JP2002048522A - Scanning type shape analyzer for analyzing space of wide inspection face - Google Patents

Scanning type shape analyzer for analyzing space of wide inspection face

Info

Publication number
JP2002048522A
JP2002048522A JP2001151398A JP2001151398A JP2002048522A JP 2002048522 A JP2002048522 A JP 2002048522A JP 2001151398 A JP2001151398 A JP 2001151398A JP 2001151398 A JP2001151398 A JP 2001151398A JP 2002048522 A JP2002048522 A JP 2002048522A
Authority
JP
Japan
Prior art keywords
acquisition
area
surface shape
scanning
posture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001151398A
Other languages
Japanese (ja)
Other versions
JP4638077B2 (en
Inventor
Kazuhiko Kawasaki
和彦 川▲崎▼
Naoki Mitsuya
直樹 光谷
Hiroshi Haino
宏 配野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2001151398A priority Critical patent/JP4638077B2/en
Publication of JP2002048522A publication Critical patent/JP2002048522A/en
Application granted granted Critical
Publication of JP4638077B2 publication Critical patent/JP4638077B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To remarkably shorten a measuring time. SOLUTION: This scanning type shape analyzer calculates the next obtaining position P' using a face shape calculated based on a measured image data obtained n the present obtaining position P and the present obtaining attitude, controls to move to the next obtaining position where an intersection position Ro of an optical axis Oa of a beam and a reference face 1e in a measuring head 1 is calculated, and calculates the next obtaining attitude in the next obtaining position P' using the face shape obtained in the present obtaining position P and the present obtaining attitude to conduct controlling to make a reference axis Ra in the measuring head 1 consistent with the calculated obtaining attitude.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、干渉計を内蔵する
計測手段で、被検面を走査し、被検面の面形状を算出す
る走査型広域被検面形状解析装置に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a scanning-type wide-area inspection surface shape analyzing apparatus which scans an inspection surface and calculates the surface shape of the inspection surface by measuring means having a built-in interferometer.

【0002】[0002]

【従来の技術】略平面形状を有する被検面の面形状を高
精度に測定する方法として、干渉計により、光源からの
光束を参照面、略平面形状をなす被検面にそれぞれ投射
して参照面からの反射光と被検面からの反射光との光学
的干渉縞像を発生させ、この光学的干渉縞像を用いて被
検面の面形状を測定するものがある。この干渉計を用い
た方法では、高精度な測定が可能である反面、被検面上
の一観測領域内において上下方向に数μm以上のうねり
があると、観測領域内の干渉縞の本数が多くなり、測定
が困難になる。
2. Description of the Related Art As a method for measuring the surface shape of a test surface having a substantially planar shape with high accuracy, an interferometer projects light beams from a light source onto a reference surface and a substantially planar test surface, respectively. There is an apparatus that generates an optical interference fringe image of light reflected from a reference surface and light reflected from a test surface, and measures a surface shape of the test surface using the optical interference fringe image. In the method using this interferometer, high-precision measurement is possible, but if there is a vertical undulation of several μm or more in one observation region on the surface to be measured, the number of interference fringes in the observation region is reduced. Increase, making measurement difficult.

【0003】一般に、被検面の面積が広くなるほど、被
検面の上下方向のうねり量は大きくなる。上下方向にう
ねりが大きな広域の被検面の面形状を測定する際には、
干渉計を被検面の観測領域と相対移動させる走査機構を
設けた走査型装置を用いることが必要であるが、この走
査型装置においても、同様に、上下方向のうねり量に関
する制約がある。
In general, the larger the area of the surface to be inspected, the greater the amount of undulation in the vertical direction of the surface to be inspected. When measuring the surface shape of a wide area to be inspected with large undulation in the vertical direction,
It is necessary to use a scanning device provided with a scanning mechanism for moving the interferometer relative to the observation area on the surface to be measured. However, this scanning device also has a limitation on the amount of undulation in the vertical direction.

【0004】干渉計を用いて高精度な面形状の測定を行
うためには、被検面に対する干渉計の姿勢を、干渉計の
参照面と被検面とが平行または平行に近い姿勢に保持す
ることが好ましい。換言すれば、取得された干渉縞像に
含まれる干渉縞の本数が被検面に対する取得姿勢を表す
ので、この干渉縞の本数が、要求される測定精度に応じ
た本数以下であることが望まれる。
In order to measure a surface shape with high accuracy using an interferometer, the posture of the interferometer with respect to the test surface is maintained such that the reference surface of the interferometer and the test surface are parallel or nearly parallel. Is preferred. In other words, since the number of interference fringes included in the acquired interference fringe image represents the acquisition attitude with respect to the surface to be measured, it is desirable that the number of interference fringes be equal to or less than the number corresponding to the required measurement accuracy. It is.

【0005】そこで、干渉計を用いて広域被検面の面形
状を測定する装置として、干渉計を被検面に対して相対
移動させる走査機構と、参照面と被検面とが平行または
平行に近い状態になるように被検面に対する干渉計の姿
勢を可変する対被検面姿勢可変機構を設けた装置が考え
られる。この装置では、広域被検面の面形状を計測する
際には、所定本数以下の干渉縞を得るための予備計測を
行い、この予備計測から得られた計測画像データの取得
領域毎に、所定本数以下の干渉縞を得るための姿勢制御
量を求め、この姿勢制御量を用いて干渉計の姿勢を制御
しながら本計測を行うという測定サイクルを実行するこ
とになる。
[0005] Therefore, as a device for measuring the surface shape of a wide-area test surface using an interferometer, a scanning mechanism for moving the interferometer relative to the test surface, a reference surface and the test surface being parallel or parallel. It is conceivable to provide an apparatus provided with a mechanism for changing the posture of the interferometer with respect to the surface to be measured so as to be close to the surface. In this apparatus, when measuring the surface shape of the wide-area test surface, a preliminary measurement is performed to obtain a predetermined number or less of interference fringes, and a predetermined measurement is performed for each acquisition region of the measurement image data obtained from the preliminary measurement. A measurement cycle is executed in which a posture control amount for obtaining the number of interference fringes equal to or less than the number is obtained, and the main measurement is performed while controlling the posture of the interferometer using the posture control amount.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
た装置では、同一の被検面に対して、所定本数以下の干
渉縞を得るための予備計測と、この予備計測から得られ
た姿勢制御量を用いて干渉計の姿勢を制御しながら本計
測とを行う必要があるので、被検面の面形状の測定に掛
かる時間が倍増することになる。
However, in the above-described apparatus, a preliminary measurement for obtaining a predetermined number or less of interference fringes on the same test surface and a posture control amount obtained from the preliminary measurement are performed. Since it is necessary to perform the main measurement while controlling the attitude of the interferometer using this method, the time required for measuring the surface shape of the test surface is doubled.

【0007】本発明の目的は、測定時間を大幅に短縮化
することができる走査型広域被検面形状解析装置を提供
することにある。
An object of the present invention is to provide a scanning-type wide-area surface shape analyzing apparatus capable of greatly shortening the measuring time.

【0008】[0008]

【課題を解決するための手段】請求項1記載の発明は、
光源からの光束を参照面、光学支持面に載置された被検
査物の被検面にそれぞれ投射して前記参照面からの反射
光と前記被検面からの反射光との光学的干渉縞像を発生
させる干渉計を内蔵し、該干渉計により発生された光学
的干渉縞像を計測画像データとして取得する計測手段
と、前記計測手段における光束の光軸と前記参照面との
交点を走査基準位置とし、前記走査基準位置が前記計測
画像データを取得する際の各取得位置に順次到達するよ
うに前記計測手段を前記光学支持面と平行に移動させる
走査手段と、前記走査基準位置を始点として前記光軸に
沿って延ばした方向ベクトルを基準軸とし、該基準軸の
傾き方向が前記被検面に対して変わるように前記計測手
段の前記画像データを取得する際の取得姿勢を可変する
姿勢可変手段と、前記取得位置および取得姿勢で取得さ
れた計測画像データに基づき前記取得位置および取得姿
勢に対応する被検面の取得領域の面形状を解析、算出す
る面形状解析算出手段と、前記走査手段と前記姿勢可変
手段とを駆動制御する制御手段とを備え、前記制御手段
は、現在の取得位置および取得姿勢で取得された計測画
像データを用いて次の取得位置を算出し、該算出された
次の取得位置での取得姿勢を算出することを特徴とす
る。
According to the first aspect of the present invention,
The light flux from the light source is projected onto the test surface of the test object placed on the reference surface and the optical support surface, and the optical interference fringes between the reflected light from the reference surface and the reflected light from the test surface A measuring unit that incorporates an interferometer for generating an image and acquires an optical interference fringe image generated by the interferometer as measurement image data, and scans an intersection of the optical axis of the light beam in the measuring unit and the reference surface. A scanning unit for moving the measurement unit in parallel with the optical support surface so that the scanning reference position sequentially reaches each acquisition position when the measurement image data is acquired, and a starting point at the scanning reference position. As a reference axis, a direction vector extended along the optical axis is used as a reference axis, and an acquisition posture of the measurement unit when acquiring the image data is changed so that an inclination direction of the reference axis changes with respect to the test surface. Attitude change means and front A surface shape analysis calculating unit that analyzes and calculates a surface shape of an acquisition area of a test surface corresponding to the acquisition position and the acquisition posture based on the measurement image data acquired at the acquisition position and the acquisition posture; the scanning unit and the posture And control means for driving and controlling the variable means, wherein the control means calculates a next acquisition position using the measurement image data acquired at the current acquisition position and the acquisition posture, and calculates the next acquisition position. It is characterized in that an acquisition posture at a position is calculated.

【0009】請求項2記載の発明は、請求項1記載の走
査型広域被検面形状解析装置において、前記制御手段
は、前記現在の取得位置および取得姿勢での計測画像デ
ータから得られた被検面の取得領域の面形状に基づき、
前記現在の取得位置から前記計測手段の走査方向へ向か
う走査線上における該被検面の取得領域の端位置に対応
する位置を求め、前記現在の取得位置から前記次の取得
位置までの直線距離が前記現在の取得位置から前記求め
られた被検面の取得領域の端位置に対応する位置までの
直線距離の2倍以内になるように前記次の取得位置を算
出することを特徴とする。
According to a second aspect of the present invention, in the scanning wide-area surface shape analyzing apparatus according to the first aspect, the control means includes an object to be measured obtained from the measurement image data at the current acquisition position and the current orientation. Based on the surface shape of the inspection area acquisition area,
A position corresponding to an end position of the acquisition area of the test surface on a scanning line from the current acquisition position to the scanning direction of the measuring unit is determined, and a linear distance from the current acquisition position to the next acquisition position is determined. The next acquisition position is calculated so as to be within twice the linear distance from the current acquisition position to the position corresponding to the obtained end position of the acquisition area of the test surface.

【0010】請求項3記載の発明は、請求項1または2
記載の走査型広域被検面形状解析装置において、前記制
御手段は、前記算出された次の取得位置から前記現在の
取得位置および取得姿勢で取得された計測画像データに
対応する前記被検面の取得領域またはその延長上の領域
に向けて引かれた現在の取得位置および取得姿勢での前
記基準軸に平行な線と該取得領域またはその延長上の領
域との交点位置での垂線ベクトルを求め、該求められた
垂線ベクトルに一致または平行となる基準軸の傾き方向
を前記次の取得位置での取得姿勢とすることを特徴とす
る。
[0010] The third aspect of the present invention is the first or second aspect.
In the scanning-type wide-area inspection surface shape analyzing apparatus according to the aspect, the control unit may be configured to control the measurement surface of the inspection surface corresponding to the measurement image data acquired at the current acquisition position and the acquisition posture from the calculated next acquisition position. Obtain a perpendicular vector at an intersection point between a line parallel to the reference axis at the current acquisition position and the acquisition posture drawn toward the acquisition area or an extension area thereof and the acquisition area or an extension area thereof. The inclination direction of the reference axis that coincides with or is parallel to the obtained perpendicular vector is set as the acquisition posture at the next acquisition position.

【0011】請求項4記載の発明は、請求項3の走査型
広域被検面形状解析装置において、前記制御手段は、前
記計測手段が前記次の取得位置に向けて移動された際に
該計測手段が移動された位置が前記算出された次の取得
位置と僅かに異なるときには、前記計測手段が移動され
た位置から前記現在の取得位置および取得姿勢で取得さ
れた計測画像データに対応する前記被検面の取得領域ま
たはその延長上の領域に向けて引かれた現在の取得位置
および取得姿勢での前記基準軸に平行な線と該取得領域
またはその延長上の領域との交点位置での垂線ベクトル
を求め、該求められた垂線ベクトルに一致または平行と
なる基準軸の傾き方向を前記次の取得位置での取得姿勢
とすることを特徴とする。
According to a fourth aspect of the present invention, in the scanning wide-area surface shape analyzing apparatus according to the third aspect, the control means performs the measurement when the measuring means is moved to the next acquisition position. When the position at which the means is moved is slightly different from the calculated next acquisition position, the object corresponding to the measurement image data acquired at the current acquisition position and the acquisition posture from the position at which the measurement means is moved is obtained. A perpendicular line at the intersection of the line parallel to the reference axis at the current acquisition position and orientation at the current acquisition position and acquisition orientation drawn toward the acquisition area of the inspection surface or an extension area thereof. A vector is obtained, and a tilt direction of a reference axis which is coincident with or parallel to the obtained perpendicular vector is set as an acquisition posture at the next acquisition position.

【0012】請求項5記載の発明は、請求項1または2
記載の走査型広域被検面形状解析装置において、前記制
御手段は、前記算出された次の取得位置から前記現在の
取得位置および取得姿勢で取得された計測画像データに
対応する前記被検面の取得領域に向けて引かれた現在の
取得位置および取得姿勢での前記基準軸に平行な線と該
取得領域との交点位置を求め、該求められた交点位置お
よびその近傍の位置に基づき最小二乗近似平面を算出
し、該算出された最小二乗近似平面の法線ベクトルに一
致または平行となる基準軸の傾き方向を前記次の取得位
置での取得姿勢とすることを特徴とする。
[0012] The invention according to claim 5 is the invention according to claim 1 or 2.
In the scanning-type wide-area inspection surface shape analyzing apparatus according to the aspect, the control unit may be configured to control the measurement surface of the inspection surface corresponding to the measurement image data acquired at the current acquisition position and the acquisition posture from the calculated next acquisition position. Obtain the intersection point between the current acquisition position and the line parallel to the reference axis at the acquisition orientation drawn toward the acquisition area and the acquisition area, and calculate the least squares based on the obtained intersection position and the position in the vicinity thereof. An approximate plane is calculated, and the inclination direction of the reference axis that is coincident with or parallel to the normal vector of the calculated least-squares approximate plane is set as the acquisition posture at the next acquisition position.

【0013】請求項6記載の発明は、請求項1または2
記載の走査型広域被検面形状解析装置において、前記制
御手段は、前記計測手段の前記次の取得位置への位置決
め後に、該次の取得位置で取得される計測画像データに
基づき該計測画像データにより示される干渉縞の本数を
算出し、該算出した干渉縞の本数が所定本数以下となる
取得姿勢を前記次の取得位置での取得姿勢とすることを
特徴とする。
The invention according to claim 6 is the first or second invention.
In the scanning-type wide-area surface shape analyzing apparatus according to the above aspect, the control unit, after positioning the measurement unit to the next acquisition position, sets the measurement image data based on measurement image data acquired at the next acquisition position. The number of interference fringes represented by the following formula is calculated, and the acquisition posture at which the calculated number of interference fringes is equal to or smaller than a predetermined number is set as the acquisition posture at the next acquisition position.

【0014】請求項7記載の発明は、請求項1記載の走
査型広域被検面形状解析装置において、前記面形状解析
算出手段は、前記取得位置のそれぞれでの計測画像デー
タに対応する面形状の取得領域の内の互いに隣接する2
つの取得領域が重なり合う領域部分の面形状を算出する
中間領域面形状算出機能を有し、前記中間領域面形状算
出機能は、前記互いに隣接する2つの取得領域の面形状
を合成することにより前記領域部分の面形状を算出する
ことを特徴とする。
According to a seventh aspect of the present invention, in the scanning type wide-area surface shape analyzing apparatus according to the first aspect, the surface shape analysis calculating means includes a surface shape corresponding to the measured image data at each of the acquisition positions. Adjacent to each other in the acquisition area of
An intermediate area surface shape calculation function for calculating a surface shape of an area portion where the two acquisition regions overlap each other, wherein the intermediate area surface shape calculation function combines the surface shapes of the two acquisition regions adjacent to each other to form the area. It is characterized in that the surface shape of the portion is calculated.

【0015】請求項8記載の発明は、請求項7記載の走
査型広域被検面形状解析装置において、前記中間領域面
形状算出機能により面形状が算出される領域部分は、前
記互いに隣接する2つの取得領域の内の一方の取得領域
における取得位置に対応する第1の位置と他方の取得領
域における取得位置に対応する第2の位置との間に存在
する領域部分であり、前記中間領域面形状算出機能は、
前記一方の取得領域の第1の位置と前記他方の取得領域
の第2の位置との間にある対象位置における面形状を算
出する際には、前記一方の取得領域の第1の位置から前
記対象位置までの距離と前記対象位置から前記他方の取
得領域の第2の位置までの距離との比により規定される
重み係数を用いて前記一方の取得領域の面形状と前記他
方の取得領域の面形状とを合成することにより、前記対
象位置における面形状を算出することを特徴とする。
According to an eighth aspect of the present invention, in the scanning-type wide-area surface shape analyzing apparatus according to the seventh aspect, the region portions whose surface shapes are calculated by the intermediate region surface shape calculation function are two adjacent regions. An area portion existing between a first position corresponding to an acquisition position in one of the acquisition areas and a second position corresponding to an acquisition position in the other acquisition area, and the intermediate area surface The shape calculation function
When calculating the surface shape at the target position between the first position of the one acquisition region and the second position of the other acquisition region, the surface shape is calculated from the first position of the one acquisition region. Using the weighting factor defined by the ratio of the distance to the target position and the distance from the target position to the second position of the other acquisition region, the surface shape of the one acquisition region and the surface shape of the other acquisition region The surface shape at the target position is calculated by combining the surface shape with the surface shape.

【0016】[0016]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて図面を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】(第1の実施の形態)図1は本発明の第1
の実施の形態に係る走査型広域被検面形状解析装置の構
成を模式的に示す斜視図、図2は図1の走査型広域被検
面形状解析装置に搭載されている計測ヘッドの構成を示
す透視図である。
(First Embodiment) FIG. 1 shows a first embodiment of the present invention.
FIG. 2 is a perspective view schematically showing a configuration of a scanning-type wide-area inspection surface shape analyzer according to the embodiment. FIG. 2 shows a configuration of a measuring head mounted on the scanning-type wide-area inspection surface shape analysis apparatus of FIG. FIG.

【0018】走査型広域被検面形状解析装置は、図1に
示すように、上面に光学支持面が形成されている光学定
盤6と、光学定盤6の光学支持面上に置かれた被検査物
5の被検面5aの面形状を得るための計測画像データを
取得する計測ヘッド1と、計測ヘッド1が被検査物5の
被検面5aを走査するように計測ヘッド1を光学定盤6
の光学支持面に平行に各取得位置に順次移動させる走査
機構2と、計測ヘッド1が各取得位置で計測画像データ
を取得する際の該計測ヘッド1の取得姿勢を可変する対
被検面姿勢可変機構3とを備える。
As shown in FIG. 1, the scanning-type wide-area surface shape analyzing apparatus is placed on an optical surface plate 6 having an optical support surface formed on the upper surface, and on the optical support surface of the optical surface plate 6. A measuring head 1 for acquiring measurement image data for obtaining a surface shape of a surface 5a to be inspected of the inspection object 5, and an optical head such that the measurement head 1 scans the inspection surface 5a of the inspection object 5 Surface plate 6
A scanning mechanism 2 for sequentially moving to each acquisition position in parallel with the optical support surface of the above, and a posture to be measured for varying the acquisition posture of the measurement head 1 when the measurement head 1 acquires measurement image data at each acquisition position And a variable mechanism 3.

【0019】計測ヘッド1は、図2に示すように、光源
1aからの光束をレンズ1b、ビームスプリッタ1c、
レンズ1dを介して参照面1e、略平面形状をなす被検
面5a(図1に示す)にそれぞれ投射して参照面1eか
らの反射光と被検面5aからの反射光との光学的干渉縞
像を発生させる干渉計と、該干渉計により発生された光
学的干渉縞像を計測画像データとして取得するデータ取
得手段7とを内蔵する。
As shown in FIG. 2, the measuring head 1 converts a light beam from a light source 1a into a lens 1b, a beam splitter 1c,
Optical interference between the reflected light from the reference surface 1e and the reflected light from the test surface 5a by projecting onto the reference surface 1e and the test surface 5a (shown in FIG. 1) having a substantially planar shape via the lens 1d. A built-in interferometer for generating a fringe image and data acquisition means 7 for acquiring an optical interference fringe image generated by the interferometer as measurement image data.

【0020】走査機構2は、図1に示すように、支持部
4を有し、この支持部4は、光学定盤6に設けられたガ
イドレール2bに案内されながらy方向に自走可能に構
成されている。支持部4には、上記y方向と直交するx
方向に延びるガイドレール2aが設けられ、このガイド
レール2aには、移動台2cが移動可能に支持されてい
る。移動台2cは、駆動源(図示せず)を有し、この駆
動源によりガイドレール2aに案内なされながらx方向
に自走可能に構成されている。この走査機構2の支持部
4の移動により計測ヘッド1を被検面5aに対してy方
向に走査することができ、移動台2cの移動により計測
ヘッド1を被検面5aに対してx方向に走査することが
できる。この走査により計測ヘッド1が対応する取得位
置へ移動される際には、図2に示すように、計測ヘッド
1の光軸Oaと参照面1eの交点位置R0が対応する取得
位置に一致するように移動されることになる。
As shown in FIG. 1, the scanning mechanism 2 has a supporting portion 4 which can move in the y-direction while being guided by a guide rail 2b provided on an optical surface plate 6. It is configured. The support portion 4 has x which is orthogonal to the y direction.
A guide rail 2a extending in the direction is provided, and a movable table 2c is movably supported on the guide rail 2a. The movable table 2c has a drive source (not shown), and is configured to be able to travel in the x direction while being guided by the guide rail 2a by the drive source. The movement of the support 4 of the scanning mechanism 2 allows the measurement head 1 to scan the surface 5a in the y direction, and the movement of the movable table 2c causes the measurement head 1 to move in the x direction with respect to the surface 5a. Can be scanned. When the measurement head 1 is moved to the corresponding acquisition position by this scanning, as shown in FIG. 2, the intersection point R0 between the optical axis Oa of the measurement head 1 and the reference surface 1e coincides with the corresponding acquisition position. Will be moved to

【0021】移動台2cには、対被検面姿勢可変機構3
が搭載されている。対被検面姿勢可変機構3は、計測ヘ
ッド1を基準軸Raの始点R0を中心に揺動運動させる
ことによって計測ヘッド1の取得姿勢を可変する。ここ
で、基準軸Raは、図2に示すように、計測ヘッド1に
おける光源1aの光束の光軸Oaと参照面1eとの交点
を始点R0として該光軸Oaに沿って延ばした方向ベク
トルで表され、基準軸Raの光学定盤6の光学支持面に
対する傾き方向が、計測ヘッド1が被検面5aに対して
計測画像データを取得する際の取得姿勢を表すことにな
る。
The movable table 2c has a mechanism 3
Is installed. The object-to-be-tested surface posture varying mechanism 3 varies the acquisition posture of the measurement head 1 by swinging the measurement head 1 around the start point R0 of the reference axis Ra. Here, as shown in FIG. 2, the reference axis Ra is a directional vector extending along the optical axis Oa with the intersection point between the optical axis Oa of the light beam of the light source 1a in the measuring head 1 and the reference plane 1e as a starting point R0. The inclination direction of the reference axis Ra with respect to the optical support surface of the optical surface plate 6 indicates the acquisition posture when the measurement head 1 acquires the measurement image data with respect to the test surface 5a.

【0022】計測ヘッド1のデータ取得手段7により取
得された計測画像データは、ケーブル8aを介して画像
処理制御装置8に入力される。画像処理制御装置8は、
CPU、メモリ、インタフェースを備える装置例えばコ
ンピュータなどから構成される。画像処理制御部8は、
入力された計測画像データを解析し、対応する被検面の
取得領域の面形状を算出する面形状解析算出処理を行
う。また、画像処理制御装置8は、計測ヘッド1の取得
位置および取得姿勢を制御するための走査姿勢制御を行
う。この走査姿勢制御では、具体的には、現在の取得位
置および取得姿勢で得られた計測画像データまたは算出
された面形状を用いて次の取得位置を算出し、計測ヘッ
ド1における光軸Oaと参照面1eの交点位置R0が算出
された次の取得位置に移動するように移動台2cを駆動
制御するための取得位置制御信号を算出するとともに、
現在の取得位置および取得姿勢で得られた計測画像デー
タまたは算出された面形状を用いて次の取得位置での取
得姿勢を算出し、計測ヘッド1における基準軸Raが算
出された取得姿勢に一致するように対被検面姿勢可変機
構3を駆動制御するための取得姿勢制御信号を算出す
る。取得位置制御信号は走査ドライバ9に入力され、取
得姿勢制御信号は対被検面姿勢可変ドライバ10に入力
される。画像処理制御装置8には、モニタ11が接続さ
れており、このモニタ11には、設定された計測条件、
計測画像データとして取得された光学的干渉縞像、算出
された面形状などを選択的に表示することが可能であ
る。
The measurement image data acquired by the data acquisition means 7 of the measurement head 1 is input to the image processing controller 8 via the cable 8a. The image processing control device 8
The apparatus includes a CPU, a memory, and a device including an interface, such as a computer. The image processing control unit 8
The input measurement image data is analyzed, and a surface shape analysis calculation process of calculating the surface shape of the acquisition area of the corresponding test surface is performed. Further, the image processing control device 8 performs scanning posture control for controlling the acquisition position and the acquisition posture of the measurement head 1. In this scanning posture control, specifically, the next acquisition position is calculated using the measurement image data obtained at the current acquisition position and the acquisition posture or the calculated surface shape, and the optical axis Oa of the measurement head 1 is determined. An acquisition position control signal for driving and controlling the movable base 2c to move to the next acquisition position at which the intersection point R0 of the reference plane 1e is calculated is calculated,
Using the measured image data obtained at the current acquisition position and the acquired orientation or the computed surface shape, the acquisition orientation at the next acquisition position is calculated, and the reference axis Ra of the measurement head 1 matches the calculated acquisition orientation. Then, an acquired attitude control signal for driving and controlling the test subject attitude variable mechanism 3 is calculated. The obtained position control signal is input to the scanning driver 9, and the obtained attitude control signal is input to the subject surface attitude variable driver 10. A monitor 11 is connected to the image processing control device 8, and the monitor 11 has a set measurement condition,
It is possible to selectively display an optical interference fringe image acquired as measurement image data, a calculated surface shape, and the like.

【0023】走査ドライバ9は、入力された取得位置制
御信号に基づき計測ヘッド1における光束の光軸Oaと
参照面1eとの交点の位置が算出された次の取得位置に
移動するように移動台2cを駆動するための駆動信号を
生成し、この駆動信号は、信号ケーブル9aを介して走
査機構2の移動台2cに出力される。
The scanning driver 9 moves the moving table so as to move to the next acquisition position where the position of the intersection of the optical axis Oa of the light beam and the reference surface 1e in the measuring head 1 is calculated based on the input acquisition position control signal. A driving signal for driving the scanning mechanism 2c is generated, and the driving signal is output to the moving table 2c of the scanning mechanism 2 via the signal cable 9a.

【0024】対被検面姿勢可変ドライバ10は、入力さ
れた取得位置制御信号に基づき計測ヘッド1における基
準軸Raが算出された取得姿勢に一致するように対被検
面姿勢可変機構3を駆動するための駆動信号を生成し、
この駆動信号は、信号ケーブル10aを介して対被検面
姿勢可変機構3に入力される。
The object-to-be-tested surface attitude variable driver 10 drives the object-to-be-tested surface attitude varying mechanism 3 so that the reference axis Ra of the measuring head 1 matches the calculated obtained attitude based on the input acquired position control signal. To generate a drive signal for
This drive signal is input to the mechanism 3 for changing the posture of the surface to be measured via the signal cable 10a.

【0025】次に、本実施の形態の走査型広域被検面形
状解析装置における計測動作について図3ないし図9を
参照しながら説明する。図3は図1の走査型広域被検面
形状解析装置における走査姿勢制御の手順を示すフロー
チャート、図4は図1の走査型広域被検面形状解析装置
における面形状算出処理の手順を示すフローチャート、
図5(a)は図1の走査型広域被検面解析装置における
計測ヘッドの取得位置および取得姿勢と被検面の関係を
模式的に示す図、図5(b)は図1の走査型広域被検面
解析装置における各取得領域の内の互いに隣接する2つ
の取得領域が重なり合う領域部分の面形状を合成して算
出する方法を模式的に示す図、図6は図1の走査型広域
被検面形状解析装置における計測ヘッドの次の取得位置
の算出方法を模式的に示す図、図7および図8は図1の
走査型広域被検面形状解析装置における計測ヘッドの次
の取得位置での取得姿勢の算出方法を模式的に示す図、
図9は図1の走査型広域被検面形状解析装置における互
いに隣接する2つの取得領域が重なり合う領域部分の面
形状を算出する方法を模式的に示す図である。
Next, the measuring operation in the scanning type wide-area surface shape analyzing apparatus of this embodiment will be described with reference to FIGS. FIG. 3 is a flowchart showing a procedure of scanning attitude control in the scanning type wide-area object shape analyzing apparatus of FIG. 1, and FIG. 4 is a flowchart showing a procedure of surface shape calculating processing in the scanning type wide-area object face analyzing apparatus of FIG. ,
FIG. 5A is a diagram schematically showing the relationship between the acquired position and the acquired attitude of the measuring head and the surface to be inspected in the scanning-type wide-area inspected surface analyzer of FIG. 1, and FIG. 5B is the scanning type of FIG. FIG. 6 is a diagram schematically showing a method of combining and calculating a surface shape of an area where two adjacent acquisition areas of each acquisition area overlap with each other in the wide area surface analysis apparatus, and FIG. 6 is a scanning wide area of FIG. FIGS. 7 and 8 schematically show a method of calculating the next acquisition position of the measurement head in the apparatus for analyzing the shape of a test surface. FIGS. FIG. 5 is a diagram schematically showing a calculation method of an acquisition posture in FIG.
FIG. 9 is a diagram schematically illustrating a method of calculating the surface shape of an area where two adjacent acquisition regions overlap with each other in the scanning-type wide-area surface shape analysis apparatus of FIG.

【0026】本走査型広域被検面解析装置においては、
図5(a)に示すように、予め光学定盤6の光学支持面
をx−y平面とし、その高さ方向をz方向とする三次元
座標(x,y,z)が規定され、移動台2cはx方向す
なわち計測ヘッド1の計測走査方向ds(図中の矢印が
示す方向)を主走査方向として光学定盤6の光学支持面
に平行に移動される。また、副走査方向はy方向とな
り、副走査は支持部4をガイドレール2bに沿って移動
することにより行われる。
In this scanning type wide-area inspection surface analyzing apparatus,
As shown in FIG. 5A, three-dimensional coordinates (x, y, z) in which the optical support surface of the optical surface plate 6 is an xy plane and the height direction is the z direction are defined in advance, and The table 2c is moved in parallel with the optical support surface of the optical surface plate 6 with the x direction, that is, the measurement scanning direction ds of the measuring head 1 (the direction indicated by the arrow in the drawing) as the main scanning direction. The sub-scanning direction is the y direction, and the sub-scanning is performed by moving the support unit 4 along the guide rail 2b.

【0027】ここで、計測ヘッド1における基準軸Ra
の始点R0のz座標値がz0(=一定値)とすると、この
始点R0の座標値z0は計測ヘッド1の走査によって変化
しないので、計測ヘッド1の取得位置は座標値(x,
y,z0)で一意に表される。すなわち、現在の取得位
置Pの座標値を(x,y,z0)とすると、この取得位
置Pの座標値に計測ヘッド1の始点R0の座標値が一致
するように計測ヘッド1が位置決めされることになる。
また、計測ヘッド1における基準軸Raの傾きが計測ヘ
ッド1の取得姿勢を表し、現在の取得位置Pにおいて
は、計測ヘッド1における基準軸Raが始点R0を基準と
し、対応した方向に傾けられることになる。
Here, the reference axis Ra of the measuring head 1 is
If the z-coordinate value of the starting point R0 is z0 (= constant value), since the coordinate value z0 of the starting point R0 does not change due to the scanning of the measuring head 1, the acquired position of the measuring head 1 is the coordinate value (x,
y, z0). That is, assuming that the coordinate value of the current acquisition position P is (x, y, z0), the measurement head 1 is positioned such that the coordinate value of the start point R0 of the measurement head 1 matches the coordinate value of the acquisition position P. Will be.
In addition, the inclination of the reference axis Ra of the measurement head 1 indicates the acquisition posture of the measurement head 1, and at the current acquisition position P, the reference axis Ra of the measurement head 1 is inclined in a corresponding direction with respect to the starting point R0. become.

【0028】現在の取得位置Pおよび取得姿勢で計測ヘ
ッド1により計測画像データが取得されると、この計測
画像データに基づき現在の取得位置Pおよび取得姿勢に
対応する被検面5aの取得領域Sの面形状が算出され
る。次いで、取得領域Sの面形状に基づき次の取得位置
P'が算出され、計測ヘッド1はその始点R0が次の取得
位置P'に一致するように移動される。また、次の取得
位置P'における取得姿勢に関しては、基準軸Raが現在
の取得位置Pで得られた面形状を有する取得領域Sに対
して略直交するように計測ヘッド1の次の取得姿勢が算
出される。
When the measurement image data is acquired by the measuring head 1 at the current acquisition position P and the acquisition posture, the acquisition area S on the surface 5a to be detected corresponding to the current acquisition position P and the acquisition posture is based on the measurement image data. Is calculated. Next, the next acquisition position P 'is calculated based on the surface shape of the acquisition region S, and the measuring head 1 is moved so that the starting point R0 coincides with the next acquisition position P'. Further, regarding the acquisition posture at the next acquisition position P ′, the next acquisition posture of the measuring head 1 is set such that the reference axis Ra is substantially orthogonal to the acquisition region S having the surface shape obtained at the current acquisition position P. Is calculated.

【0029】次の取得位置P'と次の取得姿勢が算出さ
れると、算出された次の取得位置P'へ計測ヘッド1が
移動されるとともに、その取得姿勢が算出された次の取
得姿勢に変更され、次の取得位置P'で次の取得姿勢に
保持された計測ヘッド1によって計測画像データの取得
が行われる。そして、この次の取得位置P'で取得され
た計測画像データに基づき該次の取得位置Pおよび取得
姿勢に対応する被検面5aの取得領域S'の面形状が算
出される。このように、計測ヘッド1を各取得位置に順
に移動し、また各取得位置毎に計測ヘッド1の取得姿勢
(基準軸Ra)を可変しながら、各取得位置Pで対応す
る取得姿勢に保持された計測ヘッド1によって計測画像
データの取得が行われることになる。
When the next acquisition position P 'and the next acquisition posture are calculated, the measuring head 1 is moved to the calculated next acquisition position P', and the next acquisition posture in which the acquisition posture is calculated is calculated. The measurement image data is acquired by the measurement head 1 held at the next acquisition position and at the next acquisition posture. Then, based on the measurement image data acquired at the next acquisition position P ', the surface shape of the acquisition area S' of the test surface 5a corresponding to the next acquisition position P and the acquisition posture is calculated. In this way, the measurement head 1 is sequentially moved to each acquisition position, and the acquisition posture (reference axis Ra) of the measurement head 1 is changed at each acquisition position, and the measurement head 1 is held at the corresponding acquisition posture at each acquisition position P. The measurement image data is obtained by the measurement head 1.

【0030】被検面5aの走査が終了すると、各取得位
置毎に対応する取得領域の面形状が得られ、各取得領域
の面形状から被検面5aの全体の面形状が算出される。
各取得領域の面形状から被検面5aの全体の面形状を算
出する際には、例えば図5(b)に示すように、各取得
領域の内の互いに隣接する2つの取得領域S,S'が重
なり合う領域部分の面形状を合成して算出する。具体的
には、互いに隣接する2つの取得領域の重なり合う部分
Sm,S'mの面形状を合成することにより、互いに隣
接する2つの取得領域S,S'が重なり合う領域部分の
面形状を算出する。そして、互いに隣接する2つの取得
領域S,S'から成る領域の面形状Siを算出する。
When the scanning of the test surface 5a is completed, the surface shape of the acquisition region corresponding to each acquisition position is obtained, and the entire surface shape of the test surface 5a is calculated from the surface shape of each acquisition region.
When calculating the overall surface shape of the inspection surface 5a from the surface shape of each acquisition region, for example, as shown in FIG. 5B, two acquisition regions S, S adjacent to each other in each acquisition region. Are calculated by synthesizing the surface shapes of the regions where 'overlaps. Specifically, by combining the surface shapes of the overlapping portions Sm and S'm of the two acquisition regions adjacent to each other, the surface shape of the region where the two acquisition regions S and S 'adjacent to each other overlap is calculated. . Then, the surface shape Si of the region composed of the two acquisition regions S and S ′ adjacent to each other is calculated.

【0031】次に、次の取得位置P'の算出方法につい
て図6を参照しながら説明する。本実施の形態では、図
6に示すように、計測ヘッド1の現在の取得位置をPと
し、この現在の取得位置Pで計測画像データを取得した
被検面5a上の取得領域をSとすると、現在の取得位置
Pに対応する取得領域S上の位置Rが求められ、この位
置Rから計測走査方向dsに延ばした直線が取得領域S
の境界と交わる位置Rmが求められる。次いで、取得位
置Pから計測走査方向dsに延ばした直線上における位
置Rmに対応する参照面1e上の位置Qが求められ、取
得位置Pから位置Qまでの直線距離│P−Q│が算出さ
れる。そして、次の取得位置をP'とすると、現在の取
得位置Pから次の取得位置P'までの計測走査方向dsに
沿った直線距離│P−P'│と直線距離│P−Q│との
間に次の(1)式に示す関係を成立させる任意の取得位
置が次の取得位置P'として求められる。
Next, a method of calculating the next acquisition position P 'will be described with reference to FIG. In the present embodiment, as shown in FIG. 6, assume that the current acquisition position of the measurement head 1 is P, and the acquisition area on the test surface 5a at which the measurement image data has been acquired at the current acquisition position P is S. A position R on the acquisition region S corresponding to the current acquisition position P is obtained, and a straight line extending from this position R in the measurement scanning direction ds is obtained.
A position Rm that intersects with the boundary of is obtained. Next, a position Q on the reference surface 1e corresponding to a position Rm on a straight line extending from the acquisition position P in the measurement scanning direction ds is determined, and a linear distance | PQ | from the acquisition position P to the position Q is calculated. You. Then, assuming that the next acquisition position is P ′, a linear distance | PP ′ | and a linear distance | PQ | along the measurement scanning direction ds from the current acquisition position P to the next acquisition position P ′ An arbitrary acquisition position that satisfies the relationship shown in the following equation (1) is obtained as the next acquisition position P ′.

【0032】 │P−P'│≦2│P−Q│ …(1) 次に、次の取得姿勢の算出方法について図7および図8
を参照しながら説明する。次の取得姿勢の算出において
は、図7に示すように、計測ヘッド1の現在の取得位置
をPとし、この取得位置Pで取得された計測画像データ
に基づき算出された面形状の取得領域をSとすると、上
述した方法で求められた次の取得位置P'において、計
測ヘッド1の基準軸Raが取得領域Sに対して直交する
ように次の取得姿勢を算出する。具体的には、図8に示
すように、次の取得位置P'から現在の取得位置Pおよ
び取得姿勢で得られた計測画像データに対応する取得領
域Sに向けて現在の取得位置Pからこの取得位置Pに対
応する取得領域S上の位置Rに引かれた線に平行な線を
下ろし、この線と取得領域Sとが交わる位置R'を求
め、位置R'を始点とする垂線ベクトルV'を算出し、計
測ヘッド1の基準軸Raが垂線ベクトルV'に一致するま
たは平行になる取得姿勢を次の取得姿勢として算出す
る。ここでは、位置R'における接平面を算出し、この
接平面における法線ベクトルを垂線ベクトルV'として
求める。
| PP ′ | ≦ 2 | PQ | (1) Next, a method of calculating the next acquired attitude is shown in FIGS. 7 and 8.
This will be described with reference to FIG. In the calculation of the next acquisition posture, as shown in FIG. 7, the current acquisition position of the measurement head 1 is P, and the acquisition area of the surface shape calculated based on the measurement image data acquired at the acquisition position P is shown in FIG. Assuming that S, the next acquisition posture is calculated such that the reference axis Ra of the measurement head 1 is orthogonal to the acquisition area S at the next acquisition position P ′ obtained by the above-described method. Specifically, as shown in FIG. 8, the current acquisition position P from the next acquisition position P ′ and the current acquisition position P toward the acquisition region S corresponding to the measurement image data acquired in the acquisition posture are obtained. A line parallel to a line drawn at the position R on the acquisition area S corresponding to the acquisition position P is lowered, a position R 'where the line and the acquisition area S intersect is obtained, and a perpendicular vector V starting from the position R' is obtained. Is calculated, and the acquisition posture in which the reference axis Ra of the measuring head 1 matches or becomes parallel to the perpendicular vector V 'is calculated as the next acquisition posture. Here, a tangent plane at the position R 'is calculated, and a normal vector at the tangent plane is obtained as a perpendicular vector V'.

【0033】ここで、例えば図8に示すように、現在の
取得位置Pから次の取得位置P'に向けて計測走査方向
dsに沿ってx−z平面上を延びる計測走査経路を表す
直線をlsとし、計測ヘッド1が次の取得位置P'を僅か
に過ぎた計測走査経路ls上の位置P"に位置決めされた
とすると、実際の取得位置が位置P"となるから、現在
の取得位置Pおよび取得姿勢での計測画像データから求
められた次の取得位置での取得姿勢を修正することが好
ましい。これは、算出された次の取得位置P'での取得
姿勢が取得位置P"での取得姿勢に適正でない場合があ
るからである。この取得姿勢の修正は、次の取得位置
P'と位置P"とのずれ量に応じて行われる。このよう
に、計測ヘッド1が次の取得位置P'から僅かに過ぎた
位置P"に位置決めされた場合には、この位置P"から取
得位置Pおよび取得姿勢で得られた計測画像データに対
応する取得領域Sに向けて現在の取得位置Pからこの取
得位置Pに対応する取得領域S上の位置Rに引かれた線
に平行な線を下ろし、この線と取得領域Sとが交わる位
置R"を求める。次いで、この位置R"における接平面が
算出され、この接平面における法線ベクトルが垂線ベク
トルV"として求められる。そして、計測ヘッド1の基
準軸Raがこの垂線ベクトルV"の傾き方向に一致するま
たは平行になるように取得位置P"での取得姿勢が修正
される。
Here, as shown in FIG. 8, for example, a straight line representing a measurement scanning path extending on the xz plane along the measurement scanning direction ds from the current acquisition position P to the next acquisition position P 'is shown. If the measurement head 1 is positioned at a position P "on the measurement scanning path ls slightly past the next acquisition position P ', the actual acquisition position becomes the position P". It is preferable to correct the acquisition posture at the next acquisition position obtained from the measurement image data in the acquisition posture. This is because the calculated acquisition posture at the next acquisition position P ′ may not be appropriate for the acquisition posture at the acquisition position P ″. This is performed according to the amount of deviation from P ". As described above, when the measurement head 1 is positioned at the position P "slightly after the next acquisition position P ', the measurement head 1 corresponds to the acquisition position P and the measurement image data obtained at the acquisition posture from this position P". A line parallel to a line drawn from the current acquisition position P to the position R on the acquisition region S corresponding to the acquisition position P is lowered toward the acquisition region S, and a position R at which this line intersects the acquisition region S Next, a tangent plane at this position R "is calculated, and a normal vector at this tangent plane is obtained as a perpendicular vector V". The acquisition posture at the acquisition position P "is corrected so as to match or become parallel to the direction.

【0034】次に、各取得領域の内の互いに隣接する2
つの取得領域S,S'が重なり合う領域部分の面形状を
算出する方法の具体例について図9を参照しながら説明
する。互いに隣接する2つの取得領域S,S'が重なり
合う領域部分の面形状を算出する際には、上述したよう
に、互いに隣接する2つの取得領域の面形状を後述する
重み係数(A(x、y),B(x,y))を用いて合成
することにより、互いに隣接する2つの取得領域S,
S'が重なり合う領域部分の面形状を算出する。
Next, two adjacent ones of the acquisition areas
A specific example of a method of calculating the surface shape of the area where the two acquisition areas S and S ′ overlap will be described with reference to FIG. When calculating the surface shape of the region where the two adjacent acquisition regions S and S ′ overlap, as described above, the surface shapes of the two adjacent acquisition regions are calculated using the weighting factors (A (x, y), B (x, y)) to obtain two adjacent acquisition areas S,
The surface shape of the region where S 'overlaps is calculated.

【0035】本実施の形態では、図9に示すように、互
いに隣接する2つの取得領域S,S'が重なり合う領域
部分として、取得領域Sにおける取得位置Pに対応する
位置Rと取得領域S'における取得位置P'に対応する位
置R'との間に存在する領域部分(図中の斜線部分)を
求め、取得領域Sの位置Rから領域部分の対象位置まで
の距離とこの対象位置から他方の取得領域S'の位置R'
までの距離との比に応じて互いに隣接する2つの取得領
域S,S'が重なり合う領域部分の面形状を算出する。
ここで、対象位置とは、2つの取得領域S,S'が互い
に重なり合う領域部分上の位置であって、この重なり合
う領域部分の面形状を算出する際の候補位置である。取
得領域Sにおける高さ(z座標)をA(x,y)の関数
で表し、取得領域Sの位置Rのx−y座標値を(x1,
y)とし、取得領域S'における高さ(z座標)をB
(x,y)の関数で表し、取得領域S'の位置R'のx−
y座標値を(x2,y)とすると、取得領域Sの位置R
と取得領域S'の位置R'との間に存在する領域部分(図
中の斜線部分)の高さ(z座標)は、次の(2)式で表
される関数H(x,y)により得られ、この関数H
(x,y)により取得領域Sの位置Rと取得領域S'の
位置R'との間に存在する領域部分(図中の斜線部分)
の面形状が求められる。
In the present embodiment, as shown in FIG. 9, two adjacent acquisition areas S and S ′ are overlapped with each other as a part of the acquisition area S corresponding to the acquisition position P and the acquisition area S ′. Is obtained between the position R ′ corresponding to the acquisition position P ′ and the position R ′ corresponding to the acquisition position P ′, and the distance from the position R of the acquisition region S to the target position of the region part and the other from the target position Position R 'of the acquisition area S'
The surface shape of an area where two adjacent acquisition areas S and S ′ overlap with each other is calculated according to the ratio to the distance to.
Here, the target position is a position on an area part where the two acquisition areas S and S ′ overlap each other, and is a candidate position when calculating the surface shape of the overlapping area part. The height (z coordinate) in the acquisition area S is represented by a function of A (x, y), and the xy coordinate value of the position R of the acquisition area S is (x1,
y), and the height (z coordinate) in the acquisition area S ′ is B
Expressed as a function of (x, y), x- of the position R ′ of the acquisition area S ′
Assuming that the y coordinate value is (x2, y), the position R of the acquisition area S
The height (z coordinate) of the region (the hatched portion in the drawing) existing between the position and the position R ′ of the acquisition region S ′ is a function H (x, y) expressed by the following equation (2). And the function H
An area portion existing between the position R of the acquisition area S and the position R 'of the acquisition area S' by (x, y) (hatched part in the figure)
Is required.

【0036】 H(x,y)=[│x2−x│・A(x,y)+│x1−x│・B(x,y)] /│x2−x1│ …(2) このように、取得領域Sの位置Rから領域部分の対象位
置までの距離とこの対象位置から他方の取得領域S'の
位置R'までの距離との比に応じて互いに隣接する2つ
の取得領域S,S'が重なり合う領域部分の面形状を算
出するので、互いに隣接する2つの取得領域S,S'が
重なり合う領域部分における不連続性が解消され、被検
面5aに対する測定結果として、不連続性がない滑らか
な面形状を得ることができる。
H (x, y) = [│x2-x││A (x, y) + │x1-x│ ・ B (x, y)] / │x2-x1│ (2) Two acquisition areas S, S adjacent to each other according to the ratio of the distance from the position R of the acquisition area S to the target position of the area part and the distance from this target position to the position R 'of the other acquisition area S'. Is calculated, the discontinuity in the region where the two adjacent acquisition regions S and S 'overlap with each other is eliminated, and there is no discontinuity in the measurement result for the test surface 5a. A smooth surface shape can be obtained.

【0037】次に、画像処理制御部8による走査姿勢制
御および面形状算出処理の手順について図3および図4
を参照しながら説明する。なお、ここでは、上述した取
得姿勢の修正を省略して説明する。
Next, the procedure of scanning attitude control and surface shape calculation processing by the image processing control unit 8 will be described with reference to FIGS.
This will be described with reference to FIG. Here, the description will be made while omitting the above-described correction of the acquisition posture.

【0038】画像処理制御部8は、計測動作が開始され
ると、計測ヘッド1に対する走査姿勢制御タスクと、計
測ヘッド1で取得された計測画像データに基づき被検面
5aの面形状を算出するための面形状算出処理タスクと
を並行して行う。
When the measurement operation is started, the image processing control unit 8 calculates the scanning posture control task for the measurement head 1 and the surface shape of the surface 5a to be inspected based on the measurement image data acquired by the measurement head 1. Is performed in parallel with the surface shape calculation processing task.

【0039】走査姿勢制御タスクでは、図3に示すよう
に、まずステップS11において初期化処理を行う。こ
の初期化処理では、計測ヘッド1を初期取得位置に位置
決めするための取得位置制御信号、計測ヘッド1を初期
取得姿勢に保持するための取得姿勢制御信号を生成す
る。そして、ステップS12に進み、後述する面形状算
出処理タスクにより生成された取得姿勢、取得姿勢の算
出に必要なデータを取得する。ここで取得されるデータ
には、算出された面形状を示すデータが含まれる。ま
た、面形状算出処理タスクから取得するデータには、走
査が終了したことに伴い計測ヘッド1を初期取得位置、
初期取得姿勢に戻すためのデータが含まれる。
In the scanning posture control task, as shown in FIG. 3, first, an initialization process is performed in step S11. In this initialization processing, an acquisition position control signal for positioning the measurement head 1 at the initial acquisition position and an acquisition posture control signal for holding the measurement head 1 in the initial acquisition posture are generated. Then, the process proceeds to step S12, in which an acquisition posture generated by a surface shape calculation processing task described later and data necessary for calculating the acquisition posture are acquired. The data acquired here includes data indicating the calculated surface shape. The data acquired from the surface shape calculation processing task includes the initial acquisition position of the measuring head 1 in accordance with the completion of the scanning,
Data for returning to the initial acquisition posture is included.

【0040】次いで、ステップS13に進み、上記ステ
ップS12において取得されたデータに基づき次の取得
位置を算出し、計測ヘッド1における光束の光軸Oaと
参照面1eとの交点の位置が算出された次の取得位置に
移動するように移動台2cを駆動制御するための取得位
置制御信号を生成する。続くステップS14では、上記
ステップS12において取得されたデータに基づき次の
取得位置での取得姿勢を算出し、計測ヘッド1における
基準軸Raが算出された取得姿勢に一致するように対被
検面姿勢可変機構3を駆動制御するための取得姿勢制御
信号を生成する。
Next, the process proceeds to step S13, where the next acquisition position is calculated based on the data acquired in step S12, and the position of the intersection between the optical axis Oa of the light beam in the measuring head 1 and the reference surface 1e is calculated. An acquisition position control signal for driving and controlling the movable base 2c to move to the next acquisition position is generated. In the following step S14, the acquisition posture at the next acquisition position is calculated based on the data acquired in the above-described step S12, and the position of the test surface is set so that the reference axis Ra of the measuring head 1 matches the calculated acquisition posture. An acquisition attitude control signal for driving and controlling the variable mechanism 3 is generated.

【0041】次いで、ステップS15に進み、上記取得
位置制御信号を走査ドライバ9に出力する。これによ
り、走査ドライバ9は、上記取得位置制御信号に基づき
計測ヘッド1が次の取得位置に移動するように走査機構
2の移動台2cを駆動する。続くステップS16では、
上記取得姿勢制御信号を対被検面姿勢可変ドライバ10
に出力する。これにより、対被検面姿勢可変ドライバ1
0は、上記取得姿勢制御信号に基づき計測ヘッド1にお
ける基準軸Raが算出された取得姿勢に一致するように
対被検面姿勢可変機構3を駆動する。
Then, the process proceeds to a step S 15, wherein the acquisition position control signal is output to the scanning driver 9. Thereby, the scanning driver 9 drives the moving table 2c of the scanning mechanism 2 based on the acquisition position control signal so that the measuring head 1 moves to the next acquisition position. In the following step S16,
The obtained attitude control signal is transmitted to the surface attitude variable driver
Output to As a result, the object-to-be-tested surface posture variable driver 1
0 drives the mechanism for changing the posture of the surface to be measured 3 so that the reference axis Ra of the measuring head 1 matches the calculated acquisition posture based on the acquisition posture control signal.

【0042】次いで、ステップS17に進み、上記ステ
ップS12において面形状算出処理タスクから、走査が
終了したことに伴い計測ヘッド1を初期取得位置、初期
取得姿勢に戻すためのデータを取得したか否かに応じて
走査が終了したか否かを判定し、走査が終了していない
ときには、上記ステップS12に進み、さらに次の取得
位置および取得姿勢を算出するために必要なデータの取
得を行う。走査が終了すると、本処理を終了する。
Then, the process proceeds to step S17. In step S12, it is determined whether or not the data for returning the measuring head 1 to the initial acquisition position and the initial acquisition posture due to the completion of the scanning has been acquired from the surface shape calculation processing task. It is determined whether or not the scanning has been completed in accordance with, and if the scanning has not been completed, the process proceeds to step S12, and data necessary for calculating the next acquisition position and acquisition attitude is acquired. When the scanning is completed, the process ends.

【0043】面形状算出処理タスクでは、図4に示すよ
うに、まずステップS21において初期化処理を行う。
この初期化処理では、計測画像データ、算出された面形
状を保持するためのメモリのクリア、計測条件の入力、
入力された計測条件に応じた計測ヘッド1の初期取得位
置および初期取得姿勢の設定などの処理を行う。
In the surface shape calculation processing task, as shown in FIG. 4, first, initialization processing is performed in step S21.
In this initialization process, clear the memory for holding the measured image data, the calculated surface shape, input the measurement conditions,
Processing such as setting an initial acquisition position and an initial acquisition posture of the measurement head 1 according to the input measurement conditions is performed.

【0044】次いで、ステップS22に進み、計測ヘッ
ド1により取得された計測画像データを入力し、続くス
テップS23で、取得された計測画像データを解析し、
該計測画像データに対応する被検面5aの取得領域の面
形状を算出する。この算出された面形状は、予め光学定
盤6の光学支持面に規定された三次元座標値(x,y,
z)で表され、この座標値(x,y,z)は、メモリに
格納される。そして、ステップS24に進み、取得した
計測画像データまたは算出された面形状に基づき次の取
得位置、取得姿勢の算出に必要なデータを生成し、この
生成したデータを走査制御タスクに渡す。ここで、上記
ステップS22で取得された計測画像データが最終取得
位置での計測画像データであるときには、走査が終了し
たことになるので、次の取得位置、取得姿勢の算出に必
要なデータは、計測ヘッド1を初期取得位置、初期取得
姿勢に戻すためのデータとなる。
Next, the process proceeds to step S22, in which the measurement image data acquired by the measuring head 1 is input, and in step S23, the acquired measurement image data is analyzed.
The surface shape of the acquisition area of the test surface 5a corresponding to the measurement image data is calculated. The calculated surface shape is defined by three-dimensional coordinate values (x, y, and y) defined in advance on the optical support surface of the optical surface plate 6.
z), and these coordinate values (x, y, z) are stored in the memory. Then, the process proceeds to step S24 to generate data necessary for calculating the next acquisition position and acquisition posture based on the acquired measurement image data or the calculated surface shape, and passes the generated data to the scan control task. Here, when the measurement image data acquired in step S22 is the measurement image data at the final acquisition position, the scanning has been completed, so the data necessary for calculating the next acquisition position and acquisition posture is: This is data for returning the measuring head 1 to the initial acquisition position and the initial acquisition posture.

【0045】次いで、ステップS25に進み、上記ステ
ップS22で取得された計測画像データが最終取得位置
での計測画像データであるか否かに応じて被検面5aに
対する走査が終了したか否かを判定し、被検面5aに対
する走査が終了していないときには、上記ステップS2
2に戻り、次の取得位置での計測画像データの取得を行
い、上記ステップS23からの処理を繰り返す。これに
対し、被検面5aに対する走査が終了すると、ステップ
S26に進む。
Next, proceeding to step S25, it is determined whether or not scanning of the surface 5a has been completed, depending on whether or not the measurement image data acquired in step S22 is the measurement image data at the final acquisition position. If it is determined that the scanning of the test surface 5a has not been completed, the above-described step S2
Returning to step 2, the measurement image data is acquired at the next acquisition position, and the processing from step S23 is repeated. On the other hand, when the scanning of the test surface 5a is completed, the process proceeds to step S26.

【0046】ステップS26では、取得位置のそれぞれ
の計測画像データから得られた面形状を有する各取得領
域の内の互いに隣接する2つの取得領域が重なり合う領
域部分の面形状を算出する。具体的には、互いに隣接す
る2つの取得領域の面形状から該取得領域のそれぞれか
ら上記領域部分に対応する面形状を合成することにより
領域部分の面形状を算出する。続いてステップS27に
進み、上記ステップS26で算出された領域部分の面形
状を含む被検面5a全体の面形状をモニタ11またはプ
リンタなどに出力し、そして、本処理を終了する。
In step S26, the surface shape of an area where two adjacent acquisition regions overlap each other in each acquisition region having a surface shape obtained from each measurement image data at the acquisition position is calculated. Specifically, the surface shape of the region portion is calculated by combining the surface shapes of two acquisition regions adjacent to each other with the surface shape corresponding to the region portion from each of the acquisition regions. Then, the process proceeds to step S27, where the entire surface shape of the test surface 5a including the surface shape of the region calculated in step S26 is output to the monitor 11, a printer, or the like, and the process ends.

【0047】このように、本実施の形態では、現在の取
得位置および取得姿勢で得られた計測画像データから算
出された面形状を用いて次の取得位置を算出し、計測ヘ
ッド1における光束の光軸Oaと参照面1eの交点位置
R0が算出された次の取得位置に移動するように移動台
2cを駆動制御するとともに、現在の取得位置および取
得姿勢で得られた面形状を用いて次の取得位置での取得
姿勢を算出し、計測ヘッド1における基準軸Raが算出
された取得姿勢に一致するように対被検面姿勢可変機構
3を駆動制御するので、従来のように計測ヘッド1の姿
勢制御量を得るための予備計測を行う必要がなく、被検
面5aの面形状の測定に掛かる時間を大幅に短縮化する
ことができる。
As described above, in the present embodiment, the next acquisition position is calculated using the surface shape calculated from the measurement image data obtained at the current acquisition position and the current orientation, and the luminous flux of the measurement head 1 is calculated. The drive of the movable table 2c is controlled so that the intersection point R0 of the optical axis Oa and the reference plane 1e moves to the next calculated position, and the next position is calculated using the surface shape obtained at the current obtained position and obtained posture. Is calculated, and the drive of the variable mechanism 3 for measuring the posture of the surface to be measured is controlled so that the reference axis Ra of the measuring head 1 coincides with the calculated obtaining posture. It is not necessary to perform a preliminary measurement for obtaining the amount of attitude control, and the time required for measuring the surface shape of the test surface 5a can be greatly reduced.

【0048】(第2の実施の形態)次に、本発明の第2
の実施の形態について図10を参照しながら説明する。
図10は本発明の第2の実施の形態に係る走査型広域被
検面形状解析装置における計測ヘッドの次の取得位置で
の取得姿勢の算出方法を模式的に示す図である。
(Second Embodiment) Next, a second embodiment of the present invention will be described.
The embodiment will be described with reference to FIG.
FIG. 10 is a diagram schematically illustrating a method of calculating the acquisition attitude at the next acquisition position of the measurement head in the scanning-type wide-area surface shape analyzing apparatus according to the second embodiment of the present invention.

【0049】本実施の形態では、図10に示すように、
次の取得位置P'から取得領域Sに向けて延ばした現在
の取得位置Pからこの取得位置Pに対応する取得領域S
上の位置Rに引かれた線に平行な線と取得領域Sとが交
わる位置R'を求め、位置R'およびその周囲の近傍位置
の三次元座標値に基づき最小二乗法により近似した平面
Spを算出し、この近似された平面Spに対する法線ベク
トルV'を算出し、計測ヘッド1の基準軸Raが法線ベク
トルV'に一致するまたは平行になる取得姿勢を次の取
得姿勢として算出する点で、上述の第1の実施の形態に
対して異なる。なお、他の構成については上述の第1の
実施の形態と同じであり、その説明は省略する。
In the present embodiment, as shown in FIG.
From the current acquisition position P extending from the next acquisition position P ′ toward the acquisition region S, an acquisition region S corresponding to this acquisition position P
The plane Sp approximated by the least-squares method based on the three-dimensional coordinate values of the position R 'and the neighboring positions around the position R' is obtained by finding the position R 'where the line parallel to the line drawn at the upper position R and the acquisition area S intersect. Is calculated, and a normal vector V ′ with respect to the approximated plane Sp is calculated, and an acquisition posture in which the reference axis Ra of the measurement head 1 matches or becomes parallel to the normal vector V ′ is calculated as the next acquisition posture. This is different from the above-described first embodiment. Note that other configurations are the same as those of the above-described first embodiment, and a description thereof will be omitted.

【0050】このように構成することにより、取得領域
Sの高周波の凹凸成分に影響されることなく、計測ヘッ
ド1の被検面5aに対する取得姿勢を表す法線ベクトル
V'をより高精度に算出することができ、ひいては、次
の取得位置P'において、計測ヘッド1の干渉計の参照
面1eと対応する被検面の取得領域S'との平行度をさ
らに向上させることができる。
With this configuration, the normal vector V 'representing the acquisition posture of the measuring head 1 with respect to the surface 5a to be measured is calculated with higher accuracy without being affected by the high frequency unevenness component of the acquisition region S. Consequently, at the next acquisition position P ', the parallelism between the reference surface 1e of the interferometer of the measurement head 1 and the corresponding acquisition region S' of the test surface can be further improved.

【0051】(第3の実施の形態)次に、本発明の第3
の実施の形態について図11(a),(b)を参照しな
がら説明する。図11(a)は本発明の第3の実施の形
態に係る走査型広域被検面形状解析装置における算出さ
れた干渉縞の本数が所定本数以下である場合の計測ヘッ
ドの次の取得位置での取得姿勢の算出方法を模式的に示
す図、図11(b)は本発明の第3の実施の形態に係る
走査型広域被検面形状解析装置における算出された干渉
縞の本数が所定本数を超えた場合の計測ヘッドの次の取
得位置での取得姿勢の算出方法を模式的に示す図であ
る。
(Third Embodiment) Next, a third embodiment of the present invention will be described.
The embodiment will be described with reference to FIGS. 11 (a) and 11 (b). FIG. 11A shows the next acquisition position of the measurement head when the number of interference fringes calculated by the scanning-type wide-area surface shape analyzing apparatus according to the third embodiment of the present invention is equal to or less than a predetermined number. FIG. 11B is a diagram schematically showing a calculation method of the acquired attitude, and FIG. 11B is a diagram showing a case where the number of interference fringes calculated by the scanning-type wide-area surface shape analyzing apparatus according to the third embodiment of the present invention is a predetermined number FIG. 11 is a diagram schematically illustrating a calculation method of an acquisition posture at a next acquisition position of the measurement head when the number of the measurement heads exceeds the limit.

【0052】本実施の形態では、上述の第1の実施の形
態に対して、次の取得位置P'へ計測ヘッド1を移動し
た後に、計測ヘッド1の取得姿勢を求める点で異なる。
本実施の形態では、上述の第1の実施の形態と異なる点
について説明し、上述の第1の実施の形態と同じ構成に
ついての説明は省略する。
The present embodiment is different from the above-described first embodiment in that the measuring head 1 is moved to the next obtaining position P 'and then the obtaining posture of the measuring head 1 is obtained.
In this embodiment, points different from the above-described first embodiment will be described, and description of the same configuration as the above-described first embodiment will be omitted.

【0053】本実施の形態においては、図11(a)に
示すように、計測ヘッド1が現在の取得位置Pから取得
位置Pでの取得姿勢を保持した状態で次の取得位置P'
へ移動されると、まず、取得位置P'に対応する被検面
5aの取得領域に対する計測画像データが計測ヘッド1
により取得され、この取得された計測画像データは、ケ
ーブル8aを介して画像処理制御装置8に入力される。
画像処理制御装置8は、入力された計測画像データが示
す干渉縞像IGをモニタ11に表示するように制御する
とともに、入力された計測画像データに含まれる干渉縞
の本数を算出し、この算出された干渉縞の本数が所定本
数(例えば3本)以下であるか否かの判定を行う。ここ
で、この算出された干渉縞の本数が所定本数以下である
と、取得位置Pでの取得姿勢を取得位置P'での取得姿
勢とする。そして、取得位置P'において取得位置Pで
の取得姿勢に同じ取得姿勢で計測画像データが取得さ
れ、この計測画像データに基づき対応する取得領域S'
の面形状が解析、算出される。
In the present embodiment, as shown in FIG. 11A, the next acquisition position P ′ is held in a state where the measuring head 1 holds the acquisition posture from the current acquisition position P to the acquisition position P.
First, the measurement image data for the acquisition area of the test surface 5a corresponding to the acquisition position P ′ is
The acquired measurement image data is input to the image processing control device 8 via the cable 8a.
The image processing control device 8 controls the interference fringe image IG indicated by the input measurement image data to be displayed on the monitor 11, calculates the number of interference fringes included in the input measurement image data, and calculates this calculation. It is determined whether the number of interference fringes is equal to or less than a predetermined number (for example, three). Here, if the calculated number of interference fringes is equal to or less than a predetermined number, the acquisition posture at the acquisition position P is set as the acquisition posture at the acquisition position P ′. Then, at the acquisition position P ′, the measurement image data is acquired in the same acquisition posture as the acquisition posture at the acquisition position P, and the corresponding acquisition region S ′ is obtained based on the measurement image data.
Is analyzed and calculated.

【0054】これに対し、算出された干渉縞の本数が所
定本数を超えるときには、図11(b)に示すように、
取得位置P'において計測ヘッド1の基準軸Raの傾きお
よびその方向を順次可変しながら計測画像データを取得
し、計測ヘッド1の基準軸Raの傾きおよびその方向が
変わる毎に取得された計測画像データに基づき干渉縞の
本数を算出し、この算出された干渉縞の本数が所定本数
(例えば3本)以下であるか否かの判定を行う。これら
の一連の処理が干渉縞の本数が所定本数以下になるまで
繰り返され、干渉縞の本数が所定本数以下になる基準軸
Raの傾きおよび方向が得られると、この傾きおよび方
向に基準軸Raが保持される。すなわち計測ヘッド1が
干渉縞の本数が所定本数以下になる取得姿勢に保持され
る。そして、この取得姿勢での計測画像データが取得さ
れ、この計測画像データに基づき対応する取得領域S'
の面形状が解析、算出される。
On the other hand, when the calculated number of interference fringes exceeds a predetermined number, as shown in FIG.
At the acquisition position P ′, measurement image data is acquired while sequentially changing the inclination and the direction of the reference axis Ra of the measurement head 1, and the measurement image acquired each time the inclination and the direction of the reference axis Ra of the measurement head 1 changes The number of interference fringes is calculated based on the data, and it is determined whether or not the calculated number of interference fringes is equal to or less than a predetermined number (for example, three). These series of processes are repeated until the number of interference fringes becomes equal to or less than a predetermined number. When the inclination and direction of the reference axis Ra in which the number of interference fringes is equal to or less than the predetermined number are obtained, the inclination and direction are changed to the reference axis Ra. Is held. That is, the measurement head 1 is held in the acquisition posture in which the number of interference fringes is equal to or less than the predetermined number. Then, the measurement image data in this acquisition posture is acquired, and the corresponding acquisition area S ′ based on the measurement image data is acquired.
Is analyzed and calculated.

【0055】[0055]

【発明の効果】以上説明したように、本発明によれば、
光源からの光束を参照面、光学支持面に載置された被検
査物の被検面にそれぞれ投射して参照面からの反射光と
被検面からの反射光との光学的干渉縞像を発生させる干
渉計を内蔵し、該干渉計により発生された光学的干渉縞
像を計測画像データとして取得する計測手段と、計測手
段における光束の光軸と前記参照面との交点を走査基準
位置とし、走査基準位置が計測画像データを取得する際
の各取得位置に順次到達するように計測手段を光学支持
面と平行に移動させる走査手段と、走査基準位置を始点
として光軸に沿って延ばした方向ベクトルを基準軸と
し、該基準軸の傾き方向が被検面に対して変わるように
計測手段の画像データを取得する際の取得姿勢を可変す
る姿勢可変手段と、取得位置および取得姿勢で取得され
た計測画像データに基づき取得位置および取得姿勢に対
応する被検面の取得領域の面形状を解析、算出する面形
状解析算出手段と、走査手段と姿勢可変手段とを駆動制
御する制御手段とを備え、制御手段は、現在の取得位置
および取得姿勢で取得された計測画像データを用いて次
の取得位置を算出し、該算出された次の取得位置での取
得姿勢を算出するので、従来のように計測手段の姿勢制
御量を得るための予備計測を行う必要がなく、被検面の
面形状の測定に掛かる時間を大幅に短縮化することがで
きる。
As described above, according to the present invention,
The light flux from the light source is projected onto the test surface of the test object placed on the reference surface and the optical support surface, and the optical interference fringe image of the reflected light from the reference surface and the reflected light from the test surface is formed. A measuring unit that incorporates an interferometer to be generated and acquires an optical interference fringe image generated by the interferometer as measurement image data, and an intersection between the optical axis of the light beam in the measuring unit and the reference surface is set as a scanning reference position. A scanning means for moving the measuring means in parallel with the optical support surface so that the scanning reference position sequentially reaches each acquisition position when acquiring the measurement image data, and extending along the optical axis with the scanning reference position as a starting point. An orientation variable unit that varies an acquisition orientation when acquiring image data of the measurement unit so that the direction of inclination of the reference axis changes with respect to a surface to be inspected, using a direction vector as a reference axis, and an acquisition position and an acquisition orientation. The measured image data Surface position analysis and calculation means for analyzing and calculating the surface shape of the acquisition area of the test surface corresponding to the acquisition position and the acquisition posture, and control means for driving and controlling the scanning means and the attitude variable means, and the control means The next acquisition position is calculated using the measurement image data acquired at the current acquisition position and the acquisition posture, and the acquisition posture at the calculated next acquisition position is calculated. It is not necessary to perform preliminary measurement for obtaining the attitude control amount, and it is possible to greatly reduce the time required for measuring the surface shape of the surface to be inspected.

【0056】また、制御手段により、現在の取得位置お
よび取得姿勢での計測画像データから得られた被検面の
取得領域の面形状に基づき、現在の取得位置から計測手
段の走査方向へ向かう走査線上における該被検面の取得
領域の端位置に対応する位置を求め、現在の取得位置か
ら次の取得位置までの直線距離が現在の取得位置から求
められた被検面の取得領域の端位置に対応する位置まで
の直線距離の2倍以内になるように次の取得位置を算出
することによって、現在の取得位置に対応する取得領域
と次の取得位置に対応する取得領域との間に重なり合う
領域が確実に存在し、被検面において未測定領域が生じ
ることをなくすことができる。
The control means scans from the current acquisition position in the scanning direction of the measurement means based on the surface shape of the acquisition area of the test surface obtained from the measurement image data at the current acquisition position and the acquisition attitude. The position corresponding to the end position of the acquisition area of the test surface on the line is determined, and the linear distance from the current acquisition position to the next acquisition position is the end position of the acquisition area of the test surface obtained from the current acquisition position By calculating the next acquisition position so as to be less than twice the linear distance to the position corresponding to, the acquisition region corresponding to the current acquisition position overlaps with the acquisition region corresponding to the next acquisition position The region is reliably present, and it is possible to prevent the occurrence of an unmeasured region on the test surface.

【0057】さらに、制御手段により、算出された次の
取得位置から現在の取得位置および取得姿勢で取得され
た計測画像データに対応する被検面の取得領域またはそ
の延長上の領域に向けて引かれた現在の取得位置および
取得姿勢での基準軸に平行な線と該取得領域またはその
延長上の領域との交点位置での垂線ベクトルを求め、該
求められた垂線ベクトルに一致または平行となる基準軸
の傾き方向を次の取得位置での取得姿勢とすることによ
って、次の取得位置において、計測手段の干渉計の参照
面と対応する被検査面の取得領域とが略平行になる取得
姿勢に計測手段を保持することができる。
Further, the control means pulls from the calculated next acquisition position to the acquisition area of the test surface corresponding to the measurement image data acquired at the current acquisition position and the acquisition attitude, or an extension area thereof. The perpendicular vector at the intersection of the line parallel to the reference axis at the current acquired position and the acquired orientation and the acquired area or an area on the extension thereof is obtained, and it becomes coincident with or parallel to the obtained perpendicular vector. By setting the inclination direction of the reference axis to the acquisition posture at the next acquisition position, the acquisition posture at which the reference surface of the interferometer of the measuring means and the corresponding acquisition region of the inspection surface become substantially parallel at the next acquisition position Can hold the measuring means.

【0058】さらに、制御手段により、計測手段が次の
取得位置に向けて移動された際に該計測手段が移動され
た位置が算出された次の取得位置と僅かに異なるときに
は、計測手段が移動された位置から現在の取得位置およ
び取得姿勢で取得された計測画像データに対応する被検
面の取得領域またはその延長上の領域に向けて引かれた
現在の取得位置および取得姿勢での基準軸に平行な線と
該取得領域またはその延長上の領域との交点位置での垂
線ベクトルを求め、該求められた垂線ベクトルに一致ま
たは平行となる基準軸の傾き方向を次の取得位置での取
得姿勢とすることによって、計測手段が算出された次の
取得位置と僅かに異なる位置に移動された際には、計測
手段の取得姿勢を修正することができる。
Further, when the measuring means is moved to the next acquisition position and the position at which the measuring means is moved is slightly different from the calculated next acquisition position, the control means moves the measuring means. The current acquisition position and the reference axis at the acquisition orientation drawn toward the acquisition area of the test surface corresponding to the measurement image data acquired at the current acquisition position and the acquisition attitude from the set position, or an extension area thereof The perpendicular vector at the intersection of the line parallel to and the acquired area or the area on the extension thereof is obtained, and the inclination direction of the reference axis that matches or becomes parallel to the obtained perpendicular vector is obtained at the next acquisition position. By setting the posture, when the measuring unit is moved to a position slightly different from the calculated next acquisition position, the acquiring posture of the measuring unit can be corrected.

【0059】さらに、制御手段により、算出された次の
取得位置から現在の取得位置および取得姿勢で取得され
た計測画像データに対応する被検面の取得領域に向けて
引かれた現在の取得位置および取得姿勢での基準軸に平
行な線と該取得領域との交点位置を求め、該求められた
交点位置およびその近傍の位置に基づき最小二乗近似平
面を算出し、該算出された最小二乗近似平面の法線ベク
トルに一致または平行となる基準軸の傾き方向を次の取
得位置での取得姿勢とすることによって、取得領域の高
周波の凹凸成分に影響されることなく、該取得領域内の
面の垂直方向を表す法線ベクトルをより高精度に算出す
ることができる。すなわち、計測手段の干渉計の参照面
と対応する被検面の取得領域との平行度をさらに向上さ
せることができる。
Further, the current acquisition position drawn by the control means from the calculated next acquisition position toward the acquisition area of the test surface corresponding to the current acquisition position and the measurement image data acquired in the acquisition posture. And an intersection point between the line parallel to the reference axis in the acquisition posture and the acquisition area is calculated, a least square approximation plane is calculated based on the obtained intersection position and positions in the vicinity thereof, and the calculated least square approximation is calculated. By setting the inclination direction of the reference axis that is coincident with or parallel to the normal vector of the plane as the acquisition posture at the next acquisition position, the surface within the acquisition region is not affected by the high-frequency unevenness component of the acquisition region. Can be calculated with higher accuracy. That is, the parallelism between the reference surface of the interferometer of the measuring means and the corresponding acquisition area of the test surface can be further improved.

【0060】さらに、制御手段により、計測手段の次の
取得位置への位置決め後に、次の取得位置で取得される
計測画像データに基づき該計測画像データにより示され
る干渉縞の本数を算出し、該算出した干渉縞の本数が所
定本数以下となる取得姿勢を次の取得位置での取得姿勢
とすることによって、次の取得位置における次の取得姿
勢を適正にすることができる。
Further, the control means calculates the number of interference fringes indicated by the measurement image data based on the measurement image data acquired at the next acquisition position after positioning the measurement means at the next acquisition position. By setting the acquisition posture at which the calculated number of interference fringes is equal to or less than the predetermined number as the acquisition posture at the next acquisition position, the next acquisition posture at the next acquisition position can be made appropriate.

【0061】さらに、面形状解析算出手段は、取得位置
のそれぞれでの計測画像データに対応する面形状の取得
領域の内の互いに隣接する2つの取得領域が重なり合う
領域部分の面形状を算出する中間領域面形状算出機能を
有し、中間領域面形状算出機能は、前記互いに隣接する
2つの取得領域の面形状を合成することにより前記領域
部分の面形状を算出することによって、互いに隣接する
2つの取得領域が重なり合う領域部分における不連続性
がない滑らかな面形状を得ることができる。
Further, the surface shape analysis calculating means calculates an intermediate surface shape of an area where two adjacent acquisition regions overlap each other among the acquisition regions of the surface shape corresponding to the measured image data at each of the acquisition positions. An area surface shape calculation function is provided, and the intermediate region surface shape calculation function calculates the surface shape of the region portion by synthesizing the surface shapes of the two acquisition regions adjacent to each other. It is possible to obtain a smooth surface shape without discontinuity in the region where the acquisition regions overlap.

【0062】さらに、中間領域面形状算出機能により面
形状が算出される領域部分は、互いに隣接する2つの取
得領域の内の一方の取得領域における取得位置に対応す
る第1の位置と他方の取得領域における取得位置に対応
する第2の位置との間に存在する領域部分であり、中間
領域面形状算出機能は、一方の取得領域の第1の位置と
他方の取得領域の第2の位置との間にある対象位置にお
ける面形状を算出する際には、一方の取得領域の第1の
位置から対象位置までの距離と対象位置から他方の取得
領域の第2の位置までの距離との比により規定される重
み係数を用いて一方の取得領域の面形状と他方の取得領
域の面形状とを合成することにより、対象位置における
面形状を算出することによって、互いに隣接する2つの
取得領域が重なり合う領域部分における面形状として、
不連続性がない滑らかな面形状を得ることができるとと
もに、その面形状の算出を容易に行うことができる。
Further, the area portion for which the surface shape is calculated by the intermediate region surface shape calculation function includes a first position corresponding to an acquisition position in one of two acquisition regions adjacent to each other and an acquisition position of the other. The area portion existing between the second position corresponding to the acquisition position in the area, and the intermediate area surface shape calculation function performs the first position of one acquisition area and the second position of the other acquisition area. When calculating the surface shape at the target position between the two, the ratio of the distance from the first position to the target position in one acquisition region and the distance from the target position to the second position in the other acquisition region By calculating the surface shape at the target position by synthesizing the surface shape of one acquisition region and the surface shape of the other acquisition region using the weight coefficient defined by Overlap As the surface shape in the Hare area portion,
A smooth surface shape without discontinuities can be obtained, and the surface shape can be easily calculated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る走査型広域被
検面形状解析装置の構成を模式的に示す斜視図である。
FIG. 1 is a perspective view schematically showing a configuration of a scanning-type wide-area inspection surface shape analyzing apparatus according to a first embodiment of the present invention.

【図2】図1の走査型広域被検面形状解析装置に搭載さ
れている計測ヘッドの構成を示す透視図である。
FIG. 2 is a perspective view showing a configuration of a measuring head mounted on the scanning-type wide-area inspection surface shape analyzer of FIG. 1;

【図3】図1の走査型広域被検面形状解析装置における
走査姿勢制御の手順を示すフローチャートである。
FIG. 3 is a flowchart showing a procedure of scanning attitude control in the scanning-type wide-area inspection surface shape analyzer of FIG. 1;

【図4】図1の走査型広域被検面形状解析装置における
面形状算出処理の手順を示すフローチャートである。
FIG. 4 is a flowchart illustrating a procedure of a surface shape calculation process in the scanning-type wide-area inspected surface shape analyzer of FIG. 1;

【図5】(a)は図1の走査型広域被検面解析装置にお
ける計測ヘッドの取得位置および取得姿勢と被検面の関
係を模式的に示す図である。(b)は図1の走査型広域
被検面解析装置における各取得領域の内の互いに隣接す
る2つの取得領域が重なり合う領域部分の面形状を合成
して算出する方法を模式的に示す図である。
FIG. 5A is a diagram schematically illustrating a relationship between an acquisition position and an acquisition posture of a measurement head and a test surface in the scanning-type wide-area test surface analysis apparatus in FIG. 1; FIG. 2B is a diagram schematically showing a method of combining and calculating a surface shape of an area where two adjacent acquisition areas of each acquisition area overlap in the acquisition area analysis apparatus of FIG. 1. is there.

【図6】図1の走査型広域被検面形状解析装置における
計測ヘッドの次の取得位置の算出方法を模式的に示す図
である。
6 is a diagram schematically illustrating a method of calculating a next acquisition position of a measurement head in the scanning-type wide-area inspection surface shape analyzing apparatus of FIG. 1;

【図7】図1の走査型広域被検面形状解析装置における
計測ヘッドの次の取得位置での取得姿勢の算出方法を模
式的に示す図である。
FIG. 7 is a diagram schematically illustrating a method of calculating an acquisition posture at a next acquisition position of the measurement head in the scanning-type wide-area inspection surface shape analyzing apparatus in FIG. 1;

【図8】図1の走査型広域被検面形状解析装置における
計測ヘッドの次の取得位置での取得姿勢の算出方法を模
式的に示す図である。
8 is a diagram schematically illustrating a method of calculating an acquisition attitude at a next acquisition position of a measurement head in the scanning-type wide-area inspection surface shape analyzing apparatus in FIG. 1;

【図9】図1の走査型広域被検面形状解析装置における
互いに隣接する2つの取得領域が重なり合う領域部分の
面形状を算出する方法を模式的に示す図である。
9 is a diagram schematically illustrating a method of calculating a surface shape of an area portion where two adjacent acquisition regions overlap with each other in the scanning-type wide-area inspection surface shape analysis apparatus in FIG. 1;

【図10】本発明の第2の実施の形態に係る走査型広域
被検面形状解析装置における計測ヘッドの次の取得位置
での取得姿勢の算出方法を模式的に示す図である。
FIG. 10 is a diagram schematically illustrating a method of calculating an acquisition posture at a next acquisition position of a measurement head in the scanning-type wide-area inspection surface shape analyzing apparatus according to the second embodiment of the present invention.

【図11】(a)は本発明の第3の実施の形態に係る走
査型広域被検面形状解析装置における算出された干渉縞
の本数が所定本数以下である場合の計測ヘッドの次の取
得位置での取得姿勢の算出方法を模式的に示す図であ
る。(b)は本発明の第3の実施の形態に係る走査型広
域被検面形状解析装置における算出された干渉縞の本数
が所定本数を超えた場合の計測ヘッドの次の取得位置で
の取得姿勢の算出方法を模式的に示す図である。
FIG. 11 (a) shows the next acquisition of a measuring head when the number of interference fringes calculated by the scanning-type wide-area surface shape analyzing apparatus according to the third embodiment of the present invention is equal to or smaller than a predetermined number. It is a figure which shows typically the calculation method of the acquisition attitude | position in a position. (B) Acquisition at the next acquisition position of the measuring head when the calculated number of interference fringes exceeds a predetermined number in the scanning-type wide-area surface shape analyzing apparatus according to the third embodiment of the present invention. It is a figure which shows the calculation method of a posture typically.

【符号の説明】[Explanation of symbols]

1 計測ヘッド(計測手段) 2 走査機構(走査手段) 3 対被検面姿勢可変機構(姿勢可変手段) 5 被検査物 5a 被検面 6 光学定盤 7 データ取得手段 8 画像処理制御装置(面形状解析算出手段、制御手
段) 9 走査ドライバ(走査手段) 10 対被検面姿勢可変ドライバ(姿勢可変手段) 11 モニタ
DESCRIPTION OF SYMBOLS 1 Measurement head (measurement means) 2 Scanning mechanism (scanning means) 3 Variable mechanism for posture to be inspected (variable attitude means) 5 Object to be inspected 5a Surface to be inspected 6 Optical surface plate 7 Data acquisition means 8 Image processing control device (surface) (Shape analysis calculation means, control means) 9 scanning driver (scanning means) 10 variable driver for posture to be inspected (posture variable means) 11 monitor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 配野 宏 茨城県つくば市上横場430番地の1 株式 会社ミツトヨ内 Fターム(参考) 2F065 AA04 AA53 DD06 FF52 FF61 FF65 FF67 HH03 HH13 JJ03 JJ09 LL04 LL46 MM07 NN20 PP03 PP05 PP11 QQ00 QQ17 QQ18 QQ23 QQ24 SS02 SS03 SS13  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroshi Nobino F-term (reference) 2F065 AA04 AA53 DD06 FF52 FF61 FF65 FF67 HH03 HH13 EJ03 JJ09 LL04 LL46 MM07 NN20 PP03 PP05 PP11 QQ00 QQ17 QQ18 QQ23 QQ24 SS02 SS03 SS13

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 光源からの光束を参照面、光学支持面に
載置された被検査物の被検面にそれぞれ投射して前記参
照面からの反射光と前記被検面からの反射光との光学的
干渉縞像を発生させる干渉計を内蔵し、該干渉計により
発生された光学的干渉縞像を計測画像データとして取得
する計測手段と、前記計測手段における光束の光軸と前
記参照面との交点を走査基準位置とし、前記走査基準位
置が前記計測画像データを取得する際の各取得位置に順
次到達するように前記計測手段を前記光学支持面と平行
に移動させる走査手段と、前記走査基準位置を始点とし
て前記光軸に沿って延ばした方向ベクトルを基準軸と
し、該基準軸の傾き方向が前記被検面に対して変わるよ
うに前記計測手段の前記画像データを取得する際の取得
姿勢を可変する姿勢可変手段と、前記取得位置および取
得姿勢で取得された計測画像データに基づき前記取得位
置および取得姿勢に対応する被検面の取得領域の面形状
を解析、算出する面形状解析算出手段と、前記走査手段
と前記姿勢可変手段とを駆動制御する制御手段とを備
え、前記制御手段は、現在の取得位置および取得姿勢で
取得された計測画像データを用いて次の取得位置を算出
し、該算出された次の取得位置での取得姿勢を算出する
ことを特徴とする走査型広域被検面形状解析装置。
1. A light flux from a light source is projected on a reference surface and a test surface of a test object placed on an optical support surface, respectively, and reflected light from the reference surface and reflected light from the test surface. A measuring unit that incorporates an interferometer for generating an optical interference fringe image of the optical interferometer, and acquires an optical interference fringe image generated by the interferometer as measurement image data; and an optical axis of a light beam in the measuring unit and the reference surface. Scanning means for moving the measuring means in parallel with the optical support surface so that the intersection with the scanning reference position, the scanning reference position sequentially reaches each acquisition position when acquiring the measurement image data, A direction vector extending along the optical axis with a scanning reference position as a starting point is used as a reference axis, and when acquiring the image data of the measuring means so that the inclination direction of the reference axis changes with respect to the surface to be measured. Possible to change the acquisition posture Transforming means, analyzing the surface shape of the acquisition area of the test surface corresponding to the acquisition position and the acquisition posture based on the measurement image data acquired at the acquisition position and the acquisition posture, surface shape analysis calculation means, Control means for controlling the driving of the scanning means and the attitude varying means, wherein the control means calculates the next acquisition position using the current acquisition position and the measurement image data acquired at the acquisition posture, and A scanning-type wide-area inspection surface shape analyzing apparatus for calculating an acquisition attitude at a next acquired acquisition position.
【請求項2】 前記制御手段は、前記現在の取得位置お
よび取得姿勢での計測画像データから得られた被検面の
取得領域の面形状に基づき、前記現在の取得位置から前
記計測手段の走査方向へ向かう走査線上における該被検
面の取得領域の端位置に対応する位置を求め、前記現在
の取得位置から前記次の取得位置までの直線距離が前記
現在の取得位置から前記求められた被検面の取得領域の
端位置に対応する位置までの直線距離の2倍以内になる
ように前記次の取得位置を算出することを特徴とする請
求項1記載の走査型広域被検面形状解析装置。
2. The control device according to claim 1, wherein the control unit scans the measurement unit from the current acquisition position based on a surface shape of an acquisition area of the test surface acquired from the measurement image data at the current acquisition position and the acquisition posture. A position corresponding to an end position of the acquisition area of the test surface on the scanning line in the direction is obtained, and a linear distance from the current acquisition position to the next acquisition position is obtained from the current acquisition position. 2. The scanning wide area surface shape analysis according to claim 1, wherein the next acquisition position is calculated so as to be within two times a linear distance to a position corresponding to an end position of the measurement surface acquisition region. apparatus.
【請求項3】 前記制御手段は、前記算出された次の取
得位置から前記現在の取得位置および取得姿勢で取得さ
れた計測画像データに対応する前記被検面の取得領域ま
たはその延長上の領域に向けて引かれた現在の取得位置
および取得姿勢での前記基準軸に平行な線と該取得領域
またはその延長上の領域との交点位置での垂線ベクトル
を求め、該求められた垂線ベクトルに一致または平行と
なる基準軸の傾き方向を前記次の取得位置での取得姿勢
とすることを特徴とする請求項1または2記載の走査型
広域被検面形状解析装置。
3. The acquisition area of the test surface corresponding to the measurement image data acquired at the current acquisition position and the acquisition attitude from the calculated next acquisition position, or an area on an extension thereof from the next acquisition position. The perpendicular vector at the intersection of the line parallel to the reference axis at the current acquisition position and orientation at the current acquisition position and the acquisition area or an area on an extension thereof is calculated. 3. The scanning-type wide-area inspection surface shape analyzing apparatus according to claim 1, wherein the inclination direction of the reference axis that is coincident or parallel is set as the acquisition posture at the next acquisition position.
【請求項4】 前記制御手段は、前記計測手段が前記次
の取得位置に向けて移動された際に該計測手段が移動さ
れた位置が前記算出された次の取得位置と僅かに異なる
ときには、前記計測手段が移動された位置から前記現在
の取得位置および取得姿勢で取得された計測画像データ
に対応する前記被検面の取得領域またはその延長上の領
域に向けて引かれた現在の取得位置および取得姿勢での
前記基準軸に平行な線と該取得領域またはその延長上の
領域との交点位置での垂線ベクトルを求め、該求められ
た垂線ベクトルに一致または平行となる基準軸の傾き方
向を前記次の取得位置での取得姿勢とすることを特徴と
する請求項3の走査型広域被検面形状解析装置。
4. The method according to claim 1, wherein when the measuring unit is moved toward the next acquisition position, a position where the measuring unit is moved is slightly different from the calculated next acquisition position. The current acquisition position drawn from the position to which the measurement unit is moved toward the acquisition area of the test surface corresponding to the measurement image data acquired at the current acquisition position and the acquisition attitude or an area on an extension thereof, And a perpendicular vector at an intersection position between a line parallel to the reference axis in the acquisition posture and the acquisition area or an extension area thereof, and the inclination direction of the reference axis that is coincident with or parallel to the obtained perpendicular vector. 4. The scanning type wide-area surface shape analyzing apparatus according to claim 3, wherein?
【請求項5】 前記制御手段は、前記算出された次の取
得位置から前記現在の取得位置および取得姿勢で取得さ
れた計測画像データに対応する前記被検面の取得領域に
向けて引かれた現在の取得位置および取得姿勢での前記
基準軸に平行な線と該取得領域との交点位置を求め、該
求められた交点位置およびその近傍の位置に基づき最小
二乗近似平面を算出し、該算出された最小二乗近似平面
の法線ベクトルに一致または平行となる基準軸の傾き方
向を前記次の取得位置での取得姿勢とすることを特徴と
する請求項1または2記載の走査型広域被検面形状解析
装置。
5. The control means is drawn from the calculated next acquisition position to an acquisition area of the test surface corresponding to the measurement image data acquired at the current acquisition position and the acquisition posture. The intersection point between the line parallel to the reference axis at the current acquisition position and the acquisition posture and the acquisition region is obtained, and a least square approximation plane is calculated based on the obtained intersection position and positions in the vicinity thereof. 3. The scanning-type wide-area inspection according to claim 1, wherein the inclination direction of the reference axis that is coincident with or parallel to the normal vector of the least-squares approximation plane is set as the acquisition posture at the next acquisition position. Surface shape analyzer.
【請求項6】 前記制御手段は、前記計測手段の前記次
の取得位置への位置決め後に、該次の取得位置で取得さ
れる計測画像データに基づき該計測画像データにより示
される干渉縞の本数を算出し、該算出した干渉縞の本数
が所定本数以下となる取得姿勢を前記次の取得位置での
取得姿勢とすることを特徴とする請求項1または2記載
の走査型広域被検面形状解析装置。
6. The control means, after positioning the measuring means to the next acquisition position, determines the number of interference fringes indicated by the measurement image data based on the measurement image data acquired at the next acquisition position. 3. A scanning wide area inspection surface shape analysis according to claim 1 or 2, wherein an acquisition posture at which the calculated number of interference fringes is equal to or less than a predetermined number is determined as an acquisition posture at the next acquisition position. apparatus.
【請求項7】 前記面形状解析算出手段は、前記取得位
置のそれぞれでの計測画像データに対応する面形状の取
得領域の内の互いに隣接する2つの取得領域が重なり合
う領域部分の面形状を算出する中間領域面形状算出機能
を有し、前記中間領域面形状算出機能は、前記互いに隣
接する2つの取得領域の面形状を合成することにより前
記領域部分の面形状を算出することを特徴とする請求項
1記載の走査型広域被検面形状解析装置。
7. The surface shape analysis calculation means calculates a surface shape of an area portion where two adjacent acquisition regions overlap with each other among acquisition regions of a surface shape corresponding to measurement image data at each of the acquisition positions. The intermediate region surface shape calculation function calculates the surface shape of the region portion by combining the surface shapes of the two acquired regions adjacent to each other. A scanning-type wide-area inspection surface shape analyzing apparatus according to claim 1.
【請求項8】 前記中間領域面形状算出機能により面形
状が算出される領域部分は、前記互いに隣接する2つの
取得領域の内の一方の取得領域における取得位置に対応
する第1の位置と他方の取得領域における取得位置に対
応する第2の位置との間に存在する領域部分であり、前
記中間領域面形状算出機能は、前記一方の取得領域の第
1の位置と前記他方の取得領域の第2の位置との間にあ
る対象位置における面形状を算出する際には、前記一方
の取得領域の第1の位置から前記対象位置までの距離と
前記対象位置から前記他方の取得領域の第2の位置まで
の距離との比により規定される重み係数を用いて前記一
方の取得領域の面形状と前記他方の取得領域の面形状と
を合成することにより、前記対象位置における面形状を
算出することを特徴とする請求項7記載の走査型広域被
検面形状解析装置。
8. An area portion whose surface shape is calculated by the intermediate region surface shape calculation function is a first position corresponding to an acquisition position in one of the two adjacent acquisition regions and the other position. Is an area portion existing between the second position corresponding to the acquisition position in the acquisition area, and the intermediate area surface shape calculation function is configured to perform the first position of the one acquisition area and the second position of the other acquisition area. When calculating the surface shape at the target position between the second position, the distance from the first position of the one acquisition region to the target position and the second position of the other acquisition region from the target position are calculated. The surface shape at the target position is calculated by combining the surface shape of the one acquisition region and the surface shape of the other acquisition region using a weight coefficient defined by a ratio to the distance to the position 2. Features to The scanning-type wide-area inspection surface shape analyzing apparatus according to claim 7.
JP2001151398A 2000-05-22 2001-05-21 Scanning wide area shape analyzer for test surface Expired - Fee Related JP4638077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001151398A JP4638077B2 (en) 2000-05-22 2001-05-21 Scanning wide area shape analyzer for test surface

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000149633 2000-05-22
JP2000-149633 2000-05-22
JP2001151398A JP4638077B2 (en) 2000-05-22 2001-05-21 Scanning wide area shape analyzer for test surface

Publications (2)

Publication Number Publication Date
JP2002048522A true JP2002048522A (en) 2002-02-15
JP4638077B2 JP4638077B2 (en) 2011-02-23

Family

ID=26592306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001151398A Expired - Fee Related JP4638077B2 (en) 2000-05-22 2001-05-21 Scanning wide area shape analyzer for test surface

Country Status (1)

Country Link
JP (1) JP4638077B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096119A (en) * 2006-10-05 2008-04-24 Keyence Corp Optical displacement gauge, optical displacement measurement method, program for optical displacement measurement, computer readable memory medium and recording equipment
JP2010060304A (en) * 2008-09-01 2010-03-18 Olympus Corp Shape measurement method
CN112923889A (en) * 2021-01-26 2021-06-08 杭州思锐迪科技有限公司 Scanning method, scanning device, three-dimensional scanning system, electronic device and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154308A (en) * 1982-03-05 1983-09-13 三菱電機株式会社 Auxiliary relay unit
JPH05231838A (en) * 1991-06-20 1993-09-07 Ricoh Co Ltd Method and device for measuring curved surface
JPH08219737A (en) * 1995-02-10 1996-08-30 Fuji Xerox Co Ltd Interferometer
JPH08240417A (en) * 1995-03-02 1996-09-17 Canon Inc Shape measuring method and shape measuring device using the method
JPH10185529A (en) * 1996-12-27 1998-07-14 Canon Inc Interferometer and shape measuring instrument
JPH1137732A (en) * 1997-07-19 1999-02-12 Fuji Xerox Co Ltd Method and apparatus for measuring shape

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154308A (en) * 1982-03-05 1983-09-13 三菱電機株式会社 Auxiliary relay unit
JPH05231838A (en) * 1991-06-20 1993-09-07 Ricoh Co Ltd Method and device for measuring curved surface
JPH08219737A (en) * 1995-02-10 1996-08-30 Fuji Xerox Co Ltd Interferometer
JPH08240417A (en) * 1995-03-02 1996-09-17 Canon Inc Shape measuring method and shape measuring device using the method
JPH10185529A (en) * 1996-12-27 1998-07-14 Canon Inc Interferometer and shape measuring instrument
JPH1137732A (en) * 1997-07-19 1999-02-12 Fuji Xerox Co Ltd Method and apparatus for measuring shape

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096119A (en) * 2006-10-05 2008-04-24 Keyence Corp Optical displacement gauge, optical displacement measurement method, program for optical displacement measurement, computer readable memory medium and recording equipment
JP2010060304A (en) * 2008-09-01 2010-03-18 Olympus Corp Shape measurement method
CN112923889A (en) * 2021-01-26 2021-06-08 杭州思锐迪科技有限公司 Scanning method, scanning device, three-dimensional scanning system, electronic device and storage medium
CN112923889B (en) * 2021-01-26 2023-03-14 杭州思锐迪科技有限公司 Scanning method, device, three-dimensional scanning system, electronic device and storage medium

Also Published As

Publication number Publication date
JP4638077B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
US6473186B2 (en) Scanning wide-area surface shape analyzer
JP2712772B2 (en) Pattern position measuring method and apparatus
KR101629545B1 (en) Shape measuring device, shape measuring method, structure manufacturing method, and program
JP5430472B2 (en) Surface shape measuring device
JP3678915B2 (en) Non-contact 3D measuring device
JP5486379B2 (en) Surface shape measuring device
JP3678916B2 (en) Non-contact 3D measurement method
JP2000074662A (en) Method for calibrating coordinate axes squareness error and 3-dimension shape measuring device
JP4638077B2 (en) Scanning wide area shape analyzer for test surface
JPH11351840A (en) Noncontact type three-dimensional measuring method
JP5464932B2 (en) Shape measuring method and shape measuring apparatus
JP2004340680A (en) Method for measuring surface profile and/or film thickness, and its apparatus
JP4791568B2 (en) 3D measuring device
JP4183576B2 (en) Scanning surface shape measuring apparatus and surface shape measuring method
JPH11190616A (en) Surface shape measuring device
JP2005172610A (en) Three-dimensional measurement apparatus
JP3740373B2 (en) 3D measuring device
JP4340138B2 (en) Non-contact 3D shape measuring device
JPH0626828A (en) Apparatus and method for measuring shape
JPH10132549A (en) Form measuring device
JP4566534B2 (en) Shape measuring method and shape measuring apparatus
JPH08327336A (en) Three dimensional shape-measuring apparatus
JP4320796B2 (en) Pattern position measuring device
JP2728331B2 (en) Flatness measurement device
JP4493168B2 (en) Shape measuring method and shape measuring apparatus

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4638077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees