JP2009256734A - Laminated steel plate, and method for producing the same - Google Patents

Laminated steel plate, and method for producing the same Download PDF

Info

Publication number
JP2009256734A
JP2009256734A JP2008107902A JP2008107902A JP2009256734A JP 2009256734 A JP2009256734 A JP 2009256734A JP 2008107902 A JP2008107902 A JP 2008107902A JP 2008107902 A JP2008107902 A JP 2008107902A JP 2009256734 A JP2009256734 A JP 2009256734A
Authority
JP
Japan
Prior art keywords
steel
laminated
steel sheet
layer
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008107902A
Other languages
Japanese (ja)
Other versions
JP5114672B2 (en
Inventor
Hiroaki Sakamoto
広明 坂本
Toru Inaguma
徹 稲熊
Yoji Mizuhara
洋治 水原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008107902A priority Critical patent/JP5114672B2/en
Publication of JP2009256734A publication Critical patent/JP2009256734A/en
Application granted granted Critical
Publication of JP5114672B2 publication Critical patent/JP5114672B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel plate realizing high workability which has not been obtained heretofore, jointly realizing the increase of strength, the improvement of roughening resistance and the improvement of corrosion resistance, and having similar qualities even in the plate thickness of 5 to 10 mm, and to provide a method for producing the same. <P>SOLUTION: A plurality of steel plates are prepared, and a second layer is stuck at least to one side of a part or the whole of the plurality of steel plates, wherein, the second layer is a metal essentially consisting of a component other than Fe. Thereafter, rolling is performed, and heat treatment is performed, so as to recrystallize the steel plates. In this way, the accumulation degree of the ä222} face of the obtained laminated steel plate is remarkably made high, so as to improve its workability. Further, by selecting the kind of each layer in the laminated steel plate, high workability which has not obtained heretofore is realized, and also, the increase of strength, the improvement of roughening resistance and the improvement of corrosion resistance are jointly realized. Further, these excellent qualities can be realized in a thick steel plate whose plate thickness exceeds 5 mm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高い{222}面集積度を有する積層鋼板及びその製造方法に関するものである。   The present invention relates to a laminated steel sheet having a high {222} plane integration degree and a manufacturing method thereof.

自動車の車体や部品用、家電用、建材用等に使用される鋼板は、板厚を薄くして軽量化しても十分な強度が確保できるように高強度鋼板が要求されている。一方、これらの用途では、鋼板をプレス成形、深絞り成形などによって目的とする形状に加工するため、プレス成形時の加工が割れやしわを発生することなく実施できる優れた加工性が要求されている。また、ほとんどの場合、鋼板表面を塗装するため、即ち、良好な塗装性を得るために、成形しても鋼板の表面が肌荒れしない、耐肌荒れ性も要求される。同時に優れた耐食性が要求される用途もある。   Steel sheets used for automobile bodies, parts, household appliances, building materials, etc. are required to be high-strength steel sheets so that sufficient strength can be ensured even if the sheet thickness is reduced and the weight is reduced. On the other hand, in these applications, since the steel sheet is processed into the desired shape by press forming, deep drawing, etc., excellent workability that can be performed without generating cracks and wrinkles is required. Yes. Also, in most cases, in order to paint the surface of the steel sheet, that is, in order to obtain good paintability, the surface of the steel sheet is not roughened even if it is formed, and the rough skin resistance is also required. At the same time, there are applications that require excellent corrosion resistance.

特許文献1には、NbとCの含有量を調整し、特定の(222)集積度を有し、引張強さ440MPa以上の高強度と平均r値(ランクフォード値)1.2以上を有する、深絞り性に優れた高強度鋼板が記載されている。引用文献2には、板厚が1.2mm以上で、r値2.9以上が得られる、厚物の冷延鋼板が記載されている。引用文献3には、成形時に生じる深絞り高さの変動を低減し、部品の加工プロセスの簡略化を可能にする高炭素冷延鋼板が記載されている。引用文献4には、耐肌荒れ性と加工性の両立を図った極低炭素冷延鋼板が記載されている。   Patent Document 1 adjusts the contents of Nb and C, has a specific (222) accumulation degree, has a high strength with a tensile strength of 440 MPa or more, and an average r value (Rankford value) of 1.2 or more. A high-strength steel sheet excellent in deep drawability is described. Cited Document 2 describes a thick cold-rolled steel sheet having a sheet thickness of 1.2 mm or more and an r value of 2.9 or more. Cited Document 3 describes a high-carbon cold-rolled steel sheet that reduces fluctuations in the deep drawing height that occurs during forming and simplifies the part processing process. Cited Document 4 describes an ultra-low carbon cold-rolled steel sheet that achieves both rough skin resistance and workability.

鋼板の加工性はαFe相やγFe相の集合組織に依存し、特に鋼板面に結晶の{222}面集積度を増加させることによって向上できるとされている。   It is said that the workability of the steel sheet depends on the texture of the αFe phase and the γFe phase, and can be particularly improved by increasing the degree of {222} plane integration of crystals on the steel sheet surface.

特許文献5は、高強度冷延鋼板及び溶融亜鉛めっき鋼板に関するものであり、鋼板に含有されるSi、Mn、Pの各量を、板面に平行な{222}面と{200}面によるX線回折強度の比との間の一定式に基づいて制御することによって、鋼板の深絞り性が確保できることが示されている。しかしながら、表面に付与されるめっきが集合組織に与える影響については示されていない。   Patent Document 5 relates to a high-strength cold-rolled steel sheet and a hot-dip galvanized steel sheet, and each amount of Si, Mn, and P contained in the steel sheet is determined by a {222} plane and a {200} plane parallel to the plate surface. It is shown that the deep drawability of the steel sheet can be ensured by controlling based on a certain formula between the ratio of the X-ray diffraction intensities. However, there is no indication of the effect of plating applied to the surface on the texture.

特許文献6は、ほうろう用高強度冷延鋼板およびその製造方法に関するものである。ここでは、含有するC量でNb添加量を規定し、さらに、熱間圧延と冷間圧延の条件を規定することによって(111)集合組織を制御している。   Patent Document 6 relates to a high-strength cold-rolled steel sheet for enamel and a method for producing the same. Here, the (111) texture is controlled by defining the amount of Nb added by the amount of C contained, and further by defining the conditions for hot rolling and cold rolling.

特許文献7は、合金化溶融亜鉛めっき鋼板およびその製造方法に関するものである。X線回折強度のうち、{200}面強度と{222}面強度の比、I(200)/I(222)が、0.17未満となると、めっき表面に筋模様欠陥の発生がなくなること、および熱間圧延の仕上圧延温度をAr3+30℃(冷却時のフェライト変態が始まる温度+30℃)以上とすることによりX線回折強度比、I(200)/I(222)が0.17未満となるという知見が示されている。しかしながら、めっきを付与することによって、鋼板の集合組織が制御されたことは示されていない。 Patent Document 7 relates to an alloyed hot-dip galvanized steel sheet and a method for producing the same. Of the X-ray diffraction intensities, when the ratio of {200} plane intensity to {222} plane intensity, I (200) / I (222), is less than 0.17, streak pattern defects are not generated on the plating surface. When the finish rolling temperature of hot rolling is Ar 3 + 30 ° C. (temperature at which ferrite transformation starts during cooling + 30 ° C.) or higher, the X-ray diffraction intensity ratio, I (200) / I (222) is 0.17. The finding that it is less than is shown. However, it is not shown that the texture of the steel sheet is controlled by applying plating.

特許文献8は、加工性および耐肌荒れ性に優れた極低炭素冷延鋼板に関するものである。重量%で鋼中のC含有量が0.01%以下の極低炭素冷延鋼板であって、鋼板の表面より全板厚の1/10を占める表層部のフェライト粒度No.をa、板厚中心を中心として全板厚の1/2を占める内層部のフェライト粒度No.をbとするとき、a−b≧0.5、a≧7.0、b≦7.5を満足し、さらに{222}面と{200}面からの回折X線強度の比I(222)/I(200)を鋼板の表面より全板厚の1/15の部分で5.0以上、かつ鋼板の板厚中心部で12以上に制御することによって、プレス成型時の鋼板の肌荒れが軽減できるものであった。   Patent Document 8 relates to an ultra-low carbon cold-rolled steel sheet having excellent workability and rough skin resistance. It is an ultra-low carbon cold-rolled steel sheet having a C content of 0.01% or less by weight% in steel, and the ferrite grain size No. A, the ferrite grain size No. of the inner layer occupying 1/2 of the total thickness centering on the thickness center. Where a−b ≧ 0.5, a ≧ 7.0, and b ≦ 7.5 are satisfied, and the ratio I (222) of the diffracted X-ray intensity from the {222} plane and the {200} plane is satisfied. ) / I (200) is controlled to 5.0 or more at 1/15 of the total plate thickness from the surface of the steel plate and to 12 or more at the center of the plate thickness of the steel plate, thereby roughening the surface of the steel plate during press molding. It could be reduced.

以上に示したように、従来から鋼板の加工性を向上させるためにαFe相やγFe相の{222}面集積度を向上させる手法が考案され、鋼板成分、圧延条件や温度条件が最適化されてきた。   As described above, in order to improve the workability of the steel sheet, a method for improving the {222} plane integration degree of the αFe phase and the γFe phase has been devised, and the steel plate component, rolling conditions and temperature conditions have been optimized. I came.

さらに特許文献9では、Al含有量が6.5質量%以上10質量%以下の高Al含有鋼板で、αFe結晶の{222}面集積度が60%以上95%以下、又は{200}面集積度が0.01%以上15%以下にすることで、高いAl含有量でも加工性を高くできることが開示されている。また高Al含有鋼板で、前記の特定面の面集積度を向上させる方法として、Al含有量が3.5質量%以上6.5質量%未満の母材の表面に溶融Alめっき法でAl合金を付着させ、冷間圧延し、更に拡散熱処理することが開示されている。   Further, in Patent Document 9, a high Al-containing steel sheet having an Al content of 6.5% by mass to 10% by mass and an αFe crystal {222} plane integration degree of 60% to 95%, or {200} plane integration. It is disclosed that when the degree is 0.01% or more and 15% or less, the workability can be improved even with a high Al content. Further, as a method for improving the degree of surface integration of the specific surface with a high Al content steel sheet, an Al alloy is formed on the surface of the base material having an Al content of 3.5% by mass or more and less than 6.5% by mass by a hot Al plating method , Cold rolling, and diffusion heat treatment are disclosed.

一方、種類の異なる鋼板や金属板を積層した、いわゆる、クラッド鋼板が知られている。例えば、特許文献10〜12には、炭素鋼を母材として母材と種類の異なる鋼板や金属板を積層したクラッド鋼板が記載されている。   On the other hand, a so-called clad steel plate in which different types of steel plates and metal plates are laminated is known. For example, Patent Documents 10 to 12 describe a clad steel plate in which carbon steel is used as a base material and a steel plate or a metal plate different from the base material is laminated.

特許文献10では、母材を低炭素鋼として合わせ材をステンレス鋼にすることで耐食性に優れたクラッド鋼板が得られることが示されている。更に、前記低炭素鋼の酸可溶Al含有量を0.10〜1.5重量%の範囲にすることで、得られるクラッド鋼板の加工性を向上させ、加工時のしわ発生の抑制ができるとしている。   Patent Document 10 shows that a clad steel plate having excellent corrosion resistance can be obtained by using a low-carbon steel as a base material and stainless steel as a laminated material. Furthermore, by making the acid-soluble Al content of the low carbon steel in the range of 0.10 to 1.5% by weight, the workability of the resulting clad steel sheet can be improved, and the generation of wrinkles during processing can be suppressed. It is said.

特許文献11では、炭素鋼板の片面又は両面に非晶質合金をバンダとして耐食性金属板を積層した耐食性クラッド鋼板が示されている。前記耐食性金属板としては、チタン、ジルコニウム、タンタル、ニオブ、ニッケル、銅及びこれらの合金が使用できることも示されている。   Patent Document 11 discloses a corrosion-resistant clad steel plate in which a corrosion-resistant metal plate is laminated on one side or both sides of a carbon steel plate using an amorphous alloy as a bander. It is also shown that titanium, zirconium, tantalum, niobium, nickel, copper and alloys thereof can be used as the corrosion resistant metal plate.

特許文献12では、炭素鋼を母材として、合わせ材がステンレス鋼、高Ni合金あるいはNi基合金からなるクラッド鋼板が示され、靭性と耐食性に優れたクラッド鋼板とすることが記載されている。   Patent Document 12 discloses a clad steel plate in which carbon steel is used as a base material and the laminated material is stainless steel, a high Ni alloy, or a Ni-base alloy, and describes that the clad steel plate is excellent in toughness and corrosion resistance.

特開2005−120467号公報JP 2005-120467 A 特開平11−50211号公報JP-A-11-5021 特開2000−328172号公報JP 2000-328172 A 特開平11−350072号公報Japanese Patent Laid-Open No. 11-350072 特開平6−2069号公報JP-A-6-2069 特開平8−13081号公報Japanese Patent Laid-Open No. 8-13081 特開平10−18011号公報JP-A-10-18011 特開平11−350072号公報Japanese Patent Laid-Open No. 11-350072 特開2006−144116号公報JP 2006-144116 A 特開平11−77888号公報Japanese Patent Laid-Open No. 11-77888 特開2002−239741号公報JP 2002-239741 A 特開2003−27140号公報JP 2003-27140 A

従来から鋼板成分、圧延条件や温度条件を最適化してαFe相やγFe相の{222}面集積度を向上させる手法が考案され、鋼板の加工性向上のニーズに応えてきた。特許文献9では、Al含有量が6.5質量%以上10質量%以下の高Al含有鋼板で、αFe結晶の{222}面集積度が60%以上95%以下、又は{200}面集積度が0.01%以上15%以下にすることで、高いAl含有量でも加工性を高くできることが示された。   Conventionally, a technique for improving the {222} plane integration degree of the αFe phase and the γFe phase by optimizing the steel plate components, rolling conditions and temperature conditions has been devised to meet the needs for improving the workability of the steel plates. In Patent Document 9, a high Al content steel sheet having an Al content of 6.5% by mass or more and 10% by mass or less, and a {222} plane integration degree of αFe crystal is 60% or more and 95% or less, or a {200} plane integration degree. It was shown that the workability can be improved even when the Al content is high by setting the content of the steel to 0.01% or more and 15% or less.

自動車用鋼板、家電用鋼板をはじめとする、加工して使用される鋼板では、上記従来の手法で実現されるレベルを超えた加工性の向上が要求されている。また、加工性の向上と高強度化を合わせて具備することが要求されている。さらに、加工性の向上と高強度化のみならず、成形しても鋼板の表面が肌荒れしない耐肌荒れ性、あるいは優れた耐食性を同時に具備する鋼板が要求されている。これら鋼板は、当然ながら特許文献9に示されたような高Al含有鋼板で実現することはできない。   Steel sheets used for processing, including steel sheets for automobiles and steel sheets for home appliances, are required to improve workability beyond the level realized by the above-described conventional methods. Moreover, it is required to have both improved workability and higher strength. Furthermore, there is a demand for a steel sheet that has not only improved workability and high strength, but also has rough skin resistance that prevents the surface of the steel sheet from roughening even when it is formed, or excellent corrosion resistance. Naturally, these steel plates cannot be realized with a high Al content steel plate as shown in Patent Document 9.

特許文献9に記載の鋼板は、板厚5mmを上限とする。一方、板厚が5mmを超える厚鋼板において、加工性を向上する要求が高まっている。   The steel sheet described in Patent Document 9 has a maximum thickness of 5 mm. On the other hand, in a thick steel plate having a plate thickness exceeding 5 mm, there is an increasing demand for improving workability.

また、上述のように、クラッド鋼板とすることで、単一鋼板では達成できない機能複合させることがなされている。特に、特許文献10〜12のように、炭素鋼板を母材として、耐食性を有する鋼板や金属板を張り合わせることで炭素鋼板に耐食性を付与できる。また、母材の成分を調整することで加工性を高めることも行われている。しかしながら、従来のクラッド鋼板では、強加工すると、積層界面(クラッド界面)で剥離が生じるという問題があり、母材の成分調整で加工性を高めるとしても限界があった。また、前記積層界面での剥離は、クラッド鋼板の板厚が大きいほど顕著に現れるという問題があった。   In addition, as described above, by using a clad steel plate, a functional composite that cannot be achieved by a single steel plate is made. In particular, as in Patent Documents 10 to 12, corrosion resistance can be imparted to the carbon steel plate by bonding the steel plate or metal plate having corrosion resistance using the carbon steel plate as a base material. In addition, workability is improved by adjusting the components of the base material. However, the conventional clad steel plate has a problem that peeling occurs at the laminated interface (cladding interface) when it is hard-worked, and there is a limit even if the workability is improved by adjusting the components of the base material. Further, there is a problem that the peeling at the laminated interface appears more prominently as the thickness of the clad steel plate increases.

本発明は、従来の鋼板やクラッド鋼板では達成できない高い加工性を実現するとともに、高強度化、耐肌荒れ性の向上、耐食性の向上を合わせて実現することのできる積層鋼板とその製造方法を提供することを目的とする。併せて、板厚が5mmを超える厚鋼板において、高い加工性を実現することのできる積層鋼板とその製造方法を提供することを目的とする。   The present invention provides a laminated steel plate that can achieve high workability that cannot be achieved by conventional steel plates and clad steel plates, and that can be realized by combining high strength, improved rough skin resistance, and improved corrosion resistance, and a method for manufacturing the same. The purpose is to do. In addition, an object of the present invention is to provide a laminated steel plate capable of realizing high workability in a thick steel plate having a plate thickness exceeding 5 mm and a method for producing the same.

本発明者らは、複数の鋼板が積層され一体化した構造の積層鋼板で、前記積層鋼板の{222}面集積度を高くすることで、強加工しても積層界面での剥離が生じ難く、積層鋼板全体の板厚を大きくしても優れた加工性を有する積層鋼板が得られることを見い出した。更に、本発明者らは、前記積層鋼板を製造するにあたり、複数の鋼板を準備し、該複数の鋼板の積層面に、Fe以外を主成分とする金属である第二層を付着させ、第二層を付着させた該複数の鋼板を重ね合わせ、重ね合わせた鋼板に圧延を施し、その後、熱処理を施して鋼板組織の結晶を再結晶させることによって、得られる積層鋼板の{222}面集積度が著しく高くなり加工性が向上し、従来にない高い加工性を実現するとともに、耐肌荒れ性の向上を合わせて実現するに至った。更に、前記積層鋼板の各層の種類を選択することにより、高強度化や耐食性の向上も実現するに至った。   The inventors of the present invention are laminated steel plates having a structure in which a plurality of steel plates are laminated and integrated, and by increasing the {222} plane integration degree of the laminated steel plates, peeling at the lamination interface is less likely to occur even when subjected to strong processing. It has been found that a laminated steel sheet having excellent workability can be obtained even if the thickness of the whole laminated steel sheet is increased. Furthermore, the present inventors prepared a plurality of steel plates in manufacturing the laminated steel plate, and attached a second layer, which is a metal mainly composed of other than Fe, to the laminated surface of the plurality of steel plates, Stacking the steel plates with two layers attached, rolling the superposed steel plates, and then applying heat treatment to recrystallize the steel sheet structure, {222} plane integration of the obtained laminated steel plates The degree of remarkably increased, the workability improved, and unprecedented high workability was realized, and the improvement of the rough skin resistance was also realized. Further, by selecting the type of each layer of the laminated steel sheet, high strength and improved corrosion resistance have been realized.

即ち、その要旨とするところは以下のとおりである。
(1)炭素鋼と合金鋼の一方又は両方からなる複数の鋼板が積層され一体化している積層鋼板であって、前記積層鋼板の鋼板面と板厚中心の両方におけるαFe相またはγFe相の一方または両方の、鋼板面に対する{222}面集積度が60%以上99%以下または鋼板面に対する{200}面集積度が0.01%以上15%以下の一方または両方であることを特徴とする積層鋼板。
(2)前記炭素鋼が極低炭素鋼、低炭素鋼、中炭素鋼、あるいは高炭素鋼の少なくとも1種であることを特徴とする上記(1)に記載の積層鋼板。
(3)前記合金鋼がステンレス鋼であることを特徴とする上記(1)又は(2)に記載の積層鋼板。
(4)積層鋼板を構成する各層の鋼板は、Al含有量が6.5質量%未満の鋼板であることを特徴とする上記(1)乃至(3)のいずれかに記載の積層鋼板。
(5)積層鋼板を構成する各層鋼板の積層面及び積層鋼板の両表面の一部又は全部において、隣接する各層鋼板に比較し、Al、Ni、Si、Sn、V、Znのうち1つ以上の元素が濃化していることを特徴とする上記(1)乃至(4)のいずれかに記載の積層鋼板。
(6)積層鋼板の厚みが5μm以上10mm以下であることを特徴とする上記(1)乃至(5)のいずれかに記載の積層鋼板。
(7)積層鋼板を構成する各層の鋼板が同一の品種であることを特徴とする上記(1)乃至(6)のいずれかに記載の積層鋼板。
(8)板厚が10μm以上10mm以下の複数の鋼板を準備し、該複数の鋼板の一部又は全部の少なくとも片面に、Fe以外を主成分とする金属の第二層を付着させ、前記複数の鋼板を積層させ、該積層した鋼板を圧延し、その後熱処理によって再結晶させると同時に積層鋼板を一体化させる、ことを特徴とする積層鋼板の製造方法。
(9)付着させる第二層の厚みが0.05μm以上1000μm以下であることを特徴とする上記(8)に記載の積層鋼板の製造方法。
(10)前記第二層は、Fe、Al、Co、Cu、Cr、Ga、Hf、Hg、In、Mn、Mo、Nb、Ni、Pb、Pd、Pt、Sb、Si、Sn、Ta、Ti、V、W、Zn、Zrのうち1つ以上の元素を含有し、左記元素のうちFeを除くいずれかの元素を主成分とすることを特徴とする上記(8)又は(9)に記載の積層鋼板の製造方法。
(11)前記第二層はAlを含有し、前記準備した複数の鋼板はAl含有量が3.5質量%未満であることを特徴とする上記(8)乃至(10)のいずれかに記載の積層鋼板の製造方法。
(12)前記第二層はAlを含有せず、前記準備した複数の鋼板はAl含有量が6.5質量%未満であることを特徴とする上記(8)乃至(10)のいずれかに記載の積層鋼板の製造方法。
That is, the gist is as follows.
(1) A laminated steel plate in which a plurality of steel plates made of one or both of carbon steel and alloy steel are laminated and integrated, and one of the αFe phase or the γFe phase at both the steel plate surface and the thickness center of the laminated steel plate Alternatively, the {222} plane integration degree with respect to the steel plate surface is one or both of 60% or more and 99% or less, or the {200} plane integration degree with respect to the steel plate surface is 0.01% or more and 15% or less. Laminated steel sheet.
(2) The laminated steel sheet according to the above (1), wherein the carbon steel is at least one of ultra-low carbon steel, low carbon steel, medium carbon steel, or high carbon steel.
(3) The laminated steel sheet according to (1) or (2) above, wherein the alloy steel is stainless steel.
(4) The laminated steel sheet according to any one of (1) to (3), wherein the steel sheet of each layer constituting the laminated steel sheet is a steel sheet having an Al content of less than 6.5% by mass.
(5) One or more of Al, Ni, Si, Sn, V, and Zn compared to each adjacent layer steel plate in part or all of the laminated surface of each layer steel plate constituting the laminated steel plate and both surfaces of the laminated steel plate The laminated steel sheet according to any one of (1) to (4) above, wherein the element is concentrated.
(6) The laminated steel sheet according to any one of (1) to (5) above, wherein the thickness of the laminated steel sheet is 5 μm or more and 10 mm or less.
(7) The laminated steel sheet according to any one of (1) to (6), wherein the steel sheets of each layer constituting the laminated steel sheet are of the same type.
(8) A plurality of steel plates having a plate thickness of 10 μm or more and 10 mm or less are prepared, and a second layer of a metal having a component other than Fe as a main component is attached to at least one side of part or all of the plurality of steel plates. A method for producing a laminated steel sheet, comprising: laminating the steel sheets, rolling the laminated steel sheets, and then recrystallizing by heat treatment and simultaneously integrating the laminated steel sheets.
(9) The method for producing a laminated steel sheet according to (8) above, wherein the thickness of the second layer to be adhered is 0.05 μm or more and 1000 μm or less.
(10) The second layer includes Fe, Al, Co, Cu, Cr, Ga, Hf, Hg, In, Mn, Mo, Nb, Ni, Pb, Pd, Pt, Sb, Si, Sn, Ta, Ti (8) or (9), which contains one or more elements of V, W, Zn, and Zr, and contains as a main component any one of the elements described above except Fe. Manufacturing method for laminated steel sheets.
(11) The second layer contains Al, and the plurality of prepared steel plates have an Al content of less than 3.5% by mass, according to any one of (8) to (10), Manufacturing method for laminated steel sheets.
(12) The second layer does not contain Al, and the plurality of prepared steel plates have an Al content of less than 6.5% by mass, according to any one of (8) to (10), The manufacturing method of the laminated steel plate of description.

本発明の積層鋼板は、高い{222}面集積度を有するので、強加工しても積層界面で剥離が生じ難く、加工性に優れる。よって、本発明の積層鋼板は、様々な形状に容易に加工できるようになり、さらに冷間圧延によって薄い箔とすることも可能である。また、積層鋼板の各層の種類を選択することにより、従来にない高い加工性を実現するとともに、高強度化、耐肌荒れ性の向上、耐食性の向上を合わせて実現することができる。さらに、板厚が5mmを超える厚鋼板においてこれらの優れた品質を実現することができる。これらは、複雑形状のプレス成型が必要な自動車用部品や家電製品部品などの外板をはじめとした各種構造材料、機能材料等に有用される。また、本発明の方法では、新たな設備を作らなくとも既存設備の工程を入れ替えるだけで容易に高い{222}面集積度を有する鋼板の製造が可能となる。したがって、容易に低コストで本発明の鋼板の製造が可能となる。   Since the laminated steel sheet of the present invention has a high {222} plane integration degree, even if it is strongly processed, peeling hardly occurs at the laminated interface, and the processability is excellent. Therefore, the laminated steel sheet of the present invention can be easily processed into various shapes, and can be made into a thin foil by cold rolling. In addition, by selecting the type of each layer of the laminated steel sheet, it is possible to achieve high workability that has not been achieved in the past, as well as high strength, improved skin roughness resistance, and improved corrosion resistance. Furthermore, these excellent qualities can be realized in a thick steel plate having a plate thickness exceeding 5 mm. These are useful for various structural materials, functional materials, and the like such as outer plates of automobile parts and home appliance parts that require complex-shaped press molding. Further, in the method of the present invention, it is possible to easily manufacture a steel plate having a high {222} plane integration degree by simply replacing the process of existing equipment without creating new equipment. Therefore, the steel plate of the present invention can be easily manufactured at low cost.

特許文献9に記載の鋼板は、Al含有量が6.5質量%以上10質量%以下の高Al含有鋼板であって、αFe相の{222}面集積度が60%以上95%以下、または{200}面集積度が0.01%以上15%以下の一方または両方の高Al含有鋼板である。この鋼板の製造はAlを3.5質量%以上6.5質量%以下含有する鋼板の少なくとも片面にAl合金を付着させ、冷間で加工歪みを付与させた後にAlを拡散させる熱処理を施すものであった。   The steel sheet described in Patent Document 9 is a high Al-containing steel sheet having an Al content of 6.5% by mass or more and 10% by mass or less, and the {222} plane integration degree of the αFe phase is 60% or more and 95% or less, or {200} One or both high Al-containing steel sheets having a {200} plane integration degree of 0.01% or more and 15% or less. The production of this steel sheet is performed by heat-treating Al after adhering Al alloy to at least one side of the steel sheet containing 3.5% by mass or more and 6.5% by mass or less of Al, and applying cold working strain. Met.

本発明者らは、{222}面集積度をさらに向上させる技術開発に取り組み、各種実験を行ってきた。その結果、鋼板に付着させる金属はAlに限定されず、Fe以外の金属からなる第二層を鋼板に付着させたまま冷間圧延(冷延)を施し、その後に熱処理で鋼板組織の結晶を再結晶させることによって{222}面集積度が向上できること、この現象が冷延の際に鋼中に形成される特別な転位組織によって発現できることを発見した。熱処理により該転位組織から{222}面集合組織を発達させるような再結晶核が発生するようになるのである。さらに、再結晶後の鋼板のAl含有量が6.5質量%未満となるような成分系であると上記再結晶核の発生頻度が高くなる傾向にあり、結果としてより高い{222}面集積度を有する鋼板が得られるようになった。第二層を付着させる鋼板のAl含有量を3.5質量%以下とすることにより、再結晶後の鋼板のAl含有量が6.5質量%未満である鋼板製造を可能とした。   The inventors of the present invention have been engaged in technological development for further improving the {222} plane integration degree and have conducted various experiments. As a result, the metal to be attached to the steel plate is not limited to Al, and cold rolling (cold rolling) is performed while the second layer made of a metal other than Fe is attached to the steel plate, and then the steel structure is crystallized by heat treatment. It was discovered that {222} plane integration can be improved by recrystallization, and this phenomenon can be manifested by a special dislocation structure formed in the steel during cold rolling. Recrystallization nuclei that develop {222} plane texture from the dislocation structure are generated by the heat treatment. Furthermore, if the component system is such that the Al content of the steel sheet after recrystallization is less than 6.5% by mass, the recrystallization nuclei tend to be generated more frequently, resulting in higher {222} plane integration. A steel sheet having a degree has been obtained. By making the Al content of the steel sheet to which the second layer is adhered not more than 3.5% by mass, it is possible to produce a steel sheet having an Al content of less than 6.5% by mass after recrystallization.

そして、第二層を付着した鋼板を複数重ね合わせた上で圧延し、熱処理によって再結晶させることにより、重ね合わせた鋼板を一体化させて積層鋼板とし、その積層鋼板の{222}面集積度を著しく向上できることを明らかにした。{222}面集積度が著しく高くなり加工性が向上するとともに、積層している各層が同じ{222}面で配向して接しているので、強加工して積層界面で剥離し難くなり、従来にない高い加工性を実現するに至った。更に、積層鋼板の各層の種類を選択することにより、高強度化、耐肌荒れ性の向上、耐食性の向上を合わせて実現するに至った。   A plurality of steel plates with the second layer attached are rolled and rolled, and recrystallized by heat treatment to integrate the stacked steel plates into a laminated steel plate, and the {222} plane integration degree of the laminated steel plate It was clarified that can be improved significantly. The {222} plane integration degree is remarkably increased and the workability is improved, and the laminated layers are oriented and in contact with the same {222} plane, so that it is difficult to peel off at the lamination interface. High workability that was not possible was achieved. Furthermore, by selecting the type of each layer of the laminated steel sheet, the high strength, improved skin roughness resistance, and improved corrosion resistance have been realized.

本発明の積層鋼板は、炭素鋼と合金鋼の一方又は両方からなる複数の鋼板が積層され一体化している積層鋼板であって、積層鋼板の鋼板面の表面と板厚中心の両方におけるαFe相またはγFe相の一方または両方の、鋼板面に対する{222}面集積度が60%以上99%以下または{200}面集積度が0.01%以上15%以下の一方または両方である。複数の鋼板が配向して積層されて一体化しているので、積層鋼板の各層の種類を選択することにより、従来にない高い加工性を実現するとともに、高強度化、耐肌荒れ性の向上、耐食性の向上を合わせて実現することができる。各層の鋼板には、炭素鋼と合金鋼の一方又は両方を選択することができる。自動車用鋼板や家電用鋼板として通常に使用される鋼板が、炭素鋼と合金鋼だからである。   The laminated steel sheet of the present invention is a laminated steel sheet in which a plurality of steel sheets made of one or both of carbon steel and alloy steel are laminated and integrated, and an αFe phase at both the surface of the steel sheet surface and the thickness center of the laminated steel sheet Alternatively, one or both of the {222} plane integration degree with respect to the steel sheet surface of one or both of the γFe phases is 60% or more and 99% or less or the {200} plane integration degree is 0.01% or more and 15% or less. Since multiple steel plates are oriented and stacked to integrate, by selecting the type of each layer of the laminated steel plates, high workability that has never been achieved, high strength, improved skin roughness resistance, and corrosion resistance This can be realized together. One or both of carbon steel and alloy steel can be selected as the steel plate of each layer. This is because the steel plates normally used as steel plates for automobiles and steel plates for household appliances are carbon steel and alloy steel.

本発明における上記一体化とは、積層鋼板の各層が前述のように配向してお互いに直接金属結合している状態である。特許文献8又は9の配向鋼板を複数用意して、それぞれを接着剤で張り合わせたり、ろう付けしたりして得られる積層鋼板では、本発明の効果は得られない。   The above-mentioned integration in the present invention is a state in which the layers of the laminated steel plates are oriented as described above and are directly metal-bonded to each other. The effect of the present invention cannot be obtained with a laminated steel sheet obtained by preparing a plurality of oriented steel sheets of Patent Document 8 or 9 and pasting or brazing each with an adhesive.

本発明の積層鋼板を構成する各鋼板は、αFe相またはγFe相の一方または両方から構成されている。αFe相は構造が体心立方のFe結晶相であり、他原子がFeを一部置換したり、Fe原子間に侵入したりしたものを含んでいる。γFe相は構造が面心立方のFe結晶相であり、他原子がFeを一部置換したり、Fe原子間に侵入したりしたものを含んでいる。   Each steel plate constituting the laminated steel plate of the present invention is composed of one or both of an αFe phase and a γFe phase. The αFe phase is an Fe crystal phase having a body-centered cubic structure, and includes those in which other atoms partially substitute for Fe or penetrate between Fe atoms. The γFe phase is an Fe crystal phase having a face-centered cubic structure, and includes those in which other atoms partially substitute for Fe or penetrate between Fe atoms.

本発明の積層鋼板では、鋼板面に対するαFe相またはγFe相の一方または両方の、{222}面集積度が60%以上99%以下または{200}面集積度が0.01%以上15%以下の一方または両方であることを特徴としている。{222}面集積度が低くかつ{200}面集積度が高いと、プレス加工、深絞り加工の際に破断、割れが生じやすくなるが、{222}面集積度が60%以上又は{200}面集積度15%未満であれば良好な加工性を実現することができる。一方、{222}面集積度が99%超かつ{200}面集積度が0.01%未満となると加工性の効果は飽和する。そのため、{222}面集積度が60%以上99%以下または{200}面集積度が0.01%以上15%以下の一方または両方であることとした。各面集積度が本発明の範囲であると、絞り加工の評価値である平均r値が2.5以上となり、優れた加工性が得られるようになる。   In the laminated steel sheet of the present invention, the {222} plane integration degree is 60% or more and 99% or less or the {200} plane integration degree is 0.01% or more and 15% or less of one or both of the αFe phase and the γFe phase with respect to the steel sheet surface. It is characterized by being one or both of the above. If the {222} plane integration degree is low and the {200} plane integration degree is high, breakage and cracking are likely to occur during press working and deep drawing, but the {222} plane integration degree is 60% or more or {200 } If the degree of surface integration is less than 15%, good workability can be realized. On the other hand, when the {222} plane integration degree exceeds 99% and the {200} plane integration degree is less than 0.01%, the workability effect is saturated. Therefore, the {222} plane integration degree is 60% or more and 99% or less, or the {200} plane integration degree is 0.01% or more and 15% or less. When the degree of surface integration is within the range of the present invention, the average r value, which is an evaluation value for drawing, is 2.5 or more, and excellent workability can be obtained.

ここで面集積度の測定は、MoKα線によるX線回折法で行うことができる。αFe相の{222}面集積度、および、{200}面集積度は以下のように求める。試料表面に対して平行なFeのα結晶11面{110}、{200}、{211}、{310}、{222}、{321}、{411}、{420}、{332}、{521}、{442}の積分強度を測定し、その測定値それぞれをランダム方位である試料の理論積分強度で除した後、{200}あるいは{222}強度の比率を百分率で求めた。これは、例えば、{222}強度比率では、以下の式(1)で表される。
{222}面集積度
=[{i(222)/I(222)}/{Σi(hkl)/I(hkl)}]×100 … (1)
ただし、記号は以下の通りである。
i(hkl):測定した試料における{hkl}面の実測積分強度
I(hkl):ランダム方位をもつ試料における{hkl}面の理論積分強度
Σ :α−Fe結晶11面についての和
Here, the measurement of the degree of surface integration can be performed by an X-ray diffraction method using MoKα rays. The {222} plane integration degree and {200} plane integration degree of the αFe phase are obtained as follows. 11 α-faces of Fe crystal parallel to the sample surface {110}, {200}, {211}, {310}, {222}, {321}, {411}, {420}, {332}, { The integral intensities of 521} and {442} were measured, and each of the measured values was divided by the theoretical integral intensity of the sample having a random orientation, and then the ratio of {200} or {222} intensity was determined as a percentage. This is expressed, for example, by the following expression (1) in the {222} intensity ratio.
{222} plane integration degree = [{i (222) / I (222)} / {Σi (hkl) / I (hkl)}] × 100 (1)
However, the symbols are as follows.
i (hkl): Measured integrated intensity of {hkl} plane in the measured sample I (hkl): Theoretical integrated intensity of {hkl} plane in the sample with random orientation Σ: Sum of the α-Fe crystal 11 plane

同様に、γFe相の{222}面集積度および{200}面集積度は以下のように求める。試料表面に対して平行なFeのγ結晶6面{111}、{200}、{220}、{311}、{331}、{420}の積分強度を測定し、その測定値それぞれをランダム方位である試料の理論積分強度で除した後、{200}あるいは{222}強度の比率を百分率で求めた。これは、例えば、{222}強度比率では、以下の式(2)で表される。
{222}面集積度
=[{i(222)/I(222)}/{Σi(hkl)/I(hkl)}]×100 … (2)
ただし、記号は以下の通りである。
i(hkl):測定した試料における{hkl}面の実測積分強度
I(hkl):ランダム方位をもつ試料における{hkl}面の理論積分強度
Σ :γ−Fe結晶6面についての和
Similarly, the {222} plane integration degree and {200} plane integration degree of the γFe phase are obtained as follows. Integral intensity of Fe γ crystal 6 planes {111}, {200}, {220}, {311}, {331}, {420} parallel to the sample surface is measured, and each of the measured values is randomly oriented. Then, the ratio of {200} or {222} intensity was obtained as a percentage. This is expressed, for example, by the following formula (2) in the {222} intensity ratio.
{222} plane integration degree = [{i (222) / I (222)} / {Σi (hkl) / I (hkl)}] × 100 (2)
However, the symbols are as follows.
i (hkl): Measured integrated intensity of {hkl} plane in the measured sample I (hkl): Theoretical integrated intensity of {hkl} plane in the sample with random orientation Σ: Sum of six faces of γ-Fe crystal

ここで、αFe結晶粒に関しては、別途EBSP(後方散乱電子回折像(Electron Backscattering Diffraction Pattern))法によっても{222}面集積度を求められる。EBSP法で測定できる結晶面の総面積に対する{222}の面積率が、{222}集積度となる。したがって、前記方法によっても、本発明の積層鋼板は、{222}面集積度が60%以上98%以下である。本発明では、前記すべての分析手法で得られる値が本発明の規定範囲を満足する必要はなく、一つの分析手法で得られる値が本発明の規定範囲を満足すればその効果が得られるものである。   Here, regarding the αFe crystal grains, the {222} plane integration degree can also be obtained separately by EBSP (Electron Backscattering Diffraction Pattern) method. The {222} area ratio with respect to the total area of the crystal plane that can be measured by the EBSP method is the {222} integration degree. Therefore, the {222} plane integration degree of the laminated steel sheet of the present invention is 60% or more and 98% or less also by the above method. In the present invention, it is not necessary that the values obtained by all the analysis methods satisfy the specified range of the present invention, and the effect can be obtained if the values obtained by one analysis method satisfy the specified range of the present invention. It is.

また、EBSP法では、鋼板面に対して{222}面のずれが生じるが、前記ずれが30°以内であることが好ましい。{222}面のずれをL断面で観察し、L断面における{222}面のずれが30°以下の結晶粒の面積割合が80〜99.9%である方がより好ましい。更に好ましくは、L断面における{222}面のずれが0〜10°の結晶粒の面積割合が40〜98%である。   Further, in the EBSP method, the {222} plane shift occurs with respect to the steel plate surface, but the shift is preferably within 30 °. It is more preferable that the deviation of the {222} plane is observed in the L cross section, and the area ratio of crystal grains in which the deviation of the {222} plane in the L cross section is 30 ° or less is 80 to 99.9%. More preferably, the area ratio of crystal grains having a deviation of {222} plane in the L cross section of 0 to 10 ° is 40 to 98%.

また、平均r値はJIS Z 2254で求められる平均塑性ひずみ比を意味し、以下の式で算出される値である。
平均r値=(r0+2r45+r90)/4 … (3)
なお、r0、r45、r90は、試験片を板面の圧延方向に対し、それぞれ0°、45°、90°方向に採取し測定した塑性ひずみ比である。
The average r value means an average plastic strain ratio obtained by JIS Z 2254, and is a value calculated by the following formula.
Average r value = (r 0 + 2r 45 + r 90 ) / 4 (3)
R 0 , r 45 , and r 90 are plastic strain ratios obtained by measuring the test pieces in the 0 °, 45 °, and 90 ° directions with respect to the rolling direction of the plate surface.

ここで、ランダム方位を持つ試料の積分強度は、試料を用意して実測して求めてもよい。   Here, the integrated intensity of a sample having a random orientation may be obtained by preparing a sample and actually measuring it.

本発明に使用できる炭素鋼は、特に限定しないが、例えば、極低炭素鋼、低炭素鋼、中炭素鋼、高炭素鋼、超高炭素鋼(炭素含有量1.6%以上)等が挙げられる。特に、炭素鋼が極低炭素鋼、低炭素鋼、中炭素鋼、あるいは高炭素鋼の少なくとも1種であると好ましい。炭素濃度が数十ppm以下の極低炭素鋼を用いることにより、自動車用鋼板のような優れた深絞り性を実現することができる。低炭素鋼を用いることにより、極低炭素鋼よりも高い降伏強度と優れた深絞り性を実現することができる。中炭素鋼を用いることにより、高い引っ張り強度と優れた深絞り性を実現することができる。高炭素鋼を用いることにより、高い耐磨耗性と優れた深絞り性を実現することができる。   The carbon steel that can be used in the present invention is not particularly limited, and examples thereof include extremely low carbon steel, low carbon steel, medium carbon steel, high carbon steel, and ultra high carbon steel (carbon content of 1.6% or more). It is done. In particular, the carbon steel is preferably at least one of ultra-low carbon steel, low carbon steel, medium carbon steel, or high carbon steel. By using an ultra-low carbon steel having a carbon concentration of several tens of ppm or less, excellent deep drawability like that of a steel plate for automobiles can be realized. By using the low carbon steel, it is possible to realize higher yield strength and superior deep drawability than the ultra low carbon steel. By using medium carbon steel, high tensile strength and excellent deep drawability can be realized. By using high carbon steel, high wear resistance and excellent deep drawability can be realized.

本発明に使用できる合金鋼は、特に限定しないが、例えば、ステンレス鋼、クロムモリブデン鋼、マンガンモリブデン鋼等が挙げられる。また、前記合金鋼としては、低合金鋼、中合金鋼、高合金鋼のいずれの場合でもよい。特に、合金鋼がステンレス鋼であると好ましい。積層鋼板の最表面を構成する鋼板をステンレス鋼とすることにより、優れた耐食性を具備した鋼板とすることができる。   Although alloy steel which can be used for this invention is not specifically limited, For example, stainless steel, chromium molybdenum steel, manganese molybdenum steel etc. are mentioned. Further, the alloy steel may be any of low alloy steel, medium alloy steel, and high alloy steel. In particular, the alloy steel is preferably stainless steel. By making the steel plate which comprises the outermost surface of a laminated steel plate into stainless steel, it can be set as the steel plate provided with the outstanding corrosion resistance.

高い{222}面集積度を有する積層鋼板を3層とし、両表面をステンレス鋼、内部を極低炭素鋼とすれば、内部の極低炭素鋼の特質によって積層鋼板のプレス成形性と深絞り性を実現し、両表面のステンレス鋼によって積層鋼板の耐食性を合わせて実現することができる。プレス成形性、深絞り性、鋼板強度の必要条件に応じ、内部の鋼板を極低炭素鋼に替えて低炭素鋼、中炭素鋼、高炭素鋼とするとよい。積層鋼板を2層とし、一方をステンレス鋼、他方を極低炭素鋼(又は低炭素鋼、中炭素鋼、高炭素鋼)とすれば、鋼板の一方のみを高耐食性とすることができる。   If the laminated steel sheet with a high {222} plane integration degree is composed of three layers, both surfaces are made of stainless steel and the inside is made of ultra-low carbon steel, the press formability and deep drawing of the laminated steel sheet will depend on the characteristics of the inside ultra-low carbon steel. The corrosion resistance of the laminated steel sheet can be realized by the stainless steel on both surfaces. Depending on the requirements of press formability, deep drawability, and steel plate strength, the internal steel plate may be replaced with ultra-low carbon steel to be low carbon steel, medium carbon steel, or high carbon steel. If the laminated steel sheet has two layers and one is made of stainless steel and the other is made of extremely low carbon steel (or low carbon steel, medium carbon steel, high carbon steel), only one of the steel sheets can have high corrosion resistance.

通常、耐肌荒れ性は鋼板の結晶粒径が小さい方がより優れるが、結晶粒径が小さくなると深絞り性が劣化してしまう。そこで本発明の積層鋼板の製造工程において、複数の鋼板を積層させる場合に両側表面に配置する鋼板の結晶粒径を中心部に配置する鋼板の結晶粒径よりも小さくなる鋼種とすれば、耐肌荒れ性は表面に配置した鋼板が担い、深絞り性はそれらより中心部に配置した鋼板が担うことによって、耐肌荒れ性と深絞り性の両者に優れた積層鋼板とすることができる。両側表層に配置する結晶粒径の小さな鋼板は、例えば、第二層を付着させる前の鋼板のC、Ti、Mn、Siなどの含有量を高くするなどの従来公知の方法を適用することによって製造できる。   Normally, the rough skin resistance is better when the crystal grain size of the steel sheet is smaller, but if the crystal grain size becomes smaller, the deep drawability deteriorates. Therefore, in the production process of the laminated steel sheet of the present invention, when a plurality of steel sheets are laminated, if the steel grain size is smaller than the crystal grain diameter of the steel sheet disposed at the center part, The surface roughness is borne by the steel sheet disposed on the surface, and the deep drawability is borne by the steel sheet disposed in the center of the surface, whereby a laminated steel sheet having both excellent skin resistance and deep squeezability can be obtained. By applying a conventionally known method such as increasing the content of C, Ti, Mn, Si, etc. of the steel sheet before the second layer is deposited, for example, the steel sheet with a small crystal grain size arranged on both surface layers. Can be manufactured.

積層鋼板を構成する各層の鋼板は、Al含有が6.5質量%未満であると好ましい。Al含有量が6.5質量%未満であると、それより高いAl含有量に比較し、高い{222}面集合組織が容易に得られるようになり、引っ張り破断伸びが向上し、高い{222}面集積度を有しかつ十分な加工性が得られるからである。   The steel plate of each layer constituting the laminated steel plate preferably has an Al content of less than 6.5% by mass. When the Al content is less than 6.5% by mass, a high {222} plane texture can be easily obtained as compared with a higher Al content, the tensile breaking elongation is improved, and the high {222} This is because it has a degree of surface integration and sufficient workability can be obtained.

本発明の積層鋼板を構成する各層鋼板の積層面及び積層鋼板の両表面の一部又は全部において、隣接する各層鋼板に比較し、Al、Co、Cu、Cr、Ga、Hf、Hg、In、Mn、Mo、Nb、Ni、Pb、Pd、Pt、Sb、Si、Sn、Ta、Ti、V、W、Zn、Zr等のうち1つ以上の元素が濃化していることが好ましい。特に、好ましい元素は、Al、Ni、Si、Sn、V、Znのうち1つ以上の元素である。前記元素は、強加工しても積層界面で剥離を起さないで、高い加工性を得られ易い。   Compared with adjacent steel sheets, Al, Co, Cu, Cr, Ga, Hf, Hg, In, in part or all of both surfaces of the laminated steel sheets and laminated steel sheets constituting the laminated steel sheets of the present invention It is preferable that one or more elements among Mn, Mo, Nb, Ni, Pb, Pd, Pt, Sb, Si, Sn, Ta, Ti, V, W, Zn, Zr, and the like are concentrated. Particularly preferred elements are one or more of Al, Ni, Si, Sn, V, Zn. Even if the element is strongly processed, it is easy to obtain high processability without causing separation at the laminated interface.

本発明の積層鋼板の厚みは、特に限定しないが、製造上より好ましくは、5μm以上10mm以下である。積層鋼板の厚みが薄すぎると製造歩留まりが低下することがあるが、厚みが5μm以上であればこのような問題を発生させることなく製造することができる。特許文献9に記載の鋼板は、板厚最大値が5mmであった。本発明においては、積層鋼板の各層を構成する鋼板について{222}面集積度を低下させることのない板厚は最大5mmである。各層の鋼板の板厚が5mm以下であれば、圧延後の積層鋼板に形成された第二層相互間の距離の最大値も5mm以下となるので、圧延後の熱処理において各層の鋼板の{222}面集積度を十分に向上することができる。このような各層鋼板が複数積層されているので、積層鋼板の板厚は最大10mmまでとするのが効率的な製造上好ましい。積層鋼板の厚みが厚すぎると{222}面集積度が低下することがあるが、厚みが10mm以下であればこのような問題のない積層鋼板とすることができる。   The thickness of the laminated steel sheet of the present invention is not particularly limited, but is preferably 5 μm or more and 10 mm or less from the viewpoint of production. If the thickness of the laminated steel sheet is too thin, the production yield may decrease, but if the thickness is 5 μm or more, it can be produced without causing such a problem. The steel plate described in Patent Document 9 had a maximum thickness value of 5 mm. In the present invention, the maximum thickness of the steel plates constituting each layer of the laminated steel plates without reducing the {222} plane integration degree is 5 mm. If the steel plate thickness of each layer is 5 mm or less, the maximum value of the distance between the second layers formed on the laminated steel plate after rolling is also 5 mm or less. Therefore, in the heat treatment after rolling, {222 } The degree of surface integration can be sufficiently improved. Since a plurality of such layer steel plates are laminated, the thickness of the laminated steel plates is preferably up to 10 mm for efficient production. If the thickness of the laminated steel sheet is too thick, the {222} plane integration degree may decrease, but if the thickness is 10 mm or less, a laminated steel sheet having no such problem can be obtained.

本発明の積層鋼板は、積層鋼板を構成する各層の鋼板が同一の品種であることとしてもよい。同一の品種の鋼板を積層しているので、積層鋼板の品質は、同じ厚みを有する単層鋼板と同等の品質を具備することとなる。従来、高い{222}面集積度を有する単層鋼板としては、特許文献9にあるように、最大厚み5mmが限界であった。それに対し、本発明においては5mmを超え10mmに至る厚鋼板を得ることができるので、板厚5mmを超える厚鋼板における加工性向上の要求に応えることが初めて可能になった。本発明の、各層の鋼板が同一の品種である積層鋼板において、積層鋼板であることを確認する手段として、板厚方向の断面組織観察を用いることができる。また、積層面に第二層を付着させた鋼板を重ね合わせた後、圧延し、その後、熱処理する工程をとって製造した本発明の積層鋼板に関しても、積層鋼板であることを確認する手段として、板厚方向の断面組織観察を用いることができる。重ね合わせられる各鋼板は必ず第二層を介していることになる。熱処理によって第二層を均一に拡散せて一体化して積層した後においても、熱処理前に第二層が存在していた部位近傍の結晶粒界は直線的な形状となっているために、通常の金属組織の観察手段によって、結晶粒の形を観察すれば、積層され一体化したものであるかどうかを容易に判別することができる。   In the laminated steel sheet of the present invention, the steel sheets of each layer constituting the laminated steel sheet may be the same type. Since steel plates of the same type are laminated, the quality of the laminated steel plates is equivalent to that of single-layer steel plates having the same thickness. Conventionally, as disclosed in Patent Document 9, a maximum thickness of 5 mm has been a limit for a single-layer steel sheet having a high degree of {222} plane integration. On the other hand, in the present invention, since it is possible to obtain a thick steel plate exceeding 5 mm and reaching 10 mm, it has become possible for the first time to meet the demand for workability improvement in a thick steel plate exceeding 5 mm. In the laminated steel sheets of the present invention in which the steel sheets of the respective layers are of the same type, cross-sectional structure observation in the thickness direction can be used as means for confirming that the steel sheets are laminated steel sheets. In addition, as a means for confirming that it is a laminated steel sheet, the laminated steel sheet of the present invention manufactured by superposing and rolling the steel sheet with the second layer adhered to the laminated surface, and then performing a heat treatment process. The cross-sectional structure observation in the plate thickness direction can be used. Each steel plate to be overlaid always passes through the second layer. Even after the second layer is uniformly diffused and laminated by heat treatment, the crystal grain boundary near the portion where the second layer existed before the heat treatment has a linear shape. By observing the shape of the crystal grains by the means for observing the metal structure, it is possible to easily determine whether or not they are laminated and integrated.

次に、本発明の積層鋼板の製造方法について説明する。   Next, the manufacturing method of the laminated steel plate of this invention is demonstrated.

板厚が10μm以上10mm以下の複数の鋼板を準備し、該複数の鋼板の一部又は全部の少なくとも片面に第二層を付着させる。第二層はFe以外を主成分とする金属である。前記複数の鋼板を重ね合わせ、該重ね合わせた鋼板を圧延し、その後熱処理によって再結晶させると同時に各鋼板を一体化して積層させることにより、本発明の高い{222}面集積度を有する積層鋼板を製造することができる。   A plurality of steel plates having a thickness of 10 μm or more and 10 mm or less are prepared, and the second layer is attached to at least one side of a part or all of the plurality of steel plates. The second layer is a metal whose main component is other than Fe. By laminating the plurality of steel plates, rolling the superposed steel plates and then recrystallizing by heat treatment, and simultaneously laminating each steel plate, the laminated steel plate having a high degree of {222} plane integration of the present invention Can be manufactured.

積層する前の鋼板の板厚は10μm以上10mm以下とする。板厚が10μm未満では積層する際のハンドリングが煩雑になり歩留が低下してしまう。一方、積層する前の板厚が10mmを超えると、積層鋼板の{222}面集積度が低下してしまう。   The plate thickness of the steel plates before lamination is 10 μm or more and 10 mm or less. If the plate thickness is less than 10 μm, handling at the time of stacking becomes complicated and the yield decreases. On the other hand, if the plate thickness before lamination exceeds 10 mm, the {222} plane integration degree of the laminated steel plate is lowered.

高い{222}面集積度を得るためには、積層鋼板を構成する各層の鋼板の一部又は全部の少なくとも片面に、第二層を付着した状態で圧延を施すことが必須である。この際、第二層を付着した後のこれら鋼板を重ね合わせたとき、各鋼板の接触面のすべてに第二層が形成されていると好ましい。従って、重ね合わせる前に第二層が付着されていない鋼板が含まれていても、重ね合わせた後に隣り合わせになる鋼板の第二層に接するように重ね合わせればよい。さらに重ね合わせた鋼板の両最表面に第二層が形成されていると好ましい。ここで、第二層はFe以外を主成分とする金属である。Feを主成分としたのでは、本発明の高い{222}面集積度を実現することができない。ここでFe以外を主成分とするとは、Fe以外の金属成分の含有量が合計で90質量%以上であることを意味する。   In order to obtain a high degree of {222} plane integration, it is essential to perform rolling in a state in which the second layer is attached to at least one side of a part or all of the steel plates of each layer constituting the laminated steel plate. Under the present circumstances, when these steel plates after adhering a 2nd layer are piled up, it is preferable if the 2nd layer is formed in all the contact surfaces of each steel plate. Therefore, even if the steel plates to which the second layer is not attached before the superposition are included, they may be superposed so as to contact the second layer of the steel plates that are adjacent to each other after the superposition. Furthermore, it is preferable that the second layer is formed on both outermost surfaces of the stacked steel plates. Here, the second layer is a metal whose main component is other than Fe. If Fe is the main component, the high {222} plane integration degree of the present invention cannot be realized. Here, the main component other than Fe means that the total content of metal components other than Fe is 90% by mass or more.

第二層の鋼板への付着は溶融めっき法、電気めっき法、ドライプロセス法、クラッド法等によって実施でき、いずれの方法で付着を行っても本発明の効果を得ることができる。また、付着させる第二層に希望する合金元素を添加させ、同時に合金化させることも可能である。   The adhesion of the second layer to the steel sheet can be performed by a hot dipping method, an electroplating method, a dry process method, a clad method or the like, and the effect of the present invention can be obtained by any method. It is also possible to add a desired alloy element to the second layer to be deposited and to alloy it at the same time.

第二層が付着した鋼板を少なくとも2枚以上重ね合わせる。重ね合わせた鋼板枚数が多くなると、圧延中に鋼板のずれが生じやすくなる。このずれを抑制するためには、周囲の数箇所を仮溶接すればよい。又は、軟鋼などの金属製容器で包んで圧延するパック圧延を用いればよい。重ね合わせる枚数は、重ね合わせた鋼板を所定の圧延率で圧延した後の重ね合わせた鋼板全体の厚みが5μm以上10mm以下に入る枚数がより好ましい。   At least two steel plates to which the second layer is attached are overlapped. When the number of stacked steel plates increases, the steel plates are liable to shift during rolling. In order to suppress this deviation, it is only necessary to temporarily weld several surrounding points. Or pack rolling which wraps and rolls in metal containers, such as mild steel, may be used. The number of sheets to be superposed is more preferably a number in which the thickness of the superposed steel sheets after rolling the superposed steel sheets at a predetermined rolling rate falls within a range of 5 μm to 10 mm.

さらに重ね合わせた鋼板に冷間圧延もしくは温間圧延を施す。圧延率は30%以上95%以下が望ましい。圧延率が低すぎると、熱処理工程後に得られる積層鋼板の{222}面集積度が十分に得られない場合があるが、30%以上であれば十分な{222}面集積度を得ることができる。圧延率が95%超では{222}面集積度の増加は飽和し、圧延コストが増加することになるので、工業的メリットが低下する場合がある。冷間圧延では歪エネルギーの蓄積が高くなるため、その後の熱処理工程における再結晶が効果的に進行する。数10℃から600℃程度で温間圧延を施せば、歪エネルギーの蓄積は低減されるが、重ね合わせた鋼板どうしの密着性が向上し、その後の熱処理工程での一体化がより促進される効果がある。   Further, the rolled steel sheets are cold-rolled or warm-rolled. The rolling rate is preferably 30% or more and 95% or less. If the rolling rate is too low, the {222} plane integration degree of the laminated steel sheet obtained after the heat treatment step may not be sufficiently obtained, but if it is 30% or more, a sufficient {222} plane integration degree can be obtained. it can. If the rolling rate exceeds 95%, the increase in {222} plane integration is saturated, and the rolling cost increases, so that the industrial merit may be lowered. In cold rolling, the accumulation of strain energy increases, so recrystallization in the subsequent heat treatment process effectively proceeds. When warm rolling is performed at several tens of degrees Celsius to about 600 degrees Celsius, accumulation of strain energy is reduced, but adhesion between the stacked steel sheets is improved, and integration in the subsequent heat treatment process is further promoted. effective.

その後の工程において熱処理を施して再結晶させる必要がある。重ね合わせた鋼板の各層の接触面に、Fe以外の金属を主成分とする第二層が付着し、その状態で圧延を行い、さらに熱処理によって再結晶させた結果として、積層鋼板が得られ、積層鋼板の各層が高い面集積度となる。その際には第二層に含まれている元素を鋼中に拡散する効果も含んでいる。第二層に含まれている元素が鋼中に拡散することによって、より高い{222}面集積度が得られる傾向もあり、かつ、高温耐酸化性や機械的特性も向上する。   In subsequent steps, it is necessary to recrystallize by heat treatment. As a result of attaching a second layer mainly composed of a metal other than Fe to the contact surface of each layer of the stacked steel sheets, rolling in that state, and recrystallizing by heat treatment, a laminated steel sheet is obtained, Each layer of the laminated steel sheet has a high degree of surface integration. In that case, the effect of diffusing the elements contained in the second layer into the steel is also included. When the elements contained in the second layer are diffused in the steel, a higher {222} plane integration degree tends to be obtained, and high-temperature oxidation resistance and mechanical properties are also improved.

鋼板を再結晶させる目的を担う熱処理工程は、真空雰囲気、Ar雰囲気、H2雰囲気、ヘリウム雰囲気といった非酸化性雰囲気で行うことができる。この際、熱処理温度は600℃以上1200℃以下とすると好ましい。600℃未満であると{222}面集積度は低く、本発明の範囲には到達できない場合がある。また、600〜1000℃の温度範囲であれば熱処理時間は30秒以上が望ましい。温度が1000℃以下であり熱処理時間が30秒未満であると、{222}面集積度は低く、本発明の範囲には到達できない場合がある。熱処理温度が1000℃超であると、熱処理時間の制限はなく高い{222}面密度が得られる。特に1000℃超であると30秒以下の熱処理時間であっても{222}面集積度は容易に増加させられる。なお、熱処理温度が1200℃超であると熱処理設備費用が高くなり、工業的メリットが薄れる場合がある。 The heat treatment step responsible for recrystallizing the steel sheet can be performed in a non-oxidizing atmosphere such as a vacuum atmosphere, an Ar atmosphere, an H 2 atmosphere, or a helium atmosphere. At this time, the heat treatment temperature is preferably 600 ° C. or more and 1200 ° C. or less. If it is lower than 600 ° C., the {222} plane integration degree is low, and the range of the present invention may not be reached. Moreover, if it is a temperature range of 600-1000 degreeC, 30 second or more is desirable for heat processing time. If the temperature is 1000 ° C. or less and the heat treatment time is less than 30 seconds, the {222} plane integration degree is low, and the range of the present invention may not be reached. When the heat treatment temperature is higher than 1000 ° C., there is no limitation on the heat treatment time, and a high {222} surface density can be obtained. In particular, if it exceeds 1000 ° C., the {222} plane integration degree can be easily increased even if the heat treatment time is 30 seconds or less. If the heat treatment temperature is higher than 1200 ° C., the heat treatment equipment cost increases, and the industrial merit may be reduced.

次に、熱処理時の好ましい昇温速度は1℃/分以上1000℃/分以下である。昇温速度を1000℃/分以下にすると、より高い{222}面集積度が容易に得られるようになる。また1℃/分以上にすると生産性が各段に向上できる。従って、昇温速度の好ましい範囲は1℃/分以上1000℃/分以下である。   Next, a preferable temperature increase rate during the heat treatment is 1 ° C./min or more and 1000 ° C./min or less. When the rate of temperature rise is 1000 ° C./min or less, a higher {222} plane integration degree can be easily obtained. Further, when the temperature is 1 ° C./min or more, the productivity can be improved in each stage. Therefore, the preferable range of the temperature rising rate is 1 ° C./min or more and 1000 ° C./min or less.

第二層と隣接する各層鋼板が合金化しており、鋼板面に対するαFe相またはγFe相の一方または両方の、{222}面集積度が60%以上99%以下または{200}面集積度が0.01%以上15%以下の一方または両方であることを特徴とする高い{222}面集積度を有する積層鋼板は本発明の積層鋼板に含まれる。{222}面集積度が60%未満かつ{200}面集積度が15%以上になると、絞り、曲げ、圧延加工時に割れや破断が生じやすくなる。また、{222}面集積度が99%超かつ{200}面集積度が0.01%未満になると効果は飽和し、また、製造も難しくなる。   Each steel sheet adjacent to the second layer is alloyed, and the {222} plane integration degree of one or both of the αFe phase and the γFe phase with respect to the steel sheet surface is 60% or more and 99% or less, or the {200} plane integration degree is 0. A laminated steel sheet having a high {222} plane integration degree, characterized by being one or both of 0.01% or more and 15% or less, is included in the laminated steel sheet of the present invention. If the {222} plane integration degree is less than 60% and the {200} plane integration degree is 15% or more, cracks and fractures are likely to occur during drawing, bending, and rolling. Further, when the {222} plane integration degree exceeds 99% and the {200} plane integration degree is less than 0.01%, the effect is saturated and the manufacture becomes difficult.

本発明では冷延前に母材に付着させる第二層それぞれの厚みに関し、より望ましい範囲は0.05μm以上1000μm以下である。鋼板と第二層が合金化している場合には、合金化している厚みは第二層の厚みに含める。また、両面に第二層が付着している場合には両面の厚みの合計である。第二層の厚みが0.05μm未満であると、{222}面集積度が低くなる場合があり、本発明の範囲に入らなくなる可能性が高まるため0.05μm以上が好ましい。1000μm超の場合にも、{222}面集積度が低くなる場合があり、本発明の範囲に入らなくなる可能性が高まるため1000μm以下が好ましい。   In the present invention, regarding the thickness of each of the second layers attached to the base material before cold rolling, a more desirable range is 0.05 μm or more and 1000 μm or less. When the steel sheet and the second layer are alloyed, the alloyed thickness is included in the thickness of the second layer. Moreover, when the 2nd layer has adhered to both surfaces, it is the sum total of the thickness of both surfaces. If the thickness of the second layer is less than 0.05 μm, the {222} plane integration degree may be lowered, and the possibility of not falling within the scope of the present invention is increased, so 0.05 μm or more is preferable. Even if it exceeds 1000 μm, the {222} plane integration degree may be lowered, and the possibility of not falling within the scope of the present invention is increased, so 1000 μm or less is preferable.

本発明において第二層はFe以外を主成分とする金属である。さらに望ましい第二層を構成する元素は、Fe、Al、Co、Cu、Cr、Ga、Hf、Hg、In、Mn、Mo、Nb、Ni、Pb、Pd、Pt、Sb、Si、Sn、Ta、Ti、V、W、Zn、Zrのうち1つ以上の元素を含有し、左記元素のうちFeを除くいずれかの元素を主成分とする。ここで左記元素のうちFeを除くいずれかの元素を主成分とするとは、左記元素のうちFeを除く成分の合計含有量が90質量%以上であることを意味する。特に好ましい元素は、Al、Ni、Si、Sn、V、Znのうち1つ以上の元素である。例えば第二層としては、Al−SiなどのAl合金、Zn−AlなどのZn合金、Sn−NiなどのSn合金等が具体的に選択される。これらの元素は、重ね合わせた鋼板を圧延する際に歪エネルギーを効果的に蓄積させる効果がある。さらに、隣り合う鋼板どうしの合金化を促進することによって、重ね合わせた鋼板を一体化させやすくする効果がある。   In the present invention, the second layer is a metal whose main component is other than Fe. More desirable elements constituting the second layer are Fe, Al, Co, Cu, Cr, Ga, Hf, Hg, In, Mn, Mo, Nb, Ni, Pb, Pd, Pt, Sb, Si, Sn, Ta , Ti, V, W, Zn, and Zr, and one of the elements shown on the left, excluding Fe, as a main component. Here, the main component is any element other than Fe among the elements shown on the left means that the total content of components other than Fe among the elements shown on the left is 90% by mass or more. Particularly preferable elements are one or more elements of Al, Ni, Si, Sn, V, and Zn. For example, as the second layer, an Al alloy such as Al—Si, a Zn alloy such as Zn—Al, a Sn alloy such as Sn—Ni, or the like is specifically selected. These elements have the effect of effectively accumulating strain energy when rolling stacked steel sheets. Further, by promoting the alloying between adjacent steel plates, there is an effect of making it easier to integrate the stacked steel plates.

第二層に含有する成分がすべて積層鋼板に均一に拡散したと仮定したとき、第二層に含有する成分のうちFeを除く成分の合計が、積層鋼板中に0.5質量%以上の含有量とすると好ましい。これにより、積層鋼板の{222}面集積度を十分に高めることができる。一方、第二層に含有する成分のうちFeを除く成分の合計の鋼板中濃度が高すぎると、鋼板の破断伸びが低下してプレス成形性が劣化する場合がある。鋼板中濃度が6.5質量%以下であればこのような問題の発生を防止することができる。   When it is assumed that all the components contained in the second layer are uniformly diffused in the laminated steel plate, the total of the components excluding Fe among the components contained in the second layer is 0.5% by mass or more in the laminated steel plate. An amount is preferable. Thereby, the {222} plane integration degree of a laminated steel plate can fully be raised. On the other hand, if the total concentration in the steel sheet of the components excluding Fe among the components contained in the second layer is too high, the elongation at break of the steel sheet may be reduced, and the press formability may deteriorate. If the concentration in the steel sheet is 6.5% by mass or less, occurrence of such a problem can be prevented.

ここで、第二層にAlが含有される場合には、母材鋼板の望ましいAl含有量は3.5質量%未満とした。母材鋼板のAl濃度が3.5質量%以上であり、第二層にAl合金を付着したまま熱処理すると、熱処理中に収縮を起こして寸法精度が著しく低下する場合がある。したがって、本発明では第二層にAlが含有される場合には母材鋼板のより好ましいAl含有量は3.5質量%未満とした。   Here, when Al is contained in the second layer, the desirable Al content of the base steel plate is less than 3.5% by mass. When the Al concentration of the base steel sheet is 3.5% by mass or more and heat treatment is performed with the Al alloy attached to the second layer, shrinkage may occur during the heat treatment and the dimensional accuracy may be significantly reduced. Therefore, in the present invention, when Al is contained in the second layer, the more preferable Al content of the base steel plate is less than 3.5% by mass.

次に、第二層にAlが含有されない場合には、母材としてのAl含有量は6.5質量%未満を本発明の範囲とした。少なくとも片面に第二層としてFe、Co、Cu、Cr、Ga、Hf、Hg、In、Mn、Mo、Nb、Ni、Pb、Pd、Pt、Sb、Si、Sn、Ta、Ti、V、W、Zn、Zrのうち1つ以上の元素を付着させる工程が含まれる場合には、母材鋼板のAl含有量が6.5質量%以上になると、得られる鋼板の引っ張り破断伸びが低下して、高い{222}面集積度を有しても十分な加工性が得られなくなる場合がある。したがって、この場合の母材鋼板のより好ましいAl含有量は6.5質量%未満とした。   Next, when Al is not contained in the second layer, the Al content as a base material is set to less than 6.5% by mass within the scope of the present invention. Fe, Co, Cu, Cr, Ga, Hf, Hg, In, Mn, Mo, Nb, Ni, Pb, Pd, Pt, Sb, Si, Sn, Ta, Ti, V, W as a second layer on at least one side In the case where the step of attaching one or more elements of Zn and Zr is included, when the Al content of the base steel plate is 6.5% by mass or more, the tensile elongation at break of the obtained steel plate decreases. In some cases, sufficient workability cannot be obtained even with a high {222} plane integration degree. Therefore, the more preferable Al content of the base material steel plate in this case is set to less than 6.5% by mass.

本発明の製造方法において、準備する複数の鋼板(「母材鋼板」ともいう。)の厚みは10μm以上10mm以下である。鋼板の厚さが10μm未満であると冷延以降の製造歩留まりが低下するため、実用に適さない。10mm超であると、{222}面集積度が本発明の範囲に入らなくなる。したがって、準備する鋼板の厚みは10μm以上10mm以下である。   In the manufacturing method of the present invention, the thickness of a plurality of steel plates to be prepared (also referred to as “base material steel plates”) is 10 μm or more and 10 mm or less. When the thickness of the steel sheet is less than 10 μm, the production yield after cold rolling is lowered, so that it is not suitable for practical use. If it exceeds 10 mm, the {222} plane integration degree does not fall within the scope of the present invention. Therefore, the thickness of the steel plate to be prepared is 10 μm or more and 10 mm or less.

さらに優れた本発明の効果を発現させる為には、第二層を付着させる前の母材鋼板に予備熱処理を施すと良い。この予備熱処理は、母材鋼板の製造過程で蓄積された転位構造を再配列させるもので、再結晶を起こさせることが望ましいが、必ずしも再結晶を起こさせる必要はない。   In order to exhibit the further excellent effect of the present invention, it is preferable to perform a preliminary heat treatment on the base steel plate before the second layer is deposited. This preliminary heat treatment rearranges the dislocation structure accumulated in the manufacturing process of the base steel sheet, and it is desirable to cause recrystallization, but it is not always necessary to cause recrystallization.

ここで、望ましい予備熱処理温度は700℃以上1100℃以下である。700℃未満であると、より優れた本発明の効果を得る為の転位組織の変化が起こりにくい場合がある。1100℃超にすると、鋼板表面に好ましくない酸化皮膜が形成され、その後の第二層の付着および、冷間圧延に悪影響を及ぼす場合があるため1100℃以下を好ましい温度とした。この予備熱処理の雰囲気は、真空中、不活性ガス雰囲気中、水素雰囲気中、弱酸化性雰囲気中のどの条件においても、上述した効果を得ることができるが、予備熱処理後の第二層の付着および、その後の冷間圧延に悪影響を及ぼすような鋼板表面の酸化膜を形成しない条件が求められる。予備熱処理の時間は特別限定する必要は無いが、鋼板の製造性等を考慮すると数秒から数時間以内が適当である。   Here, a desirable preliminary heat treatment temperature is 700 ° C. or higher and 1100 ° C. or lower. When the temperature is lower than 700 ° C., there is a case where the change of the dislocation structure for obtaining the superior effect of the present invention hardly occurs. When the temperature exceeds 1100 ° C., an unfavorable oxide film is formed on the surface of the steel sheet, which may adversely affect the subsequent adhesion of the second layer and cold rolling. The pre-heat treatment atmosphere can obtain the above-described effect under any conditions in a vacuum, an inert gas atmosphere, a hydrogen atmosphere, or a weakly oxidizing atmosphere. And the conditions which do not form the oxide film of the steel plate surface which has a bad influence on subsequent cold rolling are calculated | required. The time for the preliminary heat treatment does not need to be specifically limited. However, considering the manufacturability of the steel sheet, the time within a few seconds to several hours is appropriate.

表1に示す成分組成を有する極低炭素鋼、低炭素鋼、中炭素鋼、高炭素鋼A、高炭素鋼B、ステンレス鋼、マンガンモリブデン鋼を積層前鋼板として用い、本発明の各種積層鋼板を製造した。積層前鋼板の両面に第二層元素を付着し、積層し、冷間圧延を行い、その後熱処理を行った。   Various laminated steel sheets of the present invention using ultra low carbon steel, low carbon steel, medium carbon steel, high carbon steel A, high carbon steel B, stainless steel, manganese molybdenum steel having the composition shown in Table 1 as the steel sheets before lamination. Manufactured. The second layer element was adhered to both surfaces of the steel sheet before lamination, laminated, cold rolled, and then heat treated.

Figure 2009256734
Figure 2009256734

以下、実施例1〜6について、積層前鋼板の鋼種、積層前の第二層付着前鋼板の厚み、第二層元素、第二層厚み、積層枚数、積層後の冷間圧延における冷間圧延率、圧延後熱処理の熱処理温度、時間、圧延及び熱処理後の積層鋼板の板厚に関し、それぞれ表2〜7に示す条件を採用した。本発明範囲から外れる数値にアンダーラインを付している。   Hereinafter, for Examples 1 to 6, the steel type of the steel sheet before lamination, the thickness of the steel sheet before adhesion of the second layer before lamination, the second layer element, the thickness of the second layer, the number of laminations, cold rolling in cold rolling after lamination The conditions shown in Tables 2 to 7 were employed for the rate, the heat treatment temperature of the heat treatment after rolling, the time, and the plate thickness of the laminated steel sheet after the rolling and heat treatment. Numerical values that fall outside the scope of the present invention are underlined.

積層前の各鋼板の両面に第二層を付着した。表2〜7の「第二層厚み」には片面の付着量が表示されている。各表の「第二層厚み」欄に括弧で示された値(例えば(+2.9%Al))は、第二層の主要元素が鋼板内に拡散した結果として、鋼板の成分含有量の上昇量を示す数値である。「積層枚数」に括弧書きで示された値は、積層後圧延前の第二層を含めた合計板厚を示す数値であり、単位はmmである。   A second layer was adhered to both surfaces of each steel plate before lamination. In Tables 2 to 7, “second layer thickness” indicates the amount of adhesion on one side. The value shown in parentheses in the “second layer thickness” column of each table (for example, (+ 2.9% Al)) is the result of the diffusion of the main elements of the second layer into the steel plate, and the component content of the steel plate It is a numerical value indicating the amount of increase. The value indicated in parentheses in “Number of layers” is a numerical value indicating the total thickness including the second layer after lamination and before rolling, and the unit is mm.

熱処理までを完了した積層鋼板について、表面及び板厚中心それぞれの{222}面集積度、{200}面集積度の評価を行った。面集積度の測定は、MoKα線によるX線回折により、前述のとおりの手順を用いて行った。ここで、表面とは、鋼板面の表面から前記X線の侵入深さを意味するものである。板厚中心は、板厚tの鋼板の1/2tの深さまでエッチングしてX線回折測定を行った。   About the laminated steel plate which completed to heat processing, {222} plane integration degree and {200} plane integration degree of each surface and thickness center were evaluated. The measurement of the surface integration degree was performed by the X-ray diffraction by MoKα ray using the procedure as described above. Here, the surface means the penetration depth of the X-ray from the surface of the steel plate surface. The center of the plate thickness was etched to a depth of 1/2 t of a steel plate having a plate thickness t, and X-ray diffraction measurement was performed.

また、ランクフォード値の評価を、前記(3)式で得られる平均r値によって行った。
また、加工後の積層界面の剥離の有無に関しては、鋼板を0Tで180度折り曲げし、曲げ部分の断面を電子顕微鏡で観察して、積層界面の剥離の有無を調べた。
In addition, the Rankford value was evaluated based on the average r value obtained by the equation (3).
Moreover, regarding the presence or absence of peeling at the laminated interface after processing, the steel sheet was bent 180 degrees at 0 T, and the cross section of the bent portion was observed with an electron microscope to examine the presence or absence of peeling at the laminated interface.

(実施例1)
表2に示す条件で積層鋼板を製造した。積層する鋼板は、極低炭素鋼、低炭素鋼、中炭素鋼、高炭素鋼A、高炭素鋼B、マンガンモリブデン鋼、又はステンレス鋼のいずれかの単一鋼種を選択した。積層鋼板は、単一の鋼種の鋼板を積層しているので、積層後も単一の鋼種の鋼板として用いることができる。
(Example 1)
Laminated steel sheets were manufactured under the conditions shown in Table 2. As the steel sheet to be laminated, any single steel type of ultra low carbon steel, low carbon steel, medium carbon steel, high carbon steel A, high carbon steel B, manganese molybdenum steel, or stainless steel was selected. Since the laminated steel plates are laminated with steel plates of a single steel type, they can be used as steel plates of a single steel type even after lamination.

第二層元素の付着方法として、Al−10質量%Siは溶融めっき法、Alはイオンプレーティング、Zn−6%Niは溶融めっき法を採用した。   As an adhesion method of the second layer element, Al-10 mass% Si adopted a hot dipping method, Al adopted ion plating, and Zn-6% Ni adopted a hot dipping method.

本発明例2〜5、7、10、13〜14、16〜18はいずれも、本発明の積層鋼板であり、{222}面集積度は、積層鋼板の板厚全体にわたって60%以上と良好な面集積度を実現することができた。   Invention Examples 2 to 5, 7, 10, 13 to 14, and 16 to 18 are all laminated steel sheets of the present invention, and the {222} plane integration degree is as good as 60% or more over the entire thickness of the laminated steel sheets. A high degree of surface integration was achieved.

比較例1、6、11、12、15については、積層枚数が1枚、即ち単層鋼板であり、そのため{222}面集積度が本発明例に比較して低い値となっている。その結果、r値が低く、即ち、加工性に乏しいものである。母材鋼板、第二層元素、圧延率、熱処理温度、時間、最終厚み、が全て同じである比較例1と本発明例2を比べてみると、本発明例2では{222}面集積度が90%以上と優れた面集積度が得られるのに対して、比較例1では、特に、板厚中心部における{222}面集積度が60%未満と低い値となった。単層鋼板では、圧延する際に鋼板の中に形成される特別な転位組織が板厚中心近傍まで効果的に形成され難くなり、その結果、熱処理によって該転位組織から形成される{222}面を持つ再結晶核の発生頻度が低下したためによるものと考えられる。   In Comparative Examples 1, 6, 11, 12, and 15, the number of laminated layers is 1, that is, a single-layer steel plate, and therefore the {222} plane integration degree is lower than that of the present invention example. As a result, the r value is low, that is, the processability is poor. Comparing Comparative Example 1 and Inventive Example 2 in which the base steel plate, second layer element, rolling rate, heat treatment temperature, time, and final thickness are all the same, the inventive example 2 shows {222} plane integration degree On the other hand, in Comparative Example 1, the {222} plane integration degree at the central portion of the plate thickness was a low value of less than 60%. In a single-layer steel plate, it becomes difficult to effectively form a special dislocation structure formed in the steel plate during rolling to the vicinity of the center of the plate thickness. As a result, a {222} plane formed from the dislocation structure by heat treatment This is probably because the frequency of recrystallized nuclei having a decrease was reduced.

また、比較例8では、積層枚数が4枚であるが、熱処理温度が本発明範囲から外れているため、鋼板面の表面及び板厚中心部共に{222}面集積度が60%未満と低い値であり、その結果、r値が低く、更に加工により積層界面での剥離が起こった。比較例9は、第二層を施していない積層鋼板であるが、鋼板面の表面及び板厚中心部共に{222}面集積度が60%未満と低い値であり、その結果、r値が低く、更に加工により積層界面での剥離が起こった。   In Comparative Example 8, the number of laminated layers is 4, but the heat treatment temperature is out of the scope of the present invention, and therefore the {222} plane integration degree is low at less than 60% for both the surface of the steel plate and the center of the plate thickness. As a result, the r value was low, and further peeling occurred at the lamination interface by processing. Comparative Example 9 is a laminated steel sheet that has not been provided with the second layer, but the {222} plane integration degree is a low value of less than 60% for both the surface of the steel sheet surface and the center part of the plate thickness. It was low, and further peeling occurred at the lamination interface by processing.

本発明例の積層鋼板のr値(ランクフォード値)は2.5以上の良好な値であった。   The r value (Rankford value) of the laminated steel sheet of the example of the present invention was a good value of 2.5 or more.

Figure 2009256734
Figure 2009256734

(実施例2)
表3に示す条件で積層鋼板を製造した。本発明例21〜26について、積層する鋼板は、最表面にステンレス鋼、内部に極低炭素鋼を用いた。本発明例21の積層鋼板は、単一の鋼種の鋼板を積層しているので、積層後も単一の鋼種の鋼板として用いることができる。
(Example 2)
Laminated steel sheets were manufactured under the conditions shown in Table 3. About the invention examples 21-26, the steel plate laminated | stacked used stainless steel for the outermost surface, and used ultra-low carbon steel for the inside. Since the laminated steel sheet of Invention Example 21 is formed by laminating steel sheets of a single steel type, it can be used as a steel sheet of a single steel type even after lamination.

第二層元素の付着方法として、Al−10質量%Siを溶融めっき法によって付着した。   As a method for attaching the second layer element, Al-10 mass% Si was attached by a hot dipping method.

本発明例21〜26はいずれも、本発明の積層鋼板であり、{222}面集積度は、積層鋼板の板厚全体にわたって60%以上と良好な面集積度を実現することができた。   Invention Examples 21 to 26 are all laminated steel sheets according to the present invention, and the {222} plane integration degree was 60% or more over the entire thickness of the laminated steel sheets, and a good level integration degree could be realized.

積層鋼板のランクフォード値は、いずれも2.5以上の良好な値であった。   All the Rankford values of the laminated steel sheets were good values of 2.5 or more.

腐食試験として、1ヶ月間にわたる野外大気中暴露試験を行った。本発明例22〜26については、両表面にステンレス鋼を有している積層鋼板であるから、何ら腐食が発生しなかった。それに対し本発明例21については、表面に極低炭素鋼が露出しているので、全面に錆が発生した。   As a corrosion test, a one-month outdoor air exposure test was conducted. Since Invention Examples 22 to 26 are laminated steel plates having stainless steel on both surfaces, no corrosion occurred. On the other hand, in the inventive example 21, since the ultra-low carbon steel was exposed on the surface, rust was generated on the entire surface.

Figure 2009256734
Figure 2009256734

(実施例3)
表4に示す条件で積層鋼板を製造した。第二層として、Al、Mo、Ni、Si、Sn、V、Znを用いた。積層する母材鋼板は、極低炭素鋼あるいは低炭素鋼いずれかの単一鋼種を選択した。積層鋼板は、単一の鋼種の鋼板を積層しているので、積層後も単一の鋼種の鋼板として用いることができる。
(Example 3)
Laminated steel sheets were manufactured under the conditions shown in Table 4. Al, Mo, Ni, Si, Sn, V, and Zn were used as the second layer. As the base steel sheet to be laminated, a single steel type of either ultra low carbon steel or low carbon steel was selected. Since the laminated steel plates are laminated with steel plates of a single steel type, they can be used as steel plates of a single steel type even after lamination.

第二層元素の付着方法として、Al、Sn、Znは溶融めっき法、Niは電気めっき法、Mo、Si、Vはイオンプレーティングを採用した。   As a method for attaching the second layer element, Al, Sn, and Zn employ a hot dipping method, Ni employs an electroplating method, and Mo, Si, and V employ ion plating.

本発明例31〜37はいずれも本発明の積層鋼板であり、{222}面集積度が60%以上と良好な面集積度を実現することができた。   Invention Examples 31 to 37 are all laminated steel sheets according to the present invention, and a {222} plane integration degree of 60% or more was able to be realized.

本発明例の積層鋼板のランクフォード値は2.5以上の良好な値であった。   The Rankford value of the laminated steel sheet of the present invention was a good value of 2.5 or more.

積層前鋼板として中炭素鋼を選択した本発明例については、極低炭素鋼を選択した本発明例と比較して、引張強度が高い値であった。   About the example of the present invention which selected medium carbon steel as a steel plate before lamination, the tensile strength was a high value compared with the example of the present invention which selected ultra-low carbon steel.

Figure 2009256734
Figure 2009256734

(実施例4)
表5に示す条件で積層鋼板を製造した。冷間圧延及び熱処理後の積層鋼板板厚を、4μmから11.8mmまで変化させた。積層する母材鋼板は、極低炭素鋼あるいは低炭素鋼いずれかの単一鋼種を選択した。積層鋼板は、単一の鋼種の鋼板を積層しているので、積層後も単一の鋼種の鋼板として用いることができる。
Example 4
Laminated steel sheets were manufactured under the conditions shown in Table 5. The thickness of the laminated steel sheet after cold rolling and heat treatment was changed from 4 μm to 11.8 mm. As the base steel sheet to be laminated, a single steel type of either ultra low carbon steel or low carbon steel was selected. Since the laminated steel plates are laminated with steel plates of a single steel type, they can be used as steel plates of a single steel type even after lamination.

第二層元素の付着方法として、Al−10質量%Siを溶融めっき法で付着した。   As a method for attaching the second layer element, Al-10 mass% Si was attached by a hot dipping method.

本発明例41〜49、51はいずれも、本発明の積層鋼板であり、{222}面集積度が60%以上と良好な面集積度を実現することができた。特に本発明例47〜49、51については、圧延・熱処理後の積層鋼板の板厚が5mm以上と極めて厚い鋼板であるにかかわらず、{222}面集積度60%以上を実現することができた。本発明例41については、圧延・熱処理後の積層鋼板の板厚が本発明の良好範囲下限である5μm未満となったため、製造時の歩留が低下する結果を招いた。本発明例42については、圧延・熱処理後の積層鋼板板厚が8μmと薄いため、板厚中心の{222}面集積度、{200}面集積度がが、それぞれ表面と同じ値となった。発明例51は、圧延・熱処理後の積層鋼板の板厚が10mmを超えているので、{222}面集積度は大きくは無いが、本発明の範囲内であり、良好な加工性(ランクフォード値)を示した。   Invention Examples 41 to 49 and 51 are all laminated steel sheets according to the present invention, and a {222} plane integration degree of 60% or more was able to be achieved. In particular, with respect to Inventive Examples 47 to 49, 51, a {222} degree of integration of 60% or more can be realized regardless of whether the laminated steel sheet after rolling and heat treatment is a very thick steel sheet of 5 mm or more. It was. With respect to Inventive Example 41, the thickness of the laminated steel sheet after rolling and heat treatment was less than 5 μm, which is the lower limit of the good range of the present invention, resulting in a decrease in yield during production. With respect to Inventive Example 42, since the laminated steel plate thickness after rolling and heat treatment was as thin as 8 μm, the {222} plane integration degree and the {200} plane integration degree at the center of the plate thickness were the same values as the surface, respectively. . In Invention Example 51, since the thickness of the laminated steel sheet after rolling and heat treatment exceeds 10 mm, the {222} plane integration degree is not large, but it is within the scope of the present invention, and good workability (Rankford) Value).

比較例50については、{222}面集積度が60%未満となり、高いランクフォード値が得られず、加工後の積層界面で剥離が見られた。   For Comparative Example 50, the {222} plane integration degree was less than 60%, a high Rankford value was not obtained, and peeling was observed at the laminated interface after processing.

本発明例の積層鋼板のランクフォード値は2.5以上の良好な値であった。   The Rankford value of the laminated steel sheet of the inventive example was a good value of 2.5 or more.

Figure 2009256734
Figure 2009256734

(実施例5)
表6に示す条件で積層鋼板を製造した。積層前母材鋼板の板厚を、8μmから10.9mmまで変化させた。積層する母材鋼板は、極低炭素鋼あるいは低炭素鋼いずれかの単一鋼種を選択した。積層鋼板は、単一の鋼種の鋼板を積層しているので、積層後も単一の鋼種の鋼板として用いることができる。
(Example 5)
Laminated steel sheets were manufactured under the conditions shown in Table 6. The plate thickness of the base steel plate before lamination was changed from 8 μm to 10.9 mm. As the base steel sheet to be laminated, a single steel type of either ultra low carbon steel or low carbon steel was selected. Since the laminated steel plates are laminated with steel plates of a single steel type, they can be used as steel plates of a single steel type even after lamination.

第二層元素の付着方法として、Al−10質量%Siを溶融めっき法で付着させた。   As a method for attaching the second layer element, Al-10 mass% Si was attached by a hot dipping method.

本発明例61〜67はいずれも、本発明の積層鋼板であり、{222}面集積度が60%以上と良好な面集積度を実現することができた。本発明例41については、積層前鋼板の板厚が8μmであり、好適範囲下限の10μm未満であるため、積層前鋼板を積層する際にずれ防止などの積層工程が煩雑となった。   Invention Examples 61 to 67 are all laminated steel sheets according to the present invention, and a {222} plane integration degree of 60% or higher was able to be realized. With regard to Inventive Example 41, the plate thickness of the steel plate before lamination was 8 μm and less than 10 μm, which is the lower limit of the preferred range, so that the lamination process such as deviation prevention was complicated when the steel plates before lamination were laminated.

比較例68については、積層前の母材鋼板板厚が10mmを超えており、{222}面集積度が60%未満となり、良好な加工性が得られず(低いランクフォード値)、加工後の積層界面で剥離が見られた。   For Comparative Example 68, the base steel plate thickness before lamination exceeds 10 mm, the {222} plane integration degree is less than 60%, and good workability cannot be obtained (low Rankford value). Peeling was observed at the laminated interface.

本発明例の積層鋼板のランクフォード値は2.5を超える良好な値であった。   The Rankford value of the laminated steel sheet of the present invention was a good value exceeding 2.5.

Figure 2009256734
Figure 2009256734

(実施例6)
表7に示す条件で積層鋼板を製造した。積層する母材鋼板は、極低炭素鋼あるいは低炭素鋼いずれかの単一鋼種を選択した。積層鋼板は、単一の鋼種の鋼板を積層しているので、積層後も単一の鋼種の鋼板として用いることができる。
(Example 6)
Laminated steel sheets were manufactured under the conditions shown in Table 7. As the base steel sheet to be laminated, a single steel type of either ultra low carbon steel or low carbon steel was selected. Since the laminated steel plates are laminated with steel plates of a single steel type, they can be used as steel plates of a single steel type even after lamination.

第二層としてAl、Al−10質量%Si、Znを選択し、第二層の付着厚みを0.03μmから1040μmまで変化させた。第二層元素の付着方法として、Alはイオンプレーティング、Al−10質量%Si、Znは溶融めっき法を採用した。   Al, Al-10 mass% Si, and Zn were selected as the second layer, and the adhesion thickness of the second layer was changed from 0.03 μm to 1040 μm. As an adhesion method of the second layer element, Al adopted ion plating, Al-10 mass% Si, and Zn adopted a hot dipping method.

本発明例72〜78、81〜84、86はいずれも、本発明の積層鋼板であり、{222}面集積度が60%以上と良好な面集積度を実現することができた。   Invention Examples 72 to 78, 81 to 84, and 86 are all laminated steel sheets of the present invention, and a {222} plane integration degree of 60% or more was able to be achieved.

第二層厚みについてみると、0.05μm以上1000μm以下の範囲にある本発明例がより{222}面集積度が高く、加工性に優れる(高いランクフォード値)結果となった。   Regarding the thickness of the second layer, the example of the present invention in the range of 0.05 μm or more and 1000 μm or less has a higher {222} plane integration degree and excellent workability (high Rankford value).

本発明例の積層鋼板のランクフォード値は2.5以上の良好な値であった。   The Rankford value of the laminated steel sheet of the present invention was a good value of 2.5 or more.

Figure 2009256734
Figure 2009256734

(実施例7)
耐肌荒れ性の改善を目的として、表8に示す条件で積層鋼板を製造した。積層する母材鋼板は、両表面に中炭素鋼、内層に4層の極低炭素鋼を選択した。
(Example 7)
Laminated steel sheets were produced under the conditions shown in Table 8 for the purpose of improving the rough skin resistance. As the base steel plates to be laminated, medium carbon steel was selected for both surfaces, and four layers of extremely low carbon steel were selected for the inner layer.

第二層としてAl−10質量%Siを選択し、第二層の付着厚みを24μm(極低炭素鋼)、10μm(中炭素鋼)とし、各鋼板の両面に第二層を付着した。第二層元素の付着方法として溶融めっき法を採用した。   Al-10 mass% Si was selected as the second layer, and the thickness of the second layer was 24 μm (very low carbon steel) and 10 μm (medium carbon steel), and the second layer was adhered to both surfaces of each steel plate. The hot dipping method was adopted as the second layer element adhesion method.

本発明例91は本発明の積層鋼板であり、{222}面集積度が60%以上と良好な面集積度を実現することができた。   Invention Example 91 is a laminated steel sheet according to the present invention, and a {222} plane integration degree of 60% or more was able to realize a good plane integration degree.

積層鋼板のランクフォード値は2.5以上の良好な値であった。   The Rankford value of the laminated steel sheet was a good value of 2.5 or more.

鋼板の結晶粒径を評価したところ、両表面の中炭素鋼部分の結晶粒径は、内部の極低炭素鋼部分の結晶粒径の約2/3であった。   When the crystal grain size of the steel sheet was evaluated, the crystal grain size of the medium carbon steel part on both surfaces was about 2/3 of the crystal grain size of the internal ultra-low carbon steel part.

表8に示す本発明例91と、実施例1の本発明例2に示す0.6mm厚の積層鋼板を用いて、耐肌荒れ性を評価する試験を行った。評価方法は、絞り比3.0にて直径30mmのカップを成形し、目視によって側面の肌荒れ(オレンジピール)の有無を調べた。その結果、本発明例91では肌荒れの発生が全くなかったのに対し、本発明例2では、製品としては影響ないレベルではあるが、カップ底部近くにオレンジピールが僅かに発生した。   Using the present invention example 91 shown in Table 8 and the 0.6 mm thick laminated steel sheet shown in the invention example 2 of the example 1, a test for evaluating the rough skin resistance was conducted. In the evaluation method, a cup having a diameter of 30 mm was formed at a drawing ratio of 3.0, and the presence or absence of rough skin (orange peel) was visually examined. As a result, in Example 91 of the present invention, there was no rough skin, whereas in Example 2 of the present invention, orange peel was slightly generated near the bottom of the cup, although the level of the product was not affected.

Figure 2009256734
Figure 2009256734

Claims (12)

炭素鋼と合金鋼の一方又は両方からなる複数の鋼板が積層され一体化している積層鋼板であって、前記積層鋼板の鋼板面と板厚中心の両方におけるαFe相またはγFe相の一方または両方の、鋼板面に対する{222}面集積度が60%以上99%以下または鋼板面に対する{200}面集積度が0.01%以上15%以下の一方または両方であることを特徴とする積層鋼板。   A laminated steel plate in which a plurality of steel plates made of one or both of carbon steel and alloy steel are laminated and integrated, and one or both of the αFe phase and the γFe phase in both the steel plate surface and the thickness center of the laminated steel plate A laminated steel sheet, wherein the {222} plane integration degree relative to the steel sheet surface is one or both of 60% or more and 99% or less or the {200} plane integration degree relative to the steel sheet surface is 0.01% or more and 15% or less. 前記炭素鋼が極低炭素鋼、低炭素鋼、中炭素鋼、あるいは高炭素鋼の少なくとも1種であることを特徴とする請求項1に記載の積層鋼板。   The laminated steel sheet according to claim 1, wherein the carbon steel is at least one of ultra-low carbon steel, low carbon steel, medium carbon steel, or high carbon steel. 前記合金鋼がステンレス鋼であることを特徴とする請求項1又は2に記載の積層鋼板。   The laminated steel sheet according to claim 1 or 2, wherein the alloy steel is stainless steel. 積層鋼板を構成する各層の鋼板は、Al含有量が6.5質量%未満の鋼板であることを特徴とする請求項1乃至3のいずれかに記載の積層鋼板。   The laminated steel sheet according to any one of claims 1 to 3, wherein the steel sheet of each layer constituting the laminated steel sheet is a steel sheet having an Al content of less than 6.5 mass%. 積層鋼板を構成する各層鋼板の積層面及び積層鋼板の両表面の一部又は全部において、隣接する各層鋼板に比較し、Al、Ni、Si、Sn、V、Znのうち1つ以上の元素が濃化していることを特徴とする請求項1乃至4のいずれかに記載の積層鋼板。   Compared with each adjacent layer steel plate, one or more elements of Al, Ni, Si, Sn, V, and Zn are present in a part or all of both surfaces of the laminated surface of each layer steel plate and the laminated steel plate constituting the laminated steel plate. The laminated steel sheet according to any one of claims 1 to 4, wherein the laminated steel sheet is concentrated. 積層鋼板の厚みが5μm以上10mm以下であることを特徴とする請求項1乃至5のいずれかに記載の積層鋼板。   The laminated steel sheet according to any one of claims 1 to 5, wherein the thickness of the laminated steel sheet is 5 µm or more and 10 mm or less. 積層鋼板を構成する各層の鋼板が同一の品種であることを特徴とする請求項1乃至6のいずれかに記載の積層鋼板。   The laminated steel sheet according to any one of claims 1 to 6, wherein the steel sheets of each layer constituting the laminated steel sheet are of the same type. 板厚が10μm以上10mm以下の複数の鋼板を準備し、
該複数の鋼板の一部又は全部の少なくとも片面に、Fe以外を主成分とする金属の第二層を付着させ、
前記複数の鋼板を積層させ、
該積層した鋼板を圧延し、
その後熱処理によって再結晶させると同時に積層鋼板を一体化させる、
ことを特徴とする積層鋼板の製造方法。
Preparing a plurality of steel plates having a thickness of 10 μm or more and 10 mm or less,
At least one side of a part or all of the plurality of steel plates is attached with a second layer of a metal whose main component is other than Fe,
Laminating the plurality of steel plates;
Rolling the laminated steel sheet;
Then recrystallize by heat treatment and at the same time integrate the laminated steel sheet,
The manufacturing method of the laminated steel plate characterized by the above-mentioned.
付着させる第二層の厚みが0.05μm以上1000μm以下であることを特徴とする請求項8に記載の積層鋼板の製造方法。   The method for producing a laminated steel sheet according to claim 8, wherein the thickness of the second layer to be adhered is 0.05 µm or more and 1000 µm or less. 前記第二層は、Fe、Al、Co、Cu、Cr、Ga、Hf、Hg、In、Mn、Mo、Nb、Ni、Pb、Pd、Pt、Sb、Si、Sn、Ta、Ti、V、W、Zn、Zrのうち1つ以上の元素を含有し、左記元素のうちFeを除くいずれかの元素を主成分とすることを特徴とする請求項8又は9に記載の積層鋼板の製造方法。   The second layer includes Fe, Al, Co, Cu, Cr, Ga, Hf, Hg, In, Mn, Mo, Nb, Ni, Pb, Pd, Pt, Sb, Si, Sn, Ta, Ti, V, 10. The method for producing a laminated steel sheet according to claim 8, comprising one or more elements of W, Zn, and Zr, and comprising as a main component any element of the left elements other than Fe. . 前記第二層はAlを含有し、前記準備した複数の鋼板はAl含有量が3.5質量%未満であることを特徴とする請求項8乃至10のいずれかに記載の積層鋼板の製造方法。   The method for producing a laminated steel sheet according to any one of claims 8 to 10, wherein the second layer contains Al, and the plurality of prepared steel sheets have an Al content of less than 3.5 mass%. . 前記第二層はAlを含有せず、前記準備した複数の鋼板はAl含有量が6.5質量%未満であることを特徴とする請求項8乃至10のいずれかに記載の積層鋼板の製造方法。   11. The production of a laminated steel sheet according to claim 8, wherein the second layer does not contain Al, and the plurality of prepared steel sheets have an Al content of less than 6.5% by mass. Method.
JP2008107902A 2008-04-17 2008-04-17 Laminated steel sheet and manufacturing method thereof Expired - Fee Related JP5114672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008107902A JP5114672B2 (en) 2008-04-17 2008-04-17 Laminated steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008107902A JP5114672B2 (en) 2008-04-17 2008-04-17 Laminated steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009256734A true JP2009256734A (en) 2009-11-05
JP5114672B2 JP5114672B2 (en) 2013-01-09

Family

ID=41384514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008107902A Expired - Fee Related JP5114672B2 (en) 2008-04-17 2008-04-17 Laminated steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5114672B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013572A1 (en) * 2014-07-22 2016-01-28 新日鐵住金株式会社 Steel foil for electricity-storing-device container, container for electricity-storing device, electricity-storing device, and method for manufacturing steel foil for electricity-storing-device container
CN107351479A (en) * 2017-09-08 2017-11-17 苏州英得福机电科技有限公司 A kind of high stability metal material
JP2017214623A (en) * 2016-05-31 2017-12-07 新日鐵住金株式会社 Steel sheet excellent in processability, corrosion resistance and toughness and manufacturing method therefor
WO2019132039A1 (en) * 2017-12-28 2019-07-04 日本製鉄株式会社 Clad steel plate
JP2021505761A (en) * 2017-12-05 2021-02-18 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Steel composites, methods for manufacturing parts, and uses

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH106037A (en) * 1996-06-25 1998-01-13 Sumitomo Metal Ind Ltd Production of clad steel plate for cutter
JP2004263223A (en) * 2003-02-28 2004-09-24 Toyota Motor Corp Multi-layered electric steel sheet manufacturing method
JP2006144116A (en) * 2004-10-21 2006-06-08 Nippon Steel Corp STEEL SHEET HAVING HIGH Al CONTENT AND EXHIBITING EXCELLENT WORKABILITY AND METHOD FOR PRODUCTION THEREOF

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH106037A (en) * 1996-06-25 1998-01-13 Sumitomo Metal Ind Ltd Production of clad steel plate for cutter
JP2004263223A (en) * 2003-02-28 2004-09-24 Toyota Motor Corp Multi-layered electric steel sheet manufacturing method
JP2006144116A (en) * 2004-10-21 2006-06-08 Nippon Steel Corp STEEL SHEET HAVING HIGH Al CONTENT AND EXHIBITING EXCELLENT WORKABILITY AND METHOD FOR PRODUCTION THEREOF

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013572A1 (en) * 2014-07-22 2016-01-28 新日鐵住金株式会社 Steel foil for electricity-storing-device container, container for electricity-storing device, electricity-storing device, and method for manufacturing steel foil for electricity-storing-device container
JP5909606B1 (en) * 2014-07-22 2016-04-26 新日鐵住金株式会社 Steel foil for electrical storage device container, electrical storage device container and electrical storage device, and method for producing steel foil for electrical storage device container
TWI586815B (en) * 2014-07-22 2017-06-11 新日鐵住金股份有限公司 Steel foil for electricity storage device container, container for electricity storage device, electricity storage device, and manufacturing method of steel foil for electricity storage device container
US10418601B2 (en) 2014-07-22 2019-09-17 Nippon Steel Corporation Steel foil for power storage device container, power storage device container, power storage device, and manufacturing method of steel foil for power storage device container
JP2017214623A (en) * 2016-05-31 2017-12-07 新日鐵住金株式会社 Steel sheet excellent in processability, corrosion resistance and toughness and manufacturing method therefor
CN107351479A (en) * 2017-09-08 2017-11-17 苏州英得福机电科技有限公司 A kind of high stability metal material
JP2021505761A (en) * 2017-12-05 2021-02-18 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Steel composites, methods for manufacturing parts, and uses
WO2019132039A1 (en) * 2017-12-28 2019-07-04 日本製鉄株式会社 Clad steel plate
JPWO2019132039A1 (en) * 2017-12-28 2020-01-16 日本製鉄株式会社 Clad steel plate

Also Published As

Publication number Publication date
JP5114672B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP5510607B2 (en) Alloyed hot-dip galvanized layer, steel sheet having the same, and method for producing the same
CA2964055C (en) Ferrite-based stainless steel plate, steel pipe, and production method therefor
KR101032126B1 (en) STEEL SHEET HAVING HIGH Al CONTENT AND EXHIBITING EXCELLENT WORKABILITY AND METHOD FOR PRODUCTION THEREOF
EP2617849A1 (en) High-strength steel sheet with excellent ductility and stretch flangeability, high-strength galvanized steel sheet, and method for producing both
JP6388925B2 (en) Metal foil manufacturing method
KR20140041833A (en) High-strength galvanized steel sheet having superior bendability and method for producing same
US20090280350A1 (en) Steel sheet having high plane integration and method of production of same
JP5114672B2 (en) Laminated steel sheet and manufacturing method thereof
EP3130688B1 (en) Ferritic stainless-steel foil and process for producing same
JPWO2018194135A1 (en) Cold-rolled steel sheet for squeezed can
JP2009235492A (en) Multilayer steel, and method for producing the same
Karimi et al. Multi-response optimization on the annealing of accumulative roll bonded monolithic Ti and Ti–SiCp composites
JP6637200B2 (en) Rolled joint and manufacturing method thereof
JP4720618B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2012233226A (en) METHOD FOR MANUFACTURING Fe-BASED METAL SHEET HAVING HIGH FACE INTEGRATION DEGREE OF {110} OR {222} FACE
JP2017095750A (en) Aluminum alloy clad plate and aluminum alloy clad structural member
JP6631750B2 (en) Clad steel plate
TWI626093B (en) Titanium composite and titanium for hot rolling
JP6813142B1 (en) Manufacturing method of Al-plated stainless steel sheet and ferrite-based stainless steel sheet
JP2020007599A (en) Ferritic stainless steel sheet, clad material, and manufacturing method of ferritic stainless steel sheet
JP2017214623A (en) Steel sheet excellent in processability, corrosion resistance and toughness and manufacturing method therefor
JP6954508B1 (en) Stainless steel sheet with Al coating layer
WO2022004100A1 (en) STAINLESS STEEL SHEET WITH Al COATING LAYER
WO2020170628A1 (en) FERRITE STAINLESS STEEL SHEET, PRODUCTION METHOD FOR SAME, AND STAINLESS STEEL SHEET HAVING Al VAPOR-DEPOSITED LAYER
JP5262280B2 (en) Steel sheet excellent in surface smoothness of processed part and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

R151 Written notification of patent or utility model registration

Ref document number: 5114672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees