JP2006093094A - Plated steel sheet for battery container, battery container using same, and battery using battery container - Google Patents

Plated steel sheet for battery container, battery container using same, and battery using battery container Download PDF

Info

Publication number
JP2006093094A
JP2006093094A JP2005177527A JP2005177527A JP2006093094A JP 2006093094 A JP2006093094 A JP 2006093094A JP 2005177527 A JP2005177527 A JP 2005177527A JP 2005177527 A JP2005177527 A JP 2005177527A JP 2006093094 A JP2006093094 A JP 2006093094A
Authority
JP
Japan
Prior art keywords
nickel
alloy layer
tin
battery
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005177527A
Other languages
Japanese (ja)
Inventor
Hitoshi Omura
等 大村
Tatsuo Tomomori
龍夫 友森
Yoshitaka Honda
義孝 本田
Eiji Yamane
栄治 山根
Eiji Okamatsu
栄次 岡松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2005177527A priority Critical patent/JP2006093094A/en
Publication of JP2006093094A publication Critical patent/JP2006093094A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plated steel sheet for a battery container capable of forming a battery having excellent battery characteristics by forming minute cracks when forming it into a battery container by applying squeezing work and drawing work, and by enhancing adhesiveness to a positive electrode mixture of an alkaline battery, and to provide a battery container using the plated steel sheet for a battery container, and a battery using its battery container. <P>SOLUTION: The plated steel sheet for a battery container is formed by applying nickel plating to a side to be the inner face of the battery container of the steel sheet, subsequently applying tin plating on it, and applying diffusion heat treatment after applying silver plating on the above; or, by applying a nickel plating, and applying diffusion treatment after applying a silver particle dispersed tin plating on the above; forming an iron-nickel alloy layer on the above steel plate, and forming a nickel layer and/or an iron-nickel-tin alloy layer and/or a nickel-tin alloy layer on the above; and furthermore forming a nickel-tin-silver alloy layer or/and a silver layer on the above. The above plated steel plate is formed into a battery container and applied to the battery. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電池容器用めっき鋼板、その電池容器用めっき鋼板を用いた電池容器およびその電池容器を用いた電池に関する。   The present invention relates to a plated steel sheet for battery containers, a battery container using the plated steel sheet for battery containers, and a battery using the battery container.

近年、オーディオ機器やモバイル電話など、多方面において携帯用機器が用いられ、その作動電源として一次電池であるアルカリ電池、二次電池であるニッケル水素電池、リチウムイオン電池などが多用されている。これらの電池においては、高出力化および長寿命化など、高性能化が常時求められており、正極および負極活物質を充填する電池容器も電池の重要な構成要素としての性能の向上が求められている。例えば、長寿命化を目的として、電解液に用いられるアルカリ溶液に対する耐食性を向上させるために、電池ケースの内面となる側にニッケル−リン合金層が形成されている電池ケース用表面処理鋼板(特許文献1)が提案されている。   In recent years, portable devices such as audio devices and mobile phones have been used in various fields, and alkaline batteries that are primary batteries, nickel-hydrogen batteries that are secondary batteries, lithium ion batteries, and the like are frequently used as operating power sources. In these batteries, there is a constant demand for higher performance such as higher output and longer life, and battery containers filled with positive and negative electrode active materials are also required to have improved performance as important components of the battery. ing. For example, for the purpose of extending the life, a surface-treated steel sheet for a battery case in which a nickel-phosphorus alloy layer is formed on the inner surface side of the battery case in order to improve the corrosion resistance against the alkaline solution used in the electrolyte (patent Document 1) has been proposed.

しかし、電池容器内面に用いる鋼板面に直接形成させるニッケル−リン合金層は非常に硬くて脆いために、絞り加工や絞りしごき加工などのプレス加工を施して容器に成形加工する際に下地の鋼が露出して電解液に用いられるアルカリ溶液に対する耐食性が低下し、放電特性が低下したり、ガス発生が増加するおそれがある。   However, since the nickel-phosphorus alloy layer directly formed on the steel plate surface used for the battery container inner surface is very hard and brittle, the base steel is formed when the container is formed by press processing such as drawing or ironing. As a result, the corrosion resistance of the alkaline solution used in the electrolytic solution is reduced, and the discharge characteristics may be deteriorated or gas generation may be increased.

本出願に関する先行技術文献情報として次のものがある。
国際公開WO99/03161号パンフレット
Prior art document information relating to the present application includes the following.
International Publication WO99 / 03161 Pamphlet

本発明においては、絞り加工や絞りしごき加工を施して容器に成形加工する際にめっき層が剥離したり地鋼に達するひび割れが生じることがなく、アルカリ溶液に対する耐食性に優れ、優れた電池特性を有する電池とすることが可能な電池容器用めっき鋼板、その電池容器用めっき鋼板を用いた電池容器およびその電池容器を用いた電池を提供することを目的とする。   In the present invention, when forming into a container by drawing or squeezing and ironing, the plating layer is not peeled off or cracks reaching the base steel are generated, and it has excellent corrosion resistance against alkaline solutions and excellent battery characteristics. It is an object of the present invention to provide a plated steel sheet for battery containers, a battery container using the plated steel sheet for battery containers, and a battery using the battery container.

本発明の目的を達成するため、本発明の電池容器用めっき鋼板は、鋼板の電池容器内面となる側の鋼板上に下から順に、鉄−ニッケル合金層、ニッケル層、ニッケル−錫合金層、ニッケル−錫−銀合金層、銀層が形成されてなることを特徴とする電池容器用めっき鋼板(請求項1)、 または
鋼板の電池容器内面となる側の鋼板上に下から順に、鉄−ニッケル合金層、ニッケル−錫合金層、ニッケル−錫−銀合金層、銀層が形成されてなることを特徴とする電池容器用めっき鋼板(請求項2)、または
鋼板の電池容器内面となる側の鋼板上に下から順に、鉄−ニッケル合金層、鉄−ニッケル−錫合金層、ニッケル−錫合金層、ニッケル−錫−銀合金層、銀層が形成されてなることを特徴とする電池容器用めっき鋼板(請求項3)、または
鋼板の電池容器内面となる側の鋼板上に下から順に、鉄−ニッケル合金層、ニッケル層、ニッケル−錫合金層、ニッケル−錫−銀合金層が形成されてなることを特徴とする電池容器用めっき鋼板(請求項4)、または
鋼板の電池容器内面となる側の鋼板上に下から順に、鉄−ニッケル合金層、鉄−ニッケル−錫合金層、ニッケル−錫合金層、ニッケル−錫−銀合金層が形成されてなることを特徴とする電池容器用めっき鋼板(請求項5)、または
鋼板の電池容器内面となる側の鋼板上に下から順に、鉄−ニッケル合金層、ニッケル−錫合金層、ニッケル−錫−銀合金層が形成されてなることを特徴とする電池容器用めっき鋼板(請求項6)、または
鋼板の電池容器内面となる側の鋼板上に下から順に、鉄−ニッケル合金層、ニッケル層、ニッケル−錫合金層、銀層が形成されてなることを特徴とする電池容器用めっき鋼板(請求項7)、または
鋼板の電池容器内面となる側の鋼板上に下から順に、鉄−ニッケル合金層、ニッケル−錫合金層、銀層が形成されてなることを特徴とする電池容器用めっき鋼板(請求項8)、または
鋼板の電池容器内面となる側の鋼板上に下から順に、鉄−ニッケル合金層、鉄−ニッケル−錫合金層、ニッケル−錫合金層、銀層が形成されてなることを特徴とする電池容器用めっき鋼板(請求項9)のいずれかである。
In order to achieve the object of the present invention, a plated steel sheet for a battery container of the present invention is an iron-nickel alloy layer, a nickel layer, a nickel-tin alloy layer, A nickel-tin-silver alloy layer and a silver layer are formed on the plated steel sheet for battery containers (Claim 1), or on the steel sheet on the side that becomes the battery container inner surface of the steel sheet in order from the bottom. A plated steel sheet for battery containers, wherein a nickel alloy layer, a nickel-tin alloy layer, a nickel-tin-silver alloy layer, and a silver layer are formed (Claim 2), or the side of the steel sheet that is the inner surface of the battery container An iron-nickel alloy layer, an iron-nickel-tin alloy layer, a nickel-tin alloy layer, a nickel-tin-silver alloy layer, and a silver layer are formed on the steel plate in order from the bottom. Plated steel sheet (Claim 3), or steel sheet An iron-nickel alloy layer, a nickel layer, a nickel-tin alloy layer, and a nickel-tin-silver alloy layer are formed in order from the bottom on the steel plate on the side that is the inner surface of the battery case. An iron-nickel alloy layer, an iron-nickel-tin alloy layer, a nickel-tin alloy layer, nickel-tin-silver, in order from the bottom on the plated steel plate (Claim 4), or the steel plate on the side of the battery container that is the inner surface of the battery container An alloy layer is formed, and a plated steel sheet for battery containers (Claim 5), or an iron-nickel alloy layer and a nickel-tin alloy in order from the bottom on the steel sheet on the side that is the battery container inner surface of the steel sheet Layer, a nickel-tin-silver alloy layer formed on a plated steel sheet for battery containers (Claim 6), or a steel sheet on the side that becomes the battery container inner surface of the steel sheet, in order from the bottom, iron-nickel Alloy layer, nickel layer, nickel A tin-alloy layer and a silver layer are formed, and a plated steel sheet for battery containers (Claim 7), or an iron-nickel alloy layer in order from the bottom on the steel sheet on the side that becomes the battery container inner surface of the steel sheet A nickel-tin alloy layer and a silver layer are formed on the plated steel sheet for battery containers (Claim 8), or on the steel sheet on the side that is the inner surface of the battery container. An alloy layer, an iron-nickel-tin alloy layer, a nickel-tin alloy layer, or a silver layer is formed on any one of the plated steel sheets for battery containers (claim 9).

また本発明の電池容器は、上記(請求項1〜9)のいずれかの電池容器用めっき鋼板を有底の筒型形状に成形加工してなる電池容器(請求項10)である。
そして本発明の電池は、上記(請求項10)の電池容器を用いてなる電池(請求項11)である。
また、本発明の電池容器用めっき鋼板の製造方法は、鋼板の少なくとも電池容器内面となる側にニッケルめっきを施し、次いで銀粒子分散錫めっきを施した後に熱処理することにより、鋼板の電池容器内面となる側の鋼素地上に鉄−ニッケル合金層を形成させ、その上にニッケル層または鉄−ニッケル−錫合金層を形成させ、さらにその上にニッケル−錫合金層を形成させたその上に、もしくは鋼素地上に鉄−ニッケル合金層を形成させたその上に、ニッケル−錫−銀合金層または/および銀層を形成させることを特徴とする電池容器用めっき鋼板の製造方法(請求項12)である。
The battery container of the present invention is a battery container (Claim 10) obtained by forming the plated steel sheet for a battery container according to any one of the above (Claims 1 to 9) into a bottomed cylindrical shape.
And the battery of this invention is a battery (Claim 11) using the battery container of said (Claim 10).
Further, the method for producing a plated steel sheet for battery containers according to the present invention comprises applying a nickel plating to at least the side of the steel sheet that is the inner surface of the battery container, and then performing a heat treatment after the silver particle-dispersed tin plating is performed. An iron-nickel alloy layer is formed on the steel substrate on the side to be formed, a nickel layer or an iron-nickel-tin alloy layer is formed thereon, and a nickel-tin alloy layer is further formed thereon. Alternatively, a nickel-tin-silver alloy layer and / or a silver layer is formed on an iron-nickel alloy layer formed on a steel substrate (claim). 12).

本発明の電池容器用めっき鋼板は、鋼板の電池容器内面となる側にニッケルめっきを施し、次いでその上に錫めっきを施し、さらにその上に銀めっきを施した後に拡散熱処理するか、またはニッケルめっきを施し、次いでその上に銀粒子分散錫めっきを施した後に拡散熱処理することにより、鋼板上に鉄−ニッケル合金層、その上にニッケル層または/および鉄−ニッケル−錫合金層または/およびニッケル−錫合金層を形成させ、さらにその上にニッケル−錫−銀合金層または/および銀層を形成させたものである。この電池容器用めっき鋼板は、鋼板の直上に形成させる鉄−ニッケル合金層が展延性に富み、かつその上に形成させる鉄−ニッケル−錫合金層やニッケル−錫合金層との密着性に優れているので、電池容器に成形加工する際に堅くて脆い鉄−ニッケル−錫合金層やニッケル−錫合金層の表面に微小クラックが生じても、クラックが下地の鋼板表面まで達することがなく、鋼板表面がアルカリ性の電解液に侵されることがない。またこれらの表面に微小クラックが生じた鉄−ニッケル−錫合金層やニッケル−錫合金層の上に導電性および展延性に富む銀層が形成されているので、アルカリ電解液中でニッケル−錫合金層の表面に形成される不働態皮膜による接触抵抗の劣化を抑え、微小クラックによる正極合剤との密着性と銀層が導電性皮膜であることの相乗効果により、優れた電池特性を有する電池容器用材料として好適に適用することができる。併せて、最表面に形成されている銀層により、アルカリ電解液との電気化学的反応によって発生する水素ガスが水に変換されるので、電池の内圧が高まるおそれが少なくなる。さらに、従来、電池特性を高めるために行われていた電池容器内部の黒鉛塗布を省略しても同等以上の電池性能が得られ、本発明の電池容器内部に黒鉛塗布を行った場合はさらに優れた電池性能が得られる。   The plated steel sheet for battery containers of the present invention is obtained by subjecting the steel sheet to the inner surface of the battery container with nickel plating, then tin plating thereon, further silver plating thereon, and then diffusion heat treatment or nickel After performing plating, and then applying silver particle-dispersed tin plating thereon followed by diffusion heat treatment, an iron-nickel alloy layer on the steel sheet, a nickel layer or / and an iron-nickel-tin alloy layer or / and A nickel-tin alloy layer is formed, and a nickel-tin-silver alloy layer and / or a silver layer is further formed thereon. This plated steel sheet for battery containers has an excellent iron-nickel alloy layer formed immediately above the steel sheet, and is excellent in adhesion to the iron-nickel-tin alloy layer and nickel-tin alloy layer formed thereon. Therefore, even when microcracks occur on the surface of the hard and brittle iron-nickel-tin alloy layer or nickel-tin alloy layer when forming into a battery container, the crack does not reach the surface of the underlying steel plate, The steel sheet surface is not attacked by the alkaline electrolyte. In addition, since a silver layer rich in conductivity and spreadability is formed on the iron-nickel-tin alloy layer or the nickel-tin alloy layer in which micro cracks are generated on the surface, nickel-tin in an alkaline electrolyte Suppresses the deterioration of contact resistance due to the passive film formed on the surface of the alloy layer, and has excellent battery characteristics due to the synergistic effect of adhesion with the positive electrode mixture due to microcracks and the silver layer being a conductive film It can be suitably applied as a battery container material. At the same time, the hydrogen layer generated by the electrochemical reaction with the alkaline electrolyte is converted into water by the silver layer formed on the outermost surface, so that the internal pressure of the battery is less likely to increase. Furthermore, even if the graphite coating inside the battery container, which has been conventionally performed to improve battery characteristics, is omitted, the same or better battery performance can be obtained, and even better when the graphite coating is performed inside the battery container of the present invention. Battery performance is obtained.

以下、本発明の内容を説明する。本発明の電池容器用めっき鋼板の基板となる鋼板としては、汎用の低炭素アルミキルド鋼(炭素量0.01〜0.15重量%)、またはニオブやチタンを添加した非時効性の極低炭素アルミキルド鋼(炭素量0.01重量%未満)を用いる。これらの鋼の熱間圧延板を酸洗して表面のスケールを除去した後、冷間圧延し次いで電解洗浄、焼鈍、調質圧延したものを基板(A)として用いる。冷間圧延して電解洗浄後、焼鈍を施さずに基板(B)としてめっきを施し、その後に拡散熱処理と鋼板の軟質化を兼ねる焼鈍を行ってもよい。   The contents of the present invention will be described below. As a steel plate used as a substrate for the plated steel plate for battery containers of the present invention, general-purpose low carbon aluminum killed steel (carbon content 0.01 to 0.15 wt%), or non-aging ultra-low carbon added with niobium or titanium. Aluminum killed steel (carbon content less than 0.01% by weight) is used. These steel hot-rolled plates are pickled to remove surface scales, and then cold-rolled and then subjected to electrolytic cleaning, annealing, and temper rolling are used as the substrate (A). Cold rolling and electrolytic cleaning may be followed by plating as a substrate (B) without annealing, followed by annealing for both diffusion heat treatment and softening of the steel sheet.

基板(A)を用いる場合は、基板である鋼板の両面に、まずニッケルめっきを施す。次いで電池容器の内面となる片面にのみ錫めっきを施し、次いで銀めっきを施す。または電池容器の内面となるニッケルめっきを施した後、銀粒子分散錫めっきを施す。その後、箱型焼鈍法または連続焼鈍法を用いて拡散熱処理を施す。この熱処理によりニッケルめっき層はその一部または全部が鉄−ニッケル合金層に変換する。鉄−ニッケル合金層に変換する量はニッケルめっき量および熱処理条件により、適宜調整することができる。また、錫めっき層または銀粒子分散錫めっき層は全部が鉄−ニッケル−錫合金層または/およびニッケル−錫合金層または/およびニッケル−錫−銀合金層へ変換する。鉄−ニッケル−錫合金層または/およびニッケル−錫合金層または/およびニッケル−錫−銀合金層に変換する量は錫めっき量、銀めっき量、銀粒子分散錫めっき量および熱処理条件により、適宜調整することができる。基板(B)を用いる場合は、両面にニッケルめっきを施し、次いで電池容器の内面となる片面にのみ錫めっきを施し、その上に銀めっきを施した後、あるいはまた両面にニッケルめっきを施し、次いで電池容器の内面となる片面にのみ銀粒子分散錫めっきを施した後、拡散と鋼板の軟質化を兼ねる焼鈍を行って鉄−ニッケル合金層や鉄−ニッケル−錫合金層または/およびニッケル−錫合金層または/およびニッケル−錫−銀合金層を生成させる。さらにまたニッケルめっきを施し、次いで錫めっきを施した後に拡散熱処理を施した後、その上に銀めっきを施して銀層を形成させてもよい。   When using a board | substrate (A), nickel plating is first given to both surfaces of the steel plate which is a board | substrate. Next, tin plating is performed only on one surface which is the inner surface of the battery container, and then silver plating is performed. Or after giving nickel plating used as the inner surface of a battery container, silver particle dispersion | distribution tin plating is given. Thereafter, diffusion heat treatment is performed using a box-type annealing method or a continuous annealing method. By this heat treatment, a part or all of the nickel plating layer is converted into an iron-nickel alloy layer. The amount to be converted into the iron-nickel alloy layer can be appropriately adjusted depending on the nickel plating amount and the heat treatment conditions. Further, the tin plating layer or the silver particle-dispersed tin plating layer is entirely converted into an iron-nickel-tin alloy layer or / and a nickel-tin alloy layer or / and a nickel-tin-silver alloy layer. The amount to be converted into an iron-nickel-tin alloy layer or / and a nickel-tin alloy layer or / and a nickel-tin-silver alloy layer depends on the tin plating amount, silver plating amount, silver particle-dispersed tin plating amount, and heat treatment conditions. Can be adjusted. In the case of using the substrate (B), nickel plating is performed on both surfaces, then tin plating is performed only on one surface which is the inner surface of the battery container, and after silver plating is performed thereon or again, nickel plating is performed on both surfaces. Next, after silver particle-dispersed tin plating is applied only to one surface which is the inner surface of the battery container, an iron-nickel alloy layer and / or an iron-nickel-tin alloy layer and / or nickel A tin alloy layer or / and a nickel-tin-silver alloy layer is produced. Furthermore, after nickel plating, then tin plating, diffusion heat treatment, silver plating may be applied thereon to form a silver layer.

基板である鋼板の電池容器の外面に施すニッケルめっきのめっき付着量は5〜25g/mの皮膜量であることが好ましい。ニッケルめっき厚が5g/m未満では電池容器外面における耐食性が充分でなく、また25g/mを超えると耐食性は飽和に達し不経済である。電池容器の内面に施すニッケルめっきのめっき付着量は5〜25g/mの皮膜量であることが好ましい。ニッケルめっき厚が5g/m未満ではプレス成形時に鋼素地に達する割れが生じる恐れがあり、鉄露出によりガス発生量が多くなるなどの電池性能の劣化をきたす恐れがある。25g/mを超えると電池性能への効果は飽和に達し不経済である。 It is preferable that the coating amount of nickel plating applied to the outer surface of the battery container of the steel plate as the substrate is a coating amount of 5 to 25 g / m 2 . When the nickel plating thickness is less than 5 g / m 2 , the corrosion resistance on the outer surface of the battery container is not sufficient, and when it exceeds 25 g / m 2 , the corrosion resistance reaches saturation, which is uneconomical. The amount of nickel plating applied to the inner surface of the battery container is preferably a coating amount of 5 to 25 g / m 2 . If the nickel plating thickness is less than 5 g / m 2 , cracks that reach the steel substrate may occur during press forming, and the battery performance may be deteriorated such that the amount of gas generated increases due to iron exposure. If it exceeds 25 g / m 2 , the effect on battery performance reaches saturation, which is uneconomical.

ニッケルめっきに引き続き電池容器の内面側に施す錫めっきは公知の錫めっき浴を使用することができる。好ましくはフェノールスルファミン浴を用いることがより好ましい。錫めっきの錫付着量は0.5〜5g/mの範囲が好ましく、1〜4g/mの範囲とすることがより好ましい。0.5g/m未満では熱処理により生成する硬質なニッケル錫化合物層の厚さが薄くプレス成形時に生成する微小クラックの大きさ、深さの程度が小さいため、電池性能の向上が得られない。また、錫付着量が5g/mを超えると微小クラックの大きさ、深さの程度が過度となり、鋼素地に達する割れが生じる恐れがある。また下地のニッケルめっき厚とその上層の錫めっきのめっき厚比は、およそニッケルめっき2:錫めっき1以上にニッケルめっき厚を厚くすることがより好ましい。この比率以上に錫めっきを厚くすると、熱拡散処理層(鉄−ニッケル合金層(拡散層)、もしくは鉄−ニッケル合金層(拡散層)の上に形成される軟質再結晶したニッケル層)の厚さが相対的に薄くなり鋼素地の露出を誘起する恐れが高くなる。 A known tin plating bath can be used for the tin plating applied to the inner surface side of the battery container following the nickel plating. It is more preferable to use a phenolsulfamine bath. Tin coating weight of tin plating is preferably in a range of from 0.5 to 5 g / m 2, and more preferably in the range of 1 to 4 g / m 2. If it is less than 0.5 g / m 2 , the thickness of the hard nickel tin compound layer generated by heat treatment is thin, and the size and depth of microcracks generated during press molding are small, so that the battery performance cannot be improved. . On the other hand, if the amount of tin adhesion exceeds 5 g / m 2 , the size and depth of the microcracks become excessive, and there is a risk of cracks reaching the steel substrate. Further, it is more preferable that the nickel plating thickness is higher than that of nickel plating 2: tin plating 1 or more with respect to the nickel plating thickness of the base and the tin plating of the upper layer. If the tin plating is made thicker than this ratio, the thickness of the thermal diffusion treatment layer (iron-nickel alloy layer (diffusion layer) or soft recrystallized nickel layer formed on the iron-nickel alloy layer (diffusion layer)) The thickness becomes relatively thin and the risk of inducing the exposure of the steel substrate is increased.

錫めっき後に引き続き施す銀めっき、またはニッケルめっき、錫めっきを行った後、熱処理を施した後に施す銀めっきのめっき付着量は0.05〜1.0g/mであることが好ましい。0.05g/m未満では電気伝導性の低減効果が少なく、また1.0g/mを超えると効果が飽和に達し、高価な銀であるため不経済である。 It is preferable that the plating adhesion amount of the silver plating to be applied after the silver plating subsequently applied after the tin plating, the nickel plating or the tin plating and then the heat treatment is 0.05 to 1.0 g / m 2 . Little effect of reducing the electrical conductivity is less than 0.05 g / m 2, also effect exceeds 1.0 g / m 2 reaches saturation, is uneconomical because it is expensive silver.

錫めっきの上に銀めっきを施す方法に替えて、ニッケルめっきの上に銀粒子分散錫めっきを施す場合のめっき浴は、ピロリン酸カリに硫酸錫を添加した浴にさらに硝酸銀を加えることにより得られる。ピロリン酸錫錯イオン溶液に硝酸銀溶液を加えるとナノ粒子径の銀粒子が浴中に分散形成され、陰極電解すると錫めっき皮膜中に浴中の銀粒子が取り込まれる。該分散めっき皮膜中の銀は電解条件(浴組成、浴pH、電流密度、浴温度、攪拌条件)により変動するが約2〜6%(銀付着量/銀および錫の合計付着量)含有させることができる。電流密度は1〜2A/dm2が電流密度範囲として適正である。銀粒子分散錫めっきのめっき付着量は、0.5〜5.0g/mの範囲とすることが好ましい。0.5g/m未満の場合は、熱処理後に形成される錫−ニッケル金属間化合物層の厚さが不充分であり、正極合剤との密着性の向上に十分な効果が得られない。また、5.0g/mを超えた場合は硬質な錫−ニッケル金属間化合物が厚くなりすぎるため、鋼素地に達する割れを誘起し、鋼素地が過度に露出する恐れが生じるため好ましくない。なお、下地のニッケルめっき厚とその上層の銀粒子分散めっきのめっき厚比は、ニッケルめっきに引き続き錫めっきする前記の方法と同じく、鋼素地の露出を誘起する恐れが抑止するためニッケルめっき2:銀粒子分散めっき1以上にニッケルめっき厚を厚くすることがより好ましい。ニッケルめっき後に銀粒子分散錫めっきを施し、次いで熱処理を行なった場合、錫めっき層に微粒子として分散していた銀粒子は最表層に固体拡散し、表層には錫層もしくは錫−ニッケル−銀合金層が形成する。 Instead of silver plating on tin plating, a plating bath for silver particle-dispersed tin plating on nickel plating can be obtained by adding silver nitrate to a bath in which tin sulfate is added to potassium pyrophosphate. It is done. When a silver nitrate solution is added to a tin pyrophosphate complex ion solution, silver particles having a nanoparticle size are dispersedly formed in the bath, and silver particles in the bath are taken into the tin plating film by cathodic electrolysis. The silver in the dispersion plating film varies depending on the electrolysis conditions (bath composition, bath pH, current density, bath temperature, stirring conditions) but is contained in an amount of about 2 to 6% (silver adhesion amount / total adhesion amount of silver and tin). be able to. A current density of 1 to 2 A / dm 2 is appropriate as a current density range. The plating adhesion amount of the silver particle-dispersed tin plating is preferably in the range of 0.5 to 5.0 g / m 2 . When it is less than 0.5 g / m 2, the thickness of the tin-nickel intermetallic compound layer formed after the heat treatment is insufficient, and a sufficient effect for improving the adhesion with the positive electrode mixture cannot be obtained. Moreover, when it exceeds 5.0 g / m < 2 >, since a hard tin-nickel intermetallic compound will become thick too much, the crack which reaches | attains a steel base will be induced and a steel base may be exposed excessively, and it is not preferable. The plating thickness ratio of the underlying nickel plating thickness to the silver particle dispersion plating thereon is the same as in the above-described method of tin plating subsequent to nickel plating, so that the risk of inducing exposure of the steel substrate is suppressed. It is more preferable to increase the nickel plating thickness to one or more silver particle dispersion plating. When nickel particle-dispersed tin plating is applied after nickel plating, and then heat treatment is performed, the silver particles dispersed as fine particles in the tin plating layer are solid-diffused into the outermost layer, and the surface layer is a tin layer or a tin-nickel-silver alloy. A layer forms.

このようにして、鋼板の電池容器の外面となる片面に鉄−ニッケル合金層、または鉄−ニッケル合金層上にニッケル層が形成されてなり、電池容器の内面となる他の片面に下記のA)〜J)のいずれかの層、すなわち鋼板側から順に
A)鉄−ニッケル合金層、ニッケル層、ニッケル−錫合金層、ニッケル−錫−銀合金層、銀層、
B)鉄−ニッケル合金層、ニッケル−錫合金層、ニッケル−錫−銀合金層、銀層、
C)鉄−ニッケル合金層、鉄−ニッケル−錫合金層、ニッケル−錫合金層、ニッケル−錫−銀合金層、銀層、
D)鉄−ニッケル合金層、ニッケル層、ニッケル−錫合金層、ニッケル−錫−銀合金層、銀層、
E)鉄−ニッケル合金層、鉄−ニッケル−錫合金層、ニッケル−錫合金層、ニッケル−錫−銀合金層、
F)鉄−ニッケル合金層、ニッケル−錫合金層、ニッケル−錫−銀合金層、
G)鉄−ニッケル合金層、ニッケル層、ニッケル−錫合金層、銀層、
H)鉄−ニッケル合金層、ニッケル−錫合金層、銀層、
I)鉄−ニッケル合金層、鉄−ニッケル−錫合金層、ニッケル−錫合金層、銀層、のいずれかの層が形成されてなるめっき鋼板が得られる。このめっき鋼板を必要に応じて調質圧延し、本発明の電池容器用めっき鋼板とする。なお、鋼板の電池容器の外面となる片面に、鉄−ニッケル合金層、または鉄−ニッケル合金層上にニッケル層を形成させることに替えて、電池容器の内面となる他の片面に形成させる上記のA)〜I)の各層を形成させてもよい。
In this way, an iron-nickel alloy layer or a nickel layer is formed on the iron-nickel alloy layer on one side which is the outer surface of the battery container, and the following A is formed on the other side which is the inner surface of the battery container. ) To J), that is, in order from the steel sheet side, A) iron-nickel alloy layer, nickel layer, nickel-tin alloy layer, nickel-tin-silver alloy layer, silver layer,
B) Iron-nickel alloy layer, nickel-tin alloy layer, nickel-tin-silver alloy layer, silver layer,
C) Iron-nickel alloy layer, iron-nickel-tin alloy layer, nickel-tin alloy layer, nickel-tin-silver alloy layer, silver layer,
D) Iron-nickel alloy layer, nickel layer, nickel-tin alloy layer, nickel-tin-silver alloy layer, silver layer,
E) Iron-nickel alloy layer, iron-nickel-tin alloy layer, nickel-tin alloy layer, nickel-tin-silver alloy layer,
F) Iron-nickel alloy layer, nickel-tin alloy layer, nickel-tin-silver alloy layer,
G) Iron-nickel alloy layer, nickel layer, nickel-tin alloy layer, silver layer,
H) Iron-nickel alloy layer, nickel-tin alloy layer, silver layer,
I) A plated steel sheet in which any one of an iron-nickel alloy layer, an iron-nickel-tin alloy layer, a nickel-tin alloy layer, and a silver layer is formed is obtained. The plated steel sheet is temper-rolled as necessary to obtain a plated steel sheet for battery containers of the present invention. In addition, instead of forming the nickel layer on the iron-nickel alloy layer or the iron-nickel alloy layer on one side which is the outer surface of the battery container of the steel plate, the above is formed on the other one surface which is the inner surface of the battery container. Each layer of A) to I) may be formed.

上記のニッケルめっき層、錫めっき層、銀めっき層は、それぞれ無電解めっきまたは電解めっきにより形成させることができるが、めっき皮膜組成や付着量の制御が容易な電解めっきにより形成させることが好ましい。熱処理は以下のようにして行う。すなわち、めっき基板となる鋼板として、冷間圧延後に電解洗浄、焼鈍、調質圧延したものを用いる場合、5.5%の水素と94.5%の窒素からなり、露点が−20〜−40℃の還元性雰囲気中で640〜680℃で5〜20時間均熱する箱型焼鈍法、または730〜800℃で0.5〜3分間加熱する連続焼鈍法のいずれかの焼鈍法を用いて焼鈍する。この冷間圧延後に焼鈍した基板を用いて上記のめっきを施した後に拡散熱処理を行う場合は、上記と同一の雰囲気中で500〜530℃で3〜8時間均熱する箱型焼鈍法、または750〜800℃で0.5〜3分間加熱する連続焼鈍法のいずれかの焼鈍法を用いて拡散熱処理する。   The nickel plating layer, the tin plating layer, and the silver plating layer can be formed by electroless plating or electrolytic plating, respectively, but are preferably formed by electrolytic plating that allows easy control of the plating film composition and the amount of adhesion. The heat treatment is performed as follows. That is, as a steel plate to be a plated substrate, when using a steel plate that has been subjected to electrolytic cleaning, annealing, and temper rolling after cold rolling, it is composed of 5.5% hydrogen and 94.5% nitrogen, with a dew point of -20 to -40. Using either the box-type annealing method in which the temperature is soaked at 640 to 680 ° C. for 5 to 20 hours in a reducing atmosphere at 0 ° C. or the continuous annealing method in which heating is performed at 730 to 800 ° C. for 0.5 to 3 minutes. Annealing. In the case of performing diffusion heat treatment after performing the above plating using the substrate annealed after this cold rolling, a box annealing method of soaking at 500 to 530 ° C. for 3 to 8 hours in the same atmosphere as above, or Diffusion heat treatment is performed using any one of the continuous annealing methods of heating at 750 to 800 ° C. for 0.5 to 3 minutes.

めっき基板となる鋼板として、冷間圧延後に電解洗浄した後の基板に上記のめっきを施した場合は、めっき後に基板の軟化とめっき層の拡散を兼ねた熱処理を行う。すなわち、上記と同一の雰囲気中で640〜680℃で5〜20時間均熱する箱型焼鈍法、または730〜800℃で0.5〜3分間加熱する連続焼鈍法のいずれかの焼鈍法を用いて焼鈍および拡散熱処理を行う。このようにしていずれかの拡散熱処理を行った後、ストレッチャーストレインの発生を防止するため、1.0〜1.5%の圧延率で調質圧延する。このようにして本発明の電池容器用めっき鋼板を得ることができる。   When the above-mentioned plating is performed on the substrate after the electrolytic cleaning after cold rolling as the steel plate to be the plated substrate, a heat treatment that combines softening of the substrate and diffusion of the plating layer is performed after plating. That is, the annealing method of either the box-type annealing method soaking at 640 to 680 ° C. for 5 to 20 hours in the same atmosphere as described above or the continuous annealing method of heating at 730 to 800 ° C. for 0.5 to 3 minutes is performed. Use for annealing and diffusion heat treatment. After performing any diffusion heat treatment in this manner, temper rolling is performed at a rolling rate of 1.0 to 1.5% in order to prevent the occurrence of stretcher strain. Thus, the plated steel sheet for battery containers of this invention can be obtained.

本発明の電池容器は、上記の電池容器用めっき鋼板を、絞り加工法、絞りしごき加工法(DI加工法)、絞りストレッチ加工法(DTR加工法)、または絞り加工後ストレッチ加工としごき加工を併用する加工法を用いて、有底の筒型形状に成形加工して得られる。筒型形状としては、底面が円、楕円、または長方形や正方形などの多角形の形状であり、用途に応じて側壁の高さを適宜選択した筒型形状に成形加工する。このようにして得られる電池容器に正極合剤、負極活物質等を充填して電池とする。   The battery container of the present invention is obtained by subjecting the above-described plated steel sheet for a battery container to a drawing process, a drawing ironing process (DI processing method), a drawing stretch processing method (DTR processing method), or a drawing process as a stretching process. It is obtained by forming into a bottomed cylindrical shape using the processing method used in combination. As the cylindrical shape, the bottom surface is a circle, an ellipse, or a polygonal shape such as a rectangle or a square, and is molded into a cylindrical shape with the side wall height appropriately selected according to the application. The battery container thus obtained is filled with a positive electrode mixture, a negative electrode active material, and the like to obtain a battery.

以下、実施例にて本発明を詳細に説明する。
[電池容器用めっき鋼板の作成]
基板として、表1に化学組成を示す低炭素アルミキルド鋼(表1では鋼種がIと示す)および極低炭素アルミキルド鋼(表1では鋼種がIIと示す)の冷間圧延版を用い、低炭素アルミキルド鋼(表1では鋼種がIと示す)を用いた場合は下記の1)〜3)のいずれかに示す工程を経て、極低炭素アルミキルド鋼(表1では鋼種がIIと示す)用いた場合は下記の4)〜6)のいずれかに示す工程を経て、それぞれ電池容器用めっき鋼板を作成した。なお、下記の1)〜6)の工程においては、容器内面となる側にめっきを施した場合を示しており、容器外面となる側には下記の1)〜3)のいずれかの工程においては焼鈍後に、4)〜6)のいずれかの工程においては電解洗浄後に容器内面となる側と同時にニッケルめっきを施した。
1)冷間圧延→電解洗浄→焼鈍(箱型焼鈍または連続焼鈍)→ニッケルめっき→錫めっき→銀めっき→拡散熱処理(箱型焼鈍または連続焼鈍)→調質圧延
2)冷間圧延→電解洗浄→焼鈍(箱型焼鈍または連続焼鈍)→ニッケルめっき→錫めっき→拡散熱処理(箱型焼鈍または連続焼鈍)→調質圧延→銀めっき
3)冷間圧延→電解洗浄→焼鈍(箱型焼鈍または連続焼鈍)→ニッケルめっき→銀粒子分散錫めっき→拡散熱処理(箱型焼鈍または連続焼鈍)→調質圧延
4)冷間圧延→電解洗浄→ニッケルめっき→錫めっき→銀めっき→焼鈍兼拡散熱処理(箱型焼鈍または連続焼鈍)→調質圧延
5)冷間圧延→電解洗浄→ニッケルめっき→錫めっき→焼鈍兼拡散熱処理(箱型焼鈍または連続焼鈍)→調質圧延→銀めっき
6)冷間圧延→電解洗浄→ニッケルめっき→銀分散錫めっき→拡散熱処理(箱型焼鈍または連続焼鈍)→調質圧延
Hereinafter, the present invention will be described in detail with reference to examples.
[Creation of plated steel sheets for battery containers]
As substrates, cold-rolled plates of low-carbon aluminum killed steel (Table 1 shows the steel type I) and extremely low carbon aluminum killed steel (Table 1 shows the steel type II) shown in Table 1 are used. When aluminum killed steel (the steel type is shown as I in Table 1) was used, the ultra low carbon aluminum killed steel (the steel type was shown as II in Table 1) was used after the steps shown in any of 1) to 3) below. In each case, a plated steel sheet for a battery container was prepared through the steps shown in any of 4) to 6) below. In the following steps 1) to 6), the case where plating is performed on the side that becomes the inner surface of the container is shown, and on the side that becomes the outer surface of the container, in any one of the following steps 1) to 3) After annealing, in any of the steps 4) to 6), nickel plating was performed simultaneously with the side that became the inner surface of the container after electrolytic cleaning.
1) Cold rolling → Electrolytic cleaning → Annealing (box annealing or continuous annealing) → Nickel plating → Tin plating → Silver plating → Diffusion heat treatment (box annealing or continuous annealing) → Temper rolling 2) Cold rolling → Electrolytic cleaning → Annealing (box annealing or continuous annealing) → Nickel plating → Tin plating → Diffusion heat treatment (box annealing or continuous annealing) → Temper rolling → Silver plating 3) Cold rolling → Electrolytic cleaning → Annealing (box annealing or continuous annealing) Annealing) → Nickel plating → Silver particle dispersed tin plating → Diffusion heat treatment (box annealing or continuous annealing) → Temper rolling 4) Cold rolling → Electrolytic cleaning → Nickel plating → Tin plating → Silver plating → Annealing and diffusion heat treatment (box) Die annealing or continuous annealing) → Temper rolling 5) Cold rolling → Electrolytic cleaning → Nickel plating → Tin plating → Annealing and diffusion heat treatment (box annealing or continuous annealing) → Temper rolling → silver plating 6) Cold rolling → Electrolytic cleaning → Nickel-plated → silver dispersion tin-plated → diffusion heat treatment (box-type annealing or continuous annealing) → temper rolling

Figure 2006093094
Figure 2006093094

上記の1)〜6)に示した工程におけるニッケルめっき、錫めっき、銀粒子分散錫めっきおよび銀めっきは以下に示す条件で行った。
<ニッケルめっき>
浴組成 硫酸ニッケル 300g/L
塩化ニッケル 40g/L
ホウ酸 30g/L
ピット抑制剤(ラウリル硫酸ナトリウム) 0.4mL/L
陽極 ニッケルペレット(チタンバスケットに充填)
撹拌 空気撹拌
pH 4〜4.6
浴温 55〜60℃
電流密度 15A/dm
The nickel plating, tin plating, silver particle-dispersed tin plating and silver plating in the steps shown in the above 1) to 6) were performed under the following conditions.
<Nickel plating>
Bath composition Nickel sulfate 300g / L
Nickel chloride 40g / L
Boric acid 30g / L
Pit inhibitor (sodium lauryl sulfate) 0.4mL / L
Anode Nickel pellet (filled in titanium basket)
Agitation Air agitation pH 4 to 4.6
Bath temperature 55-60 ° C
Current density 15A / dm 2

<錫めっき>
浴組成 硫酸第一錫 30g/L
フェノールスルホン酸 60g/L
エトキシ化α−ナフトール 5g/L
陽極 錫板
撹拌 めっき浴の循環
浴温 45〜50℃
電流密度 5A/dm
<Tin plating>
Bath composition Stannous sulfate 30g / L
Phenolsulfonic acid 60g / L
Ethoxylated α-naphthol 5g / L
Anode Tin plate Agitation Plating bath circulation Bath temperature 45-50 ° C
Current density 5A / dm 2

<銀粒子分散錫めっき>
浴組成 硫酸第一錫 0.1mol/L
硝酸銀 0.01mol/L
ピロリン酸カリウム 0.2mol/L
ポリエチレングリコール(#6000) 1g/L
陽極 錫板
撹拌 めっき浴の循環
浴温 50〜55℃
電流密度 1〜3A/dm
<Silver particle dispersed tin plating>
Bath composition Stannous sulfate 0.1 mol / L
Silver nitrate 0.01mol / L
Potassium pyrophosphate 0.2mol / L
Polyethylene glycol (# 6000) 1g / L
Anode Tin plate Stirring Circulation of plating bath Bath temperature 50-55 ° C
Current density 1-3 A / dm 2

<銀めっき>
浴組成 銀含有有機酸塩(ダインシルバーNEC(大和化成研究所(株)製))
200g/L
有機酸(錯塩)(ダインシルバーAGI(大和化成研究所(株)製))
500g/L
有機添加剤(平滑剤)(ダインシルバーAGH(大和化成研究所(株)製))
25g/L
陽極 銀板
撹拌 めっき浴の循環
浴温 35〜40℃
電流密度 1A/dm
<Silver plating>
Bath composition Silver-containing organic acid salt (Dyne Silver NEC (manufactured by Daiwa Kasei Laboratories))
200g / L
Organic acid (complex salt) (Dyne Silver AGI (manufactured by Daiwa Kasei Laboratories))
500g / L
Organic additive (smoothing agent) (Dyne Silver AGH (manufactured by Daiwa Kasei Laboratories))
25g / L
Anode Silver plate Stirring Circulation of plating bath Bath temperature 35-40 ° C
Current density 1A / dm 2

Figure 2006093094
Figure 2006093094

Figure 2006093094
Figure 2006093094

以上のようにして表2及び表3に示す電池容器用めっき鋼板の試料(試料番号1〜10)を作成した。なお、表2において、試料番号9では、冷間圧延後の焼鈍は実施しなかった。また、比較用に錫めっきを施さない試料(試料番号11)、銀めっきを施さない試料(試料番号12)、および従来のニッケルめっきのみを施した試料(試料番号13)も作成した。   Samples (sample numbers 1 to 10) of the plated steel sheets for battery containers shown in Tables 2 and 3 were prepared as described above. In Table 2, sample number 9 was not annealed after cold rolling. For comparison, a sample not subjected to tin plating (sample number 11), a sample not subjected to silver plating (sample number 12), and a sample subjected only to conventional nickel plating (sample number 13) were also prepared.

[電池容器の作成]
これらの試料番号1〜13の試料から57mm径でブランクを打ち抜いた後、鉄−ニッケル合金層とニッケル層のみを設けた側が容器外面となるようにして、10段の絞り加工により、外径13.8mm、高さ49.3mmの円筒形のLR6型電池(単三型電池)容器に成形加工した。
[Create battery container]
After blanking a blank with a diameter of 57 mm from the samples of Sample Nos. 1 to 13, the outer diameter 13 is obtained by ten-stage drawing so that the side on which only the iron-nickel alloy layer and the nickel layer are provided becomes the outer surface of the container. It was molded into a cylindrical LR6 type battery (AA size battery) container having a height of 4 mm and a height of 49.3 mm.

[電池の作成]
この電池容器を用いて、以下のようにしてアルカリマンガン電池を作成した。二酸化マンガンと黒鉛を10:1の比率で採取し、水酸化カリウム(10モル)を添加混合して正極合剤を作成した。次いでこの正極合剤を金型中で加圧して所定寸法のドーナツ形状の正極合剤ペレットに成形し、上記の電池容器に圧挿入した。なお、一部の電池容器は、内面に黒鉛粉末を主成分とする塗料を塗布したものを用いた。次に、負極集電棒をスポット溶接した負極板を電池容器に装着した。次いで、電池容器に圧挿入した正極合剤ペレットの内周に沿うようにしてビニロン製織布からなるセパレータを挿入し、亜鉛粒と酸化亜鉛を飽和させた水酸化カリウムからなる負極ゲルを電池容器内に充填した。さらに、負極板に絶縁体のガスケットを装着して電池容器内に挿入した後、カシメ加工してアルカリマンガン電池を作成した。
[Create battery]
Using this battery container, an alkaline manganese battery was prepared as follows. Manganese dioxide and graphite were collected at a ratio of 10: 1, and potassium hydroxide (10 mol) was added and mixed to prepare a positive electrode mixture. Next, this positive electrode mixture was pressed in a mold to form a donut-shaped positive electrode mixture pellet having a predetermined size, and was press-inserted into the battery container. In addition, some battery containers used what applied the coating material which has graphite powder as a main component on the inner surface. Next, the negative electrode plate spot-welded with the negative electrode current collector rod was attached to the battery container. Next, a separator made of vinylon woven cloth is inserted along the inner circumference of the positive electrode mixture pellet press-inserted into the battery container, and the negative electrode gel made of potassium hydroxide saturated with zinc particles and zinc oxide is put into the battery container. Filled in. Further, an insulating gasket was attached to the negative electrode plate and inserted into the battery container, followed by caulking to prepare an alkaline manganese battery.

[特性評価]
以上のようにして試料番号1〜13の試料から作成した電池容器を用いて作成した電池の特性を、以下のようにして評価した。
[Characteristic evaluation]
The characteristics of the batteries prepared using the battery containers prepared from the samples Nos. 1 to 13 as described above were evaluated as follows.

<短絡電流>
電池を80℃で3日間放置した後、電池に電流計を接続して閉回路を設けて電流値を測定し、これを短絡電流とした。短絡電流が大であるほど特性が良好であることを示す。
<Short-circuit current>
After leaving the battery at 80 ° C. for 3 days, an ammeter was connected to the battery, a closed circuit was provided, and the current value was measured, which was defined as a short-circuit current. It shows that a characteristic is so favorable that a short circuit current is large.

<放電特性>
電池を80℃で3日間放置した後、電池を1.5Aの一定電流に放電し、電圧が0.9Vに到達するまでの時間を放電時間として測定した。放電時間が長いほど放電特性が良好であることを示す。
<Discharge characteristics>
After leaving the battery at 80 ° C. for 3 days, the battery was discharged to a constant current of 1.5 A, and the time until the voltage reached 0.9 V was measured as the discharge time. The longer the discharge time, the better the discharge characteristics.

<間歇放電特性>
間歇放電の評価として、2Aで0.5秒放電した後に0.25Aで29.5秒放電する操作を1サイクルとして、このサイクルを繰り返し、電圧が1.0Vに到達するまでのサイクル数を測定した。サイクル数が多いほど間歇放電特性が良好であることを示す。
<Intermittent discharge characteristics>
As an evaluation of intermittent discharge, an operation of discharging at 2A for 0.5 seconds and then discharging at 0.25A at 29.5 seconds is one cycle, this cycle is repeated, and the number of cycles until the voltage reaches 1.0 V is measured. did. It shows that a intermittent discharge characteristic is so favorable that there are many cycles.

<ガス発生量>
電池を一部放電(3.9Ω、1.5時間)し、次いで70℃で2週間放置した後、電池を水中に浸漬したまま開封し、電池内部に発生して滞留していたガスを目盛り付きビュレットに捕集し、ガス発生量を測定した。これらの評価結果を表4に示す。
<Gas generation>
The battery is partially discharged (3.9Ω, 1.5 hours), then left at 70 ° C. for 2 weeks, then opened while immersed in water, and the gas generated and retained inside the battery is graduated The gas was collected in a burette and the amount of gas generated was measured. These evaluation results are shown in Table 4.

Figure 2006093094
Figure 2006093094

表4に示すように、本発明の電池容器用めっき鋼板は、ニッケルめっき層、または錫めっき層を形成させない電池容器用めっき鋼板や、表面に銀層を形成させない電池容器用めっき鋼板に比べて短絡電流、放電特性、間歇放電特性、ガス発生量のいずれにも優れている。また本発明の電池容器用めっき鋼板を用いた電池容器内面に黒鉛塗料を塗布した場合は、さらに短絡電流、放電特性、間歇放電特性が向上した。   As shown in Table 4, the plated steel sheet for battery containers of the present invention is compared with the plated steel sheet for battery containers that does not form a nickel plating layer or tin plating layer, or the plated steel sheet for battery containers that does not form a silver layer on the surface. Excellent short circuit current, discharge characteristics, intermittent discharge characteristics, and gas generation. Moreover, when the graphite paint was applied to the inner surface of the battery container using the plated steel sheet for the battery container of the present invention, the short circuit current, the discharge characteristics, and the intermittent discharge characteristics were further improved.

鋼板上に展延性に富む鉄−ニッケル合金層、その上にニッケル層または/および硬くて脆い鉄−ニッケル−錫合金層または/およびニッケル−錫合金層の上にニッケル−錫−銀合金層または/および導電性および展延性に優れた銀層を形成させてなる本発明の電池容器用めっき鋼板は、電池容器に成形加工する際に硬くて脆い鉄−ニッケル−錫合金層やニッケル−錫合金層の表面に微小クラックが生じることにより、正極合剤との密着性が向上する。また、これらの表面に微小クラックが生じた鉄−ニッケル−錫合金層やニッケル−錫合金層の上にニッケル−錫−銀合金層または/および銀層が形成されているので、電池容器内に充填する正極合剤との抵抗が減少し、内部抵抗が減少する。その結果、電池の保存後の放電特性に優れ、高性能電池に用いる電池容器用めっき鋼板として好適に適用できる。また銀層を形成させることにより、アルカリ電解液との電気化学的反応により発生する水素ガスを銀酸化物で水に変換するので電池内部の圧力が高まるおそれがない。さらに、電池を長期保存した後の性能劣化が小さく、放電特性に優れることから、容器内面に黒煙やカーボンブラックなどを塗布する従来の工程を省略することが可能となり、低コストで高性能電池を製造することができる。さらに、本発明の電池容器内部に黒鉛塗布を行った場合はさらに優れた電池性能が得られる。
A ductile iron-nickel alloy layer on a steel sheet, a nickel layer or / and a hard and brittle iron-nickel-tin alloy layer or / and a nickel-tin-silver alloy layer on a nickel-tin alloy layer or The plated steel sheet for battery containers according to the present invention in which a silver layer excellent in conductivity and spreadability is formed is a hard and brittle iron-nickel-tin alloy layer or nickel-tin alloy when being formed into a battery container. By forming microcracks on the surface of the layer, adhesion with the positive electrode mixture is improved. In addition, since a nickel-tin-silver alloy layer and / or a silver layer is formed on the iron-nickel-tin alloy layer or nickel-tin alloy layer in which micro cracks are generated on the surface, The resistance with the positive electrode mixture to be filled decreases, and the internal resistance decreases. As a result, the battery has excellent discharge characteristics after storage and can be suitably applied as a plated steel sheet for battery containers used in high performance batteries. Further, by forming the silver layer, the hydrogen gas generated by the electrochemical reaction with the alkaline electrolyte is converted to water with silver oxide, so there is no possibility that the pressure inside the battery will increase. In addition, the performance degradation after long-term storage of the battery is small and the discharge characteristics are excellent, so it is possible to omit the conventional process of applying black smoke, carbon black, etc. to the inner surface of the container, and the high-performance battery at low cost Can be manufactured. Furthermore, when the graphite coating is applied to the inside of the battery container of the present invention, further excellent battery performance can be obtained.

Claims (12)

鋼板の電池容器内面となる側の鋼板上に下から順に、鉄−ニッケル合金層、ニッケル層、ニッケル−錫合金層、ニッケル−錫−銀合金層、銀層が形成されてなることを特徴とする電池容器用めっき鋼板。 An iron-nickel alloy layer, a nickel layer, a nickel-tin alloy layer, a nickel-tin-silver alloy layer, and a silver layer are formed in order from the bottom on the steel plate on the side that becomes the battery container inner surface of the steel plate. Plated steel sheet for battery containers. 鋼板の電池容器内面となる側の鋼板上に下から順に、鉄−ニッケル合金層、ニッケル−錫合金層、ニッケル−錫−銀合金層、銀層が形成されてなることを特徴とする電池容器用めっき鋼板。 A battery container comprising an iron-nickel alloy layer, a nickel-tin alloy layer, a nickel-tin-silver alloy layer, and a silver layer formed in order from the bottom on a steel sheet on the side that is the inner surface of the battery container. Plated steel sheet. 鋼板の電池容器内面となる側の鋼板上に下から順に、鉄−ニッケル合金層、鉄−ニッケル−錫合金層、ニッケル−錫合金層、ニッケル−錫−銀合金層、銀層が形成されてなることを特徴とする電池容器用めっき鋼板。 An iron-nickel alloy layer, an iron-nickel-tin alloy layer, a nickel-tin alloy layer, a nickel-tin-silver alloy layer, and a silver layer are formed in order from the bottom on the steel plate on the side that is the battery container inner surface of the steel plate. A plated steel sheet for battery containers, characterized in that 鋼板の電池容器内面となる側の鋼板上に下から順に、鉄−ニッケル合金層、ニッケル層、ニッケル−錫合金層、ニッケル−錫−銀合金層が形成されてなることを特徴とする電池容器用めっき鋼板。 A battery container comprising an iron-nickel alloy layer, a nickel layer, a nickel-tin alloy layer, and a nickel-tin-silver alloy layer formed in order from the bottom on a steel sheet on the side of the battery container that is the inner surface of the battery container. Plated steel sheet. 鋼板の電池容器内面となる側の鋼板上に下から順に、鉄−ニッケル合金層、鉄−ニッケル−錫合金層、ニッケル−錫合金層、ニッケル−錫−銀合金層が形成されてなることを特徴とする電池容器用めっき鋼板。 An iron-nickel alloy layer, an iron-nickel-tin alloy layer, a nickel-tin alloy layer, and a nickel-tin-silver alloy layer are formed in this order from the bottom on the steel plate on the side that is the battery container inner surface of the steel plate. A plated steel sheet for battery containers. 鋼板の電池容器内面となる側の鋼板上に下から順に、鉄−ニッケル合金層、ニッケル−錫合金層、ニッケル−錫−銀合金層が形成されてなることを特徴とする電池容器用めっき鋼板。 An iron-nickel alloy layer, a nickel-tin alloy layer, and a nickel-tin-silver alloy layer are formed in order from the bottom on a steel plate on the side that is the inner surface of the battery case of the steel plate. . 鋼板の電池容器内面となる側の鋼板上に下から順に、鉄−ニッケル合金層、ニッケル層、ニッケル−錫合金層、銀層が形成されてなることを特徴とする電池容器用めっき鋼板。 An iron-nickel alloy layer, a nickel layer, a nickel-tin alloy layer, and a silver layer are formed in order from the bottom on a steel plate that is the inner surface of the battery case of the steel plate. 鋼板の電池容器内面となる側の鋼板上に下から順に、鉄−ニッケル合金層、ニッケル−錫合金層、銀層が形成されてなることを特徴とする電池容器用めっき鋼板。 An iron-nickel alloy layer, a nickel-tin alloy layer, and a silver layer are formed in order from the bottom on a steel plate on the side that is the inner surface of the battery case of the steel plate. 鋼板の電池容器内面となる側の鋼板上に下から順に、鉄−ニッケル合金層、鉄−ニッケル−錫合金層、ニッケル−錫合金層、銀層が形成されてなることを特徴とする電池容器用めっき鋼板。 A battery container comprising an iron-nickel alloy layer, an iron-nickel-tin alloy layer, a nickel-tin alloy layer, and a silver layer formed in order from the bottom on a steel sheet on the side that is the inner surface of the battery container. Plated steel sheet. 請求項1〜9のいずれかに記載の電池容器用めっき鋼板を有底の筒型形状に成形加工してなる電池容器。 The battery container formed by shape | molding the plated steel plate for battery containers in any one of Claims 1-9 in a bottomed cylindrical shape. 請求項10に記載の電池容器を用いてなる電池。 A battery comprising the battery container according to claim 10. 鋼板の少なくとも電池容器内面となる側にニッケルめっきを施し、次いで銀粒子分散錫めっきを施した後に熱処理することにより、鋼板の電池容器内面となる側の鋼素地上に鉄−ニッケル合金層を形成させ、その上にニッケル層または鉄−ニッケル−錫合金層を形成させ、さらにその上にニッケル−錫合金層を形成させたその上に、もしくは鋼素地上に鉄−ニッケル合金層を形成させたその上に、ニッケル−錫−銀合金層または/および銀層を形成させることを特徴とする電池容器用めっき鋼板の製造方法。
An iron-nickel alloy layer is formed on the surface of the steel sheet on the side of the battery container inner surface by applying nickel plating to at least the side of the steel sheet inner surface of the battery container and then performing silver particle-dispersed tin plating and heat treatment Then, a nickel layer or an iron-nickel-tin alloy layer is formed thereon, and a nickel-tin alloy layer is further formed thereon, or an iron-nickel alloy layer is formed on the steel base. A nickel-tin-silver alloy layer and / or a silver layer is formed thereon, and a method for producing a plated steel sheet for battery containers.
JP2005177527A 2004-08-23 2005-06-17 Plated steel sheet for battery container, battery container using same, and battery using battery container Withdrawn JP2006093094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005177527A JP2006093094A (en) 2004-08-23 2005-06-17 Plated steel sheet for battery container, battery container using same, and battery using battery container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004242213 2004-08-23
JP2005177527A JP2006093094A (en) 2004-08-23 2005-06-17 Plated steel sheet for battery container, battery container using same, and battery using battery container

Publications (1)

Publication Number Publication Date
JP2006093094A true JP2006093094A (en) 2006-04-06

Family

ID=36233843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005177527A Withdrawn JP2006093094A (en) 2004-08-23 2005-06-17 Plated steel sheet for battery container, battery container using same, and battery using battery container

Country Status (1)

Country Link
JP (1) JP2006093094A (en)

Similar Documents

Publication Publication Date Title
JP5083931B2 (en) Battery container manufacturing method, battery container manufactured by the battery container manufacturing method, and battery using the battery container
JP2006093096A (en) Plated steel sheet for battery container, battery container using same, and battery using its battery container
JP5102945B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and alkaline battery using the battery container
JP4824961B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2007335205A (en) Steel sheet for forming battery can with superior leakage resistance and heavy-load discharge performance, its manufacturing method, battery can, and alkaline dry cell
JP4748665B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2006190648A (en) Plated sheet steel for battery case, battery case using the plated sheet steel for battery case, and battery using the battery case
JP2007052997A (en) Plated steel sheet for battery case, battery case using plated steel sheet for battery case, and battery using battery case
JP2007051325A (en) Plated steel plate for battery case, battery case using the steel plate for battery case and battery using the battery case
JP2006093097A (en) Plated steel sheet for battery container, battery container using same, and battery using its battery container
JP4817724B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2006351432A (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2007059087A (en) Plated steel sheet for battery case, battery case using same, and battery using the battery case
WO2000074155A1 (en) Surface-treated steel sheet for battery case, battery case comprising the same, methods for producing them, and battery
JP2006348362A (en) Plated steel sheet for battery receptacle, battery receptacle using the plated steel sheet, and battery using the battery receptacle
JP4675707B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2007051324A (en) Plated steel plate for battery case, battery case using the steel plate for battery case and battery using the battery case
JP4911952B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2006307321A (en) Plated steel sheet for battery vessel, battery vessel using the plated steel sheet for battery vessel, and battery using the battery vessel
JP4968877B2 (en) Plated steel sheet for battery container, method for producing the same, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2006093094A (en) Plated steel sheet for battery container, battery container using same, and battery using battery container
JP2007005157A (en) Plated steel plate for battery case, battery case using it, battery using it and manufacturing method of plated steel plate for battery case
JP4798953B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2012114097A (en) Plated steel sheet for battery container, method for producing the same, battery container using the plated steel sheet for battery container and battery using the battery container
JP2006294353A (en) Plated steel sheet for battery container, battery container using plated steel sheet for battery container, and battery using battery container

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070416

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902