JP2004149352A - Ramming material for induction furnace - Google Patents

Ramming material for induction furnace Download PDF

Info

Publication number
JP2004149352A
JP2004149352A JP2002316047A JP2002316047A JP2004149352A JP 2004149352 A JP2004149352 A JP 2004149352A JP 2002316047 A JP2002316047 A JP 2002316047A JP 2002316047 A JP2002316047 A JP 2002316047A JP 2004149352 A JP2004149352 A JP 2004149352A
Authority
JP
Japan
Prior art keywords
ramming material
induction furnace
furnace
zircon
induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002316047A
Other languages
Japanese (ja)
Inventor
Noboru Nakamura
登 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2002316047A priority Critical patent/JP2004149352A/en
Publication of JP2004149352A publication Critical patent/JP2004149352A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ramming material for an induction furnace that has combinatory properties of heat resistance, corrosion resistance and thermal shock resistance satisfactory for actual using in order to melt both of cast steel and cast iron in the same furnace. <P>SOLUTION: The ramming material for the induction furnace comprises of 5-25 wt.% of andalusite, 3-25 wt.% of zircon, 5-25 wt.% of alumina fine powder with Al<SB>2</SB>O<SB>3</SB>purity of 98% or more and the balance alumina powder with Al<SB>2</SB>O<SB>3</SB>purity of 95% or more. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は誘導炉用ラミング材に関し、特に鋳鋼と鋳鉄の双方に適用できるようにした誘導炉用ラミング材に関する。
【0002】
【従来の技術】
鋳鋼の溶解に用いられる誘導炉用ラミング材は、鋳鋼の溶解が高温で行われるところから、高融点を有しスラグや溶湯成分に対して化学的に安定な特性を有するマグネシア・スピネル質、アルミナ・マグネシア質、アルミナ・スピネル質などのものが使用されている。これらのラミング材は確かに高融点で、スラグや溶湯成分に対して化学的に安定していて高耐食性を有するが、熱膨張率が大きく炉壁に亀裂を発生しやすかった。
【0003】
また、誘導炉の操業は短時間で溶解、出湯、冷材投入などが繰返され、誘導炉の炉壁内面は急激な温度変化が繰返される。また、誘導炉の炉壁の非稼動面側(誘導コイル側)は水冷されて、内張り材の稼動面と非稼動面との間は極めて大きな温度勾配となっている。こうしたことで、誘導炉の炉内壁には亀裂が発生する恐れがあり発生した亀裂からは湯差しが起こりやすく、この傾向は大型炉になるとさらに大きくなっていた。しかしながら、鋳鋼の溶解では、溶湯の粘性が比較的に大きいので、誘導炉の炉壁内面に発生した亀裂への湯差しはこれまでそれ程大きな問題とはならなかった。ところが、上記のマグネシア・スピネル質、アルミナ・マグネシア質、アルミナ・スピネル質などのラミング材を内張りした誘導炉で、低融点で溶湯の粘性が比較的に低い鋳鉄を溶解した場合には炉壁に発生した僅かの亀裂からも湯差しが発生することがあって、上記のラミング材を内張りした誘導炉を鋳鉄の溶解に使用することは困難であった。
【0004】
こうしたことで、比較的低温で溶解が行われる鋳鉄の溶解に用いられる誘導炉用ラミング材については、焼結バインダーとして硼酸を添加した天然シリカ質又は溶融シリカ質のラミング材や焼結バインダーを添加しない高純度溶融シリカ質ラミング材が以前から使用されてきた。
【0005】
その後、これを改良したものとして、焼結バインダーを含まないものでアルミナを0.5〜3.0重量%、酸化カリウムを0.5〜3.0重量%含有した溶融シリカを40〜80重量%含み、残部が天然シリカからなるもので、耐食性、耐熱衝撃性があって稼動面に亀裂が発生することが少なく従って溶湯による侵食も少なく、優れた断熱効果の得られる誘導炉用ラミング材が提案されている(例えば、特許文献1参照。)。また、ジルコンが5〜30重量%、無水硼酸が0.2〜1.0重量%、残部が溶融シリカと天然シリカからなり、耐熱性、耐食性を若干向上させた上で耐用寿命の向上を図ったものも提案されている(例えば、特許文献2参照。)。この他にも、鋳鉄の溶解に用いられる誘導炉用ラミング材には、天然珪石に焼結剤を添加した天然珪石ラミング材がある。
【0006】
これらの溶融シリカと天然シリカを用いたラミング材、シリカ・ジルコン質ラミング材、天然珪石ラミング材は、マグネシア・スピネル質やアルミナ・マグネシア質などのラミング材と比較すると耐熱性および耐食性は低下するが、耐熱衝撃性が優れているので低融点で溶湯の粘性が小さい鋳鉄溶解の誘導炉用ラミング材として使用した場合には、湯差しの発生を抑制することができる利点を有する。
【0007】
しかしながら、この溶融シリカと天然シリカを用いたラミング材、シリカ・ジルコン質ラミング材、天然珪石ラミング材を内張りした誘導炉は、反対に高温操業が必要な鋳鋼を溶解した場合には、溶損が大きく急激な耐用低下が生じるものであった。こうしたことから、この誘導炉用ラミング材を鋳鋼の溶解に使用することも出来なかった。
【0008】
しかしながら、近年溶解する材質の多様化から、内張り材を変えることなく鋳鋼と鋳鉄の双方を同一の誘導炉で溶解する要望があって、同一の内張り材で鋳鋼と鋳鉄の双方を溶解するのに問題のない耐熱性、耐食性、耐熱衝撃性を併せ持つラミング材の提供が要望されるようになっている。
【0009】
【特許文献1】
特開平7−82045号公報(第2頁、表1)
【0010】
【特許文献2】
特開平9−170883号公報(第2頁、表1)
【0011】
【発明が解決しようとする課題】
この発明は、鋳鋼と鋳鉄の双方を同一の誘導炉で溶解することが出来るようにするために、実機使用で問題のない程度の耐熱性、耐食性、耐熱衝撃性を併せ持つ誘導炉用ラミング材を提供しようとするものである。
【0012】
【課題を解決するための手段】
この発明は、アンダルサイトを5〜25重量%、ジルコンを3〜25重量%、Al純度98%以上のアルミナ微粉を5〜25重量%含み、残部がAl純度95%以上のアルミナ粉からなる誘導炉用ラミング材(請求項1)および前記アンダルサイトの粒径が3.0〜0.125mm、ジルコンの粒径が0.5mm以下、純度98%以上のアルミナ微粉の粒径が0.063mm以下、前記残部アルミナ粉の粒径が0.063mmを超え10.0mm以下である請求項1記載の誘導炉用ラミング材(請求項2)である。
【0013】
【発明の実施の態様】
この発明は、アンダルサイト、ジルコン、アルミナ微分、残部アルミナ粉からなり、実機の使用で問題がない程度の耐熱性、耐食性、耐熱衝撃性を有する誘導炉用ラミング材である。
【0014】
本発明で用いるアンダルサイトは、高温で加熱されるとその後冷却されても残存膨脹性を示す。従って、これを用いたラミング材で誘導炉内を内張りした場合は、アンダルサイトの残存膨脹性により誘導炉炉壁の亀裂の発生を低減することが可能である。アンダルアイトは5〜25重量%を用いる。アンダルサイトが5重量%未満では、長期間の使用で徐々に残存膨脹が行われるようにして、誘導炉内壁の亀裂発生や亀裂拡大を抑制することができない。また、アンダルアイトが25重量%を超えると、誘導炉炉壁の耐熱性の低下とともに高温加熱による残存膨脹が大きくなり過ぎて、炉壁の迫り出しによる剥離現象が発生する恐れがある。アンダルサイトの添加のさらに好ましい範囲は7〜23重量%である。
【0015】
ここに用いるアンダルサイトは、粒径が小さ過ぎると高温加熱による急激な残存膨脹を示し、目的とするような長期間の使用中に徐々に残存膨脹して誘導炉の炉壁の亀裂発生の抑制や亀裂拡大の抑制を図ることは出来ない。また、アンダルアイトは、粒径が大きすぎると高温加熱による残存膨脹が緩慢であり、目的とする適正な誘導炉炉壁の亀裂発生の抑制や亀裂拡大の抑制を図ることができないばかりか、誘導炉炉壁の均質な組織も得られない。こうした理由から、アンダルアイトの粒径は0.2〜2.8mmの範囲が好ましい。
【0016】
この発明ではさらにジルコンを用いる。ジルコンは2000℃以上の高融点物質で、化学的侵食に対する抵抗力も非常に高いため、これを用いたラミング材は高温溶解の場合にも大きな耐食性が得られる。また、ジルコンは熱膨張率が1000℃で0.4%と低いので容積安定性に優れ、さらに溶湯に濡れにくい特性を有している。こうしたことでジルコンを3〜25重量%用いる。ジルコンが3重量%未満の場合は、高温溶解での耐食性の向上や炉内成分の内張り内部への耐浸潤性の向上が期待できない。ジルコンの含有量が25重量%を超える場合は、繰り返し受ける熱サイクルにより亀裂が増大する恐れがある。ジルコンの配合比のさらに好ましい範囲は5〜23重量%である。ジルコンの粒度は0.5mm以下が好ましい。ジルコンをこの範囲の粒度とすることにより、この発明のラミング材のマトリックスにおいてジルコンの持つ優れた特性の耐食性の向上や炉内成分の内張り材内部への耐浸潤性の向上を図ることができる。ジルコンのさらに好ましい粒度は0.3mm以下である。
【0017】
さらに、Al純度98%以上で粒径が0.63mm以下のアルミナ微粉を用いる。このアルミナ微粉は誘導炉炉壁の稼動面に緻密な焼結層を生成させるとともに、焼結層をバックアップする適正な焼固層を生成させる効果がある。誘導炉の非稼動面側の比較的低温域であるコイル側では、焼結、焼固することなく粉体層を形成する。誘導炉炉壁のコイル側に焼結、焼固することなく粉体層が形成されていると、稼動面側に発生した亀裂は粉体層の手前で消滅するが、この粉体層がないと亀裂はコイル側まで到達することがある。
【0018】
Al純度98%以上のアルミナ微粉を5〜25重量%使用する。これが5重量%未満では適正な焼結層、焼固層が得られず、25重量%を超えると焼結層、焼固層は適正なものとなるが、築炉時の充填性が低下し良好な施工体ができない。Al純度98%以上の微粉の粒径は0.63mm以下が好ましく、またその添加量のさらに好ましい範囲は7〜23重量%である。
【0019】
以上の他の残部はAl純度98%以上のアルミナ粉である。誘導炉の炉壁厚さは電気効率の向上を目的として非常に小さく設計されている。耐熱性および耐食性を維持するとともに、炉壁の築炉充填時にラミング材の粒度偏析を抑えて均質な炉壁を作るためには、上記のアルミナ粉の粒径は0.063mmを超え10.0mm以下が好ましい。このアルミナ粉のさらに好ましい粒径は0.063〜8.0mmである。
【0020】
【実施例】
(実施例1〜5)
表1の実施例1ないし5に示す配合成分のラミング材を用いて300kgの高周波誘導炉に内張りした。即ち、図1に示すように外面に誘導コイル1が布設されたコイル保護用耐火物2の内面に断熱シート3を配置した後、各実施例のラミング材4を炉床部に所定量装填しエアランマーで搗き固め、1回の搗き上がり高さを60〜70mmとした。その後、打ち継ぎ面でのラミネーションを防止するために目荒らしを行なった。以降は同様な方法で所定の炉床厚みまでラミング材を充填施工した。その後、炉床施工面を平面仕上げして築炉シリンダ5を炉床中心にセットし、前記築炉シリンダ5と前記断熱シート3との間に各実施例のラミング材を所定量装填した。次いで、ラミング材の表面を平にしてエアランマーで搗き固め、1回の搗き上がり高さを60〜70mmとした。その後打ち継ぎ面でのラミネーションを防止するために目荒らしを行い、以降同様な方法により炉頂部まで各供試材を充填施工して内張り材4を構築した。
【0021】
築炉完了後に、この炉で銑鉄200kgを溶解し、1600〜1620℃で1時間保持し、保持時間中に表3に示す組成のスラグ300gを2回添加し、その後出湯して冷却する侵食試験を2回繰返した。この結果を表1の特性に示した。侵食試験において、耐食性について侵食深さが15mm未満のものを良(○)とし、侵食深さが15mm以上のものを不良(×)とした。また、浸潤深さが15mm未満のものを良(○)とし、浸潤深さが15mm以上のものを不良(×)とした。
【0022】
焼結層厚みは15mm以上および25mm未満のものを良(○)とし、15mm未満のもの及び25mm以上のものを不良(×)とした。焼固層厚みは15mm以上および25mm未満のものを良(○)とし、15mm未満のもの及び25mm以上のものを不良(×)とした。粉体層厚みは15mm以上のものを良(○)とし、15mm未満のものを不良(×)とした。稼動面の表面亀裂最大幅は、幅0.4mm未満のものを良(○)とし、幅0.4mm以上のものを不良(×)とした。
【0023】
(比較例1〜11)
実施例と同様にして、ラミング材は表1の比較例1ないし4および表2の比較例5ないし11のものを用いてラミング材を内張りした誘導炉を築炉した。この比較例の誘導炉を用いて実施例と同様の試験を行った。実施例および比較例の結果を表1および表2に示した。
【0024】
【表1】

Figure 2004149352
【0025】
【表2】
Figure 2004149352
【0026】
【表3】
Figure 2004149352
【0027】
表1から明らかなように、実施例1ないし5は侵食深さ、浸潤深さ、焼結層厚さ、焼固層厚さ、粉体層厚さ、炉壁稼動面の表面亀裂最大幅、稼動面状況などのすべての点で良好な結果を示している。これに対し、比較例1は焼結層の厚さ、焼固層厚さ、炉壁稼動面の表面亀裂最大幅などで若干劣っている。比較例2は侵食深さが大きく耐食性が若干劣り、炉壁稼動面に表面剥離の傾向が認められる。比較例3は、施工性が劣る外、侵食深さが大きく耐食性が若干劣り、また溶湯成分などに対する耐浸潤性や焼固層厚さについても若干劣り、炉壁稼動面に表面剥離の傾向が認められる。比較例4は、施工性が劣る外、侵食深さが大きく耐食性が若干劣り、また溶湯成分などに対する耐浸潤性も若干劣る。比較例5,6,7は、浸潤深さが大きく溶湯成分などの対する耐浸潤性が劣り、また比較例7については炉壁稼動面の表面亀裂最大幅などが劣る。さらに、比較例7については炉壁稼動面に表面剥離の傾向が認められる。比較例8は浸潤深さが大きく耐食性が劣り、また焼結層厚さ、焼固層厚さも小さくなっている。比較例9,10,11は、侵食深さが大きく耐食性が劣り、また焼結層厚さや粉体層厚さが小さい。
【0028】
【発明の効果】
以上のように、この発明のラミング材を誘導炉の炉壁に内張りすることによって、鋳鋼や鋳鉄溶解の実使用に問題のない耐熱性を付与することができ、さらに内張り材内部へのスラグや溶湯成分などの浸潤を抑制することができて、変質層生成による構造的スポーリングによる剥離を減少させることができるようになった。また、容積安定性の維持、亀裂の発生や進行を抑制できて、鋳鋼や鋳鉄の溶解を同一の内張り材の誘導炉で行うことができるようになった。
【図面の簡単な説明】
【図1】この発明のラミング材を用いた誘導炉の組立の1例を示す一部断面図。
【図2】図1に示す誘導炉の上面図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ramming material for an induction furnace, and more particularly to a ramming material for an induction furnace adapted to be applied to both cast steel and cast iron.
[0002]
[Prior art]
The ramming material for induction furnaces used for melting cast steel is composed of magnesia-spinel and alumina, which have a high melting point and are chemically stable against slag and molten metal components, because the melting of cast steel is performed at high temperatures.・ Magnesia, alumina and spinel materials are used. These ramming materials certainly had a high melting point, were chemically stable to slag and molten metal components, and had high corrosion resistance, but had a large coefficient of thermal expansion and easily cracked the furnace wall.
[0003]
In addition, the operation of the induction furnace is repeated in a short period of time, such as melting, tapping and cooling material, and the inner wall of the induction furnace undergoes rapid temperature changes. In addition, the non-operating surface side (induction coil side) of the furnace wall of the induction furnace is water-cooled, and an extremely large temperature gradient occurs between the operating surface and the non-operating surface of the lining material. As a result, a crack may be generated on the inner wall of the induction furnace, and the crack is liable to be melted. This tendency is further increased in a large furnace. However, in the melting of cast steel, since the viscosity of the molten metal is relatively large, plumbing a crack generated on the inner surface of the furnace wall of the induction furnace has not been a serious problem so far. However, in an induction furnace lined with a ramming material such as the above magnesia-spinel, alumina-magnesia, and alumina-spinel, when melting low-melting cast iron with a relatively low viscosity of the molten metal, Since even a slight crack may form a sprinkler, it was difficult to use the induction furnace lined with the ramming material for melting cast iron.
[0004]
As a result, for the ramming material for induction furnaces used for melting cast iron, which is melted at a relatively low temperature, a natural silica-based or fused silica-based ramming material to which boric acid is added as a sintering binder or a sintering binder are added. High purity fused siliceous ramming materials have been used for some time.
[0005]
After that, as an improvement, fused silica containing 0.5 to 3.0% by weight of alumina and 0.5 to 3.0% by weight of potassium oxide without containing a sintered binder was 40 to 80% by weight. %, With the balance consisting of natural silica, corrosion resistance, thermal shock resistance, less cracks on the operating surface, less erosion by the molten metal, and a ramming material for induction furnaces with excellent heat insulation effect. It has been proposed (for example, see Patent Document 1). Further, 5 to 30% by weight of zircon, 0.2 to 1.0% by weight of boric anhydride, and the balance consisting of fused silica and natural silica, the heat resistance and the corrosion resistance are slightly improved to improve the service life. Some have been proposed (for example, see Patent Document 2). In addition, a ramming material for an induction furnace used for melting cast iron includes a natural silica stone ramming material obtained by adding a sintering agent to natural silica stone.
[0006]
Although the ramming material using these fused silica and natural silica, the silica-zircon ramming material, and the natural silica ramming material have lower heat resistance and corrosion resistance than raming materials such as magnesia-spinel and alumina-magnesia. In addition, when it is used as a ramming material for an induction furnace for melting cast iron, which has a low melting point and a low viscosity of a molten metal because of its excellent thermal shock resistance, it has the advantage of suppressing the occurrence of a jug.
[0007]
However, induction furnaces lined with a ramming material using fused silica and natural silica, a silica-zircon ramming material, and a natural silica ramming material, on the other hand, are susceptible to melting when casting steel that requires high-temperature operation is melted. A large and sudden drop in service life occurred. For this reason, the ramming material for induction furnaces could not be used for melting cast steel.
[0008]
However, in recent years, there has been a demand for melting both cast steel and cast iron in the same induction furnace without changing the lining material due to the diversification of materials to be melted, and in order to melt both cast steel and cast iron with the same lining material. It has been demanded to provide a ramming material having both heat resistance, corrosion resistance and thermal shock resistance without any problem.
[0009]
[Patent Document 1]
JP-A-7-82045 (page 2, table 1)
[0010]
[Patent Document 2]
JP-A-9-170883 (page 2, table 1)
[0011]
[Problems to be solved by the invention]
The present invention provides a ramming material for an induction furnace that has both heat resistance, corrosion resistance, and thermal shock resistance that can be used in an actual machine so that both cast steel and cast iron can be melted in the same induction furnace. It is something to try to provide.
[0012]
[Means for Solving the Problems]
The present invention comprises 5 to 25% by weight of andalusite, 3 to 25% by weight of zircon, 5 to 25% by weight of alumina fine powder having an Al 2 O 3 purity of 98% or more, and the balance of Al 2 O 3 having a purity of 95% or more. A ramming material for an induction furnace made of alumina powder (claim 1) and fine alumina powder having a particle diameter of 3.0 to 0.125 mm, a particle diameter of zircon of 0.5 mm or less, and a purity of 98% or more of the andalusite. 2. The ramming material for an induction furnace according to claim 1, wherein the diameter is 0.063 mm or less, and the particle size of the remaining alumina powder is more than 0.063 mm and 10.0 mm or less (claim 2).
[0013]
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention is a ramming material for an induction furnace comprising andalusite, zircon, alumina differential, and the balance of alumina powder, and having heat resistance, corrosion resistance, and thermal shock resistance to the extent that there is no problem in actual use.
[0014]
The andalusite used in the present invention, when heated at a high temperature, exhibits a residual expansion even when cooled thereafter. Therefore, when the inside of the induction furnace is lined with the ramming material using the same, it is possible to reduce the occurrence of cracks in the induction furnace wall due to the residual expandability of the andalusite. Andalite is used in an amount of 5 to 25% by weight. When the amount of the andalusite is less than 5% by weight, the residual expansion is gradually performed in a long-term use, so that it is impossible to suppress the crack generation and the crack expansion on the inner wall of the induction furnace. On the other hand, if the amount of andalite exceeds 25% by weight, the heat resistance of the furnace wall of the induction furnace is lowered, and the residual expansion due to high-temperature heating becomes too large. A more preferred range for the addition of andalusite is 7 to 23% by weight.
[0015]
If the particle size of the andalusite used is too small, it will show rapid residual expansion due to high-temperature heating, and will gradually expand during the long-term use as intended, suppressing cracks on the furnace wall of the induction furnace. It is not possible to suppress crack growth. In addition, if the particle size of the andalite is too large, the residual expansion due to high-temperature heating is slow, and it is not possible to suppress the crack generation and crack expansion of the intended induction furnace furnace wall, but also to suppress the induction. A homogeneous structure of the furnace wall cannot be obtained. For these reasons, the particle size of the andalite is preferably in the range of 0.2 to 2.8 mm.
[0016]
In the present invention, zircon is further used. Zircon is a substance having a high melting point of 2000 ° C. or higher and has a very high resistance to chemical erosion, so that a ramming material using the same can provide great corrosion resistance even when melted at a high temperature. In addition, zircon has a low coefficient of thermal expansion of 0.4% at 1000 ° C., so that it has excellent volume stability, and further has properties of being hardly wetted by molten metal. For this reason, 3 to 25% by weight of zircon is used. If the zircon content is less than 3% by weight, it is not possible to expect improvement in corrosion resistance at high temperature melting or infiltration resistance of components in the furnace into the lining. If the zircon content exceeds 25% by weight, cracks may increase due to repeated thermal cycles. A more preferable range of the mixing ratio of zircon is 5 to 23% by weight. The particle size of zircon is preferably 0.5 mm or less. By setting the particle size of the zircon within this range, it is possible to improve the corrosion resistance of the excellent properties of the zircon in the matrix of the ramming material of the present invention and the infiltration resistance of components in the furnace into the lining material. A more preferred particle size of zircon is 0.3 mm or less.
[0017]
Further, alumina fine powder having an Al 2 O 3 purity of 98% or more and a particle size of 0.63 mm or less is used. The alumina fine powder has an effect of generating a dense sintered layer on the operating surface of the induction furnace wall and an appropriate sintering layer for backing up the sintered layer. A powder layer is formed on the coil side, which is a relatively low temperature region on the non-operating surface side of the induction furnace, without sintering and sintering. If the powder layer is formed on the coil side of the induction furnace furnace wall without sintering and sintering, the cracks generated on the working surface will disappear in front of the powder layer, but this powder layer does not exist And cracks may reach the coil side.
[0018]
Al 2 O 3 98% purity of the alumina fine powder using 5-25%. If the content is less than 5% by weight, a proper sintered layer and a solidified layer cannot be obtained, and if the content exceeds 25% by weight, the sintered layer and the solidified layer become proper, but the filling property at the time of furnace construction decreases. A good construction body cannot be made. The particle size of the fine powder having an Al 2 O 3 purity of 98% or more is preferably 0.63 mm or less, and the more preferable range of the addition amount is 7 to 23% by weight.
[0019]
The remainder other than the above is alumina powder having an Al 2 O 3 purity of 98% or more. The wall thickness of the induction furnace is designed to be very small in order to improve the electric efficiency. In order to maintain heat resistance and corrosion resistance and suppress the particle size segregation of the ramming material during furnace filling of the furnace wall to make a homogeneous furnace wall, the particle size of the alumina powder is more than 0.063 mm and 10.0 mm. The following is preferred. The more preferred particle size of the alumina powder is 0.063 to 8.0 mm.
[0020]
【Example】
(Examples 1 to 5)
Using a ramming material having the blending components shown in Examples 1 to 5 in Table 1, it was lined in a 300 kg high frequency induction furnace. That is, as shown in FIG. 1, after the heat insulating sheet 3 is arranged on the inner surface of the coil protection refractory 2 on which the induction coil 1 is laid on the outer surface, the ramming material 4 of each embodiment is loaded in a predetermined amount on the hearth. It was crushed with an air rammer and the height of one crushing was set to 60 to 70 mm. Thereafter, roughening was performed to prevent lamination at the joint surface. Thereafter, the ramming material was filled to a predetermined hearth thickness by the same method. Thereafter, the hearth construction surface was flattened, the furnace cylinder 5 was set at the center of the hearth, and a predetermined amount of the ramming material of each embodiment was loaded between the furnace cylinder 5 and the heat insulating sheet 3. Next, the surface of the ramming material was flattened and crushed with an air rammer, and the height of one crushing was set to 60 to 70 mm. Thereafter, roughening was performed to prevent lamination on the joint surface, and thereafter, the test materials were filled up to the furnace top by the same method to construct a lining material 4.
[0021]
After completion of the furnace construction, 200 kg of pig iron is melted in this furnace, held at 1600 to 1620 ° C. for 1 hour, 300 g of slag having the composition shown in Table 3 is added twice during the holding time, and then the molten metal is poured out and cooled. Was repeated twice. The results are shown in Table 1. In the erosion test, those having an erosion depth of less than 15 mm were evaluated as good (○) and those having an erosion depth of 15 mm or more were evaluated as poor (×). In addition, those having an infiltration depth of less than 15 mm were evaluated as good ()), and those having an infiltration depth of 15 mm or more were evaluated as poor (x).
[0022]
Those having a thickness of 15 mm or more and less than 25 mm were evaluated as good (O), and those having a thickness of less than 15 mm and 25 mm or more were evaluated as poor (x). Those having a thickness of 15 mm or more and less than 25 mm were evaluated as good (○), and those having a thickness of less than 15 mm and 25 mm or more were evaluated as poor (x). Powder layer thicknesses of 15 mm or more were evaluated as good (良), and those of less than 15 mm were evaluated as poor (x). Regarding the maximum surface crack width of the working surface, those with a width of less than 0.4 mm were rated as good (○), and those with a width of 0.4 mm or more were rated as poor (x).
[0023]
(Comparative Examples 1 to 11)
In the same manner as in the examples, the induction furnaces lined with the ramming material were constructed using the ramming materials of Comparative Examples 1 to 4 of Table 1 and Comparative Examples 5 to 11 of Table 2. Using the induction furnace of this comparative example, a test similar to that of the example was performed. The results of Examples and Comparative Examples are shown in Tables 1 and 2.
[0024]
[Table 1]
Figure 2004149352
[0025]
[Table 2]
Figure 2004149352
[0026]
[Table 3]
Figure 2004149352
[0027]
As is clear from Table 1, Examples 1 to 5 show that the erosion depth, the infiltration depth, the thickness of the sintered layer, the thickness of the sinter layer, the thickness of the powder layer, the maximum width of the surface crack on the furnace wall operating surface, It shows good results in all aspects, such as operating conditions. On the other hand, Comparative Example 1 is slightly inferior in the thickness of the sintered layer, the thickness of the solidified layer, the maximum width of the surface crack on the operating surface of the furnace wall, and the like. In Comparative Example 2, the erosion depth was large and the corrosion resistance was slightly inferior, and a tendency of surface peeling was observed on the furnace wall operating surface. In Comparative Example 3, the workability was inferior, the erosion depth was large, the corrosion resistance was slightly inferior, the infiltration resistance to the molten metal components and the like, and the thickness of the solidified layer was slightly inferior. Is recognized. In Comparative Example 4, the workability was poor, the erosion depth was large, the corrosion resistance was slightly inferior, and the infiltration resistance to the molten metal component was slightly inferior. Comparative Examples 5, 6, and 7 have a large infiltration depth and are inferior in infiltration resistance to molten metal components, and Comparative Example 7 is inferior in the maximum surface crack width of the furnace wall operating surface. Furthermore, in Comparative Example 7, a tendency of surface peeling was observed on the furnace wall operating surface. In Comparative Example 8, the infiltration depth was large and the corrosion resistance was inferior, and the thickness of the sintered layer and the thickness of the hardened layer were also small. In Comparative Examples 9, 10, and 11, the erosion depth is large and the corrosion resistance is poor, and the thickness of the sintered layer and the thickness of the powder layer are small.
[0028]
【The invention's effect】
As described above, by lining the ramming material of the present invention on the furnace wall of the induction furnace, it is possible to impart heat resistance that does not have any problem to the actual use of cast steel or cast iron melting. Infiltration of a molten metal component or the like can be suppressed, and peeling due to structural spalling due to formation of an altered layer can be reduced. In addition, it is possible to maintain the volume stability, suppress the generation and progress of cracks, and to dissolve cast steel and cast iron in the same induction furnace with a lining material.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view showing one example of assembling an induction furnace using a ramming material of the present invention.
FIG. 2 is a top view of the induction furnace shown in FIG.

Claims (2)

アンダルサイトを5〜25重量%、ジルコンを3〜25重量%、Al純度98%以上のアルミナ微粉を5〜25重量%含み、残部がAl純度95%以上のアルミナ粉からなる誘導炉用ラミング材。5 to 25% by weight of andalusite, 3 to 25% by weight of zircon, 5 to 25% by weight of alumina fine powder having an Al 2 O 3 purity of 98% or more, and the balance being alumina powder having an Al 2 O 3 purity of 95% or more. Ramming materials for induction furnaces. 前記アンダルサイトの粒径が3.0〜0.125mm、ジルコンの粒径が0.5mm以下、純度98%以上のアルミナ微粉の粒径が0.063mm以下、前記残部アルミナ粉の粒径が0.063mmを超え10.0mm以下である請求項1記載の誘導炉用ラミング材。The particle size of the andalusite is 3.0 to 0.125 mm, the particle size of zircon is 0.5 mm or less, the particle size of alumina fine powder having a purity of 98% or more is 0.063 mm or less, and the particle size of the remaining alumina powder is 0 2. The ramming material for an induction furnace according to claim 1, wherein the ramming material has a thickness of more than 0.063 mm and not more than 10.0 mm.
JP2002316047A 2002-10-30 2002-10-30 Ramming material for induction furnace Pending JP2004149352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002316047A JP2004149352A (en) 2002-10-30 2002-10-30 Ramming material for induction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002316047A JP2004149352A (en) 2002-10-30 2002-10-30 Ramming material for induction furnace

Publications (1)

Publication Number Publication Date
JP2004149352A true JP2004149352A (en) 2004-05-27

Family

ID=32459866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002316047A Pending JP2004149352A (en) 2002-10-30 2002-10-30 Ramming material for induction furnace

Country Status (1)

Country Link
JP (1) JP2004149352A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008037669A (en) * 2006-08-02 2008-02-21 Saint-Gobain Kk Ramming material for induction furnace
CN109160810A (en) * 2018-09-03 2019-01-08 重庆龙煜精密铜管有限公司 A kind of HIgh strength drying inductor ramming mass smelted for copper material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008037669A (en) * 2006-08-02 2008-02-21 Saint-Gobain Kk Ramming material for induction furnace
CN109160810A (en) * 2018-09-03 2019-01-08 重庆龙煜精密铜管有限公司 A kind of HIgh strength drying inductor ramming mass smelted for copper material

Similar Documents

Publication Publication Date Title
CN103687828B (en) Unsetting refractory body
JP4132278B2 (en) Induction furnace ramming material
JP2010280540A (en) Chromia-enriched castable refractory substance, and precast block using the same
US5506181A (en) Refractory for use in casting operations
US20090114365A1 (en) Material used to combat thermal expansion related defects in high temperature casting processes
JP2006182576A (en) Castable refractories
JP2004131310A (en) Castable refractory for lining tundish
JP2004149352A (en) Ramming material for induction furnace
JP3464323B2 (en) Molten steel ladle and its repair method
JP3928818B2 (en) Induction furnace
WO2015087672A1 (en) Blast furnace hearth lining structure
JP2021004160A (en) Brick for hot metal ladle, and hot metal ladle lined with the same
JP3045630B2 (en) Ramming material for induction furnace
JP4124864B2 (en) Ramming material for induction furnace
JP4811866B2 (en) Ramming material for inductor-type inductors in which a core is installed and sintered
JP3823132B2 (en) Amorphous refractory composition for lance pipes
JP2002060278A (en) Ramming material for induction furnace
JPS63311081A (en) Dry type ramming material for crucible type induction furnace
JPH0529631B2 (en)
JPS5845173A (en) Lining material for dielectric melting furnace
JP2019137561A (en) Monolithic refractory composition
JPH06144939A (en) Basic castable refractory
JPH11228242A (en) Ramming material for induction furnace
JP2005336001A (en) Thermal spraying material
JPH1025168A (en) Ramming material for induction furnace