer in which the outermost layer Fe concentration on the surface serving as the inner surface of the can is in the range of 15 atomic% to 30 atomic%. And a recrystallized Ni layer having a thickness of 0.2 μm or more formed in the lower layer, and a Fe—Ni diffusion alloy layer formed in the lower layer, leakage resistance performance and heavy load discharge performance Excellent. As shown in FIG. 4, when the outermost layer Fe concentration is in the range of 10 atomic% to 70 atomic%, the heavy load discharge performance of the steel sheet is excellent. In particular, in the range where the outermost layer Fe concentration is 15 atomic% or more and 30 atomic% or less, the heavy load discharge performance of the steel sheet is further improved.

(3)本発明の電池缶形成用鋼板の製造方法は、缶内面となる面に厚さ0.3μm以上のNiめっきを施し、次いで前記Niめっき層の上にFe濃度が15原子%以上85原子%以下で厚さ0.1μm以上0.5μm以下のFe−Ni合金めっきを施し、その後焼鈍および調質圧延を施して、最表層Fe濃度が10原子%以上70原子%以下の範囲にあるFe−Ni拡散合金層と、その下層に厚さ0.2μm以上の再結晶Ni層を形成することを特徴とする。図3に示すように、再結晶Ni層の厚さが0.2μm以上の範囲にあると、鋼板の耐漏液性能が優れたものになる。また、図4に示すように、最表層Fe濃度が10原子%以上70原子%以下の範囲にあると、鋼板の重負荷放電性能が優れたものになる。   (3) In the method for producing a steel plate for forming a battery can according to the present invention, a surface that becomes the inner surface of the can is subjected to Ni plating with a thickness of 0.3 μm or more, and then the Fe concentration is 15 atomic% or more 85 on the Ni plating layer. Fe-Ni alloy plating with a thickness of 0.1 μm or more and 0.5 μm or less at an atomic% or less is performed, followed by annealing and temper rolling, and the outermost layer Fe concentration is in the range of 10 atomic% or more and 70 atomic% or less. A Fe—Ni diffusion alloy layer and a recrystallized Ni layer having a thickness of 0.2 μm or more are formed under the Fe—Ni diffusion alloy layer. As shown in FIG. 3, when the thickness of the recrystallized Ni layer is in the range of 0.2 μm or more, the leakage resistance performance of the steel sheet becomes excellent. Moreover, as shown in FIG. 4, when the outermost layer Fe concentration is in the range of 10 atomic% to 70 atomic%, the heavy load discharge performance of the steel sheet becomes excellent.

(4)本発明の電池缶形成用鋼板の製造方法は、缶内面となる面に厚さ0.3μm以上のNiめっきを施し、次いで前記Niめっき層の上に厚さ0.1μm以上0.4μm以下のFeめっきを施し、その後焼鈍および調質圧延を施して、最表層Fe濃度が10原子%以上70原子%以下の範囲にあるFe−Ni拡散合金層と、その下層に厚さ0.2μm以上の再結晶Ni層を形成することを特徴とする。   (4) In the method for producing a steel sheet for forming a battery can according to the present invention, a surface that becomes the inner surface of the can is subjected to Ni plating with a thickness of 0.3 μm or more, and then the thickness of 0.1 μm or more is set on the Ni plating layer. Fe plating of 4 μm or less is applied, followed by annealing and temper rolling, and an Fe—Ni diffusion alloy layer having an outermost layer Fe concentration in the range of 10 atomic% to 70 atomic%, and a thickness of 0. A recrystallized Ni layer of 2 μm or more is formed.

(5)本発明の電池缶形成用鋼板の製造方法は、缶内面となる面に厚さ0.3μm以上のNiめっきを施した後、焼鈍して厚さ0.2μm以上の再結晶Ni層を形成し、さらに缶内面となる面にFe濃度が10%以上70%以下で厚さ0.1μm以上0.5μm以下のFe−Ni合金めっきを施し、その後調質圧延を施すことを特徴とする。   (5) The method for producing a steel plate for forming a battery can according to the present invention is such that after the Ni plating having a thickness of 0.3 μm or more is applied to the surface to be the inner surface of the can, the recrystallized Ni layer having a thickness of 0.2 μm or more is annealed. Further, Fe-Ni alloy plating with a Fe concentration of 10% to 70% and a thickness of 0.1 μm to 0.5 μm is applied to the surface that becomes the inner surface of the can, and then subjected to temper rolling. To do.

Fe−Ni拡散合金層からなる最表層を形成する場合は、Fe−Ni合金めっき又はFeめっきをNiめっき層の上に積層した後に、焼鈍する。Fe−Ni合金めっき層からなる最表層を形成する場合は、焼鈍後に、Fe−Ni合金めっき層を再結晶Ni層の上に積層する。   When forming the outermost layer composed of the Fe—Ni diffusion alloy layer, annealing is performed after the Fe—Ni alloy plating or the Fe plating is laminated on the Ni plating layer. When forming the outermost layer made of the Fe—Ni alloy plating layer, the Fe—Ni alloy plating layer is laminated on the recrystallized Ni layer after annealing.

(6)本発明の電池缶は、(1)または(2)のいずれかに記載の電池缶形成用鋼板を深絞りおよびしごき加工してなり、耐漏液性能及び重負荷放電性能に優れる。   (6) The battery can of the present invention is formed by deep drawing and ironing the steel sheet for forming the battery can according to either (1) or (2), and is excellent in leakage resistance performance and heavy load discharge performance.

中間層となる再結晶Ni層は、Niめっき層を形成した後に焼鈍して得る必要がある。Niめっき層を焼鈍すると、Niめっき層そのものは再結晶により軟化して耐漏液性能を向上させるとともに、該Niめっき層と母材となる鋼板との間にFe−Ni拡散合金層が形成され、耐漏液性能向上効果を助長する。Niめっき層を形成する際には、無光沢Niめっき層とするのが望ましい。無光沢Niめっき層は、めっき浴に光沢材を添加してめっきすることにより得られる光沢Niめっき層に比べて、めっきしたままの状態での硬さが小さく、かつ焼鈍により軟化しやすいため、軟質な再結晶Ni層を得るのに適している。さらに、軟化再結晶したNiめっき層の上にFe−Ni合金めっき層またはFe−Ni拡散合金層を形成し、これを最表層とすることにより重負荷放電性能を向上させることができ、耐漏液性能と重負荷放電性能を高度に両立させることができる。   The recrystallized Ni layer serving as the intermediate layer needs to be obtained by annealing after forming the Ni plating layer. When the Ni plating layer is annealed, the Ni plating layer itself is softened by recrystallization to improve leakage resistance performance, and an Fe-Ni diffusion alloy layer is formed between the Ni plating layer and the steel plate as a base material. Helps improve leakage resistance performance. When forming the Ni plating layer, it is desirable to use a matte Ni plating layer. The matte Ni plating layer has a smaller hardness in the state of plating as compared to the glossy Ni plating layer obtained by plating by adding a brightening material to the plating bath, and is easily softened by annealing. It is suitable for obtaining a soft recrystallized Ni layer. Furthermore, by forming a Fe—Ni alloy plating layer or a Fe—Ni diffusion alloy layer on the softened and recrystallized Ni plating layer and using this as the outermost layer, it is possible to improve heavy load discharge performance, High performance and heavy load discharge performance can be achieved.

母材となる鋼板は、深絞り加工性としごき加工性に優れた鋼板であれば何でもよく特に限定されるものではないが、一般に電池缶に用いられている低炭素アルミキルド鋼板または極低炭素鋼板を用いることが好ましい。   The steel plate used as a base material is not particularly limited as long as it is a steel plate having deep drawing workability and excellent ironing workability, but it is generally a low carbon aluminum killed steel plate or extremely low carbon steel plate used for battery cans. Is preferably used.

(7)本発明のアルカリ乾電池は、鉄を主成分とする金属製であって正極集電子および正極端子を兼ねる有底筒状の正極缶内に、金属酸化物を正極作用物質とする管状の正極合剤が圧入状態で嵌挿されるとともに、この正極合剤の内側にアルカリ電解液が含浸されるセパレータと負極合剤が充填されることにより発電要素が形成され、前記正極缶の開口部が負極端子板と樹脂製封口ガスケットを用いて気密封口されているアルカリ乾電池において、前記正極缶は、上記(1)または(2)のいずれかに記載の電池缶形成用鋼板を加工して形成されたものであることを特徴とする。   (7) The alkaline dry battery of the present invention is made of a metal mainly composed of iron, and has a tubular shape having a metal oxide as a positive electrode active substance in a bottomed cylindrical positive electrode can also serving as a positive electrode current collector and a positive electrode terminal. The positive electrode mixture is inserted in a press-fitted state, and a power generation element is formed by filling the inside of the positive electrode mixture with a separator impregnated with an alkaline electrolyte and the negative electrode mixture, and the opening of the positive electrode can In an alkaline battery that is hermetically sealed using a negative electrode terminal plate and a resin sealing gasket, the positive electrode can is formed by processing the steel plate for forming a battery can according to either (1) or (2). It is characterized by that.

(8)上記(7)に記載のアルカリ乾電池において、正極作用物質として二酸化マンガンが使用されている。   (8) In the alkaline dry battery described in (7) above, manganese dioxide is used as the positive electrode active substance.

本発明によれば、耐漏液性能と重負荷放電性能(長期保存後の放電性能)とを高いレベルで兼ね備えた電池缶形成用鋼板、その製造方法、電池缶およびアルカリ乾電池が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the steel plate for battery can formation which has liquid-proof performance and heavy load discharge performance (discharge performance after long-term storage) at a high level, its manufacturing method, a battery can, and an alkaline dry battery are provided.

以下、添付の図面と表を参照して本発明を実施するための最良の形態について説明する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings and tables.

まず、本発明における構成要件について説明する。図1に示すように、缶内面の最表層4には、耐漏液性能を向上させた際の重負荷放電性能劣化を抑制するため、最表層Fe濃度10〜70%のFe−Ni合金めっき層あるいはFe−Ni拡散合金層が必要である。最表層4のFe濃度はオージェ分光分析により、表層のFe,Niの強度から、Fe/(Fe+Ni)[原子%]として定義できる。また、合金層やNi層などの厚さは、グロー放電分光法(GDS)による深さ方向分析や、電池缶形成用鋼板の断面のEDSによる線分析から得られる。拡散合金層と合金めっき層の違いは、これらの分析により同時に得られ、FeとNiの濃度が連続的に変化しているものが拡散合金層であり、階段状に変化しているものが合金めっき層である。   First, the structural requirements in the present invention will be described. As shown in FIG. 1, the outermost layer 4 on the inner surface of the can has an Fe—Ni alloy plating layer having an outermost layer Fe concentration of 10 to 70% in order to suppress deterioration of heavy load discharge performance when liquid leakage resistance is improved. Alternatively, an Fe—Ni diffusion alloy layer is necessary. The Fe concentration of the outermost layer 4 can be defined as Fe / (Fe + Ni) [atomic%] from the strength of Fe and Ni on the surface layer by Auger spectroscopic analysis. Further, the thickness of the alloy layer, the Ni layer, and the like can be obtained from a depth direction analysis by glow discharge spectroscopy (GDS) or a line analysis by EDS of a cross section of the steel sheet for forming a battery can. The difference between the diffusion alloy layer and the alloy plating layer is obtained at the same time by these analyses, and the one in which the concentration of Fe and Ni continuously changes is the diffusion alloy layer, and the one in which the step changes is an alloy. It is a plating layer.

最表層Fe濃度は、10原子%以下では重負荷放電性能向上効果が得られない。重負荷放電性能向上効果に及ぼす合金めっき層あるいは拡散合金層の役割は必ずしも明確でないが、最表層Fe濃度10原子%以上の適正範囲では、表層の水酸化反応が他の範囲と異なり、重負荷放電時の缶体表面抵抗増大が抑制されたものと考えられる。一方、最表層Fe濃度が70原子%を超える合金めっき層あるいは拡散合金層を形成する場合、めっき工程でのFe濃度制御が困難となり、著しく製造効率が低下するため、70原子%以下とするのが望ましい。最表層Fe濃度のより好ましい範囲は15〜30原子%であり、この範囲では耐漏液性能と重負荷放電性能が共に特に優れている。   If the outermost layer Fe concentration is 10 atomic% or less, the effect of improving heavy load discharge performance cannot be obtained. Although the role of the alloy plating layer or diffusion alloy layer on the heavy load discharge performance improvement effect is not necessarily clear, the hydroxylation reaction of the surface layer is different from other ranges in the appropriate range where the outermost layer Fe concentration is 10 atomic% or more, and the heavy load It is thought that the increase in can surface resistance during discharge was suppressed. On the other hand, when an alloy plating layer or a diffusion alloy layer having an outermost layer Fe concentration exceeding 70 atomic% is formed, it becomes difficult to control the Fe concentration in the plating step, and the manufacturing efficiency is remarkably reduced. Is desirable. A more preferable range of the outermost layer Fe concentration is 15 to 30 atomic%, and in this range, both the leakage resistance performance and the heavy load discharge performance are particularly excellent.

この最表層4を構成する合金めっき層または拡散合金層の厚さは0.1μm以上1.0μm以下であることが望ましい。0.1μm未満では均一被覆することが困難であるため重負荷放電性能の劣化を抑制できない。一方、1.0μmを超えると製造効率が低下してコスト高を招くばかりでなく、合金めっき層あるいは拡散合金層の最表層Fe濃度が70%以下であっても、内溶液に直接触れる層に存在するFeの量が増加し、Fe溶出量が増大して耐漏液性能に悪影響を及ぼすため不都合である。特に良好な耐漏液性能が要求される場合には、0.5μm以下とするのがより好ましい。   The thickness of the alloy plating layer or diffusion alloy layer constituting the outermost layer 4 is preferably 0.1 μm or more and 1.0 μm or less. If the thickness is less than 0.1 μm, it is difficult to uniformly coat, so that deterioration of heavy load discharge performance cannot be suppressed. On the other hand, when the thickness exceeds 1.0 μm, not only the production efficiency is reduced and the cost is increased, but also when the outermost layer Fe concentration of the alloy plating layer or the diffusion alloy layer is 70% or less, the layer directly touches the inner solution. This is inconvenient because the amount of Fe present increases and the amount of Fe elution increases, which adversely affects leakage resistance. In particular, when good leakage resistance is required, the thickness is more preferably 0.5 μm or less.

このFe−Ni合金めっき層またはFe−Ni拡散合金層からなる最表層4の下層には、耐漏液性能向上の目的で、再結晶Ni層3を設ける必要があり、この再結晶Ni層3を形成する過程で、さらにその下層にFe−Ni拡散合金層2を設けることができる。最表層4となるFe−Ni合金めっき層またはFe−Ni拡散合金層はいずれも比較的硬質であるため、缶体加工時に亀裂を生じやすい。この亀裂が鋼板1(母材)に達すると、耐漏液性能が劣化する。従って、最表層4の下層に再結晶Ni層3を設けることにより、展延性を向上させて亀裂の発生を抑制することが最も重要である。   It is necessary to provide a recrystallized Ni layer 3 below the outermost layer 4 made of the Fe—Ni alloy plating layer or the Fe—Ni diffusion alloy layer for the purpose of improving leakage resistance. In the process of forming, the Fe—Ni diffusion alloy layer 2 can be further provided in the lower layer. Since the Fe—Ni alloy plating layer or the Fe—Ni diffusion alloy layer that is the outermost layer 4 is relatively hard, cracks are likely to occur during can body processing. When this crack reaches the steel plate 1 (base material), the leakage resistance performance deteriorates. Therefore, by providing the recrystallized Ni layer 3 below the outermost layer 4, it is most important to improve the spreadability and suppress the generation of cracks.

これらの効果を得るためには再結晶Ni層3の厚さは0.2μm以上とするのが望ましく、さらに好ましくは0.5μm以上である。一方、再結晶Ni層3が厚くなりすぎると不経済であるばかりでなく、加工時に最表層のFe−Ni合金めっき層あるいは拡散合金層4の剥落を招き、重負荷放電性能が劣化するため、再結晶Ni層3の厚さは2.5μm以下とするのが好ましい。   In order to obtain these effects, the thickness of the recrystallized Ni layer 3 is desirably 0.2 μm or more, and more preferably 0.5 μm or more. On the other hand, if the recrystallized Ni layer 3 becomes too thick, not only is it uneconomical, but also the outermost Fe—Ni alloy plating layer or the diffusion alloy layer 4 is peeled off during processing, and the heavy load discharge performance deteriorates. The thickness of the recrystallized Ni layer 3 is preferably 2.5 μm or less.

さらに再結晶Ni層3の下層にFe−Ni拡散合金層2を設けることで、鋼板1(母材)と表面処理層の密着性を強固にして表面処理層の剥落を防止すると共に、硬質な合金層2は最表層4で発生した亀裂の鋼板1側への進展をも抑制することができるため耐漏液性能向上効果を助長する効果を得られる。鋼板1(母材)側のFe−Ni合金層2の厚さは、0.2μm以上とするのが望ましい。一方、Fe−Ni拡散合金層2が厚すぎるとかえってNi層3および合金層4の剥落を招き、耐漏液性能が劣化するため、Fe−Ni拡散合金層2の厚さは1.5μm以下とするのが好ましい。   Further, by providing the Fe—Ni diffusion alloy layer 2 under the recrystallized Ni layer 3, the adhesion between the steel plate 1 (base material) and the surface treatment layer is strengthened to prevent the surface treatment layer from peeling off and hard. Since the alloy layer 2 can also suppress the progress of cracks generated in the outermost layer 4 to the steel plate 1 side, an effect of promoting the effect of improving the leakage resistance performance can be obtained. The thickness of the Fe—Ni alloy layer 2 on the steel plate 1 (base material) side is preferably 0.2 μm or more. On the other hand, if the Fe—Ni diffusion alloy layer 2 is too thick, the Ni layer 3 and the alloy layer 4 are peeled off and the leakage resistance is deteriorated. Therefore, the thickness of the Fe—Ni diffusion alloy layer 2 is 1.5 μm or less. It is preferable to do this.

このような電池缶形成用鋼板5は、母材鋼板1の缶内面となる面にNiめっきを施し、引き続きFe−Ni合金めっきまたはFeめっきを施した後、焼鈍し、調質圧延するか、Niめっきを施した後、焼鈍し、次いでFe−Ni合金めっきを施した後、調質圧延することにより得られる。   Such a battery can forming steel plate 5 is subjected to Ni plating on the inner surface of the base steel plate 1 and subsequently subjected to Fe-Ni alloy plating or Fe plating, and then annealed and temper rolled. After performing Ni plating, it anneals, and after giving Fe-Ni alloy plating, it is obtained by temper rolling.

母材となる鋼板、すなわちめっき原板としては、低炭素アルミキルド冷延鋼板やNb、Ti、Bなどを単独あるいは複合添加した非時効性極低炭素鋼板などが好適に用いられる。鋼板の特性としては、ランクフォード値の異方性が小さいこと、清浄度が高く介在物が少ないこと、Niめっき密着性が良いこと、などが望ましい。ランクフォード値の異方性(いわゆるΔr)は、絶対値が0.2以下であることが好ましい。また、介在物を低減するためには、鋼中の酸素量を0.010重量%以下とするのが望ましく、さらに好ましくは0.005重量%以下である。Niめっきの均一性を確保し、ムラや筋状の表面欠陥発生を抑制するためには、Mnを1.0%以下、Siを0.1%以下、Tiを0.05%以下、Crを0.1%以下とするのがそれぞれ望ましい。   As a steel plate as a base material, that is, a plating base plate, a low carbon aluminum killed cold rolled steel plate, a non-aging ultra low carbon steel plate to which Nb, Ti, B or the like is added alone or in combination are preferably used. Desirably, the steel sheet has low anisotropy of the Rankford value, high cleanliness and few inclusions, and good Ni plating adhesion. The anisotropy of the Rankford value (so-called Δr) is preferably 0.2 or less in absolute value. In order to reduce inclusions, the oxygen content in the steel is desirably 0.010% by weight or less, and more preferably 0.005% by weight or less. In order to ensure the uniformity of Ni plating and suppress the occurrence of unevenness and streak-like surface defects, Mn is 1.0% or less, Si is 0.1% or less, Ti is 0.05% or less, Cr is used. It is desirable that the content be 0.1% or less.

鋼板の製造方法は、常法に従って製造すれば特に問題なく、成分調整後連続鋳造し、熱間圧延、酸洗、冷間圧延、焼鈍、調質圧延を施した通常の冷間圧延鋼板、または冷間圧延ままで、焼鈍および調質圧延を省略した鋼板が用いられる。   The production method of the steel plate is not particularly problematic if it is produced according to a conventional method, and is a normal cold-rolled steel plate that has been subjected to continuous casting after component adjustment and subjected to hot rolling, pickling, cold rolling, annealing, temper rolling, or A steel sheet is used that is cold-rolled and omits annealing and temper rolling.

このような鋼板の缶内面となる面にNiめっきを施す。めっき浴は公知のワット浴、スルファミン酸浴のいずれでも問題なく製造することができる。続いてFe−Ni合金めっきを行う場合は、これらの公知のNiめっき浴に鉄イオンを必要量添加すればよい。Feめっきを行う場合は、例えば公知である硫酸第一鉄系のめっき液や塩化第一鉄系のめっき液を用いて製造すれば良い。   Ni plating is applied to the surface which becomes the can inner surface of such a steel plate. The plating bath can be produced without any problem using either a known watt bath or a sulfamic acid bath. Subsequently, when performing Fe—Ni alloy plating, a necessary amount of iron ions may be added to these known Ni plating baths. When performing Fe plating, for example, a known ferrous sulfate-based plating solution or ferrous chloride-based plating solution may be used.

めっき後に焼鈍を行い、拡散合金層を得るとともに、Niめっき層の再結晶による軟質化を行う。冷間圧延した状態のままの鋼板をめっき原板とした場合には、鋼板の再結晶焼鈍を兼ねることもできる。焼鈍方法は、バッチ焼鈍、連続焼鈍のいずれでも構わないが、バッチ焼鈍では缶内面となる面の最表層Fe濃度および拡散合金層厚さをコイル内全長に渡って均一に制御することが難しいので、連続焼鈍を施すことがより好ましい。焼鈍後に調質圧延を施し、母材である鋼板の調質を行うとともにめっき表面の粗さを調整する。また、Niめっき層を形成後、焼鈍による再結晶軟質化を行い、次いでFe−Ni合金めっきを施した後、調質圧延してもよい。   Annealing is performed after plating to obtain a diffusion alloy layer and softening by recrystallization of the Ni plating layer. When a cold-rolled steel plate is used as a plating original plate, it can also serve as recrystallization annealing of the steel plate. The annealing method may be either batch annealing or continuous annealing, but in batch annealing, it is difficult to uniformly control the outermost layer Fe concentration and diffusion alloy layer thickness of the surface that becomes the inner surface of the can over the entire length in the coil. More preferably, continuous annealing is performed. After annealing, temper rolling is performed to temper the steel plate as a base material and adjust the roughness of the plating surface. Further, after forming the Ni plating layer, recrystallization softening may be performed by annealing, and then Fe-Ni alloy plating may be performed, followed by temper rolling.

なお、缶外面となる面に形成するめっき層の構成は、外観の美麗さと耐食性に配慮して適宜選択すれば良い。例えば、めっき浴に光沢材を添加してめっきすることにより得られる光沢めっき層や、各種Ni合金めっき層などが好適である。前記めっき層は、缶内面となる面の再結晶Ni層や合金層を得るために施される焼鈍の前に形成しても良いし、焼鈍後に形成しても良い。製造効率上適切な方法を適宜選択すべきである。   In addition, what is necessary is just to select suitably the structure of the plating layer formed in the surface used as a can outer surface in consideration of the beauty of appearance and corrosion resistance. For example, a bright plating layer obtained by adding a bright material to a plating bath and plating, various Ni alloy plating layers, and the like are suitable. The plating layer may be formed before annealing to obtain a recrystallized Ni layer or alloy layer on the surface that will be the inner surface of the can, or may be formed after annealing. An appropriate method for manufacturing efficiency should be selected as appropriate.

図2は本発明を用いたアルカリ乾電池の一実施形態を示す内部透視断面図である。アルカリ乾電池10はLR6(単3型乾電池)などの型番規格を有する密閉構造の円筒型アルカリ乾電池であって、正極集電体および正極端子を兼ねる有底円筒状の金属製正極缶11、アルカリ電解液を含む発電要素20、皿状(またはハット状)の金属製負極端子板31、棒状の金属製負極集電子25、および電気絶縁性の樹脂製封口ガスケット35などにより構成されている。   FIG. 2 is an internal perspective sectional view showing an embodiment of an alkaline battery using the present invention. The alkaline dry battery 10 is a sealed cylindrical alkaline battery having a model number standard such as LR6 (AA type dry battery), and has a bottomed cylindrical metal positive electrode can 11 serving as a positive electrode current collector and a positive electrode terminal, alkaline electrolysis. The power generation element 20 includes a liquid, a dish-shaped (or hat-shaped) metal negative electrode terminal plate 31, a rod-shaped metal negative electrode current collector 25, an electrically insulating resin sealing gasket 35, and the like.

発電要素20は、正極作用物質として金属酸化物である二酸化マンガンを用いた正極合剤21と、アルカリ電解液が含浸されるセパレータ22と、負極作用物質としてゲル状亜鉛を用いた負極合剤23とにより形成される。正極合剤21は管状に成形されて上記正極缶11に圧入状態で嵌挿されている。この正極合剤21の内側に筒状のセパレータ22が配置され、このセパレータ22の内側にゲル状の負極合剤23が充填されている。そして、この2種類(二酸化マンガンと亜鉛)の発電作用物質の放電反応により発電が行われる。   The power generation element 20 includes a positive electrode mixture 21 using manganese dioxide, which is a metal oxide as a positive electrode active substance, a separator 22 impregnated with an alkaline electrolyte, and a negative electrode mixture 23 using gelled zinc as a negative electrode active substance. And formed. The positive electrode mixture 21 is formed into a tubular shape and is inserted into the positive electrode can 11 in a press-fit state. A cylindrical separator 22 is disposed inside the positive electrode mixture 21, and a gelled negative electrode mixture 23 is filled inside the separator 22. And electric power generation is performed by the discharge reaction of these two types (manganese dioxide and zinc) of the electric power generating substance.

正極合剤21は正極缶11に圧入状態で嵌挿されることにより、正極缶11に直接接触する状態で収容されている。これにより、正極缶11は正極集電体および正極端子も兼ねる。負極端子板31は皿状(またはハット状)であって、その内側面すなわち電池側面には棒状の金属製集電子25がスポット溶接等により立設されている。この集電子25は負極合剤23中に貫入されている。   The positive electrode mixture 21 is housed in a state of being in direct contact with the positive electrode can 11 by being inserted into the positive electrode can 11 in a press-fitted state. Thereby, the positive electrode can 11 also serves as a positive electrode current collector and a positive electrode terminal. The negative electrode terminal plate 31 is dish-shaped (or hat-shaped), and a rod-shaped metal current collector 25 is erected on the inner side surface thereof, that is, the battery side surface by spot welding or the like. The current collector 25 is inserted into the negative electrode mixture 23.

ガスケット35はナイロンあるいはポリプロピレン等の電気絶縁性樹脂を略円盤状に金型成形したものであって、正極缶11と負極端子板31との間に被圧状態で介在して正極缶11内を封止する。正極缶11の開口部は内方に屈曲(カール)加工されている。この屈曲加工により、ガスケット35の周辺部が正極缶11と負極端子板31との間に挟持されて、その正極缶11内を気密封止している。符号15はフィルム状の外装材であって、ラベルなどの化粧印刷が施されている。符号39は樹脂製の絶縁ワッシャであって、正極缶11の内方屈曲端と負極端子板31との間に介装されている。   The gasket 35 is obtained by molding an electrically insulating resin such as nylon or polypropylene into a substantially disk shape, and is interposed between the positive electrode can 11 and the negative electrode terminal plate 31 in a pressurized state, and the inside of the positive electrode can 11 is formed. Seal. The opening of the positive electrode can 11 is bent (curled) inward. By this bending process, the peripheral portion of the gasket 35 is sandwiched between the positive electrode can 11 and the negative electrode terminal plate 31, and the inside of the positive electrode can 11 is hermetically sealed. Reference numeral 15 denotes a film-like exterior material on which decorative printing such as a label is applied. Reference numeral 39 is an insulating washer made of resin, and is interposed between the inwardly bent end of the positive electrode can 11 and the negative electrode terminal plate 31.

正極缶11には、課題解決手段で述べた(1)または(2)の鋼板をプレス加工(深絞り加工)したものが使用されている。この鋼板は、表面部にFe−Ni合金めっき層またはFe−Ni拡散合金層が形成されている。この場合、そのFe−Ni合金めっき層またはFe−Ni拡散合金層は、少なくとも電池内表面部となる部分に形成されている。そして、少なくとも上記開口部から正極合剤21に接する部分までの正極缶内表面部111におけるFe濃度が、上記発電要素20を収容する段階で、10〜70原子%、さらに好ましくは15〜30原子%の範囲となるように規定してある。   The positive electrode can 11 is obtained by pressing (deep drawing) the steel plate (1) or (2) described in the problem solving means. This steel sheet has a Fe—Ni alloy plating layer or a Fe—Ni diffusion alloy layer formed on the surface portion. In this case, the Fe—Ni alloy plating layer or the Fe—Ni diffusion alloy layer is formed at least in a portion that becomes the inner surface portion of the battery. And the Fe density | concentration in the positive electrode can inner surface part 111 at least from the said opening part to the part which contact | connects the positive mix 21 is 10-70 atomic% in the stage which accommodates the said electric power generation element 20, More preferably, 15-30 atoms It is specified to be in the range of%.

本発明では、上記のような知見に基づき、Fe濃度を10〜70原子%、さらに好ましくは15〜30原子%の範囲に規定しているが、それは、その範囲が耐漏液性能と長期保存後の放電性能を共に高レベルで確保する上で特異的に有効であることによる。この場合、そのFe濃度の範囲(10〜70原子%、さらに好ましくは15〜30原子%)は、少なくとも正極缶11の開口部から正極合剤21に接する部分までの内表面部において規定すれば、耐漏液性能と放電性能において有意の効果を得ることができる。その内表面部は、鉄よりも貴な金属であるニッケル、酸化剤である二酸化マンガン(金属酸化物)および酸素(空気)が共に存在する箇所であり、この箇所でのFe濃度を上記範囲(10〜70原子%、さらに好ましくは15〜30原子%)に規定することにより、耐漏液性能と長期保存後の放電性能を共に高レベルで確保できるように鉄の酸化を抑制することができる。   In the present invention, the Fe concentration is specified in the range of 10 to 70 atomic%, more preferably 15 to 30 atomic%, based on the above-described findings. This is because it is specifically effective in securing both the discharge performance at a high level. In this case, the Fe concentration range (10 to 70 atomic%, more preferably 15 to 30 atomic%) is defined at least in the inner surface portion from the opening of the positive electrode can 11 to the portion in contact with the positive electrode mixture 21. In addition, significant effects can be obtained in leakage resistance and discharge performance. The inner surface portion is a location where nickel, which is a noble metal than iron, manganese dioxide (metal oxide), which is an oxidizing agent, and oxygen (air) are both present, and the Fe concentration at this location is within the above range ( 10 to 70 atomic%, more preferably 15 to 30 atomic%), iron oxidation can be suppressed so that both the leakage resistance and the discharge performance after long-term storage can be secured at a high level.

本発明について、さらに以下の実施例を示し、具体的に説明する。   The present invention will be further described in the following examples.

板厚0.25mmの冷間圧延まま極低炭素鋼板および冷間圧延、焼鈍後の低炭素A1キルド鋼板をめっき原板とし、以下の実験を行った。めっき原板の鋼化学組成を表1に示す。   The following experiments were conducted using the ultra-low carbon steel plate and the low-carbon A1 killed steel plate after the cold rolling and annealing as they were cold-rolled with a thickness of 0.25 mm as the plating base plate. Table 1 shows the chemical composition of the steel plate.

上記めっき原板を、常法により、アルカリ脱脂、水洗、硫酸酸洗、水洗の前処理をした後、めっきを施した。内面側となる面のめっき種の組合せは、無光沢Niめっきのみのもの、無光沢Niめっきの上層にFe−Ni合金めっきを設けたもの、無光沢Niめっきの上層にFeめっきを設けたものの三種とした。Feめっきの方法としては、250〜360g/Lの硫酸第一鉄アンモン浴で、pH=2.8〜5.0、浴温度24℃で電流密度を2A/dm2とした。外面側となる面には、全て1.5μmの厚さの光沢Niめっきを施した。その後、還元性雰囲気中で600℃〜820℃の範囲で30秒〜300秒の焼鈍を施し、無光沢Niめっき層を再結晶軟質化させた。この場合、非酸化性の雰囲気で焼鈍を行っても良い。さらに、内面側に無光沢Niめっき層のみを設けたものの一部については、焼鈍後にFe−Ni合金めっきを施した。これらの鋼板を調質圧延した後、電池缶を作製した。 The plating original plate was subjected to pretreatment of alkali degreasing, water washing, sulfuric acid washing and water washing by a conventional method, and then plated. The combination of plating types on the inner surface side is only for matte Ni plating, with Fe-Ni alloy plating on the upper layer of matte Ni plating, or with Fe plating on the upper layer of matte Ni plating Three types were used. As a method of Fe plating is a ferrous ammonium bath sulfate 250~360g / L, pH = 2.8~5.0, the current density at a bath temperature of 24 ° C. was 2A / dm 2. All the surfaces on the outer surface side were subjected to bright Ni plating with a thickness of 1.5 μm. Thereafter, annealing was performed in a reducing atmosphere in the range of 600 ° C. to 820 ° C. for 30 seconds to 300 seconds to recrystallize and soften the matte Ni plating layer. In this case, annealing may be performed in a non-oxidizing atmosphere. Further, a portion of the inner surface provided with only the matte Ni plating layer was subjected to Fe—Ni alloy plating after annealing. After temper rolling these steel sheets, battery cans were prepared.

また、比較のため、冷間圧延、焼鈍、調質圧延後の極低炭素鋼板をめっき原板とし、内面となる面に無光沢Niめっき、外面となる面に光沢Niめっきを施し、めっき後には焼鈍および調質圧延を施さない一般的なNiめっき鋼板や、再結晶Ni層を設けないFe−Ni合金めっき層のみのものなども作製し、電池缶を作製した。   In addition, for comparison, an ultra-low carbon steel sheet after cold rolling, annealing, and temper rolling is used as a plating base plate, matte Ni plating is applied to the inner surface, and bright Ni plating is applied to the outer surface. A general Ni-plated steel sheet not subjected to annealing and temper rolling, or only a Fe—Ni alloy plating layer not provided with a recrystallized Ni layer was also produced to produce a battery can.

電池缶の形成方法としては、深絞り加工およびしごき加工を組み合わせた方法が適宜選択できる。絞りカップを形成した後しごき加工を施すDI成形、絞りカップを形成した後、引張りと曲げ曲げ戻し加工、さらに必要に応じしごき加工を加えたストレッチドロー成形、何段階かの絞り成形を施した後、しごき加工を施す多段絞り成形など、いずれの方法で加工しても良い。   As a method for forming the battery can, a method combining deep drawing and ironing can be selected as appropriate. After forming the squeezing cup, DI molding that performs ironing, after forming the squeezing cup, after drawing and bending and bending back, stretching draw by adding ironing if necessary, after several stages of drawing It may be processed by any method such as multi-stage drawing with ironing.

本実施例では、図1に示す電池缶形成用鋼板5を用いて多段絞り加工により図2に示すLR−6(単3)型の電池缶(正極缶)11を形成した。これらの電池缶11を用いてアルカリマンガン乾電池を作製し、耐漏液性能および重負荷放電性能のそれぞれを評価した。   In this example, an LR-6 (AA) type battery can (positive electrode can) 11 shown in FIG. 2 was formed by multistage drawing using the battery can forming steel plate 5 shown in FIG. Using these battery cans 11, alkaline manganese dry batteries were produced, and each of leakage resistance performance and heavy load discharge performance was evaluated.

電池缶11を形成する前の表面処理鋼板について、内面側となる面の表面処理層構造の詳細を表2に示す。それぞれの層の厚さは、表面処理鋼板を断面研磨してSEM観察するとともにEDSでFeおよびNiの厚さ方向線分析を行って求めた。最表層のFe濃度はオージェ分光分析により、吸着元素の影響を排除するためArで30秒のスパッタリングを行った後、表層のFeおよびNiの強度を測定し、Fe/(Fe+Ni)[原子%]として求めた。   Table 2 shows the details of the surface-treated layer structure of the surface on the inner surface side of the surface-treated steel sheet before forming the battery can 11. The thickness of each layer was determined by performing cross-sectional polishing of the surface-treated steel sheet and observing it with an SEM, and performing an EDS thickness direction line analysis with EDS. The Fe concentration of the outermost layer was determined by Auger spectroscopic analysis, after sputtering for 30 seconds with Ar in order to eliminate the influence of adsorbed elements, the strength of Fe and Ni on the surface layer was measured, and Fe / (Fe + Ni) [atomic%] As sought.

耐漏液性能は、作製したアルカリマンガン乾電池を90℃で恒温保持し、24時間ごとに液漏れの有無を確認し、液漏れが発生するまでの液漏れ発生日数を測定し、その測定日数を漏液寿命とする評価方法を用いて調べた。一般的なNiめっき鋼板である比較例1の漏液寿命を100%(基準値)とし、それぞれの漏液寿命を計算した結果を耐漏液性能として表2に併せて示す。表中にて、耐漏液性能150%以上、すなわち比較例1の1.5倍以上と格段に向上したものを二重丸で表示し、100%以上150%未満のものを丸で表示した。   Liquid leakage resistance performance is maintained at 90 ° C for the manufactured alkaline manganese battery, checked for liquid leakage every 24 hours, measured for the number of days that liquid leakage occurred until leakage occurred, and the measurement days were leaked. It investigated using the evaluation method made into a liquid lifetime. The liquid leakage life of Comparative Example 1, which is a general Ni-plated steel sheet, is assumed to be 100% (reference value), and the results of calculating the respective liquid leakage lifetimes are also shown in Table 2 as leakage resistance performance. In the table, leakage resistance performance of 150% or more, that is, 1.5 times or more of Comparative Example 1 and markedly improved is indicated by double circles, and those of 100% or more and less than 150% are indicated by circles.

重負荷放電性能(長期保存後の放電性能)は、従来一般的であった一定抵抗での評価方法ではなく、経時劣化後の重負荷放電寿命を評価するため、アルカリマンガン乾電池を60℃で20日間恒温保持した後、1500mA連続放電試験を行い、電圧が0.9V以下となるまでの時間を測定し、その測定時間を放電寿命とする評価方法を用いて調べた。この方法では従来の放電試験法よりもさらに重負荷の条件となっている。一般的なNiめっき鋼板である比較例1の放電寿命を100%とし、それぞれの放電寿命を計算した結果を重負荷放電性能として表2に併せて示す。表中にて、重負荷放電性能が100%以上115%未満で比較例1と同等以上のものを丸で表示し、115%以上と比較例1より15%以上向上したものを二重丸で表示した。   The heavy load discharge performance (discharge performance after long-term storage) is not an evaluation method with a constant resistance that has been generally used in the past, but an alkaline manganese dry battery at After keeping the temperature constant for a day, a 1500 mA continuous discharge test was performed, the time until the voltage became 0.9 V or less was measured, and the measurement time was used as an evaluation method. This method is more heavily loaded than the conventional discharge test method. The discharge life of Comparative Example 1, which is a general Ni-plated steel sheet, is assumed to be 100%, and the results of calculating the respective discharge life are also shown in Table 2 as heavy load discharge performance. In the table, heavy load discharge performance is 100% or more and less than 115% and the same or better than Comparative Example 1 is indicated by a circle, and 115% or more and improved by 15% or more than Comparative Example 1 is indicated by a double circle. displayed.

また、総合評価として、耐漏液性能が150%以上で放電性能が100%以上115%未満のもの、あるいは耐漏液性能が100%以上150%未満で重負荷放電性能が115%以上のものを丸で表示し、耐漏液性能が150%以上、かつ重負荷放電性能が115%以上と共に向上したものを二重丸で表示し、耐漏液性能および重負荷放電性能のいずれかが100%未満のものをバツ表示した。   In addition, as a comprehensive evaluation, those having leakage resistance performance of 150% or more and discharge performance of 100% or more and less than 115%, or those having leakage resistance performance of 100% or more and less than 150% and heavy load discharge performance of 115% or more are round. Displayed with a double circle to indicate that the leakage resistance performance is 150% or more and the heavy load discharge performance is 115% or more, and either the leakage resistance performance or the heavy load discharge performance is less than 100% Was displayed.

内面側となる面の再結晶Ni層の厚さ(μm)と耐漏液性能(%)との関係を調べた結果を図3に、内面側となる面の最表層Fe濃度(%)と重負荷放電性能(%)との関係を調べた結果を図4に、それぞれ示す。   FIG. 3 shows the result of examining the relationship between the thickness (μm) of the recrystallized Ni layer on the inner surface side and the leakage resistance performance (%). The results of examining the relationship with the load discharge performance (%) are shown in FIG.

図3から明らかなように、厚さ0.2μm以上の再結晶Ni層を設けることにより耐漏液性能は向上し、特に再結晶Ni層の厚さを0.5μm以上とすることにより格段に向上させることができる。また、図4から明らかなように、最表層Fe濃度を10〜70%の範囲とすれば、一般的なNiめっき鋼板である比較例1と同等以上の重負荷放電特性を維持し、かつ耐漏液性能を向上させることができる。   As is apparent from FIG. 3, the leakage-proof performance is improved by providing a recrystallized Ni layer having a thickness of 0.2 μm or more, and is particularly improved by setting the thickness of the recrystallized Ni layer to 0.5 μm or more. Can be made. Further, as apparent from FIG. 4, when the outermost layer Fe concentration is in the range of 10 to 70%, the heavy load discharge characteristics equal to or higher than those of Comparative Example 1 which is a general Ni-plated steel sheet are maintained, and leakage resistance is maintained. Liquid performance can be improved.

特に、図4から明らかなように、最表層Fe濃度を15〜30%の範囲とした場合には、重負荷放電特性を15%以上向上させ、かつ耐漏液性能を向上させることができる。   In particular, as is apparent from FIG. 4, when the outermost layer Fe concentration is in the range of 15 to 30%, the heavy load discharge characteristics can be improved by 15% or more, and the leakage resistance can be improved.

以上の評価の結果、再結晶Ni層を形成させた実施例1〜12および比較例2,5,6は、耐漏液性能が優れていた。特に、実施例2〜5は、耐漏液性能が150%以上、かつ重負荷放電性能が115%以上であり、両特性がともに特に優れていた。一方、最表層にFe−Ni合金めつき層あるいは拡散合金層を有さない比較例2は、重負荷放電性能が大幅に劣っていた。また、最表層Fe濃度が10%未満の比較例5と再結晶Ni層の厚さが2.5μmを超える比較例6は、重負荷放電性能が劣っていた。さらに、再結晶Ni層を設けていない比較例3、4は、耐漏液性能が劣っていた。

Figure 2007335205
As a result of the above evaluation, Examples 1 to 12 and Comparative Examples 2, 5, and 6 in which the recrystallized Ni layer was formed were excellent in liquid leakage resistance. In particular, Examples 2 to 5 had leakage resistance performance of 150% or more and heavy load discharge performance of 115% or more, and both characteristics were particularly excellent. On the other hand, Comparative Example 2 having no Fe—Ni alloy plating layer or diffusion alloy layer in the outermost layer was significantly inferior in heavy load discharge performance. Further, Comparative Example 5 in which the outermost layer Fe concentration was less than 10% and Comparative Example 6 in which the thickness of the recrystallized Ni layer exceeded 2.5 μm were inferior in heavy load discharge performance. Further, Comparative Examples 3 and 4 in which the recrystallized Ni layer was not provided had poor leakage resistance performance.
Figure 2007335205

Figure 2007335205
Figure 2007335205

本発明の電池缶形成用鋼板は、電解液としてpHの高い強アルカリ溶液が充填されるアルカリマンガン乾電池などの電池缶に用いられる。   The steel sheet for forming a battery can of the present invention is used for a battery can such as an alkaline manganese battery filled with a strong alkaline solution having a high pH as an electrolyte.

電池缶形成用鋼板の缶内面側となる部位を模式的に示す概略断面図。The schematic sectional drawing which shows typically the site | part used as the can inner surface side of the steel plate for battery can formation. アルカリ乾電池を示す概略断面図。The schematic sectional drawing which shows an alkaline dry battery. 缶内面の最表層Fe濃度と耐漏液性能との関係を示す特性線図。The characteristic line figure which shows the relationship between outermost layer Fe density | concentration of a can inner surface, and leak-proof performance. 缶内面の最表層Fe濃度と重負荷放電性能との関係を示す特性線図。The characteristic diagram which shows the relationship between the outermost layer Fe density | concentration of a can inner surface, and heavy load discharge performance.

符号の説明Explanation of symbols

1…鋼板
2…Fe−Ni拡散合金層
3…再結晶Ni層
4…Fe−Ni合金めっき層またはFe−Ni拡散合金層(最表層)
5…電池缶形成用鋼板(缶内面側となる面)
10…アルカリ乾電池
11…電池缶(正極缶)
15…外装材
21…正極合剤
22…セパレータ
23…負極合剤
25…負極集電子
31…負極端子板
35…ガスケット
39…絶縁ワッシャ
DESCRIPTION OF SYMBOLS 1 ... Steel plate 2 ... Fe-Ni diffusion alloy layer 3 ... Recrystallized Ni layer 4 ... Fe-Ni alloy plating layer or Fe-Ni diffusion alloy layer (outermost layer)
5 ... Steel plate for battery can formation (surface on the inner surface of the can)
10 ... Alkaline battery 11 ... Battery can (positive electrode can)
DESCRIPTION OF SYMBOLS 15 ... Exterior material 21 ... Positive electrode mixture 22 ... Separator 23 ... Negative electrode mixture 25 ... Negative electrode current collector 31 ... Negative electrode terminal board 35 ... Gasket 39 ... Insulating washer

Claims (8)

缶内面となる面の最表層Fe濃度が10原子%以上70原子%以下の範囲にあるFe−Ni合金めっき層またはFe−Ni拡散合金層と、その下層に形成された厚さ0.2μm以上の再結晶Ni層と、さらにその下層に形成されたFe−Ni拡散合金層と、を有することを特徴とする、耐漏液性能及び重負荷放電性能に優れた電池缶形成用鋼板。  Fe-Ni alloy plating layer or Fe-Ni diffusion alloy layer in which the outermost layer Fe concentration on the surface that becomes the inner surface of the can is in the range of 10 atomic% to 70 atomic%, and a thickness of 0.2 μm or more formed in the lower layer A steel sheet for forming a battery can having excellent leakage resistance and heavy load discharge performance, comprising: a recrystallized Ni layer; and a Fe—Ni diffusion alloy layer formed thereunder. 缶内面となる面の最表層Fe濃度が15原子%以上30原子%以下の範囲にあるFe−Ni合金めっき層またはFe−Ni拡散合金層と、その下層に形成された厚さ0.2μm以上の再結晶Ni層と、さらにその下層に形成されたFe−Ni拡散合金層と、を有することを特徴とする、耐漏液性能及び重負荷放電性能に優れた電池缶形成用鋼板。  Fe-Ni alloy plating layer or Fe-Ni diffusion alloy layer in which the outermost layer Fe concentration on the surface which becomes the inner surface of the can is in the range of 15 atomic% or more and 30 atomic% or less, and a thickness of 0.2 μm or more formed in the lower layer A steel sheet for forming a battery can having excellent leakage resistance and heavy load discharge performance, comprising: a recrystallized Ni layer; and a Fe—Ni diffusion alloy layer formed thereunder. 缶内面となる面に厚さ0.3μm以上のNiめっきを施し、次いで前記Niめっき層の上にFe濃度が15原子%以上85原子%以下で厚さ0.1μm以上1.0μm以下のFe−Ni合金めっきを施し、その後焼鈍および調質圧延を施して、最表層Fe濃度が10原子%以上70原子%以下の範囲にあるFe−Ni拡散合金層と、その下層に厚さ0.2μm以上の再結晶Ni層を形成することを特徴とする、耐漏液性能及び重負荷放電性能に優れた電池缶形成用鋼板の製造方法。  The inner surface of the can is Ni-plated with a thickness of 0.3 μm or more, and then the Fe concentration is 15 atomic% to 85 atomic% on the Ni plating layer and the thickness is 0.1 μm to 1.0 μm. -Ni alloy plating is performed, and then annealing and temper rolling are performed, and the Fe-Ni diffusion alloy layer having an outermost layer Fe concentration in the range of 10 atomic% to 70 atomic% and a thickness of 0.2 μm below the Fe-Ni diffusion alloy layer A method for producing a steel plate for forming a battery can excellent in leakage resistance and heavy load discharge performance, characterized by forming the above recrystallized Ni layer. 缶内面となる面に厚さ0.3μm以上のNiめっきを施し、次いで前記Niめっき層の上に厚さ0.1μm以上0.4μm以下のFeめっきを施し、その後焼鈍および調質圧延を施して、最表層Fe濃度が10原子%以上70原子%以下の範囲にあるFe−Ni拡散合金層と、その下層に厚さ0.2μm以上の再結晶Ni層を形成することを特徴とする、耐漏液性能及び重負荷放電性能に優れた電池缶形成用鋼板の製造方法。  Ni plating with a thickness of 0.3 μm or more is applied to the inner surface of the can, then Fe plating with a thickness of 0.1 μm to 0.4 μm is applied on the Ni plating layer, and then annealing and temper rolling are performed. An Fe—Ni diffusion alloy layer having an outermost layer Fe concentration in the range of 10 atomic% to 70 atomic% and a recrystallized Ni layer having a thickness of 0.2 μm or more under the Fe—Ni diffusion alloy layer, A method for producing a steel plate for forming a battery can having excellent leakage resistance and heavy load discharge performance. 缶内面となる面に厚さ0.3μm以上のNiめっきを施した後、焼鈍して厚さ0.2μm以上の再結晶Ni層を形成し、さらに缶内面となる面にFe濃度が10%以上70%以下で厚さ0.1μm以上0.5μm以下のFe−Ni合金めっきを施し、その後調質圧延を施すことを特徴とする、耐漏液性能及び重負荷放電性能に優れた電池缶形成用鋼板の製造方法。   After Ni plating having a thickness of 0.3 μm or more is applied to the surface that becomes the inner surface of the can, a recrystallized Ni layer having a thickness of 0.2 μm or more is formed by annealing, and the Fe concentration is 10% on the surface that becomes the inner surface of the can Featuring an Fe-Ni alloy plating with a thickness of 0.1 μm or more and 0.5 μm or less at 70% or less, followed by temper rolling, forming a battery can excellent in leakage resistance and heavy load discharge performance Steel plate manufacturing method. 請求項1または2のいずれかに記載の電池缶形成用鋼板を深絞りおよびしごき加工してなることを特徴とする、耐漏液性能及び重負荷放電性能に優れた電池缶。   A battery can excellent in leakage resistance and heavy load discharge performance, wherein the battery can forming steel sheet according to claim 1 is deep-drawn and ironed. 鉄を主成分とする金属製であって正極集電子および正極端子を兼ねる有底筒状の正極缶内に、金属酸化物を正極作用物質とする管状の正極合剤が圧入状態で嵌挿されるとともに、この正極合剤の内側にアルカリ電解液が含浸されるセパレータと負極合剤が充填されることにより発電要素が形成され、前記正極缶の開口部が負極端子板と樹脂製封口ガスケットを用いて気密封口されているアルカリ乾電池において、前記正極缶は、請求項1または2のいずれかに記載の電池缶形成用鋼板を加工して形成されたものであることを特徴とするアルカリ乾電池。  A tubular positive electrode mixture having a metal oxide as a positive electrode active material is inserted in a press-fit state into a bottomed cylindrical positive electrode can made of a metal mainly composed of iron and also serving as a positive electrode current collector and a positive electrode terminal. In addition, a power generation element is formed by filling the inside of the positive electrode mixture with a separator impregnated with an alkaline electrolyte and a negative electrode mixture, and the opening of the positive electrode can uses a negative electrode terminal plate and a resin sealing gasket. An alkaline battery, wherein the positive electrode can is formed by processing the steel sheet for forming a battery can according to claim 1. 前記正極作用物質として二酸化マンガンが使用されていることを特徴とする請求項7記載のアルカリ乾電池。 8. The alkaline dry battery according to claim 7, wherein manganese dioxide is used as the positive electrode active substance.
JP2006164998A 2006-06-14 2006-06-14 Steel sheet for forming battery can with superior leakage resistance and heavy-load discharge performance, its manufacturing method, battery can, and alkaline dry cell Pending JP2007335205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006164998A JP2007335205A (en) 2006-06-14 2006-06-14 Steel sheet for forming battery can with superior leakage resistance and heavy-load discharge performance, its manufacturing method, battery can, and alkaline dry cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006164998A JP2007335205A (en) 2006-06-14 2006-06-14 Steel sheet for forming battery can with superior leakage resistance and heavy-load discharge performance, its manufacturing method, battery can, and alkaline dry cell

Publications (1)

Publication Number Publication Date
JP2007335205A true JP2007335205A (en) 2007-12-27

Family

ID=38934470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006164998A Pending JP2007335205A (en) 2006-06-14 2006-06-14 Steel sheet for forming battery can with superior leakage resistance and heavy-load discharge performance, its manufacturing method, battery can, and alkaline dry cell

Country Status (1)

Country Link
JP (1) JP2007335205A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143374A1 (en) * 2009-06-09 2010-12-16 東洋鋼鈑株式会社 Nickel-plated steel sheet and process for producing battery can using the nickel-plated steel sheet
WO2015015847A1 (en) * 2013-07-31 2015-02-05 東洋鋼鈑株式会社 Method for producing surface-treated steel sheet for battery containers
JP2017122281A (en) * 2011-06-30 2017-07-13 東洋鋼鈑株式会社 Production method of surface treatment steel, and production method of battery can
CN107408641A (en) * 2015-03-31 2017-11-28 Fdk株式会社 Battery case formation steel plate and alkaline battery
KR20200022011A (en) * 2017-07-28 2020-03-02 제이에프이 스틸 가부시키가이샤 Steel plate for battery outer can, battery outer can and battery
KR20210009473A (en) * 2019-07-16 2021-01-27 주식회사 티씨씨스틸 Manufacturing method of nikel palted steel sheet and nikel palted steel sheet prepared threfrom
JP2021516292A (en) * 2018-03-13 2021-07-01 エーケー スティール プロパティ−ズ、インク. Pressure reduction of coated steel containing metastable austenite at elevated temperatures
US11946121B2 (en) 2017-07-28 2024-04-02 Jfe Steel Corporation Steel sheet for battery outer tube cans, battery outer tube can and battery

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102458701A (en) * 2009-06-09 2012-05-16 东洋钢钣株式会社 Nickel-plated steel sheet and process for producing battery can using the nickel-plated steel sheet
US8734961B2 (en) 2009-06-09 2014-05-27 Toyo Kohan Co., Ltd. Nickel-plated steel sheet and process for producing battery can using the nickel-plated steel sheet
JP5570078B2 (en) * 2009-06-09 2014-08-13 東洋鋼鈑株式会社 Ni-plated steel sheet and battery can manufacturing method using the Ni-plated steel sheet
WO2010143374A1 (en) * 2009-06-09 2010-12-16 東洋鋼鈑株式会社 Nickel-plated steel sheet and process for producing battery can using the nickel-plated steel sheet
JP2017122281A (en) * 2011-06-30 2017-07-13 東洋鋼鈑株式会社 Production method of surface treatment steel, and production method of battery can
US10030283B2 (en) 2013-07-31 2018-07-24 Toyo Kohan Co., Ltd. Method for producing surface-treated steel sheet for battery containers
WO2015015847A1 (en) * 2013-07-31 2015-02-05 東洋鋼鈑株式会社 Method for producing surface-treated steel sheet for battery containers
JP2015032347A (en) * 2013-07-31 2015-02-16 東洋鋼鈑株式会社 Method for manufacturing surface-processed steel plate for battery containers
CN105431958A (en) * 2013-07-31 2016-03-23 东洋钢钣株式会社 Method for producing surface-treated steel sheet for battery containers
EP3279966A4 (en) * 2015-03-31 2018-10-17 FDK Corporation Battery-can-forming steel sheet, and alkali battery
CN107408641A (en) * 2015-03-31 2017-11-28 Fdk株式会社 Battery case formation steel plate and alkaline battery
US10217970B2 (en) 2015-03-31 2019-02-26 Fdk Corporation Steel plate for forming battery can and alkaline battery
CN107408641B (en) * 2015-03-31 2020-08-25 Fdk株式会社 Steel sheet for forming battery case and alkaline battery
KR20200022011A (en) * 2017-07-28 2020-03-02 제이에프이 스틸 가부시키가이샤 Steel plate for battery outer can, battery outer can and battery
KR102339193B1 (en) * 2017-07-28 2021-12-13 제이에프이 스틸 가부시키가이샤 Steel plate for battery cans, cans and batteries
US11946121B2 (en) 2017-07-28 2024-04-02 Jfe Steel Corporation Steel sheet for battery outer tube cans, battery outer tube can and battery
JP2021516292A (en) * 2018-03-13 2021-07-01 エーケー スティール プロパティ−ズ、インク. Pressure reduction of coated steel containing metastable austenite at elevated temperatures
JP7329304B2 (en) 2018-03-13 2023-08-18 クリーブランド-クリフス スティール プロパティーズ、インク. Reduction at Elevated Temperature of Coated Steels Containing Metastable Austenite
KR20210009473A (en) * 2019-07-16 2021-01-27 주식회사 티씨씨스틸 Manufacturing method of nikel palted steel sheet and nikel palted steel sheet prepared threfrom
KR102383727B1 (en) * 2019-07-16 2022-04-07 주식회사 티씨씨스틸 Manufacturing method of nikel palted steel sheet and nikel palted steel sheet prepared threfrom

Similar Documents

Publication Publication Date Title
US20210151824A1 (en) Surface-treated steel sheet for cell container
JP2007335205A (en) Steel sheet for forming battery can with superior leakage resistance and heavy-load discharge performance, its manufacturing method, battery can, and alkaline dry cell
JP7187469B2 (en) Surface-treated steel sheet and manufacturing method thereof
JP5984800B2 (en) Surface-treated steel sheet for battery container, battery container and battery
JP6400140B2 (en) Method for producing surface-treated steel sheet and method for producing battery can
JP6200719B2 (en) Method for producing surface-treated steel sheet for battery container
JP6033304B2 (en) Surface-treated steel sheet for battery container, battery container and battery
US9887396B2 (en) Surface-treated steel sheet for battery containers, battery container, and battery
JP2007302935A (en) Ni plated steel sheet for positive electrode can of alkali battery and method of manufacturing the same
EP3269847A1 (en) Method for producing surface-treated steel sheet for battery containers, and surface-treated steel sheet for battery containers
JP2007051325A (en) Plated steel plate for battery case, battery case using the steel plate for battery case and battery using the battery case
JP2007059087A (en) Plated steel sheet for battery case, battery case using same, and battery using the battery case
CN116670335B (en) Surface-treated steel sheet
JP4968877B2 (en) Plated steel sheet for battery container, method for producing the same, battery container using the plated steel sheet for battery container, and battery using the battery container
JP4911952B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2007051324A (en) Plated steel plate for battery case, battery case using the steel plate for battery case and battery using the battery case
JP7060186B1 (en) Surface-treated steel sheet
JP7063432B1 (en) Surface-treated steel sheet
WO2022118768A1 (en) Surface-treated steel sheet
JP2007005157A (en) Plated steel plate for battery case, battery case using it, battery using it and manufacturing method of plated steel plate for battery case
JP2012114097A (en) Plated steel sheet for battery container, method for producing the same, battery container using the plated steel sheet for battery container and battery using the battery container
WO2019021909A1 (en) Steel sheet for battery outer tube cans, battery outer tube can and battery
KR20110018058A (en) Bipolar plate for fuel cell and manufacturing method thereof
JP2006093094A (en) Plated steel sheet for battery container, battery container using same, and battery using battery container
JP2006120614A (en) Plated steel sheet for battery container, battery container using plated steel sheet for battery container, and battery using battery container