JPH1025168A - Ramming material for induction furnace - Google Patents

Ramming material for induction furnace

Info

Publication number
JPH1025168A
JPH1025168A JP8201256A JP20125696A JPH1025168A JP H1025168 A JPH1025168 A JP H1025168A JP 8201256 A JP8201256 A JP 8201256A JP 20125696 A JP20125696 A JP 20125696A JP H1025168 A JPH1025168 A JP H1025168A
Authority
JP
Japan
Prior art keywords
ramming material
induction furnace
magnesia
spinel
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8201256A
Other languages
Japanese (ja)
Inventor
Harushichi Washio
治七 鷲尾
Tomohito Kuroki
智史 黒木
Masataka Kato
正孝 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP8201256A priority Critical patent/JPH1025168A/en
Publication of JPH1025168A publication Critical patent/JPH1025168A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a ramming material for an induction furnace, capable of safely operating by solving peeling off of a sintered layer on the furnace wall in a high power rapid melting and large-sized high frequency induction furnace in recent years and forming a long life furnace wall. SOLUTION: This ramming material for induction furnace contains 3-20wt.% magnesia, 3-20wt.% spinel and 0.2-1.0wt.% boric acid, and alumina as the balance. It is preferable that the base powder grain size of the magnesia of the ramming material for induction furnace is <=0.3mm and that that of the spinel is <=1.0mm. Further, it is preferable that the boric acid is ortho-boric acid and has <=0.3mm grain size powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は誘導炉用ラミング材
に関し、特に、主に鋳鋼を溶解する高温で稼働される大
型の誘導炉の内張り材に適用できる誘導炉用ラミング材
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ramming material for an induction furnace, and more particularly to a ramming material for an induction furnace applicable mainly to a lining material of a large induction furnace operated at a high temperature for melting cast steel.

【0002】[0002]

【従来の技術】従来から、鋳鋼等の高温溶解が行われる
誘導炉の内張り材としては、マグネシア・アルミナ質や
マグネシア・スピネル質等のマグネシア主成分の塩基性
ラミング材、アルミナ・マグネシア質等のアルミナ主成
分の中性ラミング材が使用されている。上記塩基性ラミ
ング材のマグネシア・アルミナ質及びマグネシア・スピ
ネル質は、主成分のマグネシアが2800℃の高融点を
有し、塩基性の溶湯やスラグ等に対して化学的に安定な
特性を有している。しかし、マグネシアは熱膨張率が大
きく、熱衝撃性に対する耐性が乏しく、比較的短時間で
の溶解及び全量出湯等が行われ急熱急冷が連続的に繰返
される誘導炉の炉壁には適用できない。例えば、上記の
ような熱サイクルの生じる誘導炉壁を塩基性ラミング材
で形成した場合、急激な温度変化により炉壁内面で亀裂
が発生し易く、また、発生した亀裂から湯差し等のトラ
ブルが起こり易くなる。また、従来から上記のような誘
導炉壁を塩基性ラミング材で形成した場合に、操業中に
炉壁に発生する亀裂によるトラブルが、炉の大きさに比
例することはよく知られている。そのため、塩基性ラミ
ング材は、操業面での安全性を考慮して、1トン級以下
の小型炉に限定して使用されるのが通常である。
2. Description of the Related Art Conventionally, as a lining material of an induction furnace in which cast steel or the like is melted at a high temperature, a basic ramming material mainly composed of magnesia, such as magnesia-alumina or magnesia-spinel, and an alumina-magnesia material are used. A neutral ramming material based on alumina is used. Magnesia-alumina material and magnesia-spinel material of the basic ramming material have a high melting point of 2800 ° C. as a main component of magnesia, and have properties chemically stable to a basic molten metal or slag. ing. However, magnesia has a large coefficient of thermal expansion, poor resistance to thermal shock resistance, and cannot be applied to the furnace wall of an induction furnace in which melting and tapping are performed in a relatively short time and rapid thermal quenching is continuously repeated. . For example, when the induction furnace wall in which the above-described heat cycle occurs is formed of a basic ramming material, cracks are easily generated on the inner surface of the furnace wall due to a rapid temperature change, and troubles such as hot water are caused by the generated cracks. It is easy to happen. It has been well known that when an induction furnace wall as described above is formed of a basic ramming material, the trouble caused by cracks generated in the furnace wall during operation is proportional to the size of the furnace. Therefore, the basic ramming material is usually used only in small furnaces of 1 ton class or less in consideration of operational safety.

【0003】一方、アルミナ・マグネシア質の中性ラミ
ング材は、アルミナ・スピネル質ラミング材とも呼ば
れ、主成分が2000℃以上の高融点と高耐食性を有す
るアルミナであって、マグネシアが添加されたものであ
る。このアルミナ・スピネル質は、上記塩基性ラミング
材の主成分のマグネシアに比較して主成分のアルミナが
熱膨張率が小さく、熱間での容積安定性を有し耐熱衝撃
性に優れ、稼働中にアルミナとマグネシアが反応してス
ピネル(二次スピネル)が生成し、生成時の残存膨張に
より亀裂発生が低減され、且つ、亀裂の拡大が防止され
る。上記のように誘導炉壁に中性ラミング材を用いた場
合は、稼働面で亀裂が発生しても軽微であり塩基性ラミ
ング材に比して安全性が高いことから、特に、鋳鋼溶解
用の高温で稼働される5トン級の大型高周波誘導炉壁内
張り材としては、中性ラミング材が好適に使用されてい
る。
[0003] On the other hand, the alumina-magnesia neutral ramming material is also called an alumina-spinel ramming material, the main component of which is alumina having a high melting point of 2000 ° C. or more and high corrosion resistance, to which magnesia is added. Things. This alumina / spinel material has a smaller coefficient of thermal expansion compared to magnesia as a main component of the above-described basic ramming material, has a volume stability during hot, has excellent thermal shock resistance, and is in operation. Then, alumina and magnesia react with each other to generate spinel (secondary spinel), and the generation of cracks is reduced due to residual expansion at the time of generation, and the expansion of cracks is prevented. When a neutral ramming material is used for the induction furnace wall as described above, even if cracks occur on the operating surface, it is minor and has higher safety than the basic ramming material, so it is particularly suitable for melting cast steel. Neutral ramming material is suitably used as a 5-ton class large high-frequency induction furnace wall lining material operated at a high temperature.

【0004】[0004]

【発明が解決しようとする課題】上記したラミング材で
誘導炉壁を形成する場合、一般に、乾式ラミング材と呼
ばれる所定に配合した原料の乾燥粉体を充填して施工す
る方式が採用される。乾式ラミング材は、内面の強度を
高めるために所定の溶解金属を用い予め稼働時と同様な
処理をして焼結させて安定な焼結層を形成させる。この
場合、高周波誘導炉においては電気効率を高めるため、
通常、中性ラミング材炉壁は約60〜90mmと薄く設
計されるが、高温の溶湯に接する内壁面は高温となる一
方、水冷された誘導コイルに接する外側は低温となる。
このため、炉壁内は極めて大きな温度勾配を有し、ラミ
ング材炉壁は、稼働面側には焼結層が形成されるが、そ
の背面側には未焼結層(粉体層)が残存することにな
る。5トン級の大型高周波誘導炉の炉壁を形成する上記
アルミナ・マグネシア質中性ラミング材を構成する原料
粉末としては、従来から焼結性に乏しい高純度の電融ア
ルミナ及び電融マグネシアを使用するのが通常であっ
た。そのため、特に、大型高周波誘導炉の炉壁では表面
のみが焼結するという現象がより顕著であり、稼働面の
極く表面のみが焼結し、その焼結層の直ぐ背面側の殆ど
は未焼結の粉体層となっている。その結果、スラグ成分
の浸潤による構造的スポーリング、急熱急冷による熱的
スポーリング、溶解材料装入時の物理的衝撃等により、
稼働面のみで形成された焼結薄層が剥落する等のトラブ
ルが発生することもあり、大型の高周波誘導炉における
耐久性及び安定性が問題となっている。
When the induction furnace wall is formed of the above-described ramming material, a method is generally employed in which a dry powder of a predetermined blended raw material called a dry ramming material is filled and installed. The dry ramming material is sintered using a predetermined molten metal to increase the inner surface strength and subjected to the same treatment as before in operation to form a stable sintered layer. In this case, in order to increase the electric efficiency in the high-frequency induction furnace,
Normally, the wall of the neutral ramming material furnace is designed to be as thin as about 60 to 90 mm, but the inner wall surface in contact with the high-temperature molten metal has a high temperature, while the outer surface in contact with the water-cooled induction coil has a low temperature.
For this reason, the inside of the furnace wall has an extremely large temperature gradient, and the sintering layer is formed on the working surface side of the ramming material furnace wall, but the unsintered layer (powder layer) is formed on the back side thereof. Will remain. As the raw material powder constituting the alumina-magnesia neutral ramming material forming the furnace wall of a large-scale 5-ton induction furnace, high-purity fused alumina and fused magnesia with poor sinterability have been used. It was normal to do. Therefore, the phenomenon that only the surface sinters is more remarkable especially in the furnace wall of a large high-frequency induction furnace, and only the very surface of the operating surface sinters, and most of the sintered layer immediately on the rear side is not yet formed. It is a powder layer for sintering. As a result, structural spalling due to infiltration of slag components, thermal spalling due to rapid heat quenching, physical impact at the time of charging molten material, etc.
Troubles such as the peeling of the sintered thin layer formed only on the operating surface may occur, and the durability and stability of a large high-frequency induction furnace are problematic.

【0005】本発明は、上記のような溶解と全量出湯が
行われて急激な温度変化のある鋳鋼用の大型高周波誘導
炉の炉壁耐火物として中性ラミング材を用いた場合に問
題となっていた焼結層の剥落現象に鑑み、熱サイクルに
よる熱衝撃やスラグ成分の浸潤によるスポーリングに対
する耐性に優れ、且つ、稼働面焼結層の剥落もなく、安
定して鋳鋼の溶解と出湯を繰返すことができる炉壁のラ
ミング材を提供することを目的とする。発明者らは、上
記目的を達成するべく従来の各種ラミング材について再
検討した。その結果、アルミナとマグネシアの反応によ
り二次スピネルの生成を待つことなく、積極的にスピネ
ルを添加することにより、上記従来の問題を解消できる
ことを見出し本発明を完成した。
The present invention has a problem when a neutral ramming material is used as a refractory for a wall of a large high-frequency induction furnace for a cast steel in which the above-described melting and full tapping are performed and a rapid temperature change occurs. In consideration of the spalling phenomenon of the sintered layer, it has excellent resistance to thermal shock due to thermal cycle and spalling due to infiltration of slag components, and there is no peeling of the working surface sintered layer, and the melting and tapping of cast steel is stable. It is an object to provide a ramming material for a furnace wall that can be repeated. The inventors reexamined various conventional ramming materials to achieve the above object. As a result, they have found that the conventional problems described above can be solved by positively adding spinel without waiting for the formation of secondary spinel by the reaction between alumina and magnesia, and completed the present invention.

【0006】[0006]

【課題を解決するための手段】本発明によれば、マグネ
シア3〜20重量%、スピネル3〜20重量%及び硼酸
0.2〜1.0重量%を含有すると共に、残部としてア
ルミナを含有することを特徴とする誘導炉用ラミング材
が提供される。本発明の誘導炉用ラミング材において、
マグネシアの原料粉末粒度が0.3mm以下であり、ス
ピネルの原料粉末粒度が1.0mm以下であることが好
ましく、また、硼酸がオルト硼酸であり、0.3mm以
下の粒度の粉末であることが好ましい。
According to the present invention, the composition contains 3 to 20% by weight of magnesia, 3 to 20% by weight of spinel and 0.2 to 1.0% by weight of boric acid, and the remainder contains alumina. A ramming material for an induction furnace is provided. In the induction furnace ramming material of the present invention,
The raw material powder particle size of magnesia is preferably 0.3 mm or less, the raw material powder particle size of spinel is preferably 1.0 mm or less, and the boric acid is orthoboric acid, and the powder having a particle size of 0.3 mm or less is preferable. preferable.

【0007】本発明は上記のように構成され、スピネル
を所定量添加することから、生成される焼結層が当初よ
りスラグ成分の浸潤を抑制することができる。また、焼
結助剤の硼酸を所定量にすることから、稼働面の焼結層
の強度を確保すると共に、ラミング材全域が硬化するこ
となく、亀裂が発生してもその拡大を防止し、また、溶
湯の進入が背面にまで達して漏洩することを防止でき
る。
The present invention is configured as described above, and since a predetermined amount of spinel is added, the generated sintered layer can suppress the infiltration of the slag component from the beginning. In addition, since boric acid as a sintering aid is in a predetermined amount, the strength of the sintered layer on the working surface is secured, and the entire ramming material is not cured, and even if cracks occur, the cracks are prevented from expanding, Further, it is possible to prevent the molten metal from reaching the back surface and leaking.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳しく説明する。
本発明の誘導炉用ラミング材は、アルミナ、マグネシア
及びスピネルの3成分を主成分とするもので、それらに
硼酸を添加して形成される。本発明のラミング材におい
て、マグネシアは、鋳鋼用溶湯の溶解稼働中にアルミナ
と反応して二次スピネルを生成し、生成と同時に急激に
膨張する残存膨張から亀裂の拡大を防止し低減が図れ
る。マグネシア含有量は3〜20重量%、好ましくは5
〜15重量%である。マグネシアが3重量%未満では亀
裂低減効果が期待できない。また、20重量%を超える
と上記膨張が大きくなり過ぎ、耐火物組織を弛緩させ耐
食性が低下するため好ましくない。本発明のラミング材
は、前記の他成分と共にマグネシアを上記範囲の含有量
で配合することにより、例えば5トン級の大型の高周波
誘導炉でも亀裂の発生が軽微となり、溶湯洩れ等の湯差
しトラブル等が防止される。また、原料マグネシア粉末
は、通常、電融マグネシアを使用し、その粒度が0.3
mm以下、好ましくは0.1mm以下であるものが望ま
しい。アルミナとの反応を促進させ、二次スピネルの生
成を容易にするためである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The ramming material for an induction furnace according to the present invention contains alumina, magnesia, and spinel as main components, and is formed by adding boric acid thereto. In the ramming material of the present invention, magnesia reacts with alumina during the melting operation of the molten metal for cast steel to generate secondary spinel, and the expansion of cracks can be prevented and reduced from the residual expansion that rapidly expands simultaneously with the generation. The magnesia content is 3-20% by weight, preferably 5%
1515% by weight. If magnesia is less than 3% by weight, the effect of reducing cracks cannot be expected. On the other hand, if the content exceeds 20% by weight, the above-mentioned expansion becomes excessively large, and the refractory structure is relaxed and the corrosion resistance is lowered, which is not preferable. The ramming material of the present invention, by blending magnesia with the other components in the above-mentioned range, causes little cracking even in a large-scale high-frequency induction furnace of, for example, 5 ton class, and causes troubles such as molten metal leakage. Etc. are prevented. The raw material magnesia powder usually uses electrofused magnesia and has a particle size of 0.3.
mm or less, preferably 0.1 mm or less. This is for accelerating the reaction with alumina and facilitating the formation of secondary spinel.

【0009】本発明のラミング材において、スピネルは
アルミナとマグネシアとの複合酸化物の耐火物であり2
000℃以上の高融点を有し、高温での耐食性に優れ、
鋳鋼溶湯中のスラグ成分が耐火物組織への浸潤を抑制す
る効果があり、構造的スポーリングに起因した焼結層の
剥落を防止できると共に、耐食性が向上し亀裂の発生及
び拡大にを防止することができる。スピネルの含有量は
3〜20重量%、好ましくは5〜15重量%である。ス
ピネルが3重量%未満では上記の効果が期待できず、一
方、20重量%超えると熱膨張率が大きくなり却って亀
裂が発生し易くなる。スピネルはマグネシアに比較すれ
ば熱膨張率は小さいが、アルミナに比較すると大きいた
めである。また、原料スピネル粉末は、通常、電融スピ
ネルを使用し、その粒度は1mm以下、好ましくは0.
5mm以下であるものがよい。溶湯成分と耐火物との反
応やスラグ成分の耐火物組織への浸潤が、主として耐火
物の骨格部分を結合するマトリックス部分で行われるこ
とから、そのマトリックス部分にスピネルが均一に分散
されてるように、スピネルはできるだけ微粉が好まし
く、1mm以下の粒度が好ましい。
In the ramming material of the present invention, spinel is a refractory of a composite oxide of alumina and magnesia.
It has a high melting point of 000 ° C or higher and has excellent corrosion resistance at high temperatures.
The slag component in the molten cast steel has the effect of suppressing infiltration into the refractory structure, can prevent the sintering layer from peeling off due to structural spalling, and improve the corrosion resistance to prevent the occurrence and expansion of cracks. be able to. The content of spinel is 3 to 20% by weight, preferably 5 to 15% by weight. If the spinel content is less than 3% by weight, the above effects cannot be expected, while if it exceeds 20% by weight, the thermal expansion coefficient becomes large and cracks are more likely to occur. This is because spinel has a smaller coefficient of thermal expansion than magnesia, but is larger than alumina. As the raw material spinel powder, an electrofused spinel is usually used, and its particle size is 1 mm or less, preferably 0.1 mm or less.
It is better to be 5 mm or less. Since the reaction between the molten metal component and the refractory and the infiltration of the slag component into the refractory structure are performed mainly in the matrix portion that joins the skeleton portion of the refractory, the spinel should be evenly dispersed in the matrix portion. The spinel is preferably as fine as possible, and preferably has a particle size of 1 mm or less.

【0010】本発明のラミング材において、上記のマグ
ネシア及びスピネルと共に主成分を構成するアルミナ
は、従来から誘導炉の内張り耐火物として用いられてい
る高純度電融アルミナや焼結アルミナを用いることがで
きる。アルミナは、上記スピネルと同様に2000℃以
上の融点であり高耐食性で、前記の通り熱膨張率が小さ
く、高温の溶湯と接する稼働面の容積安定性に優れる。
本発明においては、稼働面で他成分と共に高強度の焼結
層を形成し、且つ、マグネシア成分と二次スピネルを形
成して亀裂の拡大を防止する。原料アルミナ粉末の粒子
は、大小の数種を組合せて用いることが好ましい。緻密
層を形成することができるためである。通常、粒度1〜
5mm、1mm以下、0.3mm以下の粒子を組合せて
用いる。
In the ramming material of the present invention, as the alumina constituting the main component together with the magnesia and spinel, high-purity fused alumina or sintered alumina conventionally used as a refractory lining of an induction furnace may be used. it can. Alumina has a melting point of 2,000 ° C. or higher like the spinel described above, has high corrosion resistance, has a low coefficient of thermal expansion as described above, and has excellent volume stability of the operating surface in contact with the high-temperature molten metal.
In the present invention, a high-strength sintered layer is formed together with other components on the operating surface, and a secondary spinel is formed with the magnesia component to prevent crack propagation. The particles of the raw material alumina powder are preferably used in combination of several kinds of large and small. This is because a dense layer can be formed. Usually, particle size 1
Particles of 5 mm, 1 mm or less, and 0.3 mm or less are used in combination.

【0011】本発明の誘導炉用ラミング材において、上
記3主成分に添加する硼酸は、稼働面に緻密な焼結層を
生成させると共に、焼結層をバックアップする焼固層を
生成させる効果があり、誘導炉内壁のラミング材の焼結
性が向上し、熱的スポーリングや物理的衝撃に対する抵
抗性を向上させ、焼結層の剥落を防止できる。硼酸の添
加量は0.2〜1.0重量%、好ましくは0.3〜0.
8重量%である。添加量が0.2重量%未満では焼結性
の向上が期待できない。また1.0重量%を超えると耐
火物の融点が下がり耐食性が低下すると共に、ラミング
材の稼働面から背面側まで全域に硬化が進み、溶湯の洩
れ等の従来の中性ラミング材と同様に安全性の点で問題
が生じるおそれがあり好ましくない。本発明で用いる硼
酸は、通常、保管性からオルト硼酸(H3 BO3 )の使
用が好ましい。また、その粒度は、0.3mm以下、好
ましくは0.2mm以下がよい。ラミング材の焼結強度
が速やかに発現するためである。
In the ramming material for an induction furnace of the present invention, the boric acid added to the above three main components has the effect of forming a dense sintered layer on the operating surface and of forming a hardened layer for backing up the sintered layer. In addition, the sinterability of the ramming material on the inner wall of the induction furnace is improved, the resistance to thermal spalling and physical impact is improved, and the peeling of the sintered layer can be prevented. The amount of boric acid added is 0.2-1.0% by weight, preferably 0.3-0.1%.
8% by weight. If the amount is less than 0.2% by weight, improvement in sinterability cannot be expected. On the other hand, if the content exceeds 1.0% by weight, the melting point of the refractory decreases, the corrosion resistance decreases, and the hardening proceeds from the working surface to the back side of the ramming material, and the same as the conventional neutral ramming material such as molten metal leakage. It is not preferable because a problem may occur in terms of safety. As the boric acid used in the present invention, it is usually preferable to use orthoboric acid (H 3 BO 3 ) from the viewpoint of storability. The particle size is preferably 0.3 mm or less, and more preferably 0.2 mm or less. This is because the sintering strength of the ramming material is quickly developed.

【0012】[0012]

【実施例】以下、本発明を実施例に基づき更に詳細に説
明する。但し、本発明は下記実施例により制限されるも
のでない。 実施例1〜3及び比較例1〜3 図1に本実施例で用いた高周波誘導炉の築炉方法の要部
断面説明図を示した。図1における築炉は、最外側の誘
導コイル1の内側にコイル保護用耐火物2を配置し、そ
のコイル保護用耐火物2の内面に断熱シート3をセット
した後、表1に示した配合比率の各ラミング材配合品
を、炉床部4に所定量装入してエアーランマーで施工し
た。炉床部4を施工完了後、炉床部4施工面を平滑に仕
上げ、築炉シリンダー5を断熱シート3と所定幅の空間
6を設けて設置する。円環状の空間6に、所定高さの複
数の仕切板(図示せず)を円環状空間6を等分に数分割
するように断熱シート3と築炉シリンダー5に接するよ
うに垂直にセットして、炉床部と同様に各ラミング材配
合品を仕切板の高さまで所定量装入した。通常、一回当
たり約60〜70mmの高さとなるように装入する。装
入後、各配合品の表面を平滑に均し、仕切板を炉上部に
引抜き、エアーランマーで施工した。その後、打継ぎ面
でのラミネーション防止のため施工面の目荒しを行い、
施工したラミング材上に、再度、仕切板をセットして同
様に繰り返し行い、炉上部までラミング材による炉壁施
工を行った。上記のようにして300kg容量の高周波
誘導炉誘導炉の築炉を完了した。なお、築炉シリンダー
5はそのまま放置し、その後に装入される銑鉄と共に溶
解させた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to embodiments. However, the present invention is not limited by the following examples. Examples 1 to 3 and Comparative Examples 1 to 3 FIG. 1 is an explanatory cross-sectional view of a main part of a method for building a high-frequency induction furnace used in the present example. The furnace shown in FIG. 1 has a coil protection refractory 2 arranged inside an outermost induction coil 1 and an insulating sheet 3 set on the inner surface of the coil protection refractory 2. A predetermined amount of each of the ramming material blends in the ratio was charged into the hearth 4 and was constructed with an air rammer. After the completion of the construction of the hearth 4, the construction surface of the hearth 4 is finished to be smooth, and the furnace cylinder 5 is provided with the heat insulating sheet 3 and the space 6 having a predetermined width. A plurality of partition plates (not shown) having a predetermined height are vertically set in the annular space 6 so as to be in contact with the heat insulating sheet 3 and the furnace cylinder 5 so as to divide the annular space 6 into equal parts. In the same manner as in the hearth, a predetermined amount of each ramming material compound was charged up to the height of the partition plate. Usually, it is charged so as to have a height of about 60 to 70 mm at a time. After charging, the surface of each compound was smoothed, the partition plate was pulled out to the upper part of the furnace, and the product was constructed using an air rammer. After that, roughing the construction surface to prevent lamination at the joint surface,
A partition plate was set again on the ramming material thus constructed, and the same procedure was repeated, and furnace wall construction was performed to the upper part of the furnace using the ramming material. As described above, the furnace construction of the high-frequency induction furnace with a capacity of 300 kg was completed. The furnace cylinder 5 was left as it was, and was melted together with pig iron charged thereafter.

【0013】上記のようにして築炉した300kg容量
の高周波誘導炉誘導炉は、築炉シリンダー5の直径が3
10mmφであり、施工した炉床部4の高さは200m
mであった。円環状の空間6は幅70mmであり、炉床
部4上に施工した炉壁ラミング材の高さは600mmで
あった。次いで、築炉した高周波誘導炉に炉内に銑鉄を
装入し溶解試験を行った。溶解試験は、銑鉄を200k
g溶解し、1660〜1680℃の高温で5時間保持す
ることで、それぞれ2回づつ実施し、焼結層、焼固層及
び粉体層の各厚さ、侵食及び浸潤の深さ、最大亀裂幅を
測定し、その結果をそれぞれ平均して表1に示した。
The high-frequency induction furnace of 300 kg capacity constructed as described above has a furnace cylinder 5 having a diameter of 3 mm.
10 mmφ, and the height of the constructed hearth 4 is 200 m
m. The annular space 6 had a width of 70 mm, and the height of the furnace wall ramming material constructed on the hearth 4 was 600 mm. Next, pig iron was charged into the built high-frequency induction furnace, and a melting test was performed. In the dissolution test, pig iron was 200k
g, dissolving and holding at a high temperature of 1660-1680 ° C. for 5 hours, each of which is performed twice, each thickness of the sintered layer, the solidified layer and the powder layer, the depth of erosion and infiltration, the maximum crack The width was measured, and the results were averaged and shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】表1から明らかなように、(1)マグネシ
ア及びスピネルをいずれも5〜15重量%配合した本発
明のラミング材の実施例1〜3においては、侵食及び浸
潤が共に全く認められない。また、焼結層の裏側には焼
固層が25〜35mmの厚みで生成していることが観察
され、亀裂幅も最大1mmと小さく、極めて良好なであ
ることが分かる。一方、(2)スピネルや有水硼酸を全
く使用していない比較例1では、侵食や浸潤が認められ
る。また、焼結層が15mmと薄く、その裏側の焼固層
も5mmしか生成しておらず焼結性が劣ることが分か
る。更に、(3)マグネシアを25重量%使用した比較
例2や、スピネルを25重量%使用した比較例3は、い
ずれも1〜2mmの侵食が認められると共に、0.3〜
0.4mmの大きな亀裂が発生し、溶湯漏洩のおそれあ
り好ましくないことが分かる。
As is apparent from Table 1, (1) In Examples 1 to 3 of the ramming material of the present invention in which magnesia and spinel are blended in an amount of 5 to 15% by weight, neither erosion nor infiltration is observed at all. . In addition, it is observed that a solidified layer is formed on the back side of the sintered layer with a thickness of 25 to 35 mm, and the crack width is as small as 1 mm at the maximum, which indicates that it is very good. On the other hand, in (2) Comparative Example 1 in which no spinel or hydrated boric acid was used, erosion and infiltration were observed. In addition, the sintered layer was as thin as 15 mm, and only 5 mm of the solidified layer on the back side was formed, indicating that the sinterability was poor. Furthermore, (3) Comparative Example 2 using 25% by weight of magnesia and Comparative Example 3 using 25% by weight of spinel all show erosion of 1 to 2 mm and 0.3 to
It can be seen that a large crack of 0.4 mm is generated, and there is a possibility of molten metal leakage, which is not preferable.

【0016】[0016]

【発明の効果】本発明の誘導炉用ラミング材は、スピネ
ルを当初より配合することによりアルミナよりも耐食
性、耐スラグ及び耐浸潤性に優れ、また、硼酸を所定量
添加することから、焼結層の裏側にはバックアップ層で
ある焼固層が適正厚み形成され、且つ、背面側には粉体
層が残存するため、急激な熱サイクルが行われ、且つ高
温溶解の従来の鋳鋼用の高周波誘導炉で問題となってい
る焼結層の剥落が防止でき、大型の高周波誘導炉の操業
を安全に安定して行うことができ、しかも、長期間使用
が可能であり工業的に有用である。
The ramming material for an induction furnace according to the present invention is superior in corrosion resistance, slag resistance and infiltration resistance to alumina by mixing spinel from the beginning, and has a predetermined amount of boric acid. The back side of the layer has a hardened layer as a backup layer with an appropriate thickness, and the powder layer remains on the back side. The sintering layer, which is a problem in induction furnaces, can be prevented from peeling off, and large-scale high-frequency induction furnaces can be safely and stably operated, and can be used for a long time and are industrially useful. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例で用いた高周波誘導炉の築炉に
係る要部断面説明図
FIG. 1 is an explanatory sectional view of a main part of a high-frequency induction furnace used in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 誘導コイル 2 コイル保護耐火物 3 断熱シート 4 炉床部 5 築炉シリンダー 6 空間(炉壁部) DESCRIPTION OF SYMBOLS 1 Induction coil 2 Coil protection refractory 3 Heat insulation sheet 4 Hearth 5 Furnace cylinder 6 Space (furnace wall)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 マグネシア3〜20重量%、スピネル3
〜20重量%及び硼酸0.2〜1.0重量%を含有する
と共に、残部としてアルミナを含有することを特徴とす
る誘導炉用ラミング材。
1. Magnesia 3-20% by weight, spinel 3
A ramming material for an induction furnace, characterized by containing -20% by weight and 0.2-1.0% by weight of boric acid, and the balance of alumina.
【請求項2】 前記マグネシアの原料粉末粒度が0.3
mm以下であり、前記スピネルの原料粉末粒度が1.0
mm以下である請求項1記載の誘導炉用ラミング材。
2. The raw material powder of magnesia has a particle size of 0.3.
mm or less, and the raw material powder particle size of the spinel is 1.0
2. The ramming material for an induction furnace according to claim 1, which has a thickness of not more than mm.
【請求項3】 前記硼酸がオルト硼酸であり、0.3m
m以下の粒度の粉末である請求項1または2記載の誘導
炉用ラミング材。
3. The method according to claim 1, wherein the boric acid is orthoboric acid,
3. The ramming material for an induction furnace according to claim 1, which is a powder having a particle size of not more than m.
JP8201256A 1996-07-11 1996-07-11 Ramming material for induction furnace Pending JPH1025168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8201256A JPH1025168A (en) 1996-07-11 1996-07-11 Ramming material for induction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8201256A JPH1025168A (en) 1996-07-11 1996-07-11 Ramming material for induction furnace

Publications (1)

Publication Number Publication Date
JPH1025168A true JPH1025168A (en) 1998-01-27

Family

ID=16437934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8201256A Pending JPH1025168A (en) 1996-07-11 1996-07-11 Ramming material for induction furnace

Country Status (1)

Country Link
JP (1) JPH1025168A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050217A (en) * 2006-08-25 2008-03-06 Saint-Gobain Kk Ramming material for induction furnace
CN104075563A (en) * 2013-03-27 2014-10-01 鞍钢股份有限公司 Composite furnace pipe for induction furnace and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050217A (en) * 2006-08-25 2008-03-06 Saint-Gobain Kk Ramming material for induction furnace
CN104075563A (en) * 2013-03-27 2014-10-01 鞍钢股份有限公司 Composite furnace pipe for induction furnace and manufacturing method thereof
CN104075563B (en) * 2013-03-27 2016-07-06 鞍钢股份有限公司 Composite furnace pipe for induction furnace and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US3687437A (en) Metallurgical furnaces or vessels
JPH1025168A (en) Ramming material for induction furnace
CA1125504A (en) Fused cast blocks based on refractory oxides and having a steel member embedded therein
CN103936443A (en) Novel micropore corundum brick and preparation method thereof
JP4132278B2 (en) Induction furnace ramming material
JP3045630B2 (en) Ramming material for induction furnace
JP3464323B2 (en) Molten steel ladle and its repair method
JP2573227B2 (en) Dry ramming material for crucible induction furnace
JP3197680B2 (en) Method for producing unburned MgO-C brick
JP4124864B2 (en) Ramming material for induction furnace
JPH10259068A (en) Ramming material for induction furnace
CN220265732U (en) RH refining furnace dip pipe of steel is prevented wearing
JP2002060278A (en) Ramming material for induction furnace
GB1585155A (en) Arc-furnace lining
JPH11246273A (en) Ramming material for induction furnace
JP3952222B2 (en) Induction furnace
JP2000302539A (en) Filling material for masonry joint of brick
JP3276061B2 (en) Induction furnace
JPH05117043A (en) Dry ramming refractory for induction furnace
JPH10281653A (en) Lining for induction furnace
JPH0529631B2 (en)
JP2004149352A (en) Ramming material for induction furnace
JP2000191364A (en) Shaped magnesia-chrome refractory
JPH08290958A (en) Oxide-based refractory and its production
JPS5845173A (en) Lining material for dielectric melting furnace