JP2002060278A - Ramming material for induction furnace - Google Patents

Ramming material for induction furnace

Info

Publication number
JP2002060278A
JP2002060278A JP2000249365A JP2000249365A JP2002060278A JP 2002060278 A JP2002060278 A JP 2002060278A JP 2000249365 A JP2000249365 A JP 2000249365A JP 2000249365 A JP2000249365 A JP 2000249365A JP 2002060278 A JP2002060278 A JP 2002060278A
Authority
JP
Japan
Prior art keywords
induction furnace
purity
fine powder
ramming material
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000249365A
Other languages
Japanese (ja)
Inventor
Noboru Nakamura
登 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2000249365A priority Critical patent/JP2002060278A/en
Publication of JP2002060278A publication Critical patent/JP2002060278A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a ramming material for an induction furnace, which is excellent in heat resistance, resistance to thermal impact and corrosion resistance and has durability sufficiently durable to the long term operation under high temperature melting conditions and which can be suitably used as a lining material for not only a small size induction furnace but also a medium size high frequency induction furnace having a cast steel melting capacity of about 3 t. SOLUTION: The ramming material for the induction furnace is composed of 65 to 80 wt.% high purity magnesia particles having particle diameters of <=8 mm, containing a fine powder having particle sizes of <=63 μm and having a purity of >=98%, 1 to 6 wt.% alumina fine powder having particle diameters of <=63 μm and a purity of >=98% and the balance being alumina particles having particle diameters of 0.063 to 8 mm and a purity of >=98%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋳鋼を高温溶解す
るための誘導炉に用いられるラミング材に関し、より詳
細には、適度な残存膨張性を有し、耐熱性、耐熱衝撃性
および耐食性に優れ、鋳鋼溶解能力が3t程度の中型高
周波誘導炉の内張材としても、好適に使用することがで
きる誘導炉用ラミング材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ramming material used for an induction furnace for melting cast steel at a high temperature, and more particularly, to a ramming material having a moderate residual expansion property, and having excellent heat resistance, thermal shock resistance and corrosion resistance. The present invention relates to a ramming material for an induction furnace, which can be suitably used as a lining material for a medium-sized high-frequency induction furnace having excellent cast steel melting ability of about 3 t.

【0002】[0002]

【従来の技術】従来から、鋳鋼等の高温溶解を行う誘導
炉用内張材としては、主に、マグネシア質やマグネシア
・スピネル質等のマグネシアを主成分とする塩基性ラミ
ング材およびアルミナ・マグネシア質等のアルミナを主
成分とする中性ラミング材が使用されている。
2. Description of the Related Art Heretofore, as a lining material for an induction furnace for melting a cast steel or the like at a high temperature, a basic ramming material mainly composed of magnesia such as magnesia or magnesia / spinel and alumina / magnesia have been mainly used. A neutral ramming material containing alumina as a main component is used.

【0003】塩基性ラミング材の主成分であるマグネシ
アは、2800℃の高融点を有し、溶湯や塩基性のスラ
グに対して化学的に安定な特性を有している。しかし、
マグネシアは熱膨張率が大きく、熱衝撃に対する耐性が
乏しい。したがって、比較的短時間で溶解および出湯が
繰り返される誘導炉の炉壁に使用した場合、急激な温度
変化により炉壁内面で亀裂が発生しやすく、また、発生
した亀裂から湯差し等のトラブルが起こりやすくなる。
このため、マグネシアを主成分とする塩基性ラミング材
は、操業面での安全性を考慮し、主として1t級以下の
小型炉に使用されている。
[0003] Magnesia, which is a main component of the basic ramming material, has a high melting point of 2800 ° C and has characteristics chemically stable to molten metal and basic slag. But,
Magnesia has a high coefficient of thermal expansion and poor resistance to thermal shock. Therefore, when it is used for the furnace wall of an induction furnace where melting and tapping are repeated in a relatively short time, cracks are likely to occur on the inner surface of the furnace wall due to rapid temperature changes, and troubles such as hot water are caused by the cracks that have occurred. More likely to happen.
For this reason, a basic ramming material containing magnesia as a main component is mainly used for a small furnace of 1t class or less in consideration of operational safety.

【0004】一方、アルミナ・マグネシア質の中性ラミ
ング材は、アルミナ・スピネル質ラミング材とも呼ば
れ、主成分がアルミナであり、これにマグネシアが添加
されたものである。このアルミナ・スピネル質は、塩基
性ラミング材の主成分であるマグネシアに比較して、主
成分であるアルミナの熱膨張率が小さく、熱間での容積
安定性により、耐熱衝撃性に優れている。しかし、マグ
ネシアに比較して、耐熱性および耐食性が劣るため、高
温溶解操業では溶損速度が速く、耐用性が大きく低下す
るという欠点がある。
On the other hand, the alumina / magnesia neutral ramming material is also called an alumina / spinel ramming material, and its main component is alumina, to which magnesia is added. This alumina-spinel material has a smaller thermal expansion coefficient of alumina, which is a main component of magnesia, which is a main component of the basic ramming material, and has excellent thermal shock resistance due to volume stability during hot. . However, heat resistance and corrosion resistance are inferior to magnesia, so that there is a disadvantage that the high-temperature melting operation has a high erosion rate and greatly reduces the durability.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来技
術の状況に鑑みて提案されたものであり、耐熱性、耐熱
衝撃性および耐食性に優れ、したがって、溶解および出
湯の繰り返しによる急激な温度変化にも亀裂発生等の不
都合を生じることがなく、かつ、溶湯や塩基性スラグに
対しても安定で、溶損量が少なく、高温溶解条件下での
長期操業にも十分耐え得る耐用性を具備する誘導炉用ラ
ミング材を得ることを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been proposed in view of the state of the prior art, and has excellent heat resistance, thermal shock resistance and corrosion resistance. It does not cause any inconvenience such as cracking even when it changes, is stable against molten metal and basic slag, has a small amount of erosion, and has sufficient durability to withstand long-term operation under high-temperature melting conditions. It is an object to obtain a ramming material for an induction furnace provided.

【0006】特に、小型誘導炉のみならず、鋳鋼溶解能
力が、3t程度の中型高周波誘導炉の内張用としても、
十分に安全かつ安定的に使用することができる誘導炉用
ラミング材を得ることを目的とするものである。
In particular, not only for small induction furnaces, but also for lining of medium-sized high-frequency induction furnaces with a casting steel melting capacity of about 3 tons,
It is an object of the present invention to obtain a ramming material for an induction furnace that can be used sufficiently safely and stably.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る誘導炉用ラミング材は、粒径63μm
以下の微粉末を含む粒径8mm以下で純度98%以上の
高純度マグネシア粒子65〜80重量%と、粒径63μ
m以下で純度98%以上のアルミナ微粉末1〜6重量%
と、残部が粒径0.063〜8mmで純度98%以上の
アルミナ粒子からなることを特徴とする。
In order to achieve the above object, the ramming material for an induction furnace according to the present invention has a particle diameter of 63 μm.
65-80% by weight of high-purity magnesia particles having a particle size of 8 mm or less and a purity of 98% or more containing the following fine powder;
1 to 6% by weight of alumina fine powder with a purity of 98% or less and a purity of 98% or more
And a balance of alumina particles having a particle size of 0.063 to 8 mm and a purity of 98% or more.

【0008】特に、前記微粉末を含むマグネシア粒子の
配合量が、68〜77重量%であることが好ましい。
In particular, the amount of the magnesia particles containing the fine powder is preferably 68 to 77% by weight.

【0009】また、前記アルミナ微粉末の配合量が、2
〜5重量%であることが好ましい。
The amount of the alumina fine powder is 2
It is preferably about 5% by weight.

【0010】さらに、前記微粉末を含むマグネシア粒子
におけるマグネシア微粉末の含有率が16〜34重量%
であることが、特に好ましい。
Further, the content of the fine magnesia powder in the magnesia particles containing the fine powder is 16 to 34% by weight.
Is particularly preferred.

【0011】またさらに、前記本発明に係る誘導炉用ラ
ミング材は、1250℃で加熱した場合の残存膨張率が
0.3〜0.7%であり、かつ、1500℃で加熱した
場合の残存膨張率が0.6〜1.0%であることが、特
に好ましい。
Further, the ramming material for an induction furnace according to the present invention has a residual expansion rate of 0.3 to 0.7% when heated at 1250 ° C. and a residual expansion rate when heated at 1500 ° C. It is particularly preferred that the expansion coefficient is 0.6 to 1.0%.

【0012】上記のように、本発明に係る誘導炉用ラミ
ング材は、それぞれ極微粒の粉末を所定割合で含有した
粒径8mm以下の高純度マグネシア粒子および高純度ア
ルミナ粒子を原料とし、マグネシア65〜80重量%、
アルミナ20〜35重量%の配合組成を有する点が構成
上の特徴である。これにより、耐熱性、耐食性および耐
熱衝撃性に優れ、かつ、耐久性が良好であるという作用
効果上の特徴を有する。
As described above, the ramming material for an induction furnace according to the present invention uses high-purity magnesia particles and high-purity alumina particles each having a particle size of 8 mm or less and a high-purity alumina particle each containing a very fine powder at a predetermined ratio. ~ 80% by weight,
The constitutional feature is that it has a composition of 20 to 35% by weight of alumina. Thereby, it is excellent in heat resistance, corrosion resistance, and thermal shock resistance, and has a feature in the effect of being excellent in durability.

【0013】上記特定範囲で配合されたマグネシア(M
gO)成分は、本発明に係る誘導炉用ラミング材に、高
温溶解操業時での耐熱性および耐食性等の特性を付与す
る。また、上記特定配合範囲で配合されたアルミナ(A
23 )成分は、耐熱衝撃性を与える。
The magnesia (M
The gO) component imparts properties such as heat resistance and corrosion resistance during the high-temperature melting operation to the ramming material for an induction furnace according to the present invention. In addition, the alumina (A
The l 2 O 3 ) component provides thermal shock resistance.

【0014】本発明においては、特に、前記マグネシア
粒子が粒径63μm以下の微粉末を含有するとともに、
粒径63μm以下のアルミナ微粉末が全配合量に対して
1〜6重量%の範囲で添加されることが重要である。こ
のアルミナ微粉末は、焼成中に、主として前記マグネシ
ア原料中のマグネシア微粉末と反応し、スピネル(Mg
Al24 )構造の結晶を生成する。これにより、本発
明に係る誘導炉用ラミング材は、誘導炉用内張材とし
て、溶湯やスラグと直接接する稼働面側の焼結層やその
背面側の焼固層において、加熱冷却後の残存膨張率が適
正な値に維持され、内張材の稼働面側における亀裂の発
生を抑制することができる。また、従来のラミング材に
しばしば見られた、稼働面側の焼結層やその背面側の焼
固層との境界部等における炉壁稼働面に平行な亀裂の発
生を回避することができる。したがって、内張材の迫り
出しや剥離等による損耗が少ない。
In the present invention, in particular, the magnesia particles contain a fine powder having a particle size of 63 μm or less,
It is important that alumina fine powder having a particle size of 63 μm or less be added in a range of 1 to 6% by weight based on the total compounding amount. This alumina fine powder mainly reacts with the magnesia fine powder in the above magnesia raw material during firing, and spinel (Mg)
A crystal having an Al 2 O 4 ) structure is generated. Thereby, the ramming material for an induction furnace according to the present invention, as a lining material for an induction furnace, remains in the sintered layer on the working surface side directly in contact with the molten metal or the slag or the hardened layer on the back side after heating and cooling. The expansion coefficient is maintained at an appropriate value, and the generation of cracks on the working surface side of the lining material can be suppressed. Further, it is possible to avoid the occurrence of cracks parallel to the furnace wall operating surface at the boundary between the sintered layer on the operating surface side and the hardened layer on the back side, which are often seen in conventional ramming materials. Therefore, there is little wear due to the projection or peeling of the lining material.

【0015】このように構成された本発明に係る誘導炉
用ラミング材は、1250℃で加熱した場合の残存膨張
率が0.3〜0.7%、1500℃での残存膨張率が
0.6〜1.0%であり、それぞれ上記観点から、好適
な範囲を有する。
The ramming material for an induction furnace according to the present invention thus configured has a residual expansion rate of 0.3 to 0.7% when heated at 1250 ° C. and a residual expansion rate of 0.1% at 1500 ° C. 6 to 1.0%, each having a suitable range from the above viewpoint.

【0016】[0016]

【発明の実施の形態】上記のように、本発明に係る誘導
炉用ラミング材は、粒径63μm以下の微粉末を含む粒
径8mm以下で純度98%以上の高純度マグネシア粒子
65〜80重量%と、粒径63μm以下で純度98%以
上のアルミナ微粉末1〜6重量%と、粒径0.063〜
8mm以下で純度98%以上のアルミナ粒子14〜34
重量%とからなる。
DETAILED DESCRIPTION OF THE INVENTION As described above, the ramming material for an induction furnace according to the present invention has a high purity magnesia particle having a particle size of 8 mm or less and a purity of 98% or more containing fine powder having a particle size of 63 μm or less 65 to 80% by weight. % Of alumina fine powder having a particle size of 63 μm or less and a purity of 98% or more;
Alumina particles 14 to 34 having a purity of 98% or more with a size of 8 mm or less.
% By weight.

【0017】本発明に係る誘導炉用ラミング材において
は、構成成分であるマグネシアおよびアルミナ成分の原
料は、いずれも純度98%以上のものを用いる。原料純
度が上記の規定値より低いものを用いた場合は、該ラミ
ング材を誘導炉の内張材として使用した際、焼結溶解工
程等において、スピネル結晶以外の雑多な結晶や化合物
等が多く生成する。これにより、耐熱性や化学的安定性
等が低下するだけでなく、所望の残存膨張性を得ること
ができない。さらに、誘導炉の使用時に溶湯中に不純物
が溶出し、溶湯を汚染させる不都合を生じることにな
る。
In the ramming material for an induction furnace according to the present invention, the raw materials of the magnesia and alumina components, which are constituents, have a purity of 98% or more. When the raw material purity is lower than the above specified value, when the ramming material is used as a lining material of an induction furnace, in a sintering melting step, etc., there are many miscellaneous crystals and compounds other than spinel crystals. Generate. As a result, not only the heat resistance, the chemical stability and the like are reduced, but also the desired residual expandability cannot be obtained. Further, impurities are eluted in the molten metal when the induction furnace is used, which causes a problem of contaminating the molten metal.

【0018】主な構成成分であるマグネシアの原料粒子
としては、MgO純度が98%以上、より好ましくは9
8.5%以上であり、粒径8mm以下、より好ましく
は、5.66mm以下であれば、特に限定されるもので
はない。例えば、市販の高純度のマグネシアクリンカー
または電融マグネシア等を、上記粒径基準に適合するよ
うに粉砕、篩別等して調製したものを用いてよい。ただ
し、本発明においては、上記マグネシア原料粒子に、粒
径63μm以下の微粉末が含まれていることが必要であ
る。これは、配合された高純度アルミナ微粉末との焼成
時における反応により、適正量のスピネル結晶を生成さ
せる観点から重要である。
The raw material particles of magnesia, which is a main constituent, have an MgO purity of 98% or more, more preferably 9%.
It is not particularly limited as long as it is 8.5% or more and the particle size is 8 mm or less, more preferably 5.66 mm or less. For example, a commercially available high-purity magnesia clinker, electrofused magnesia, or the like may be used by pulverizing, sieving, or the like so as to conform to the above particle size standard. However, in the present invention, it is necessary that the magnesia raw material particles contain fine powder having a particle size of 63 μm or less. This is important from the viewpoint of generating an appropriate amount of spinel crystals by a reaction during firing with the compounded high-purity alumina fine powder.

【0019】スピネル結晶(MgAl24 )は、マグ
ネシア(MgO)とアルミナ(Al 23 )の1:1反
応物であり、アルミナ微粉末の配合量は1〜6重量%で
ある。したがって、上記マグネシア微粉末は、それに対
応する量だけ存在すれば十分であるが、一般に、上記マ
グネシア粒子中に16〜34重量%の割合で含有されて
いることが好ましい。マグネシア成分は、本発明に係る
誘導炉用ラミング材に、高温溶解操業時の耐熱性および
耐食性を付与する。
Spinel crystals (MgAlTwo OFour ) Is a mug
Nesia (MgO) and alumina (Al Two OThree ) 1: 1 anti
The amount of alumina fine powder is 1 to 6% by weight.
is there. Therefore, the above magnesia fine powder
It is sufficient to have a corresponding amount, but in general,
16-34% by weight in gnesia particles
Is preferred. The magnesia component according to the present invention
The heat resistance during high-temperature melting operation and the ramming material for induction furnaces
Provides corrosion resistance.

【0020】本発明においては、上記マグネシア粒子を
65〜80重量%配合する。配合量が65重量%未満の
場合、高温溶解操業時での耐熱性および耐食性が十分に
得られない。一方、80重量%を超えると、高温溶解操
業時の耐熱性および耐食性は得られるが、耐熱衝撃性が
低下する。上記配合量のより好ましい範囲は、68〜7
7重量%である。
In the present invention, the magnesia particles are blended in an amount of 65 to 80% by weight. If the amount is less than 65% by weight, sufficient heat resistance and corrosion resistance during high-temperature melting operation cannot be obtained. On the other hand, if it exceeds 80% by weight, heat resistance and corrosion resistance during high-temperature melting operation can be obtained, but thermal shock resistance decreases. A more preferable range of the compounding amount is 68 to 7
7% by weight.

【0021】次に、本発明に係る誘導炉用ラミング材に
おいて、もう一つの構成成分であるアルミナ成分は、配
合原料として、粒径63μm以下で純度98%以上、好
ましくは98.5%以上のアルミナ微粉末1〜6重量%
と、粒径が0.063〜8mmで純度98%以上、好ま
しくは98.5%以上のアルミナ粒子14〜34重量%
とからなる。アルミナは熱膨張率が小さいため、本発明
において、アルミナ成分は、高温の溶湯と接する稼動面
側の容積安定性に寄与する。また、アルミナは耐熱衝撃
性に優れ、他の成分とともに、強い焼結層を形成し、亀
裂の拡大を防止する。
Next, in the ramming material for an induction furnace according to the present invention, the alumina component, which is another component, has a particle size of 63 μm or less and a purity of 98% or more, preferably 98.5% or more. Alumina fine powder 1-6% by weight
And 14 to 34% by weight of alumina particles having a particle size of 0.063 to 8 mm and a purity of 98% or more, preferably 98.5% or more.
Consists of Since alumina has a small coefficient of thermal expansion, in the present invention, the alumina component contributes to the volume stability of the working surface side in contact with the high-temperature molten metal. Alumina is also excellent in thermal shock resistance, forms a strong sintered layer together with other components, and prevents the propagation of cracks.

【0022】本発明において、上記粒径63μm以下の
アルミナ微粉末は、マグネシア原料、特に前記粒径63
μm以下のマグネシア微粉末と反応し、スピネル結晶を
生成する。これにより、誘導炉用内張材として、稼働面
側の焼結層やその背面側の焼固層において、加熱冷却後
の残存膨張率を適正な値とすることができ、稼働面側の
亀裂の発生に対する抑制効果を奏する。また、従来、こ
の種の耐火材(ラミング材)にしばしば現れる、稼働面
側の焼結層やその背面側の焼固層との境界部等における
炉壁の稼働面に平行な亀裂の発生を低減させ、内張材の
内部へのメタルの侵入や、内張材の迫り出しおよび剥離
等による損耗を小さくすることができる。
In the present invention, the alumina fine powder having a particle size of 63 μm or less is used as a magnesia raw material,
Reacts with magnesia fine powder of μm or less to produce spinel crystals. As a result, as the lining material for the induction furnace, the residual expansion coefficient after heating and cooling can be set to an appropriate value in the sintered layer on the operating surface side and the hardened layer on the back side thereof, and the cracks on the operating surface side This has the effect of suppressing the occurrence of blemishes. Conventionally, cracks parallel to the operating surface of the furnace wall at the boundary between the sintered layer on the operating surface side and the solidified layer on the back side, which often appear in this type of refractory material (ramming material), are considered. It is possible to reduce abrasion due to intrusion of metal into the lining material, and protrusion and peeling of the lining material.

【0023】前記アルミナ微粉末の配合量が、1重量%
未満の場合には、加熱冷却後の残存膨張率が小さいた
め、内張材の稼働面側における亀裂の発生に対する抑制
効果が小さい。一方、配合量が6重量%を超えると、加
熱冷却後の残存膨張率が大きくなりすぎ、内張材の稼働
面側の迫り出しおよび剥離、内張材の非稼働面側のコイ
ルセメントの破損やコイルの変形等につながる。また、
加熱冷却後の残存膨張率が大きくなることにより、炉頂
部方向への膨張も大きくなるため、炉壁上部の損耗およ
び炉上部近傍の設備の破損につながることもある。上記
アルミナ微粉末の配合量は、2〜5重量%であること
が、より好ましい。
The amount of the alumina fine powder is 1% by weight.
If it is less than 50%, the residual expansion rate after heating and cooling is small, and the effect of suppressing the generation of cracks on the working surface side of the lining material is small. On the other hand, if the compounding amount exceeds 6% by weight, the residual expansion rate after heating and cooling becomes too large, and the lining material protrudes and peels on the working surface side, and the coil cement on the non-working surface side of the lining material breaks. And deformation of the coil. Also,
An increase in the residual expansion rate after heating and cooling also increases the expansion in the furnace top direction, which may lead to wear of the upper part of the furnace wall and damage to equipment near the upper part of the furnace. More preferably, the compounding amount of the alumina fine powder is 2 to 5% by weight.

【0024】次いで、前記原料アルミナ粒子としては、
その純度が98%以上であれば、従来から誘導炉の炉壁
の内張耐火物として用いられている、高純度電融アルミ
ナまたは焼結アルミナ等を用いることができる。また、
粒径としては、通常、8mm以下(ただし、粒径63μ
m以下は除く。)、好ましくは5.66mm以下のもの
を用いる。前記アルミナ粒子の配合量は、上記微粉末を
含むマグネシア粒子の配合量である65〜80重量%お
よび上記アルミナ微粉末の配合量である1〜6重量%の
残部、すなわち、14〜34重量%である。
Next, as the raw material alumina particles,
If the purity is 98% or more, high-purity fused alumina or sintered alumina which has been conventionally used as a refractory lining the furnace wall of the induction furnace can be used. Also,
The particle size is usually 8 mm or less (provided that the particle size is 63 μm).
Excluding m or less. ), Preferably 5.66 mm or less. The compounding amount of the alumina particles is 65 to 80% by weight, which is the compounding amount of the magnesia particles including the fine powder, and 1 to 6% by weight, which is the compounding amount of the alumina fine powder, that is, 14 to 34% by weight. It is.

【0025】本発明に係る誘導炉用ラミング材を内張材
として用い、誘導炉を築炉するためには、従来法と同様
の方法を用いることができる。例えば、高周波誘導炉の
築炉の場合、図1に示したように、本発明に係る誘導炉
用ラミング材を炉内に以下のようにして張り合わせる。
すなわち、誘導コイル1の内側にあるコイル保護用耐火
物2の内面に、断熱シート3をセットした後、ラミング
材4を炉床部に所定量装入し、エアーランマー等で充填
施工する。施工完了後、炉床施工面を平滑に仕上げ、築
炉シリンダー5を炉床部中央にセットし、築炉シリンダ
ー5と断熱シート3との間の炉壁部に所定量のラミング
材4を装入し、エアーランマー等で充填施工する。炉壁
部は、上記操作を繰り返しながら、上部に延長し、炉上
部まで充填施工して、築炉を完了する。このようにして
築炉された新炉は、まず、内張されたラミング材4の内
側の築炉シリンダー5の容器内に銑鉄または鋳鋼等の金
属を挿入後、所定の焼結スケジュールで加熱し、徐々に
溶融しながら溶湯を増やし、ラミング材4を焼結溶解に
付す。これにより、ラミング材4の稼働面側は強固に焼
結され、緻密で安定した焼結層が形成される。
In order to build the induction furnace by using the ramming material for an induction furnace according to the present invention as a lining material, a method similar to the conventional method can be used. For example, in the case of the construction of a high-frequency induction furnace, as shown in FIG. 1, the ramming material for an induction furnace according to the present invention is bonded in the furnace as follows.
That is, after the heat insulating sheet 3 is set on the inner surface of the coil protection refractory 2 inside the induction coil 1, a predetermined amount of the ramming material 4 is charged into the hearth, and filled with an air rammer or the like. After the construction is completed, the hearth construction surface is finished smoothly, the furnace cylinder 5 is set at the center of the furnace hearth, and a predetermined amount of the ramming material 4 is mounted on the furnace wall between the furnace cylinder 5 and the heat insulating sheet 3. Insert and fill with an air rammer. The furnace wall is extended to the upper part while repeating the above-mentioned operation, and is filled up to the furnace upper part to complete the furnace construction. The new furnace thus constructed is first inserted with metal such as pig iron or cast steel into a vessel of the furnace cylinder 5 inside the lining material 4 and then heated according to a predetermined sintering schedule. Then, the molten metal is increased while gradually melting, and the ramming material 4 is subjected to sintering and melting. As a result, the working surface side of the ramming material 4 is firmly sintered, and a dense and stable sintered layer is formed.

【0026】[0026]

【実施例】以下、本発明を実施例に基づきさらに具体的
に説明するが、本発明は下記の実施例により制限される
ものではない。 [実施例]表1の実施例1〜3に示した各配合組成のラ
ミング材について、JIS R2574−77のプラス
チック耐火物のワーカービリチー・インデックス試験用
の成形用ランマーを使用し、錘を100回落下させるこ
とにより、直径50mm、高さ50mmの試供体を作製
した。この試供体を1250℃および1500℃でそれ
ぞれ加熱し、3時間保持後、冷却し、直径方向の任意の
4ヵ所について、残存膨張率を測定し、平均値を求め
た。また、表1の実施例1〜3に示した各配合組成のラ
ミング材を、300kg高周波誘導炉に図1のように内
張し、溶湯を1700〜1730℃で3時間保持し、表
2に示した組成のスラグと接触させることにより、侵食
試験を行った。試験後、炉壁溶損部の断面積を測定する
ことにより、ラミング材の溶損量を求め、実施例2の場
合を100として、指数により示した。また、試験後の
炉壁の稼働面における亀裂は、幅0.1mm以上、長さ
50mm以上のクラックの本数を計測し、ラミング材の
内部における稼働面に平行な亀裂の有無も判定した。上
記試験結果を表3に示した。
EXAMPLES Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to the following examples. [Examples] The ramming materials having the respective compositions shown in Examples 1 to 3 in Table 1 were used with a molding rammer for a workability index test of a plastic refractory of JIS R2574-77, and a weight of 100 was used. By dropping the sample twice, a sample having a diameter of 50 mm and a height of 50 mm was produced. This sample was heated at 1250 ° C. and 1500 ° C., respectively, kept for 3 hours, cooled, and the residual expansion rate was measured at any four positions in the diameter direction, and the average value was obtained. Further, the ramming material of each composition shown in Examples 1 to 3 of Table 1 was lined in a 300 kg high frequency induction furnace as shown in FIG. 1, and the molten metal was kept at 1700 to 1730 ° C. for 3 hours. Erosion tests were performed by contact with slag of the indicated composition. After the test, the amount of erosion of the ramming material was determined by measuring the cross-sectional area of the eroded part of the furnace wall. Further, the number of cracks on the working surface of the furnace wall after the test was 0.1 mm or more in width and 50 mm or more in length, and the presence or absence of cracks parallel to the working surface inside the ramming material was also determined. Table 3 shows the test results.

【0027】なお、表3に示した各試験結果の評価は、
以下に示す評価基準に従って行った。残存膨張率は、1
250℃で加熱した場合は、0.3〜0.7%の場合を
○、前記範囲外を×とした。また、1500℃で加熱し
た場合は、0.6〜1.0%の場合を○、前記範囲外を
×とした。侵食試験結果における溶損量は、指数が11
0未満の場合を○、110以上の場合を×とした。稼動
面の亀裂の本数は、9本以下を○、10本以上を×とし
た。稼動面に平行な亀裂は、無の場合を○、有の場合を
×とした。
The evaluation of each test result shown in Table 3 is as follows.
The evaluation was performed according to the following evaluation criteria. The residual expansion rate is 1
In the case of heating at 250 ° C., the case of 0.3 to 0.7% was evaluated as ○, and the case outside the above range was evaluated as ×. Moreover, when it heated at 1500 degreeC, the case of 0.6-1.0% was set to (circle), and the outside of the said range was set to x. The amount of erosion in the erosion test results is an index of 11
When it was less than 0, it was evaluated as ○, and when it was 110 or more, it was evaluated as x. Regarding the number of cracks on the working surface, 9 or less were evaluated as ○, and 10 or more as X. Regarding the cracks parallel to the working surface, the case where there was no crack was evaluated as ○, and the case where there was crack was evaluated as ×.

【0028】[比較例]表1の比較例1〜4に示した各
配合組成のラミング材について、実施例と同様に試供体
を作製し、各試験を行った。その試験結果を表3に示し
た。
[Comparative Examples] With respect to the ramming materials having the respective compositions shown in Comparative Examples 1 to 4 in Table 1, test samples were prepared in the same manner as in the examples, and each test was performed. Table 3 shows the test results.

【0029】[0029]

【表1】 1) 純度98%以上で粒径が8mm以下。ただし、粒
径が63μm以下の微粉末を30重量%含む。 2) 純度98%以上で粒径が63μm以下。 3) 純度98%以上で粒径が8mm以下。
[Table 1] 1) The purity is 98% or more and the particle size is 8 mm or less. However, it contains 30% by weight of fine powder having a particle size of 63 μm or less. 2) The purity is 98% or more and the particle size is 63 μm or less. 3) The purity is 98% or more and the particle size is 8 mm or less.

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】以上の結果から、粒径63μm以下のアル
ミナ微粉末の配合量が1重量%未満である比較例1およ
び配合量が6重量%を超える比較例2においては、残存
膨張率が小さすぎるか、あるいは、大きすぎて適当でな
いことがわかる。これに対して、アルミナ微粉末の配合
量が1〜6重量%の実施例においては、1250℃で加
熱した場合の残存膨張率が、0.3〜0.7%、また、
1500℃で加熱した場合の残存膨張率が、0.6〜
1.0%と、いずれも適正範囲の値であった。
From the above results, in Comparative Example 1 in which the blending amount of the alumina fine powder having a particle size of 63 μm or less is less than 1% by weight and in Comparative Example 2 in which the blending amount is more than 6% by weight, the residual expansion coefficient is too small. Or, it turns out to be too large and not suitable. On the other hand, in Examples in which the blending amount of the alumina fine powder is 1 to 6% by weight, the residual expansion rate when heated at 1250 ° C. is 0.3 to 0.7%, and
The residual expansion rate when heated at 1500 ° C. is 0.6 to
1.0%, all of which were within the appropriate range.

【0033】また、侵食試験後の溶損量は、粒径8mm
以下のマグネシア粒子(粒径63μm以下の微粉末を含
む)の配合量が65重量%未満である比較例3において
は、溶損指数が110以上と大きい。これに対して、配
合量が65〜80重量%である実施例においては、最大
でも溶損指数は102であった。
The amount of erosion after the erosion test was as follows.
In Comparative Example 3 in which the amount of the following magnesia particles (including fine powder having a particle size of 63 μm or less) is less than 65% by weight, the erosion index is as large as 110 or more. On the other hand, in Examples in which the blending amount was 65 to 80% by weight, the erosion index was 102 at the maximum.

【0034】さらに、侵食試験後の炉壁の稼働面におけ
る亀裂の本数は、前記アルミナ微粉末の配合量が1重量
%未満である比較例1および前記マグネシア粒子の配合
量が80重量%を超える比較例4においては、いずれも
10本以上であった。これに対して、実施例においては
7本以上のものはなかった。
Further, the number of cracks in the operating surface of the furnace wall after the erosion test was determined in Comparative Example 1 in which the amount of the alumina fine powder was less than 1% by weight and in the case where the amount of the magnesia particles was more than 80% by weight. In Comparative Example 4, the number was 10 or more. On the other hand, there were no seven or more in the examples.

【0035】また、比較例1においては、侵食試験後、
ラミング材の内部において、稼働面に平行な亀裂が発生
していたが、実施例においては、いずれもそのような亀
裂の発生は認められなかった。
In Comparative Example 1, after the erosion test,
Cracks parallel to the working surface were generated inside the ramming material, but no such cracks were observed in any of the examples.

【0036】[0036]

【発明の効果】本発明に係る誘導炉用ラミング材を使用
することにより、鋳鋼の高温溶解操業時において、炉壁
の溶損を軽減することができる。それとともに、炉壁に
発生する亀裂および炉壁の内部に発生する稼働面に平行
な亀裂の発生を抑制することができるため、誘導炉用内
張材の耐用性の向上を図ることができる。
By using the ramming material for an induction furnace according to the present invention, the melting loss of the furnace wall can be reduced during the high-temperature melting operation of cast steel. At the same time, cracks generated in the furnace wall and cracks generated inside the furnace wall parallel to the operating surface can be suppressed, so that the durability of the induction furnace lining can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 誘導炉の築炉において、ラミング材を内張す
る過程を説明するための概略断面図である。
FIG. 1 is a schematic cross-sectional view for explaining a process of lining a ramming material in an induction furnace.

【符号の説明】[Explanation of symbols]

1 誘導コイル 2 コイル保護用耐火物 3 断熱シート 4 内張(ラミング)材 5 築炉シリンダー DESCRIPTION OF SYMBOLS 1 Induction coil 2 Refractory for coil protection 3 Insulation sheet 4 Lining material 5 Furnace cylinder

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 粒径63μm以下の微粉末を含む粒径8
mm以下で純度98%以上のマグネシア粒子65〜80
重量%と、粒径63μm以下で純度98%以上のアルミ
ナ微粉末1〜6重量%と、残部が粒径0.063〜8m
mで純度98%以上のアルミナ粒子からなることを特徴
とする誘導炉用ラミング材。
1. A particle size of 8 including fine powder having a particle size of 63 μm or less.
mm and magnesia particles 65 to 80 having a purity of 98% or more.
% By weight, 1 to 6% by weight of alumina fine powder having a particle size of 63 μm or less and a purity of 98% or more, and the remainder having a particle size of 0.063 to 8 m
A ramming material for an induction furnace, comprising alumina particles having a purity of 98% or more in m.
【請求項2】 前記微粉末を含むマグネシア粒子の配合
量が、68〜77重量%であることを特徴とする請求項
1記載の誘導炉用ラミング材。
2. The ramming material for an induction furnace according to claim 1, wherein the amount of the magnesia particles containing the fine powder is 68 to 77% by weight.
【請求項3】 前記アルミナ微粉末の配合量が、2〜5
重量%であることを特徴とする請求項1または2に記載
の誘導炉用ラミング材。
3. The compounding amount of the alumina fine powder is 2-5.
3. The ramming material for an induction furnace according to claim 1, wherein the ramming material is in weight%.
【請求項4】 前記微粉末を含むマグネシア粒子におけ
るマグネシア微粉末の含有率が16〜34重量%である
ことを特徴とする請求項1から3までのいずれかに記載
の誘導炉用ラミング材。
4. The ramming material for an induction furnace according to claim 1, wherein the content of the magnesia fine powder in the magnesia particles containing the fine powder is 16 to 34% by weight.
【請求項5】 1250℃で加熱した場合の残存膨張率
が0.3〜0.7%であり、かつ、1500℃で加熱し
た場合の残存膨張率が0.6〜1.0%であることを特
徴とする請求項1から4までのいずれかに記載の誘導炉
用ラミング材。
5. The residual expansion coefficient when heated at 1250 ° C. is 0.3 to 0.7%, and the residual expansion coefficient when heated at 1500 ° C. is 0.6 to 1.0%. The ramming material for an induction furnace according to any one of claims 1 to 4, characterized in that:
JP2000249365A 2000-08-21 2000-08-21 Ramming material for induction furnace Pending JP2002060278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000249365A JP2002060278A (en) 2000-08-21 2000-08-21 Ramming material for induction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000249365A JP2002060278A (en) 2000-08-21 2000-08-21 Ramming material for induction furnace

Publications (1)

Publication Number Publication Date
JP2002060278A true JP2002060278A (en) 2002-02-26

Family

ID=18739112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000249365A Pending JP2002060278A (en) 2000-08-21 2000-08-21 Ramming material for induction furnace

Country Status (1)

Country Link
JP (1) JP2002060278A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103994663A (en) * 2014-06-11 2014-08-20 沈阳飞机工业(集团)有限公司 Method for prolonging service life of furnace lining of medium-frequency induction furnace
JP2019098363A (en) * 2017-11-30 2019-06-24 黒崎播磨株式会社 Monolithic refractory for tundish lining

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103994663A (en) * 2014-06-11 2014-08-20 沈阳飞机工业(集团)有限公司 Method for prolonging service life of furnace lining of medium-frequency induction furnace
CN103994663B (en) * 2014-06-11 2016-04-20 沈阳飞机工业(集团)有限公司 A kind of method extending medium-frequency induction furnace lining durability
JP2019098363A (en) * 2017-11-30 2019-06-24 黒崎播磨株式会社 Monolithic refractory for tundish lining

Similar Documents

Publication Publication Date Title
JP6546687B1 (en) Method of manufacturing magnesia carbon brick
US5506181A (en) Refractory for use in casting operations
JP3514393B2 (en) Castable refractories for lining dip tubes or lance pipes used in molten metal processing
JPH09202667A (en) Castable refractory for slide gate
JP6600729B1 (en) Spinel-magnesia-carbon brick for vacuum degassing apparatus and vacuum degassing apparatus lining this on the side wall of lower tank
JP6154772B2 (en) Alumina-silicon carbide-carbon brick
JP2004131310A (en) Castable refractory for lining tundish
JP4132278B2 (en) Induction furnace ramming material
JP2002060278A (en) Ramming material for induction furnace
JP2573227B2 (en) Dry ramming material for crucible induction furnace
JPH07291715A (en) Spinel refractory brick
JP3823132B2 (en) Amorphous refractory composition for lance pipes
JP3622545B2 (en) Magnesia-chrome regular refractories
JPH07315913A (en) Magnesia refractory brick
JP4124864B2 (en) Ramming material for induction furnace
JPH11278918A (en) Basic refractory raw material and basic refractory, its production and metal smelting furnace and baking furnace using the same
JPH05117043A (en) Dry ramming refractory for induction furnace
JPH0529631B2 (en)
JP2002265284A (en) Ramming material for induction furnace
JP2004149352A (en) Ramming material for induction furnace
JP2023102168A (en) Method for producing unburned bricks for molten iron vessel
JP2872670B2 (en) Irregular refractories for lining of molten metal containers
JP2023109590A (en) Method of producing magnesia-chrome brick
JPH1025168A (en) Ramming material for induction furnace
JP2003306388A (en) Electromelted spinel raw material and refractory material using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711