JP2000011966A - Battery can - Google Patents
Battery canInfo
- Publication number
- JP2000011966A JP2000011966A JP10205736A JP20573698A JP2000011966A JP 2000011966 A JP2000011966 A JP 2000011966A JP 10205736 A JP10205736 A JP 10205736A JP 20573698 A JP20573698 A JP 20573698A JP 2000011966 A JP2000011966 A JP 2000011966A
- Authority
- JP
- Japan
- Prior art keywords
- alloy layer
- battery
- layer
- thickness
- plating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 103
- 239000000956 alloy Substances 0.000 claims abstract description 103
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 17
- 229910020938 Sn-Ni Inorganic materials 0.000 claims abstract description 15
- 229910008937 Sn—Ni Inorganic materials 0.000 claims abstract description 15
- 238000003860 storage Methods 0.000 claims abstract description 13
- 229910008998 Sn—Ni—Fe Inorganic materials 0.000 claims abstract description 10
- 229910052742 iron Inorganic materials 0.000 claims abstract description 8
- 230000007774 longterm Effects 0.000 claims description 5
- 230000032683 aging Effects 0.000 claims description 3
- 229910000831 Steel Inorganic materials 0.000 abstract description 57
- 239000010959 steel Substances 0.000 abstract description 57
- 238000007747 plating Methods 0.000 abstract description 44
- 229910003271 Ni-Fe Inorganic materials 0.000 abstract description 10
- 229910017709 Ni Co Inorganic materials 0.000 abstract description 8
- 229910003267 Ni-Co Inorganic materials 0.000 abstract description 8
- 229910003262 Ni‐Co Inorganic materials 0.000 abstract description 8
- 238000010438 heat treatment Methods 0.000 abstract description 6
- 229910018100 Ni-Sn Inorganic materials 0.000 abstract description 5
- 229910018532 Ni—Sn Inorganic materials 0.000 abstract description 5
- 230000002349 favourable effect Effects 0.000 abstract 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 52
- 238000000034 method Methods 0.000 description 17
- 230000005611 electricity Effects 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- 230000007423 decrease Effects 0.000 description 10
- 239000003792 electrolyte Substances 0.000 description 9
- 229910002804 graphite Inorganic materials 0.000 description 8
- 239000010439 graphite Substances 0.000 description 8
- 238000010409 ironing Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 229910000640 Fe alloy Inorganic materials 0.000 description 4
- 229910001128 Sn alloy Inorganic materials 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- 239000007774 positive electrode material Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Sealing Battery Cases Or Jackets (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、アルカリマンガン
電池、ニッケル−カドミウム電池、リチウム電池等のア
ルカリ電解液を用いな発電要素を内填する電池缶に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery can containing a power generating element using an alkaline electrolyte such as an alkaline manganese battery, a nickel-cadmium battery, and a lithium battery.
【0002】[0002]
【従来の技術】アルカリ電解液用電池缶としては、一般
にニッケルメッキ鋼板が用いられ、該鋼板より円筒型電
池缶の形成方法としては、特公平7−99686号に記
載されているように、円形に打ち抜いたニッケルメッキ
鋼板からなるブランクを、絞り径が異なる複数のダイス
に移送して円筒状に絞り加工して形成するトランスファ
ー絞り加工による場合と、同軸線上に多段配置されたし
ごき径が異なる複数のダイスに、パンチで加圧して連続
的に通過させて筒に絞りしごき加工して形成するDI
(draw and ironing)絞り加工方法が
用いられている。アルカリマンガン電池に代表されるア
ルカリ電解液を用いた電池は、その缶内面合金層として
はニッケル鍍金あるいはそれを熱処理した層を持つ電池
缶が用いられている。この電池缶、すなわちアルカリ電
解液に接する面がNiあるいはNi−Fe合金である缶
は、経時により作動電圧が小さくなるという欠点があっ
た。また、放電時の電池の有効容量が小さくなるという
欠点もあった。この欠点を解決するために缶体内面側に
Ni鍍金のかわりにNi−Co合金層を使用した方法
(特公平7−70320)が提案されている。但しこの
方法は、Ni−Co合金が成形性が悪く、原板から缶へ
の成形時にNi−Co合金層に割れが入り下地の鋼が露
出するため保管中に赤錆が生じ耐食性に劣るという欠点
があった。また、コバルトは高価であり、経済的にも好
ましくない。2. Description of the Related Art A nickel-plated steel plate is generally used as a battery can for an alkaline electrolyte, and a cylindrical battery can is formed from the steel plate as described in JP-B-7-99686. Transfer blanking, in which a blank made of nickel-plated steel sheet punched into a die is transferred to a plurality of dies having different drawing diameters and formed by drawing in a cylindrical shape, and a plurality of ironing diameters arranged in multiple stages on the coaxial line are different. DI formed by pressing and pressing with a punch continuously through a die and drawing and ironing into a cylinder
(Draw and ironing) A drawing method is used. In a battery using an alkaline electrolyte represented by an alkaline manganese battery, a battery can having nickel plating or a layer obtained by heat-treating the nickel plating is used as an inner alloy layer of the battery. This battery can, that is, a can whose surface in contact with the alkaline electrolyte is Ni or a Ni-Fe alloy, has a drawback that the operating voltage decreases with time. There is also a disadvantage that the effective capacity of the battery at the time of discharging is reduced. In order to solve this drawback, a method (Japanese Patent Publication No. 7-70320) using a Ni—Co alloy layer instead of Ni plating on the inner surface of the can is proposed. However, this method has the drawback that the Ni-Co alloy has poor formability, the Ni-Co alloy layer cracks during the forming of the original sheet into a can, and the underlying steel is exposed, so that red rust occurs during storage and the corrosion resistance is poor. there were. Further, cobalt is expensive and is not economically preferable.
【0003】また、缶内面のNi層による正極合剤との
接触内部抵抗を低減させる目的でNiにSnを合金化さ
せる方法(特開平7−300695、WO95/115
27、特開平7−122246)が提案されている。こ
れらはすずが比較的安価であるため経済的には好まし
く、正極合剤との接触内部抵抗は低減され作動電圧は確
保されるが、高温保管や長期保管をすると放電容量が減
少し、機器稼動に有効な電気量が低下するという欠点が
あった。この欠点は本発明者の研究によると、Snの含
有量と厚みが大きい場合に発生することがわかった。電
池缶の缶壁内面は、正極合剤との密着性を良くし、接触
抵抗を小さくするには、肌荒れが発生し、微小な割れや
凹凸が発生していることが好ましいとされ、缶内面に肌
荒れを発生させるため、鋼板の両面のメッキ層の硬度を
相違させ、電池缶形成時に硬度の高いメッキ層は電池缶
内面に、硬度の低いメッキ層は電池缶外面に用いること
が特開平9−306439号公報で提案された。しかし
ながらこの電池缶は缶内面の肌荒れを生じさせたため
に、肌荒れによる鋼面露出により錆が発生しやすいこと
や、肌荒れを発生させることを目的として鍍金層を硬質
化させるために使用する合金元素により電池の放電性能
が劣化するという欠点があった。また電池缶の鋼板表面
に肌荒れが生じると耐食性が悪くなり、錆が発生するの
で鋼板の結晶粒度を10以上の小さい粒度として、グレ
ン組織を細かくすると、絞り加工して結晶粒Xが細長い
形状の結晶粒X′になった後、絞り加工して結晶X′を
圧縮しても、表面に顕著な凹凸は発生せず、表面のメッ
キ層も追従でき、よって、表面光沢性がよく、かつ耐食
性が優れたものとなることが特開平9−30643号公
報で提案された。しかしながら、この電池缶には結晶粒
が小さくなることにより鋼板強度が上昇し、鋼板から円
筒形缶に成形する場合の成形荷重が増大し、成形が困難
になるという欠点があった。特開平7−300695号
公報にはNi鍍金層の上に耐傷付性を付与するためSn
−Ni鍍金層を設けた電池缶が提案されている。しかし
ながらこの電池缶はSn−Ni合金層の厚みやSn−N
i合金層中のSnの含有量については全く説明されてい
ない。Also, a method of alloying Sn with Ni for the purpose of reducing the internal resistance of the nickel layer on the inner surface of the can in contact with the positive electrode mixture (JP-A-7-300695, WO95 / 115)
27, JP-A-7-122246) has been proposed. These are economically preferable because tin is relatively inexpensive.The internal contact resistance with the positive electrode mixture is reduced and the operating voltage is secured, but the discharge capacity decreases during high-temperature storage or long-term storage, and the equipment operates. However, there is a disadvantage that the effective amount of electricity decreases. According to the research of the present inventors, it has been found that this defect occurs when the Sn content and thickness are large. In order to improve the adhesion to the positive electrode mixture and reduce the contact resistance, it is preferable that the inner surface of the can wall of the battery can have rough skin, small cracks and irregularities, In order to cause roughening of the surface of the steel plate, the hardness of the plating layers on both sides of the steel plate is made different, and when the battery can is formed, a plating layer having a high hardness is used on the inner surface of the battery can, and a plating layer having a lower hardness is used on the outer surface of the battery can. No. 306439. However, since this battery can caused rough skin on the inner surface of the can, rust is likely to occur due to exposure of the steel surface due to rough skin, and alloy elements used to harden the plating layer for the purpose of generating rough skin There is a disadvantage that the discharge performance of the battery is deteriorated. Also, if the surface of the steel plate of the battery can becomes rough, the corrosion resistance deteriorates and rust occurs. Therefore, the crystal grain size of the steel plate is reduced to 10 or more, and the grain structure is made fine. After forming the crystal grains X ', even if the crystal X' is compressed by drawing, no remarkable irregularities are generated on the surface and the plating layer on the surface can be followed, so that the surface gloss is good and the corrosion resistance is good. Has been proposed in Japanese Patent Application Laid-Open No. 9-30643. However, this battery can has the drawback that the strength of the steel plate is increased due to the small crystal grains, the forming load when forming the cylindrical can from the steel plate is increased, and the forming becomes difficult. Japanese Unexamined Patent Publication No. Hei 7-300695 discloses Sn for imparting scratch resistance to a Ni plating layer.
-A battery can provided with a Ni plating layer has been proposed. However, this battery can has a thickness of Sn-Ni alloy layer or Sn-N
No description is given of the Sn content in the i-alloy layer.
【0004】[0004]
【発明が解決しようとする課題】電池缶には前述のよう
な放電特性が重要である。放電特性には、代表的なもの
として、作動電圧と放電容量がある。作動電圧とは、電
池に電気的には抵抗で代表される機器を接続し、機器が
稼動している時に機器にかかっている電圧のことである
が、機器が正常に稼動するには機器により異なる一定以
上の電圧が必要である。作動電圧は、ある抵抗を直列に
接続したときの、抵抗両端の電圧に相当する。この抵抗
は、使用する機器の種類により異なるが、近年広く使用
されているMDプレーヤー、携帯液晶テレビ、等では
2.5Ω前後の抵抗に相当する。作動電圧は、電池内部
抵抗増大により低下する。電池内部抵抗とは、電池缶と
正極物資の界面の接触抵抗や、電池極剤の消耗(正極物
質と負極物質の消耗)により発生する抵抗を総合した電
池内部の抵抗のことである。測定にあたっては、一定の
抵抗を接続して経時的に測定する。一般に一定時間後の
作動電圧が高いほど、機器は安定的に稼動できるため、
電池性能上は好ましい。The above-mentioned discharge characteristics are important for a battery can. Typical discharge characteristics include operating voltage and discharge capacity. The operating voltage is the voltage that is applied to the device when the device is electrically connected to the device, which is electrically represented by a resistor. Different fixed or higher voltages are required. The operating voltage corresponds to the voltage across the resistor when a certain resistor is connected in series. Although this resistance varies depending on the type of equipment used, it is equivalent to a resistance of about 2.5Ω in MD players, portable liquid crystal televisions, and the like that have been widely used in recent years. The operating voltage decreases as the internal resistance of the battery increases. The internal resistance of the battery is the internal resistance of the battery obtained by integrating the contact resistance at the interface between the battery can and the positive electrode material and the resistance generated by the consumption of the battery electrode material (the consumption of the positive electrode material and the negative electrode material). In the measurement, a constant resistance is connected and the measurement is performed over time. In general, the higher the operating voltage after a certain period of time, the more stable the device can operate,
It is preferable in terms of battery performance.
【0005】もう一つの特性は正常に機器が稼動しなく
なるまでに放電できる容量、すなわち“放電容量”であ
る。放電容量は、ある抵抗を直列に接続したときの抵抗
両端の電圧が、電池の使用寿命の終点である0.9Vま
でに、流れた電気量の値である。電池は保管中に、基本
的に自己消耗する性質がある。自己消耗とは、電池を機
器に接続して使用しなくても、保管した場合に電池容量
が低下する現象である。自己消耗する理由は様々である
が、その大きな理由の一つは、一つの容器の内部に正極
物質と負極物質が存在し、両者はセパレータで分離はさ
れているものの、電解液で接続しているため、保管中に
徐々に正極と負極の化学物質が反応し消耗することが挙
げられる。この自己消耗度は高温保管あるいは長期間保
管した場合に程度が大きい。最近では高温保管あるいは
長期保管後も良好な放電特性を有することが要求されて
いる。本発明者らはこのような問題について研究し、こ
の自己消耗に電池の容器も影響していることを解明し
た。高温保管あるいは長期保管した場合でも、作動電圧
が高く、かつ放電容量が高く維持できる電池は、電池用
缶の缶内面に設けたNiまたはNiとFeを含むSn含
有合金層中に含まれるSnの量及びSn含有合金層の厚
みを特別の範囲にすることにより得られることを解明
し、上記の問題が解決されることを明らかにして本発明
を完成した。[0005] Another characteristic is a capacity that can be discharged before a device stops operating normally, that is, a "discharge capacity". The discharge capacity is the value of the amount of electricity that flows when the voltage across the resistor when a certain resistor is connected in series up to 0.9 V, which is the end point of the service life of the battery. Batteries basically have the property of self-consumption during storage. The self-consumption is a phenomenon in which the battery capacity is reduced when the battery is stored without using the battery connected to the device. There are various reasons for self-depletion, but one of the major reasons is that one container contains a positive electrode material and a negative electrode material, and both are separated by a separator, but they are connected by an electrolytic solution. Therefore, during storage, the chemical substances of the positive electrode and the negative electrode gradually react and are consumed. The degree of self-depletion is large when stored at high temperatures or when stored for a long time. Recently, it has been required to have good discharge characteristics even after high-temperature storage or long-term storage. The present inventors have studied such a problem, and have clarified that the battery container also influences this self-consumption. Even when stored at a high temperature or stored for a long period of time, a battery that has a high operating voltage and can maintain a high discharge capacity is made of Ni contained in the Sn-containing alloy layer containing Ni or Ni and Fe provided on the inner surface of the battery can. The present invention was completed by elucidating what can be obtained by setting the amount and the thickness of the Sn-containing alloy layer in a special range, and clarifying that the above-mentioned problems can be solved.
【0006】[0006]
【課題を解決するための手段】本発明は、 「1. 缶内面がSn含有量が0.05〜1.2g/m
2であるNiまたはNiとFeを含むSn含有合金であ
り、Sn含有合金層の厚みが0.02〜0.45μmで
あることを特徴とする高温保管と長期経時耐性に優れた
電池缶。 2. 缶内面のSn含有合金層のSn含有量が0.05
〜0.5g/m2である、1項に記載された電池缶。 3. 缶内面のSn含有合金層のSn濃度が実質的に合
金層の表面から内方に向って低濃度側へ傾斜している、
1項または2項に記載された電池缶。 4. 缶内面のSn含有合金層において、外層がSn−
Ni合金層であり、内層がSn−Ni−Fe合金層の2
層構造である、3項に記載された電池缶。」に関する。Means for Solving the Problems The present invention provides: "1. The inner surface of the can has a Sn content of 0.05 to 1.2 g / m2.
2. A battery can excellent in high-temperature storage and long-term aging resistance, characterized in that it is Ni or Ni-containing alloy containing Ni and Fe, and the thickness of the Sn-containing alloy layer is 0.02 to 0.45 μm. 2. The Sn content of the Sn-containing alloy layer on the inner surface of the can is 0.05
The battery can according to item 1, which has a weight of from 0.5 g / m 2 to 0.5 g / m 2 . 3. The Sn concentration of the Sn-containing alloy layer on the inner surface of the can is substantially inclined inward from the surface of the alloy layer toward the lower concentration side,
Item 3. The battery can described in Item 1 or 2. 4. In the Sn-containing alloy layer on the inner surface of the can, the outer layer is Sn-
A Ni alloy layer, and the inner layer is a Sn—Ni—Fe alloy layer 2
Item 4. The battery can according to Item 3, which has a layer structure. About.
【0007】[0007]
【発明の実施の形態】本発明においては、電池缶内面は
NiまたはNiとFeを含むSn含有合金層であり、該
Sn含有合金層のSn含有量は0.05〜0.5g/m
2でなければならない。Sn合金の相手の元素として
は、NiあるいはFeが主体であることが必要である。
その理由は、両元素のいずれか一方あるいは両方とSn
からなる合金が、電解液である高アルカリ性液に対する
耐食性が、上記の範囲で良好であることである。またF
eは鋼の主元素であり、鋼は容器強度を維持するために
広く用いられている。まなNiは従来から高アルカリ電
解液用の電池缶材として広く用いられてきている鍍金用
元素である。Snの含有量が0.05g/m2未満で
は、経時によりニッケル表面がアルカリ電解液と化学反
応をおこし、表面に化学的に不活性な不働態皮膜を形成
する。この皮膜は電気伝導性に劣るため電池を放電した
とき、電気抵抗が増大し作動電圧が小さくなり好ましく
ない。作動電圧が低下するため、機器を正常に稼動する
のに必要な作動電圧を維持できる時間が短くなり、実質
的に電池の有効容量が小さくなり、電池の放電能力特性
としては好ましくない。DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the inner surface of a battery can is a Sn-containing alloy layer containing Ni or Ni and Fe, and the Sn content of the Sn-containing alloy layer is 0.05 to 0.5 g / m2.
Must be 2 . As a partner element of the Sn alloy, it is necessary that Ni or Fe is mainly used.
The reason is that one or both of the two elements and Sn
Is to have good corrosion resistance to the highly alkaline solution as an electrolyte within the above range. Also F
e is a main element of steel, and steel is widely used to maintain container strength. Mana Ni is a plating element that has been widely used as a battery can material for high alkaline electrolytes. If the Sn content is less than 0.05 g / m 2 , the nickel surface undergoes a chemical reaction with the alkaline electrolyte over time, forming a chemically inert passive film on the surface. Since this film is inferior in electric conductivity, when the battery is discharged, the electric resistance increases and the operating voltage decreases, which is not preferable. Since the operating voltage is reduced, the time required to maintain the operating voltage required for normal operation of the device is shortened, and the effective capacity of the battery is substantially reduced, which is not preferable as the discharge capacity characteristics of the battery.
【0008】またSnの含有量が1.2g/m2を超え
ると、合金層から電解液へのSn溶解量が多くなり、こ
のSn溶解の対反応でMnO2等の正極剤が還元されて
しまうため、電池容量が低下し、好ましくない。この現
象は特に高温で保管した場合や長時間保管した場合に著
しい。缶内面のSn含有量はこの範囲のなかでも、作動
電圧が高くかつ電池容量が低下しない、特に好ましい範
囲は、Sn含有量が0.05〜0.5g/m2である。
また、缶内面のsn含有合金層のSn含有量が0.05
〜1.2g/m2であっても、Sn含有合金層の厚みが
0.02〜0.45μmでなければならない。Sn含有
合金層厚さが0.02μm未満では、缶側壁表面へのS
nの濃縮が大きすぎ、Sn溶解速度が早く、経時後電池
容量低下が速く進むため好ましくなく、また0.45μ
mを越えると表面Sn濃度が小さく経時後の作動電圧低
下が起こり好ましくない。また、缶内面のSn含有合金
層は、Sn−Ni層のみでもよく、Sn含有合金層の下
にNi単層があってもよい。Sn含有合金層がSn−N
i合金層とSn−Ni−Fe合金層の2層になっている
場合は、単独のNi層がなく、合金層組織が比較的均一
になるため比較的均質な成形となり合金層の欠陥が起こ
りにくく、好ましい。If the Sn content exceeds 1.2 g / m 2 , the amount of Sn dissolved from the alloy layer into the electrolytic solution increases, and a positive electrode agent such as MnO 2 is reduced by the Sn dissolution reaction. As a result, the battery capacity decreases, which is not preferable. This phenomenon is particularly remarkable when stored at high temperatures or when stored for a long time. The Sn content of the inner surface of the can is within this range, and a particularly preferable range in which the operating voltage is high and the battery capacity does not decrease is the Sn content of 0.05 to 0.5 g / m 2 .
The Sn content of the Sn-containing alloy layer on the inner surface of the can was 0.05%.
Even if it is 1.2 g / m 2 , the thickness of the Sn-containing alloy layer must be 0.02 to 0.45 μm. If the thickness of the Sn-containing alloy layer is less than 0.02 μm, the S
The concentration of n is too large, the dissolution rate of Sn is high, and the battery capacity decreases rapidly with time.
If it exceeds m, the surface Sn concentration is small and the operating voltage decreases with time, which is not preferable. Further, the Sn-containing alloy layer on the inner surface of the can may be only the Sn-Ni layer, or a single Ni layer may be provided below the Sn-containing alloy layer. Sn-containing alloy layer is Sn-N
In the case of two layers, i-alloy layer and Sn-Ni-Fe alloy layer, there is no single Ni layer and the alloy layer structure is relatively uniform, so that the alloy layer is relatively uniform and the alloy layer has defects. Difficult and preferred.
【0009】本発明においては、鋼板の少なくとも一面
にNi鍍金を施し、その上にSn鍍金を施し、次いで熱
処理してSnをNi層中に拡散してSn含有合金層を形
成した鋼板を使用する。このときSnが完全にNiの中
に拡散し合金化するためには,Ni鍍金の量はSn鍍金
の量の約1.5倍以上が必要である。本発明に用いる電
池用鋼板は一般に缶材に用いられる鋼板に、一般的なN
i鍍金浴でNi鍍金し、その上に一般的に用いられるS
n鍍金浴にてSn鍍金し、450〜650℃で5〜15
時間加熱処理することにより得ることができる。すなわ
ち、鋼板としては、炭素が0.005〜0.15%の低
炭素鋼であり、テンパーがT1〜T5、またDR6〜D
R9材等が使われる。焼鈍方法としては連続焼鈍法、バ
ッチ焼鈍法を使用することができる。Ni鍍金浴は、ワ
ット浴・スルファミン酸浴・塩化物浴を使用することが
できる。Sn鍍金はフェロスタン浴、ハロゲン浴、アル
カリ浴等を使用することができる。この鋼板の缶内面側
となるSn含有合金層は、Sn合金層中のSnの含有量
が0.05〜1.2g/m2であり、Snは実質的に合
金層の表面から内方に向って拡散しており、Sn含有合
金層の厚みが0.02〜0.9μmであることを特徴と
している。このとき、Sn含有合金層は、Sn−Ni層
のみでもよいし、Sn−Ni合金層の下にNi単層があ
ってもよい。Sn含有合金層が0.9μm以下の厚みの
Sn−Ni合金層と0.9μm以下の厚みのSn−Ni
−Fe合金層の2層になっている場合に、単独のNi層
がなく合金層組織が比較的均一になるため、比較的均質
な成形となり合金層の欠陥が起こりにくく、好ましい。
また、鍍金後の熱拡散処理で、鋼板とNi層の間にNi
−Feの合金層を設けることは、鋼とNi層あるいはS
n−Niを含んだ合金層との密着性が向上するため好ま
しいが、さらに密着性を安定させる点でNi−Feの合
金層厚さを0.5〜5.0μmにすることが好ましい。In the present invention, a steel sheet is used in which at least one surface of the steel sheet is Ni-plated, Sn plating is applied thereon, and then heat treatment is performed to diffuse Sn into the Ni layer to form a Sn-containing alloy layer. . At this time, in order for Sn to completely diffuse into Ni and form an alloy, the amount of Ni plating needs to be about 1.5 times or more the amount of Sn plating. The steel sheet for a battery used in the present invention is generally a steel sheet used for a can material,
Ni plating in an i-plating bath, and S
Sn plating in n plating bath, 5 to 15 at 450 to 650 ° C
It can be obtained by heating for a time. That is, the steel plate is a low-carbon steel having 0.005 to 0.15% carbon and a temper of T1 to T5 and DR6 to D6.
R9 material or the like is used. As the annealing method, a continuous annealing method or a batch annealing method can be used. As the Ni plating bath, a Watt bath, a sulfamic acid bath, and a chloride bath can be used. For Sn plating, a ferrostan bath, a halogen bath, an alkaline bath, or the like can be used. The Sn-containing alloy layer on the inner surface side of the can of this steel sheet has a Sn content in the Sn alloy layer of 0.05 to 1.2 g / m 2 , and Sn is substantially inward from the surface of the alloy layer. The Sn-containing alloy layer has a thickness of 0.02 to 0.9 μm. At this time, the Sn-containing alloy layer may be only the Sn-Ni layer, or may be a single Ni layer below the Sn-Ni alloy layer. Sn-Ni alloy layer having a thickness of 0.9 μm or less and Sn-Ni having a thickness of 0.9 μm or less
In the case of two layers of -Fe alloy layer, since there is no single Ni layer and the structure of the alloy layer is relatively uniform, relatively uniform forming is achieved and defects of the alloy layer hardly occur, which is preferable.
In addition, the heat diffusion treatment after plating causes the Ni layer between the steel sheet and the Ni layer.
The provision of an alloy layer of -Fe is made of steel and a Ni layer or S
It is preferable because the adhesion with the alloy layer containing n-Ni is improved. However, from the viewpoint of further stabilizing the adhesion, it is preferable that the thickness of the Ni-Fe alloy layer be 0.5 to 5.0 µm.
【0010】この鋼板をSn含有合金層側を内面として
成形して円筒形電池缶を作成する。このときの成形方法
は特に限定されるものではないが、絞り加工、絞りしご
き加工、しごき加工、引き伸し絞り加工,あるいはそれ
らの組み合わせを適用することが可能である。電池缶は
原板を成形して作成するが、成形方法により缶側壁は原
板厚さより薄くすることができる。この場合次式で表わ
されるリダクション率が異なる。 リダクション率=((原板板厚−缶体側壁板厚)×10
0)/原板板厚 このリダクション率は、単なる絞り加工では0%であ
り、引き伸し絞り加工や絞りしごき加工では、50%程
度まで可能である。原板の板厚及び鍍金厚みはこのリダ
クション率に比例して薄くなる。缶体側壁の合金層厚み
を適正範囲に作成するためには原板の合金層厚みをリダ
クションにあわせて設定することが必要である。缶内面
側となるSn含有合金層が上記範囲に入っていると、原
板から缶への成形においてSn含有合金層が滑り変形を
おこすため、Sn含有合金層にクラックが入らず、鋼面
が露出しないため、高温あるいは長期間保管しても赤錆
等に対する耐食性が良好であり、好ましい。また本発明
の電池缶は、アルカリ電解液を用いた電池缶全般に適用
できる。そのサイズは、LR6、LR20、LR14、
LR1,LR44等で使用することができる。但しサイ
ズに限定されるものではない。This steel sheet is formed with the Sn-containing alloy layer side as an inner surface to form a cylindrical battery can. The forming method at this time is not particularly limited, but it is possible to apply drawing, drawing and ironing, ironing, drawing and drawing, or a combination thereof. The battery can is formed by molding an original plate, and the side wall of the can can be made thinner than the original plate thickness by a molding method. In this case, the reduction rate represented by the following equation is different. Reduction rate = ((plate thickness of original plate−plate thickness of can side wall) × 10
0) / Thickness of original plate This reduction rate is 0% in a simple drawing process, and can be up to about 50% in a stretch drawing process or a drawing and ironing process. The plate thickness and plating thickness of the original plate become thinner in proportion to this reduction rate. In order to make the thickness of the alloy layer on the side wall of the can body in an appropriate range, it is necessary to set the thickness of the alloy layer of the original plate in accordance with the reduction. When the Sn-containing alloy layer on the inner surface side of the can is in the above range, the Sn-containing alloy layer undergoes slip deformation in forming the original sheet into the can, so that the Sn-containing alloy layer does not crack and the steel surface is exposed. Therefore, even when stored at a high temperature or for a long period of time, it has good corrosion resistance against red rust and the like, which is preferable. Further, the battery can of the present invention can be applied to all battery cans using an alkaline electrolyte. The size is LR6, LR20, LR14,
It can be used in LR1, LR44 and the like. However, the size is not limited.
【0011】次に本発明の実施の形態を図面により説明
する。図1は本発明の電池缶缶壁の断面図である。1は
電池缶の缶壁の鋼板であって、内面側の4はNi−Sn
合金層である。5は4より内部に形成されたSn−Ni
−Fe合金層であって、鋼板表面に鍍金されたNi層と
その上に鍍金されたSnが鋼板中に拡散して鉄と合金を
形成した層である。このときSn−Ni合金層の下にS
n−Ni−Fe合金層がなくNi単層があっても差し支
えない。6は鋼板に接触して鍍金されたNiが鋼板中に
拡散して鉄と合金を形成した層である。3は鋼板の外面
側であり、必ずしも内面側と同一の鍍金層を形成する必
要はないが、この例では内面側と同じ鍍金層が形成され
ている。最外層7は光沢を有するNi−Co合金鍍金層
である。7のNi−Co合金層の厚みは0.5μm〜
6.0μmであり、4のNi−Sn合金層と5のSn−
Ni−Fe合金層を合せた厚みは0.02μm〜0.4
5μmであり、6のNi−Fe合金層の厚みは0.5μ
〜5.0μである。Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a battery can wall of the present invention. 1 is a steel plate of the can wall of the battery can, and 4 on the inner surface side is Ni-Sn.
It is an alloy layer. 5 is Sn—Ni formed inside from 4
A Fe alloy layer, in which a Ni layer plated on the surface of the steel sheet and Sn plated thereon diffused into the steel sheet to form an alloy with iron. At this time, S
There is no problem if there is no n-Ni-Fe alloy layer but a single Ni layer. Reference numeral 6 denotes a layer in which Ni plated in contact with the steel sheet diffuses into the steel sheet to form an alloy with iron. Reference numeral 3 denotes the outer surface side of the steel sheet, and it is not always necessary to form the same plating layer as the inner surface side, but in this example, the same plating layer as the inner surface side is formed. The outermost layer 7 is a Ni—Co alloy plating layer having a gloss. 7, the thickness of the Ni—Co alloy layer is 0.5 μm or more.
6.0 μm, and 4 Ni—Sn alloy layers and 5 Sn—
The combined thickness of the Ni—Fe alloy layers is 0.02 μm to 0.4
5 μm, and the thickness of the Ni—Fe alloy layer 6 is 0.5 μm.
~ 5.0μ.
【0012】図2は本発明の電池缶を製造する鍍金した
原材料を示す。9は鋼板1表面に鍍金したNi層であ
る。8はNi層の上に鍍金したSn層である。同一の鍍
金層が内面側2と外面側3に設けられている。このSn
とNiと鍍金した鋼板を熱拡散処理すると、Ni−Sn
合金鍍金鋼板が得られる。このNi−Sn合金層鋼板の
外面側に光沢Ni−Co合金鍍金を行うと光沢層を有す
る鋼板となる。FIG. 2 shows plated raw materials for producing the battery can of the present invention. 9 is a Ni layer plated on the surface of the steel sheet 1. Reference numeral 8 denotes a Sn layer plated on a Ni layer. The same plating layer is provided on the inner surface 2 and the outer surface 3. This Sn
When a steel sheet plated with Ni and Ni is subjected to thermal diffusion treatment, Ni-Sn
An alloy plated steel sheet is obtained. When a bright Ni—Co alloy plating is performed on the outer surface side of the Ni—Sn alloy layer steel sheet, a steel sheet having a gloss layer is obtained.
【0013】次に、図3〜図10により本発明の電池缶
の製造方法の1例を説明する。図3は本発明のNi−S
n合金層を設けた鋼板を絞り加工したカップを示す。元
板厚0.25mmの材料を用いた場合は板厚t0は0.
25mmである。図4と5は順次絞り加工した缶を示
す。カップが縮径し、深さが大きくなることがわかる。
図6はしごき再絞りした缶を示し、側壁厚みはt0=
0.25mmであれば例えばt2=0.22mmと少し
薄くなる。再絞り工程は3回に限られるものではない。
また図6ではフランジ部を残しているが全部絞り込んで
もよい。図7は図6の缶の開口部を残して、直径d2、
厚みt1の小径円筒部を成形した状態を示し、しごき再
絞りにより形成される。t2=0.22mmの時、例え
ばt1=0.16mmで薄くなる。図8はピップ部を成
形した場合の状態を示しているが、ピップが必要なけれ
ば省略してもよい。図9は、図7で残された部分のうち
開口端側をしごき再絞りすることで直径d3、厚みt3
の大径円筒部が形成され、中間のテーパ筒部は厚みt2
が維持される。この例ではt3は0.20mmである。
図10はトリミングされた状態を示す。この後、図は示
さないが成形用潤滑剤を除去するために洗浄される。Next, an example of a method for manufacturing a battery can according to the present invention will be described with reference to FIGS. FIG. 3 shows Ni-S of the present invention.
4 shows a cup obtained by drawing a steel plate provided with an n-alloy layer. 0 is the thickness t 0 in the case of using the material of the initial thickness 0.25mm.
25 mm. Figures 4 and 5 show cans that have been drawn sequentially. It can be seen that the diameter of the cup is reduced and the depth is increased.
FIG. 6 shows a can which has been ironed and re-drawn, the sidewall thickness is t 0 =
If it is 0.25 mm, the thickness will be a little thin, for example, t 2 = 0.22 mm. The redrawing step is not limited to three times.
In FIG. 6, the flange portion is left, but it may be narrowed down entirely. 7, leaving the opening of the can of FIG. 6, the diameter d 2,
Shows a state obtained by molding a small-diameter cylindrical portion of the thickness t 1, is formed by re-drawing and ironing. When t 2 = 0.22 mm, for example, the thickness becomes thinner at t 1 = 0.16 mm. FIG. 8 shows a state in which the pip portion is formed, but may be omitted if no pip is required. FIG. 9 shows that the diameter d 3 and the thickness t 3 are obtained by ironing and re-drawing the opening end side of the portion left in FIG.
Is formed, and an intermediate tapered cylindrical portion has a thickness t 2.
Is maintained. In this example t 3 is 0.20mm.
FIG. 10 shows the trimmed state. Thereafter, although not shown, cleaning is performed to remove the molding lubricant.
【0014】図11は缶内面の各元素のスパッタリング
時間に対する強度曲線である。Feの始点、Sn終点、
Niの終点が示されている。図12は電池の放電曲線で
ある。放電により作動電圧が低下することがわかる。図
13は作動電圧を示す棒グラフである。各実施例は作動
電圧が高いが比較例はほとんどが低い。図14は放電電
気量を示す棒グラフである。各実施例は放電電気量が大
きいが比較例は小さい。FIG. 11 is an intensity curve with respect to the sputtering time of each element on the inner surface of the can. Fe start point, Sn end point,
The end point of Ni is shown. FIG. 12 is a discharge curve of the battery. It can be seen that the operating voltage decreases due to the discharge. FIG. 13 is a bar graph showing the operating voltage. In each of the examples, the operating voltage is high, but in the comparative examples, most are low. FIG. 14 is a bar graph showing the amount of discharge electricity. Each of the examples has a large amount of discharge electricity, but the comparative example has a small amount.
【0015】[0015]
【実施例】実施例1 厚さ0.25mm、テンパーT1、BA焼鈍の低炭素鋼
板を用いて、両面にワット浴を用いた電解鍍金で8.9
g/m2のNi鍍金層を形成し、この上にフェロスタン
浴を用いた電解鍍金で両面に1.5g/m2のSn鍍金
層を形成し、500℃で6時間のバッチ熱処理をした。
この鍍金鋼板を、ブランク径53mmにブランキング
し、カップに絞り加工しさらに再絞りをかねた引き伸し
絞り加工を3回行い、このカップにしごき加工を行い、
最終的にカップ外径13.8mmで側壁厚みが0.20
mmのカップにした。このときの側壁は20%のリダク
ションである。このカップにピップ部を成形し、開口端
部側をしごき再絞りで大径円筒部を形成し、高さ50.
0mmにトリミングし、その後洗浄・乾燥してLR6電
池用の缶を作成した。この缶の側壁内面のSn合金層の
Sn含有量は1.2g/m2、Ni含有量は7g/m2
であり、Sn−Ni合金層厚みは0.34μmであり、
Sn−Ni−Fe合金層厚みは0.11μmであり、N
i−Fe合金層厚みは1.2μmであった。Sn及びN
i含有量の測定は、缶側壁を切り出し内面をテープで被
覆し、外面鍍金層を酸で溶解した後、内面テープを剥が
し、一定面積試験片に切り出し内面側鍍金層を完全に酸
に溶解し、原子吸光分光分析でSn量・Ni量を測定
し、各金属の含有量を算出した。Sn−Ni合金層厚み
・Sn−Ni−Fe合金層厚み・Ni−Fe合金層厚み
の測定は、缶側壁内表面からグロー放電分光分析法(以
下GDSと略)でSn、Ni、Feについて表面からの
深さ方向の存在分布を測定し、各合金層の厚みを求め
た。スパッタリング時間に対する各元素の強度曲線を図
11に示す。図の矢印のように合金層の厚みを測定し
た。このとき各合金層厚さは各元素の強度曲線の接点の
交点で決定した。すなわちSn−Ni合金層厚さは、表
面から下層のFeがでるまでの厚みであり、Sn−Ni
−Fe合金層厚みは、Feが出現するところからSnが
なくなるところまでの厚みであり、Ni−Fe合金層厚
みはSnがなくなるところからNiがなくなるところま
での厚みである。また、Sn含有合金層厚みという場合
は、表面からSnがなくなるところまでの厚みのことで
ある。なお、本実施例ではないがSn−Ni−Fe合金
層が存在しない場合は、Sn−Ni合金層厚みは、表面
からSnがなくなるところまでの厚みであり、Ni−F
e合金層厚みは、Feが出現するところからNiがなく
なるところまでの厚みである。スパッタリングの速度
は、既知鍍金厚みのNi鍍金鋼板を用いて決定した。こ
のようにして測定したところSn−Ni合金層は0.3
4μ、Sn−Ni−Fe合金層は0.11μm、Sn合
金層の合計は0.45μmの厚みであった。この缶の内
面全体に通常の方法で、黒鉛粉を含んだ塩化ビニル樹脂
をスプレー塗装し、焼き付けを行い、黒鉛含有量50%
の樹脂皮膜を形成した。この缶に一般的な方法で電池物
質を充填し電池を作成した。すなわちMnO2粉と黒鉛
粉とKOH液を混合・加圧して円筒形のペレット状にし
た正極剤を挿入し、缶ビード成形を行い、セパレータを
入れ、8M濃度のKOH電解液を注入し、Zn粉の負極
ゲルを注入し、シール剤を塗布したのち負極キャップを
クリンプし電池を作成した。このようにして作成したL
R6の電池を、70℃で3週間保管後、電池性能を測定
した。この経時は室温で約4年経時以上に相当するもの
である。測定は、電池に2.5Ω抵抗を電池と直列に接
続し、この抵抗の両端の電圧を経時的に測定した。また
この回路にクーロンメーターを直列に接続し、放電され
た電気量を測定した。この測定での放電曲線は図12の
ようになるが、特性の評価として、30分後の作動電圧
及び、初期電圧である約1.4Vから0.9Vまで電圧
が低下するまでに流れた電気量を用いた。前者は電池内
部抵抗の指標であり、大きい方が高性能である。後者
は、一般に機器が正常に可動できる限界電圧である0.
9Vまでの有効電池容量の指標である。これらの測定結
果を表1と図13、図14に示した。30分後作動電
圧、0.9Vまでの放電電気量はいずれも良好であっ
た。EXAMPLE 1 A low carbon steel sheet having a thickness of 0.25 mm, temper T1, and BA annealing was used, and both surfaces were subjected to electrolytic plating using a Watt bath at 8.9.
forming a Ni plating layer of g / m 2, the upper forming an Sn plating layer of 1.5 g / m 2 on both surfaces in electroplating with Ferrostan bath was the batch heat treatment for 6 hours at 500 ° C..
This plated steel sheet is blanked to a blank diameter of 53 mm, drawn into a cup, stretched and drawn again three times, and ironed into the cup.
Finally, cup outer diameter is 13.8mm and side wall thickness is 0.20
mm cups. At this time, the side walls have a reduction of 20%. A pip portion is formed in this cup, and the opening end side is ironed to form a large-diameter cylindrical portion by re-drawing.
It was trimmed to 0 mm, and then washed and dried to prepare a can for an LR6 battery. The Sn content of the Sn alloy layer on the inner surface of the side wall of this can was 1.2 g / m 2 , and the Ni content was 7 g / m 2.
And the Sn—Ni alloy layer thickness is 0.34 μm,
The thickness of the Sn—Ni—Fe alloy layer is 0.11 μm,
The thickness of the i-Fe alloy layer was 1.2 μm. Sn and N
For the measurement of i content, the side wall of the can was cut out, the inner surface was covered with a tape, the outer plating layer was dissolved with acid, then the inner tape was peeled off, the test piece was cut into a fixed area test piece, and the inner plating layer was completely dissolved in acid. The amount of Sn and the amount of Ni were measured by atomic absorption spectroscopy, and the content of each metal was calculated. The measurement of the thickness of the Sn—Ni alloy layer, the thickness of the Sn—Ni—Fe alloy layer, and the thickness of the Ni—Fe alloy layer is performed by glow discharge spectroscopy (hereinafter abbreviated as GDS) from the inner surface of the can side. Was measured in the depth direction from the sample, and the thickness of each alloy layer was determined. FIG. 11 shows an intensity curve of each element with respect to the sputtering time. The thickness of the alloy layer was measured as indicated by the arrow in the figure. At this time, the thickness of each alloy layer was determined at the intersection of the contact points on the strength curve of each element. That is, the thickness of the Sn-Ni alloy layer is the thickness from the surface to the lower layer of Fe,
-The thickness of the Fe alloy layer is the thickness from where Fe appears to where Sn disappears, and the thickness of the Ni-Fe alloy layer is the thickness from where Sn disappears to where Ni disappears. The thickness of the Sn-containing alloy layer refers to the thickness from the surface to the point where Sn disappears. In the case where the Sn—Ni—Fe alloy layer does not exist but is not the present embodiment, the thickness of the Sn—Ni alloy layer is the thickness from the surface to the point where Sn disappears.
The thickness of the e-alloy layer is a thickness from a point where Fe appears to a point where Ni disappears. The sputtering speed was determined using a Ni-plated steel plate having a known plating thickness. As a result of the measurement, the Sn—Ni alloy layer was 0.3
4 μm, the thickness of the Sn—Ni—Fe alloy layer was 0.11 μm, and the total thickness of the Sn alloy layer was 0.45 μm. The entire inner surface of the can is spray-coated with a vinyl chloride resin containing graphite powder and baked by a usual method, and the graphite content is 50%.
Was formed. This can was filled with a battery material by a general method to prepare a battery. That is, MnO 2 powder, graphite powder, and KOH solution are mixed and pressurized, and a positive electrode material formed into a cylindrical pellet is inserted, can bead molding is performed, a separator is inserted, and an 8M concentration KOH electrolyte is injected. A powdered negative electrode gel was injected, a sealant was applied, and then the negative electrode cap was crimped to prepare a battery. L created in this way
After storing the battery of R6 at 70 ° C. for 3 weeks, the battery performance was measured. This aging is equivalent to about four years or more at room temperature. For the measurement, a 2.5Ω resistor was connected in series with the battery, and the voltage across the resistor was measured over time. Further, a coulomb meter was connected in series to this circuit, and the amount of discharged electricity was measured. The discharge curve in this measurement is as shown in FIG. 12, and as an evaluation of the characteristics, the operating voltage after 30 minutes and the electric current which flowed until the voltage decreased from the initial voltage of about 1.4 V to 0.9 V were evaluated. The amount was used. The former is an index of the internal resistance of the battery, and the larger is the higher the performance. The latter is generally a threshold voltage at which the device can operate normally.
It is an index of the effective battery capacity up to 9V. These measurement results are shown in Table 1 and FIGS. After 30 minutes, the operating voltage and the amount of discharged electricity up to 0.9 V were all good.
【0016】[0016]
【表1】 [Table 1]
【0017】実施例2 鋼板へのSn鍍金量を0.6g/m2にし、缶側壁Sn
含有量0.5g/m2にすること以外は実施例1と同様
にして、鍍金鋼板製造、製缶、黒鉛樹脂塗布、充填、評
価を行った。これらの結果を表1と図13、図14に示
す。30分後の作動電圧、0.9Vまでの放電電気量は
いずれも良好であった。Example 2 The amount of Sn plating on a steel sheet was set to 0.6 g / m 2 ,
Except that the content was set to 0.5 g / m 2 , the same procedure as in Example 1 was performed to produce a plated steel sheet, make a can, apply graphite resin, fill, and evaluate. These results are shown in Table 1 and FIGS. The operating voltage after 30 minutes and the amount of discharge electricity up to 0.9 V were all good.
【0018】実施例3 鋼板へのSn鍍金量を0.06g/m2にし、缶側壁S
n含有量0.05g/m2にすること以外は実施例1と
同様にして、鍍金鋼板製造、製缶、黒鉛樹脂塗布、充
填、評価を行った。これらの結果を表1と図13、図1
4に示す。30分後の作動電圧、0.9Vまでの放電電
気量はいずれも良好であった。Example 3 The amount of Sn plating on a steel sheet was set to 0.06 g / m 2 ,
except that the n content 0.05 g / m 2 in the same manner as in Example 1, plated steel sheet production, can-making, graphite resin coating, filling, the evaluation was performed. These results are shown in Table 1 and FIGS.
It is shown in FIG. The operating voltage after 30 minutes and the amount of discharge electricity up to 0.9 V were all good.
【0019】比較例1 鋼板へのSn鍍金量を1.9g/m2にし、缶側壁Sn
含有量1.59/m2にすること以外は実施例1と同様
にして、鍍金鋼板製造、製缶、黒鉛樹脂塗布、充填、評
価を行った。これらの結果を表1と図13、図14に示
す。30分後の作動電圧は良好であるが、0.9Vまで
の放電電気量はかなり小さく放電電気量が低下している
ことがわかる。Comparative Example 1 The amount of Sn plating on a steel sheet was set to 1.9 g / m 2 , and the
Except for changing the content to 1.59 / m 2 , the same procedure as in Example 1 was performed to produce a plated steel sheet, make a can, apply graphite resin, fill, and evaluate. These results are shown in Table 1 and FIGS. It can be seen that the operating voltage after 30 minutes is good, but the amount of discharged electricity up to 0.9 V is considerably small and the amount of discharged electricity is reduced.
【0020】比較例2 鋼板へのSn鍍金量を0.04g/m2にし、缶側壁S
n含有量0.03g/m2にすること以外は実施例1と
同様にして、鍍金鋼板製造、製缶、黒鉛樹脂塗布、充
填、評価を行った。これらの結果を表1と図13、図1
4に示す。30分後の作動電圧が低く、0,9Vまでの
放電電気量はやや小さくなっていることがわかる。Comparative Example 2 The amount of Sn plating on a steel sheet was set to 0.04 g / m2,
Except that the n content was 0.03 g / m 2 , the production of a plated steel sheet, can making, graphite resin application, filling, and evaluation were performed in the same manner as in Example 1. These results are shown in Table 1 and FIGS.
It is shown in FIG. It can be seen that the operating voltage after 30 minutes is low, and the amount of discharged electricity up to 0.9 V is slightly smaller.
【0021】比較例3 鋼板へのNi鍍金量を17.5g/m2にし、Sn鍍金
なしで、鍍金後熱処理をしないこと、すなわち缶側壁S
n含有量0g/m2にしNi含有量を14g/m2に
し、Ni−Fe合金層を0μmにすること以外は実施例
1と同様にして、鍍金鋼板製造、製缶、黒鉛樹脂塗布、
充填、評価を行った。これらの結果を表1と図13、図
14に示す。30分後の作動電圧は低く、0.9Vまで
の放電電気量もやや小さいことがわかる。Comparative Example 3 The amount of Ni plating on a steel sheet was 17.5 g / m 2 , and no heat treatment was performed after plating without Sn plating.
Except that the n content was 0 g / m 2 , the Ni content was 14 g / m 2 , and the Ni—Fe alloy layer was 0 μm, the same procedure as in Example 1 was carried out to manufacture a plated steel sheet, make a can, apply graphite resin,
Filling and evaluation were performed. These results are shown in Table 1 and FIGS. It can be seen that the operating voltage after 30 minutes is low, and the amount of discharge electricity up to 0.9 V is slightly small.
【0022】比較例4 鋼板へのNi鍍金量を17.5g/m2にし、Sn鍍金
なしにし、缶側壁Sn含有量0g/m2にし、缶側壁N
i含有量を14g/m2にすること以外は実施例1と同
様にして、鍍金鋼板製造、製缶、黒鉛樹脂塗布、充填、
評価を行った。これらの結果を表1と図13、図14に
示す。30分後の作動電圧が低く、0.9Vまでの放電
電気量もやや小さいことがわかる。Comparative Example 4 The amount of Ni plating on a steel sheet was set to 17.5 g / m 2 , the Sn plating was not performed, the Sn content on the can side was set to 0 g / m 2 , and the can side N
In the same manner as in Example 1 except that the i content was set to 14 g / m 2 , production of a plated steel sheet, can making, application of graphite resin, filling,
An evaluation was performed. These results are shown in Table 1 and FIGS. It can be seen that the operating voltage after 30 minutes is low, and the amount of discharged electricity up to 0.9 V is slightly small.
【0023】比較例5 鍍金後鋼板を熱処理するときに、熱処理条件を500℃
12時間にし、缶側壁Sn含有量1.2g/m2にし、
Sn含有合金層厚みを厚くしたこと以外は実施例1と同
様にして、鍍金鋼板製造、製缶、黒鉛樹脂塗布、充填、
評価を行った。これらの結果を表1と図13、図14に
示す。30分後の作動電圧が低く、0.9Vまでの放電
電気量もやや小さいことがわかる。Comparative Example 5 When heat-treating a steel sheet after plating, the heat-treating condition was 500 ° C.
To 12 hours, and the can side wall Sn content 1.2 g / m 2,
Except that the thickness of the Sn-containing alloy layer was increased, in the same manner as in Example 1, production of a plated steel sheet, can making, application of graphite resin, filling,
An evaluation was performed. These results are shown in Table 1 and FIGS. It can be seen that the operating voltage after 30 minutes is low, and the amount of discharged electricity up to 0.9 V is slightly small.
【0024】[0024]
【発明の効果】本発明は高温保管性と長期保管性に優
れ、このような保管後も良好な放電特性を有する優れた
効果を奏する。The present invention is excellent in high-temperature storage property and long-term storage property, and has an excellent effect of having good discharge characteristics even after such storage.
【図1】本発明の電池缶の缶壁の断面図である。FIG. 1 is a sectional view of a can wall of a battery can of the present invention.
【図2】本発明の電池缶製造用鍍金鋼板の熱処理前の断
面図である。FIG. 2 is a sectional view of a plated steel sheet for manufacturing a battery can of the present invention before heat treatment.
【図3】本発明の電池缶の製造工程の説明図である。FIG. 3 is an explanatory view of a manufacturing process of the battery can of the present invention.
【図4】本発明の電池缶の製造工程の説明図である。FIG. 4 is an explanatory diagram of a manufacturing process of the battery can of the present invention.
【図5】本発明の電池缶の製造工程の説明図である。FIG. 5 is an explanatory view of a manufacturing process of the battery can of the present invention.
【図6】本発明の電池缶の製造工程の説明図である。FIG. 6 is an explanatory view of a manufacturing process of the battery can of the present invention.
【図7】本発明の電池缶の製造工程の説明図である。FIG. 7 is an explanatory diagram of a manufacturing process of the battery can of the present invention.
【図8】本発明の電池缶の製造工程の説明図である。FIG. 8 is an explanatory diagram of a manufacturing process of the battery can of the present invention.
【図9】本発明の電池缶の製造工程の説明図である。FIG. 9 is an explanatory diagram of a manufacturing process of the battery can of the present invention.
【図10】本発明の電池缶の製造工程の説明図である。FIG. 10 is an explanatory view of a manufacturing process of the battery can of the present invention.
【図11】−缶壁の各元素のスパッタリング時間に対す
る強度曲線である。FIG. 11 is an intensity curve with respect to a sputtering time of each element of a can wall.
【図12】電池の放電曲線である。FIG. 12 is a discharge curve of a battery.
【図13】作動電圧を示すグラフである。FIG. 13 is a graph showing an operating voltage.
【図14】放電電気量を示すグラフである。FIG. 14 is a graph showing the amount of discharge electricity.
1 電池缶の缶壁の鋼板 2 内側側 3 外側側 4 Sn−Ni合金層 5 Sn−Ni−Fe合金層 6 Ni−Fe合金層 7 Ni−Co合金層 8 Sn層 9 Ni層 DESCRIPTION OF SYMBOLS 1 Steel wall of can wall of battery can 2 Inner side 3 Outer side 4 Sn-Ni alloy layer 5 Sn-Ni-Fe alloy layer 6 Ni-Fe alloy layer 7 Ni-Co alloy layer 8 Sn layer 9 Ni layer
Claims (4)
g/m2であるNiまたはNiとFeを含むSn含有合
金であり、Sn含有合金層の厚みが0.02〜0.45
μmであることを特徴とする高温保管と長期経時耐性に
優れた電池缶。1. The inner surface of a can has a Sn content of 0.05 to 1.2.
g / m 2 , or a Sn-containing alloy containing Ni and Fe, wherein the thickness of the Sn-containing alloy layer is 0.02 to 0.45.
A battery can excellent in high-temperature storage and long-term aging resistance characterized by having a thickness of μm.
0.05〜0.5g/m2である、請求項1に記載され
た電池缶。2. The battery can according to claim 1, wherein the Sn content of the Sn-containing alloy layer on the inner surface of the can is 0.05 to 0.5 g / m 2 .
質的に合金層の表面から内方に向って低濃度側へ傾斜し
ている、請求項1または2に記載された電池缶。3. The battery can according to claim 1, wherein the Sn concentration of the Sn-containing alloy layer on the inner surface of the can is substantially inclined inward from the surface of the alloy layer toward the lower concentration side.
がSn−Ni合金層であり、内層がSn−Ni−Fe合
金層の2層構造である、請求項3に記載された電池缶。4. The battery can according to claim 3, wherein in the Sn-containing alloy layer on the inner surface of the can, the outer layer is a Sn—Ni alloy layer, and the inner layer has a two-layer structure of a Sn—Ni—Fe alloy layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10205736A JP2000011966A (en) | 1998-06-17 | 1998-06-17 | Battery can |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10205736A JP2000011966A (en) | 1998-06-17 | 1998-06-17 | Battery can |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000011966A true JP2000011966A (en) | 2000-01-14 |
Family
ID=16511822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10205736A Pending JP2000011966A (en) | 1998-06-17 | 1998-06-17 | Battery can |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000011966A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002050324A (en) * | 2000-08-04 | 2002-02-15 | Toyo Kohan Co Ltd | Surface treatment steel plate for battery case and battery case |
JP2002151017A (en) * | 2000-09-01 | 2002-05-24 | Hitachi Maxell Ltd | Alkaline dry cell |
JP2003535447A (en) * | 2000-05-26 | 2003-11-25 | ザ ジレット カンパニー | Forming method for electrochemical cell case |
WO2010035857A1 (en) * | 2008-09-25 | 2010-04-01 | Fdkエナジー株式会社 | Battery can and alkaline battery |
JP2010186649A (en) * | 2009-02-12 | 2010-08-26 | Fdk Energy Co Ltd | Alkaline cell |
SE2251574A1 (en) * | 2022-12-23 | 2024-06-24 | Northvolt Ab | A cylindrical can for secondary cells |
US12091725B2 (en) | 2017-10-23 | 2024-09-17 | Lg Energy Solution, Ltd. | Method of manufacturing cylindrical battery case having reduced surface roughness |
-
1998
- 1998-06-17 JP JP10205736A patent/JP2000011966A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003535447A (en) * | 2000-05-26 | 2003-11-25 | ザ ジレット カンパニー | Forming method for electrochemical cell case |
JP2002050324A (en) * | 2000-08-04 | 2002-02-15 | Toyo Kohan Co Ltd | Surface treatment steel plate for battery case and battery case |
JP2002151017A (en) * | 2000-09-01 | 2002-05-24 | Hitachi Maxell Ltd | Alkaline dry cell |
WO2010035857A1 (en) * | 2008-09-25 | 2010-04-01 | Fdkエナジー株式会社 | Battery can and alkaline battery |
JP2010080247A (en) * | 2008-09-25 | 2010-04-08 | Fdk Energy Co Ltd | Battery can and alkaline battery |
US8546015B2 (en) | 2008-09-25 | 2013-10-01 | Fdk Energy Co., Ltd. | Battery can and alkaline battery |
JP2010186649A (en) * | 2009-02-12 | 2010-08-26 | Fdk Energy Co Ltd | Alkaline cell |
US12091725B2 (en) | 2017-10-23 | 2024-09-17 | Lg Energy Solution, Ltd. | Method of manufacturing cylindrical battery case having reduced surface roughness |
SE2251574A1 (en) * | 2022-12-23 | 2024-06-24 | Northvolt Ab | A cylindrical can for secondary cells |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4491208B2 (en) | Battery can, manufacturing method thereof, and battery | |
JP4839024B2 (en) | Battery can and manufacturing method thereof | |
US6087040A (en) | Battery case having surface-treated steel sheet | |
JP2007335205A (en) | Steel sheet for forming battery can with superior leakage resistance and heavy-load discharge performance, its manufacturing method, battery can, and alkaline dry cell | |
JP2000011966A (en) | Battery can | |
TWI810538B (en) | Ni-plated steel foil for nickel-hydrogen secondary battery current collector, nickel-hydrogen secondary battery current collector, and nickel-hydrogen secondary battery | |
KR20010029455A (en) | Surface-treated steel plate for battery case, battery case and battery using the case | |
CN109072449B (en) | Steel plate for outer can of battery, outer can of battery and battery | |
KR100589884B1 (en) | Surface-treated steel sheet for battery case, battery case comprising the same, methods for producing them, and battery | |
JP4748665B2 (en) | Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container | |
JPH0794153A (en) | Manufacture of alkaline battery and negative electrode vessel | |
JP2007051325A (en) | Plated steel plate for battery case, battery case using the steel plate for battery case and battery using the battery case | |
JP2001085015A (en) | Porous nickel foil for alkaline storage battery negative electrode and manufacture therefor | |
JP4849856B2 (en) | Hydrogen storage alloy electrode, manufacturing method thereof, and alkaline storage battery | |
JP2021163639A (en) | Nickel plating steel foil for nickel-hydrogen secondary battery current collector, nickel-hydrogen secondary battery current collector, and nickel-hydrogen secondary battery | |
JP2021163648A (en) | Nickel plating steel foil for nickel-hydrogen secondary battery current collector, nickel-hydrogen secondary battery current collector, and nickel-hydrogen secondary battery | |
JP2002206190A (en) | Nickel-plated steel sheet for positive polarity can of alkali manganese battery | |
JP3594285B2 (en) | Surface-treated steel sheet for battery case, battery case using the same, manufacturing method thereof and battery | |
JP3840430B2 (en) | Surface-treated steel sheet for battery case and battery case | |
JPH11329378A (en) | Surface treated steel plate for battery case, battery case using same, and manufacture thereof and battery | |
JP2002208382A (en) | Nickel-plated steel plate for alkaline battery positive electrode can | |
JP4968877B2 (en) | Plated steel sheet for battery container, method for producing the same, battery container using the plated steel sheet for battery container, and battery using the battery container | |
JP2007005157A (en) | Plated steel plate for battery case, battery case using it, battery using it and manufacturing method of plated steel plate for battery case | |
JP2006307321A (en) | Plated steel sheet for battery vessel, battery vessel using the plated steel sheet for battery vessel, and battery using the battery vessel | |
JP2012114097A (en) | Plated steel sheet for battery container, method for producing the same, battery container using the plated steel sheet for battery container and battery using the battery container |