JP2010060304A - Shape measurement method - Google Patents

Shape measurement method Download PDF

Info

Publication number
JP2010060304A
JP2010060304A JP2008223292A JP2008223292A JP2010060304A JP 2010060304 A JP2010060304 A JP 2010060304A JP 2008223292 A JP2008223292 A JP 2008223292A JP 2008223292 A JP2008223292 A JP 2008223292A JP 2010060304 A JP2010060304 A JP 2010060304A
Authority
JP
Japan
Prior art keywords
interference fringes
light
interferometer
test object
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008223292A
Other languages
Japanese (ja)
Other versions
JP5586134B2 (en
Inventor
Yasunari Nagaike
康成 長池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2008223292A priority Critical patent/JP5586134B2/en
Publication of JP2010060304A publication Critical patent/JP2010060304A/en
Application granted granted Critical
Publication of JP5586134B2 publication Critical patent/JP5586134B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure a surface shape of a specimen in a short period of time. <P>SOLUTION: A shape measuring method separates light emitted from a light source into object light and reference light and measures a surface shape of a specimen having a free curved surface by an interferometer for analyzing interference fringes obtained by a difference in the optical path between the object light and the reference light. The method includes: a first process for fixing a reference surface to a first position on the light axis of the reference light, applying the object light to the specimen, and acquiring a plurality of first interference fringes; a second process for fixing the reference surface to a second position different from the first position and acquiring a plurality of second interference fringes; a third process for fixing the reference surface to a third position different from the first and second positions and acquiring a plurality of third interference fringes; and a phase analysis process S3 for performing a phase analysis of interference fringes by the first, second, and third interference fringes. In at least one of the first, second, and third processes, the interferometer travels relative to the specimen so that the entire surface of the specimen is scanned, and a plurality of interference fringes are acquired intermittently at each travel of prescribed distance. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、被検物の表面で反射される光によって生じる干渉縞を解析することにより、当該被検物の表面形状を測定する形状測定方法、より詳しくは、自由曲面を有する被検物の表面形状の形状測定方法に関する。   The present invention relates to a shape measuring method for measuring a surface shape of a test object by analyzing interference fringes generated by light reflected on the surface of the test object, and more specifically, a test object having a free-form surface. The present invention relates to a surface shape measurement method.

従来、干渉計を用いて大面積、高傾斜の被検物の表面形状を測定する場合に、当該被検物の表面を干渉計で測定可能な複数の測定領域に分割し、各領域の測定結果をつなぎ合わせて表面全体の測定を行う方法が提案されている(例えば、特許文献1参照)。   Conventionally, when measuring the surface shape of a large-area, high-inclined specimen using an interferometer, the surface of the specimen is divided into a plurality of measurement areas that can be measured by the interferometer, and measurement of each area is performed. A method of connecting the results and measuring the entire surface has been proposed (see, for example, Patent Document 1).

上記方法において、分割された各測定領域の形状測定を高精度に行うためには、被検物表面の干渉縞の縞走査による位相解析が必要となる。そのために、通常は、被検物を測定領域ごとに静止させ、干渉計の参照面をその光軸上の複数の位置に移動させて当該測定領域の縞走査を行ってから次の測定領域の縞走査を行うという手順がとられている。
特開2003−57016号公報
In the above method, in order to perform the shape measurement of each divided measurement region with high accuracy, it is necessary to perform a phase analysis by fringe scanning of the interference fringes on the surface of the test object. Therefore, normally, the test object is stopped for each measurement region, the reference surface of the interferometer is moved to a plurality of positions on the optical axis, and the measurement region is subjected to fringe scanning. The procedure of performing fringe scanning is taken.
JP 2003-57016 A

しかしながら、上記のような手順で表面形状の測定を行うと、測定領域ごとに被検物又は干渉計の移動及び停止、縞走査のための参照面の移動(最少3位置、通常4位置以上)が行われるため、測定に長時間が必要となる。この事情は測定領域の分割数が増加するほど顕著になる。   However, when the surface shape is measured in the above-described procedure, the movement of the test object or interferometer is stopped and stopped for each measurement region, and the reference plane is moved for fringe scanning (minimum 3 positions, usually 4 positions or more). Therefore, a long time is required for measurement. This situation becomes more prominent as the number of measurement area divisions increases.

本発明は上記事情に鑑みて成されたものであり、被検物の表面形状を短時間で測定可能な形状測定方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a shape measuring method capable of measuring the surface shape of a test object in a short time.

本発明は、光源から発する光を被検物に照射される物体光と参照面で反射される参照光とに分離し、前記被検物の表面で反射された前記物体光と前記参照光との光路差によって得られる干渉縞を解析する干渉計を用いて前記被検物の表面形状を測定する形状測定方法であって、前記参照面を前記参照光の光軸上の第1位置に固定して、前記物体光を前記被検物に照射し、前記干渉計が前記被検物に対して所定距離相対移動するごとの前記干渉縞を、複数の第1干渉縞として取得する第1工程と、前記参照面を、前記第1位置と異なる前記参照光の光軸上の第2位置に固定して、前記物体光を前記被検物に照射し、前記干渉計が前記被検物に対して所定距離相対移動するごとの前記干渉縞を、複数の第2干渉縞として取得する第2工程と、前記参照面を、前記第1位置及び前記第2位置と異なる前記参照光の光軸上の第3位置に固定して、前記物体光を前記被検物に照射し、前記干渉計が前記被検物に対して所定距離相対移動するごとの前記干渉縞を、複数の第3干渉縞として取得する第3工程と、前記第1工程で得られた前記第1干渉縞と、前記第2工程で得られた前記第2干渉縞と、前記第3工程で得られた前記第3干渉縞とを用いて、干渉縞の位相解析を行う位相解析工程とを備え、前記被検物の表面は、所定の関数で表現される自由曲面であり、前記第1工程、前記第2工程、及び前記第3工程の少なくとも1つにおいて、前記干渉計は、前記関数に基づいて、前記被検物の表面に前記物体光が垂直に入射するように前記物体光の照射角度を調節しながら、前記被検物の表面全体を走査するように前記被検物に対して相対移動され、前記干渉計が所定距離相対移動するごとに断続的に複数の干渉縞が取得されることを特徴とする。   The present invention separates light emitted from a light source into object light irradiated on a test object and reference light reflected on a reference surface, and the object light reflected on the surface of the test object and the reference light A shape measuring method for measuring a surface shape of the test object using an interferometer that analyzes an interference fringe obtained by an optical path difference of the test object, wherein the reference surface is fixed at a first position on the optical axis of the reference light. Then, the first step of irradiating the test object with the object light and acquiring the interference fringes as the plurality of first interference fringes each time the interferometer moves relative to the test object by a predetermined distance. The reference surface is fixed at a second position on the optical axis of the reference light different from the first position, the object light is irradiated onto the test object, and the interferometer is applied to the test object. A second step of acquiring the interference fringes as a plurality of second interference fringes for each relative movement relative to the predetermined distance; An illumination surface is fixed at a third position on the optical axis of the reference light different from the first position and the second position, and the object light is irradiated to the test object, and the interferometer is used for the test object. The interference fringes for each relative movement with respect to a predetermined distance are obtained as a plurality of third interference fringes, the first interference fringes obtained in the first step, and obtained in the second step. A phase analysis step of performing a phase analysis of the interference fringes using the second interference fringes obtained and the third interference fringes obtained in the third step, and the surface of the test object is predetermined In the at least one of the first step, the second step, and the third step, the interferometer is arranged on the surface of the test object based on the function. The surface of the test object is adjusted while adjusting the irradiation angle of the object light so that the object light is incident vertically. Wherein to scan the body is moved relative to the test object, wherein the interferometer is characterized intermittently a plurality of interference fringes are obtained each time moved by the predetermined distance relative.

本発明の形状測定方法によれば、参照面が第1位置、第2位置、及び第3位置の少なくとも1つにある状態において、被検物表面の各領域における干渉縞が、干渉計が被検物表面を走査するように相対移動している間に断続的に取得されるので、参照面を移動させる回数が飛躍的に少なくなる。   According to the shape measuring method of the present invention, in the state where the reference surface is at least one of the first position, the second position, and the third position, the interference fringes in each region of the surface of the object to be measured are detected by the interferometer. Since it is acquired intermittently while relatively moving so as to scan the surface of the inspection object, the number of times of moving the reference surface is drastically reduced.

本発明の形状測定方法においては、複数の干渉縞が断続的に取得される前記第1工程、前記第2工程、及び前記第3工程のいずれかにおいて、前記干渉計の前記相対移動の起点と終点とが同一であってもよい。この場合、相対移動開始時と相対移動終了時における表面形状の誤差を算出し、当該誤差にもとづいて各領域の測定誤差を補正することが可能となる。   In the shape measuring method of the present invention, in any one of the first step, the second step, and the third step in which a plurality of interference fringes are obtained intermittently, the starting point of the relative movement of the interferometer The end point may be the same. In this case, it is possible to calculate an error of the surface shape at the start of relative movement and at the end of relative movement, and correct the measurement error of each region based on the error.

本発明の形状測定方法は、前記位相解析工程において得られた位相解析結果を、前記所定距離に基づいてつなぎ合わせて前記被検物全体の表面形状を取得する統合工程をさらに備えてもよい。この場合、被検物全体の表面形状を短時間で測定することができる。   The shape measurement method of the present invention may further include an integration step of acquiring the surface shape of the entire test object by connecting the phase analysis results obtained in the phase analysis step based on the predetermined distance. In this case, the surface shape of the entire test object can be measured in a short time.

本発明の形状測定方法によれば、被検物の表面形状を短時間で測定することができる。   According to the shape measuring method of the present invention, the surface shape of the test object can be measured in a short time.

本発明の一実施形態について、図1から図8を参照して説明する。図1は、本発明の形状測定方法に用いられる干渉計1の要部構成を示す図である。干渉計1は公知のトワイマングリーンタイプの干渉計である。その原理を簡潔に説明すると以下の通りである。
光源2から発せられた光Lは、被検物Sの表面に照射される物体光L1と、参照平面(参照面)3によって反射され、基準となる参照光L2とに分離される。被検物Sの表面で反射された物体光L1は、参照光L2と干渉し、干渉光L3となる。ビームスプリッタ4を通過した干渉光L3は結像レンズ5によってCCD素子(画像変換光電素子)6上に結像し、物体光L1と参照光L2との光路差によって生じる干渉縞が得られる。参照平面3には、参照平面3を参照光L2の光軸に沿って移動させるための移動機構3Aが取り付けられている。移動機構3Aとしては、ピエゾ素子等を採用することができる。
An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing a main configuration of an interferometer 1 used in the shape measuring method of the present invention. The interferometer 1 is a known Twiman Green type interferometer. The principle is briefly described as follows.
The light L emitted from the light source 2 is reflected by the object light L1 irradiated on the surface of the test object S and the reference plane (reference surface) 3 and separated into the reference light L2 serving as a reference. The object light L1 reflected from the surface of the test object S interferes with the reference light L2, and becomes interference light L3. The interference light L3 that has passed through the beam splitter 4 forms an image on the CCD element (image conversion photoelectric element) 6 by the imaging lens 5, and interference fringes caused by the optical path difference between the object light L1 and the reference light L2 are obtained. A moving mechanism 3A for moving the reference plane 3 along the optical axis of the reference light L2 is attached to the reference plane 3. A piezo element or the like can be employed as the moving mechanism 3A.

図2は、本実施形態の形状測定方法を実行する形状測定装置11の構成を示すブロック図である。形状測定装置11は、上述の干渉計1を備えている。干渉計1には、干渉計1全体の動作制御を行う制御部7と、干渉計1を被検物に対して相対移動させるための移動機構8と、干渉計1の被検物に対する相対移動距離や相対位置を検出するためのエンコーダ9と、干渉計1を首振り動作させて、照射される物体光の照射角度を調節するための角度調節機構10とが取り付けられている。移動機構8、エンコーダ9、角度調節機構10、CCD素子6、及び参照平面3を移動させるための移動機構3Aは、いずれも制御部7に接続されており、制御部7の制御に基づいて動作するように構成されている。   FIG. 2 is a block diagram showing the configuration of the shape measuring apparatus 11 that executes the shape measuring method of the present embodiment. The shape measuring device 11 includes the interferometer 1 described above. The interferometer 1 includes a control unit 7 that controls the operation of the entire interferometer 1, a moving mechanism 8 that moves the interferometer 1 relative to the test object, and a relative movement of the interferometer 1 relative to the test object. An encoder 9 for detecting the distance and relative position and an angle adjusting mechanism 10 for adjusting the irradiation angle of the irradiated object light by swinging the interferometer 1 are attached. The moving mechanism 8, the encoder 9, the angle adjusting mechanism 10, the CCD element 6, and the moving mechanism 3 </ b> A for moving the reference plane 3 are all connected to the control unit 7 and operate based on the control of the control unit 7. Is configured to do.

この他、形状測定装置11には、CCD素子6の取得した干渉縞の位相解析及び取得された部分表面形状データの補正を行う演算部12と、演算部12によって補正された部分表面形状データを統合して被検物全体の表面形状データを取得するデータ統合部13とが設けられている。   In addition, the shape measuring device 11 includes a calculation unit 12 that performs phase analysis of the interference fringes acquired by the CCD element 6 and correction of the acquired partial surface shape data, and partial surface shape data corrected by the calculation unit 12. A data integration unit 13 that integrates and acquires surface shape data of the entire test object is provided.

図3は、被検物である光学素子Sを示す斜視図である。光学素子Sは、所定の関数にて表現される、いわゆる自由曲面として表面が形成されている。   FIG. 3 is a perspective view showing an optical element S that is a test object. The surface of the optical element S is formed as a so-called free-form surface expressed by a predetermined function.

上記のように構成された干渉計1を含む形状測定装置11によって、光学素子Sの表面形状測定を行う手順について、図4から図6を参照して以下に説明する。   A procedure for measuring the surface shape of the optical element S by the shape measuring apparatus 11 including the interferometer 1 configured as described above will be described below with reference to FIGS.

図4は、本実施形態の形状測定方法の流れを示すフローチャートである。本形状測定方法は、被検物である光学素子Sの表面の複数の部位における干渉縞を取得する干渉縞取得工程S1と、取得された干渉縞を用いて位相解析を行い、各部位の部分表面形状データを取得する位相解析工程S3と、各部分表面形状データを統合して光学素子Sの表面の全体形状データを取得する統合工程S4とを備えている。   FIG. 4 is a flowchart showing the flow of the shape measuring method of the present embodiment. In this shape measuring method, an interference fringe acquisition step S1 for acquiring interference fringes at a plurality of sites on the surface of the optical element S that is a test object, and a phase analysis using the acquired interference fringes are performed. The phase analysis process S3 which acquires surface shape data, and the integration process S4 which integrates each partial surface shape data and acquires the whole shape data of the surface of the optical element S are provided.

まず、ステップS1の干渉縞取得工程について説明する。干渉計の制御部7は、移動機構3Aを介して、干渉縞を取得する参照平面3の位置の1つである第1位置P1に参照平面3を固定した状態で、移動機構8を介して干渉計1を図5に示す光学素子S表面の走査起点Aに対向する位置まで移動させる。そして、制御部7は、角度調節機構10を操作して図6に示すように、干渉計1から照射させる物体光L1が光学素子Sの表面に対して垂直に入射するように、すなわち、干渉計1によって走査起点Aにおける干渉縞が取得できるように干渉計1の角度を調節する。   First, the interference fringe acquisition process in step S1 will be described. The control unit 7 of the interferometer fixes the reference plane 3 to the first position P1, which is one of the positions of the reference plane 3 for acquiring the interference fringes, via the moving mechanism 8 via the moving mechanism 3A. The interferometer 1 is moved to a position facing the scanning start point A on the surface of the optical element S shown in FIG. Then, the control unit 7 operates the angle adjusting mechanism 10 so that the object light L1 irradiated from the interferometer 1 enters the surface of the optical element S perpendicularly as shown in FIG. The angle of the interferometer 1 is adjusted so that the interference fringes at the scanning start point A can be acquired by the meter 1.

続いて、制御部7は、移動機構8を動作させて、図5に矢印で示すような軌跡で干渉計1が光学素子Sの表面全体を走査するように、走査終点Bまで干渉計1を移動させる。制御部7は、このとき同時に角度調節機構10を動作させて干渉計1を適宜首振り動作させ、図7に示すように、常に物体光L1が光学素子Sの表面に垂直に入射するように干渉計1の角度を調節する。このような干渉計1の角度調節は、例えば、予め下記数1のような光学素子Sの形状に関する設定関数を制御部7に入力しておく等の方法によって容易に行うことができる。   Subsequently, the control unit 7 operates the moving mechanism 8 to move the interferometer 1 to the scanning end point B so that the interferometer 1 scans the entire surface of the optical element S along a locus shown by an arrow in FIG. Move. At this time, the control unit 7 simultaneously operates the angle adjustment mechanism 10 to appropriately swing the interferometer 1 so that the object light L1 always enters the surface of the optical element S perpendicularly as shown in FIG. The angle of the interferometer 1 is adjusted. Such angle adjustment of the interferometer 1 can be easily performed by, for example, a method in which a setting function relating to the shape of the optical element S as shown in the following Equation 1 is input to the control unit 7 in advance.

Figure 2010060304
Figure 2010060304

干渉計1を上述のように走査させながら、制御部7は、エンコーダ9の検出値に応じ、所定間隔、例えば5ミリメートル(mm)干渉計1が移動するごとに、図5に示すR1、R2、R3のような光学素子Sの表面の一部の画像をCCD素子6によって断続的に取得する。このとき、CCD素子6の全画素において、同期読み出しを行うように設定すると、高速で画像を取得することができる。また、当該所定間隔は、各取得画像R1等が少なくとも他の1つの画像と重複領域を有するように設定される。
このようにして、参照平面3が第1位置P1に位置するときの光学素子Sの表面の各部位における干渉縞(第1干渉縞)が断続的に取得されて、第1干渉縞の取得が終了する(第1工程)。
While scanning the interferometer 1 as described above, the control unit 7 performs R1, R2 shown in FIG. 5 each time the interferometer 1 moves at a predetermined interval, for example, 5 millimeters (mm), according to the detection value of the encoder 9. , R3, and the image of a part of the surface of the optical element S is intermittently acquired by the CCD element 6. At this time, if all pixels of the CCD element 6 are set to perform synchronous readout, an image can be acquired at high speed. Further, the predetermined interval is set so that each acquired image R1 and the like has an overlapping area with at least one other image.
In this way, the interference fringes (first interference fringes) in each part of the surface of the optical element S when the reference plane 3 is located at the first position P1 are intermittently acquired, and the acquisition of the first interference fringes is performed. End (first step).

第1工程終了後、ステップS2において、制御部7に入力された変数nが3であるか否かが検証される。図4に示すようにnの初期値は0であるため、この時点ではステップS2における判定はNOとなり、工程はステップS5に進んで制御部7が移動機構3A(ここではピエゾ素子PZT)を動作させ、参照平面3を参照光L2の光軸上の異なる位置P2に移動させて、後述する第2工程の準備を行う。そして、変数nに1が加算され、工程は再びステップS1に戻る。   After completion of the first step, whether or not the variable n input to the control unit 7 is 3 is verified in step S2. As shown in FIG. 4, since the initial value of n is 0, the determination in step S2 is NO at this point, and the process proceeds to step S5, where the control unit 7 operates the moving mechanism 3A (here, the piezo element PZT). Then, the reference plane 3 is moved to a different position P2 on the optical axis of the reference light L2 to prepare for the second step described later. Then, 1 is added to the variable n, and the process returns to step S1 again.

参照平面3が第2位置P2に固定された後、干渉計1は再び走査起点Aに対向する位置まで移動される。そして、上述の第1工程と同じ要領かつ第1干渉縞が取得されたのと同一の位置で、参照平面3が第2位置P2に位置するときの光学素子Sの各部位における干渉縞(第2干渉縞)が断続的に取得される(第2工程)。   After the reference plane 3 is fixed at the second position P2, the interferometer 1 is moved again to a position facing the scanning start point A. Then, at the same position as the first step described above and at the same position where the first interference fringe is acquired, the interference fringes (first fringes) at each part of the optical element S when the reference plane 3 is located at the second position P2. 2 interference fringes) are acquired intermittently (second step).

その後、同様の手順で、参照平面3は第2位置P2より後方かつ参照光L2の光軸上の第3位置P3及び第4位置P4に移動され、第3干渉縞及び第4干渉縞が、それぞれ断続的に取得される(第3工程、第4工程)。すなわち、光学素子S表面の干渉縞は、各部位において、それぞれ第1ないし第4干渉縞の4種類取得される。   Thereafter, in the same procedure, the reference plane 3 is moved to the third position P3 and the fourth position P4 on the optical axis of the reference light L2 behind the second position P2, and the third interference fringe and the fourth interference fringe are Each is acquired intermittently (third step, fourth step). That is, four types of interference fringes on the surface of the optical element S are obtained at each part, ie, first to fourth interference fringes.

第4干渉縞取得終了時においては、変数nの値が3となっているので、ステップS2の判定はYESとなり、干渉縞取得工程は終了される。そして、取得されたすべての干渉縞のデータは、CCD素子6から演算部12に送られる。   Since the value of the variable n is 3 at the end of the fourth interference fringe acquisition, the determination in step S2 is YES and the interference fringe acquisition step is ended. Then, all the acquired interference fringe data is sent from the CCD element 6 to the calculation unit 12.

ステップS3の位相解析工程において、演算部12は、CCD素子6から送られた干渉縞データの中から、ある部位において参照平面を第1位置P1、第2位置P2、第3位置P3、及び第4位置P4に位置させて取得した4つの干渉縞を含む画像を抽出し、これらの位相変化を解析して、当該部位における部分表面形状データを得る。演算部12は、同様の動作を干渉縞が取得されたすべての部位において行って、光学素子S表面のすべての部位の部分表面形状データを得る。取得された各部分表面形状データは、データ統合部13に送られる。   In the phase analysis step of step S3, the calculation unit 12 sets the reference plane at the first position P1, the second position P2, the third position P3, and the first position in a certain part from the interference fringe data sent from the CCD element 6. An image including four interference fringes obtained by being positioned at the four positions P4 is extracted, and these phase changes are analyzed to obtain partial surface shape data at the site. The calculation unit 12 performs the same operation at all the parts where the interference fringes are acquired, and obtains partial surface shape data of all parts of the surface of the optical element S. Each acquired partial surface shape data is sent to the data integration unit 13.

ステップS4の統合工程において、データ統合部13は、ステップS3で取得された各部位の部分表面形状データを、他の部位との重複領域における点列データを利用してつなぎ合わせて(フィッティング)1つのデータに統合し、光学素子Sの全体表面形状データを取得する。以下、具体的な統合工程の手順について説明する。   In the integration step of step S4, the data integration unit 13 connects the partial surface shape data of each part acquired in step S3 using point sequence data in an overlapping area with another part (fitting) 1 The entire surface shape data of the optical element S is acquired by integrating the two pieces of data. Hereinafter, a specific procedure of the integration process will be described.

まずデータ統合部13は、走査起点Aを含む部位を基準部位(フィッティング領域)として選択し、基準部位と隣接する他の部位(被フィッティング領域)との重複領域から、公知の形状抽出方法等によって、フィッティングの指標となる指標形状を抽出する。
指標形状としては、例えば光学素子S表面の微細な傷等を用いることができる。その形状について特に制限はないが、フィッティングの精度を高める観点からは、特異的な形状であることが好ましい。ユーザは、抽出する指標形状について、所望の条件を予めデータ統合部13に設定しておく。
First, the data integration unit 13 selects a part including the scanning start point A as a reference part (fitting area), and uses a known shape extraction method or the like from an overlapping area with another part (fitting area) adjacent to the reference part. Then, an index shape that is an index of fitting is extracted.
As the index shape, for example, a fine scratch on the surface of the optical element S can be used. Although there is no restriction | limiting in particular about the shape, From a viewpoint of raising the precision of fitting, it is preferable that it is a specific shape. The user sets a desired condition in the data integration unit 13 in advance for the index shape to be extracted.

次に、データ統合部13は、基準部位の部分表面形状データから指標形状の部分の表面形状データを取り出して、数2に示すNURBS関数によるあてはめを行い、指標形状の表面形状データの近似曲面を示す曲線(近似曲線)を取得する。   Next, the data integration unit 13 extracts the surface shape data of the index shape portion from the partial surface shape data of the reference portion, performs fitting using the NURBS function shown in Equation 2, and obtains an approximate curved surface of the surface shape data of the index shape. The curve shown (approximate curve) is acquired.

Figure 2010060304
Figure 2010060304

NURBS関数においては、ωの値を変更することによって座標ごとに重み付けをすることができる。そこで、ある座標の値が明らかに測定エラーや光学素子Sの表面に付着したゴミ等による不正値であると判断できる場合は、当該座標に重み付けを与えない、あるいは他の座標よりも重み付けを小さくすることによって、より正確な近似曲線を得ることができる。   In the NURBS function, weighting can be performed for each coordinate by changing the value of ω. Therefore, when it can be determined that the value of a certain coordinate is clearly an incorrect value due to a measurement error or dust attached to the surface of the optical element S, no weight is given to the coordinate or the weight is smaller than other coordinates. By doing so, a more accurate approximate curve can be obtained.

例えば、図8(a)に示す指標形状Mの表面形状のデータDMにおいて、点列データC1がゴミ等による不正値である場合、通常の多項式等を用いた当てはめでは、図8(b)に示すように、点列データC1のノイズを含む近似曲線A1が取得されるが、NURBS関数を用いると、図8(c)に示すように、点列データC1の影響が排除され、あるいは補正された、より正確な近似曲線A2を得ることができる。
不正値か否かの判断は、ユーザが表面形状データを見て逐次判断してもよいし、データ統合部13に当該判断のための条件を与えて自動判別させてもよい。例えば、所定の範囲から外れる外れ値を不正値と判断する、あるいは、隣接する点列データ間の差が所定値以上のときに、点列データの平均値からより離れた点列データの方を不正値と判断するなどの条件が挙げられる。
For example, in the surface shape data DM of the index shape M shown in FIG. 8A, when the point sequence data C1 is an illegal value due to dust or the like, the fitting using a normal polynomial or the like is shown in FIG. 8B. As shown, an approximate curve A1 including noise of the point sequence data C1 is acquired. However, when the NURBS function is used, the influence of the point sequence data C1 is eliminated or corrected as shown in FIG. 8C. In addition, a more accurate approximate curve A2 can be obtained.
The determination as to whether or not the value is an illegal value may be made sequentially by the user looking at the surface shape data, or may be automatically determined by giving the data integration unit 13 conditions for the determination. For example, it is determined that an outlier that falls outside a predetermined range is an incorrect value, or when the difference between adjacent point sequence data is greater than or equal to a predetermined value, the point sequence data that is further away from the average value of the point sequence data Conditions such as judging an illegal value.

指標形状の近似曲線を得たあと、データ統合部13は、被フィッティング領域の表面形状データにおける指標形状の表面形状データを点列データとして取り出し、近似曲線と当該点列データとの差の自乗和が最小となるように、最小自乗法によって、被フィッティング領域の補正量を算出する。補正量は、例えば、x軸、y軸、及びz軸それぞれに沿った平行移動量dx、dy、dzと、それぞれの軸周りのティルト量da、db、dc、及び光軸方向のシフトに伴う拡大・縮小変形の相似倍率Pの7種類である。   After obtaining the approximate curve of the index shape, the data integration unit 13 takes out the surface shape data of the index shape in the surface shape data of the fitting area as point sequence data, and calculates the square sum of the difference between the approximate curve and the point sequence data. The amount of correction of the fitted region is calculated by the method of least squares so that is minimized. The correction amount is associated with, for example, translation amounts dx, dy, dz along the x-axis, y-axis, and z-axis, and tilt amounts da, db, dc around the respective axes, and a shift in the optical axis direction. There are seven types of similar magnification P for enlargement / reduction deformation.

補正量算出後、データ統合部13は、被フィッティング領域の表面形状データの全座標値を、補正量に基づいて変換し、フィッティング領域の表面形状データとフィッティングさせる。こうして2つの部分表面形状データが統合される。   After calculating the correction amount, the data integration unit 13 converts all coordinate values of the surface shape data of the fitting region based on the correction amount, and performs fitting with the surface shape data of the fitting region. In this way, the two partial surface shape data are integrated.

続いて、データ統合部13は、統合された部分表面形状データをフィッティング領域とし、これに隣接する部位の部分表面形状データを被フィッティング領域として、上述の手順で同様に指標形状を抽出し、NURBS関数によるあてはめを行って最小自乗法や非線形計画法により補正量を算出してフィッティングを行う。これを走査終点Bを含む部位まで繰り返すと、すべての部分表面形状データが一つに統合され、光学素子Sの表面全体の形状を示す全体表面形状データが取得される。このようにして、本実施形態の表面形状測定方法が終了する。   Subsequently, the data integration unit 13 uses the integrated partial surface shape data as a fitting region, and uses the partial surface shape data of a portion adjacent to the integrated region as a fitting region, and similarly extracts an index shape by the above-described procedure, and NURBS Fitting is performed by fitting with a function, calculating the correction amount by the least square method or the nonlinear programming method. When this is repeated up to the portion including the scanning end point B, all the partial surface shape data are integrated into one, and the entire surface shape data indicating the shape of the entire surface of the optical element S is acquired. Thus, the surface shape measuring method of this embodiment is complete | finished.

本実施形態の形状測定方法によれば、干渉縞を取得する各部位において、参照平面3を第1位置P1から第4位置P4まで移動させる必要がないので、従来の方法と同程度の精度を有する表面形状測定を、はるかに短い時間で完了することができる。   According to the shape measurement method of the present embodiment, it is not necessary to move the reference plane 3 from the first position P1 to the fourth position P4 in each part where the interference fringes are acquired. Having surface shape measurements can be completed in a much shorter time.

また、測定精度を高めたい場合は、CCD素子6による表面画像のサンプリング周期を短くしてより多くの表面画像を取得するように調整するだけでよいため、測定時間を増加させることなく容易に形状測定の精度を高めることができる。   In addition, when it is desired to increase the measurement accuracy, it is only necessary to adjust so as to acquire a larger number of surface images by shortening the sampling period of the surface image by the CCD element 6, so that the shape can be easily formed without increasing the measurement time. Measurement accuracy can be increased.

また、ステップS4の統合工程においては、データ統合部13がNURBS関数を用いて指標形状の表面形状データの近似曲線を取得し、当該近似曲線に基づいて各領域の表面形状データのフィッティングを行う。したがって、ゴミ等の不純物や測定エラーによる不正値を排除して、より正確な近似曲線に基づくフィッティングを行うことができ、精度の高い表面形状データを得ることができる。   In the integration step of step S4, the data integration unit 13 acquires an approximate curve of the surface shape data of the index shape using the NURBS function, and performs the fitting of the surface shape data of each region based on the approximate curve. Therefore, impurities such as dust and incorrect values due to measurement errors can be eliminated, fitting based on a more accurate approximate curve can be performed, and highly accurate surface shape data can be obtained.

本実施形態においては、フィッティング領域における指標形状の表面形状データの近似曲線を取得し、被フィッティング領域の表面形状の点列データと最小自乗法等によってフィッティングする例を説明したが、これに代えて、被フィッティング領域の指標形状の表面形状データについても同様の方法で近似曲線を取得し、相関係数を用いて両者のフィッティングを行ってもよい。
また、近似曲線を取得する際の座標の重み付けについては、特定の周波数に該当する座標の重みを重くしたり軽くしたりして変化させる、いわゆる周波数フィルタを用いて行ってもよい。
また、上述したNURBS関数のメリットはなくなるものの、一般的な多項式等によって近似曲線を取得して、フィッティングを行ってもよい。
さらに、本発明の表面形状測定方法において、近似曲線における当てはめは必須ではないので、通常の公知のフィッティング方法によって各部分表面形状データの統合が行われてもよい。
In the present embodiment, an example has been described in which an approximate curve of the surface shape data of the index shape in the fitting region is obtained, and fitting is performed by using a point sequence data of the surface shape of the fitting region and the least square method, etc. Also, with respect to the surface shape data of the index shape of the fitting region, an approximate curve may be obtained by the same method, and the fitting of both may be performed using the correlation coefficient.
Further, the weighting of the coordinates when obtaining the approximate curve may be performed using a so-called frequency filter that changes the weights of the coordinates corresponding to a specific frequency by increasing or decreasing the weight.
In addition, although the above-described NURBS function does not have the merit, fitting may be performed by obtaining an approximate curve using a general polynomial or the like.
Furthermore, in the surface shape measurement method of the present invention, since fitting in an approximate curve is not essential, integration of the partial surface shape data may be performed by a normal known fitting method.

以上、本発明の一実施形態を説明したが、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上述の実施例においては、光学素子Sの表面における干渉計1の走査起点Aと走査終点Bとが異なる例を説明したが、これに代えて、図9に示す変形例のように、走査終了後に干渉計が走査起点Aに戻る、すなわち、走査起点Aと走査終点Bとが同一の位置となるように走査軌跡が設定されてもよい。この場合、最初に取得した部分表面形状データと最後に取得した部分表面形状データとの誤差量を算出し、これを統合作業全体におけるずれ量としてすべての統合作業の補正を行うことによってより表面形状測定の精度を向上させることができる。
また、走査軌跡自体も、光学素子Sの表面全域をカバーできるものであれば、図5や図9に示したようないわゆるラスタスキャニングのような軌跡でなく、任意の軌跡に設定されてよい。
Although one embodiment of the present invention has been described above, the technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above-described embodiment, the example in which the scanning start point A and the scanning end point B of the interferometer 1 on the surface of the optical element S are different from each other has been described, but instead, as in a modification example illustrated in FIG. The scanning trajectory may be set so that the interferometer returns to the scanning starting point A after the scanning is completed, that is, the scanning starting point A and the scanning end point B are at the same position. In this case, by calculating the amount of error between the first partial surface shape data acquired last and the last acquired partial surface shape data, and using this as the amount of deviation in the overall integration operation, the surface shape can be further corrected. Measurement accuracy can be improved.
Further, the scanning trajectory itself may be set to an arbitrary trajectory as long as it can cover the entire surface of the optical element S, not the trajectory like the so-called raster scanning as shown in FIGS.

また、上述の実施形態では、干渉計1が移動される例を説明したが、干渉計と被検物とが相対移動すれば本発明の形状測定方法は実行可能であるので、干渉計1に代えて、被検物である光学素子Sが移動機構等によって移動させられてもよい。
また、上記実施形態においては、エンコーダの検出値に基づいて、干渉計が所定距離被検物に対して相対移動するごとに干渉縞を含む被検物の部分表面画像が取得される例を説明したが、これに代えて、干渉計が一定速度で移動され、所定の時間間隔ごとに部分表面画像が取得されるようにしてもよい。このようにすると、エンコーダが必要なくなるので、形状測定装置をより簡素に構成することができる。
In the above-described embodiment, the example in which the interferometer 1 is moved has been described. However, if the interferometer and the test object are relatively moved, the shape measuring method of the present invention can be executed. Instead, the optical element S as the test object may be moved by a moving mechanism or the like.
Further, in the above-described embodiment, an example in which a partial surface image of the test object including the interference fringe is acquired every time the interferometer moves relative to the test object for a predetermined distance based on the detection value of the encoder. However, instead of this, the interferometer may be moved at a constant speed, and partial surface images may be acquired at predetermined time intervals. In this case, since the encoder is not necessary, the shape measuring apparatus can be configured more simply.

また、上記実施形態においては、参照平面のすべての位置P1ないしP4において、干渉計1を走査移動させながら干渉縞が取得される例を説明したが、本発明はこれには限定されず、参照平面3の一部の位置(例えばP1)においてのみ、干渉計1を走査移動させながら干渉縞が断続的に取得され、残りの位置においては、従来と同様に、干渉計1を所定の距離だけ移動させて静止させた状態で干渉縞が取得されても良い。このようにしても、干渉縞取得に要する時間を相当程度短縮することができる。   In the above embodiment, an example in which interference fringes are acquired while scanning and moving the interferometer 1 at all positions P1 to P4 on the reference plane has been described. However, the present invention is not limited to this, and reference is made. Interference fringes are intermittently acquired while scanning the interferometer 1 only at a part of the plane 3 (for example, P1). At the remaining positions, the interferometer 1 is moved by a predetermined distance as in the prior art. The interference fringes may be acquired in a state of being moved and stopped. Even in this case, the time required for obtaining interference fringes can be considerably reduced.

さらに、干渉縞が取得される参照平面の位置は、最低3箇所あればよく、5箇所以上あってもよい。この場合、ステップ数に応じて異なる公知の位相解析方法を用いて位相解析工程を進めればよい。
加えて、上述の実施形態においては、トワイマングリーン型の干渉計が用いられる例を説明したが、本発明は、参照面および被検物のいずれかを進退させてフリンジスキャンを行うものであれば、フィゾー型等の他の方式の干渉計を用いた形状測定方法にも適用することができる。
Furthermore, the position of the reference plane from which the interference fringes are acquired may be at least three, and may be five or more. In this case, the phase analysis process may be performed using a known phase analysis method that differs depending on the number of steps.
In addition, in the above-described embodiment, an example in which a Twiman Green type interferometer is used has been described. However, the present invention is intended to perform a fringe scan by advancing or retracting either the reference surface or the test object. For example, the present invention can be applied to a shape measuring method using an interferometer of another type such as a Fizeau type.

本発明の一実施形態の形状測定方法に使用される干渉計の構成を示す図である。It is a figure which shows the structure of the interferometer used for the shape measuring method of one Embodiment of this invention. 同干渉計が取付けられた形状測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the shape measuring apparatus with which the same interferometer was attached. 同形状測定方法の被検物である光学素子を示す図である。It is a figure which shows the optical element which is a test object of the same shape measuring method. 同形状測定方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the same shape measuring method. 同光学素子における同干渉計の走査軌跡を示す図である。It is a figure which shows the scanning locus | trajectory of the interferometer in the optical element. 干渉縞取得工程における同干渉計と同光学素子との位置関係を示す図である。It is a figure which shows the positional relationship of the same interferometer and the same optical element in an interference fringe acquisition process. 同形状測定方法の実行時における同干渉計の動作を示す図である。It is a figure which shows operation | movement of the interferometer at the time of execution of the shape measuring method. (a)は、部分表面形状データの一例を、(b)及び(c)は、それぞれ同部分表面形状データに対する近似関数の当てはめの一例を示す図である。(A) is a figure which shows an example of partial surface shape data, (b) and (c) are figures which show an example of fitting of the approximate function with respect to the partial surface shape data, respectively. 同形状測定方法の変形例における同干渉計の走査軌跡を示す図である。It is a figure which shows the scanning locus | trajectory of the interferometer in the modification of the same shape measuring method.

符号の説明Explanation of symbols

1 干渉計
2 光源
3 参照平面(参照面)
L1 物体光
L2 参照光
P1 第1位置
P2 第2位置
P3 第3位置
S3 位相解析工程
S4 統合工程
S 光学素子(被検物)
1 Interferometer 2 Light source 3 Reference plane (reference plane)
L1 Object light L2 Reference light P1 First position P2 Second position P3 Third position S3 Phase analysis step S4 Integration step S Optical element (test object)

Claims (3)

光源から発する光を被検物に照射される物体光と参照面で反射される参照光とに分離し、前記被検物の表面で反射された前記物体光と前記参照光との光路差によって得られる干渉縞を解析する干渉計を用いて前記被検物の表面形状を測定する形状測定方法であって、
前記参照面を前記参照光の光軸上の第1位置に固定して、前記物体光を前記被検物に照射し、前記干渉計が前記被検物に対して所定距離相対移動するごとの前記干渉縞を、複数の第1干渉縞として取得する第1工程と、
前記参照面を、前記第1位置と異なる前記参照光の光軸上の第2位置に固定して、前記物体光を前記被検物に照射し、前記干渉計が前記被検物に対して所定距離相対移動するごとの前記干渉縞を、複数の第2干渉縞として取得する第2工程と、
前記参照面を、前記第1位置及び前記第2位置と異なる前記参照光の光軸上の第3位置に固定して、前記物体光を前記被検物に照射し、前記干渉計が前記被検物に対して所定距離相対移動するごとの前記干渉縞を、複数の第3干渉縞として取得する第3工程と、
前記第1工程で得られた前記第1干渉縞と、前記第2工程で得られた前記第2干渉縞と、前記第3工程で得られた前記第3干渉縞とを用いて、干渉縞の位相解析を行う位相解析工程と、
を備え、
前記被検物の表面は、所定の関数で表現される自由曲面であり、
前記第1工程、前記第2工程、及び前記第3工程の少なくとも1つにおいて、前記干渉計は、前記関数に基づいて、前記被検物の表面に前記物体光が垂直に入射するように前記物体光の照射角度を調節しながら、前記被検物の表面全体を走査するように前記被検物に対して相対移動され、前記干渉計が所定距離相対移動するごとに断続的に複数の干渉縞が取得されることを特徴とする形状測定方法。
The light emitted from the light source is separated into the object light irradiated on the test object and the reference light reflected on the reference surface, and the optical path difference between the object light reflected on the surface of the test object and the reference light A shape measuring method for measuring the surface shape of the test object using an interferometer for analyzing the obtained interference fringes,
Each time the reference surface is fixed at a first position on the optical axis of the reference light, the object light is irradiated onto the object, and the interferometer moves relative to the object by a predetermined distance. A first step of acquiring the interference fringes as a plurality of first interference fringes;
The reference plane is fixed at a second position on the optical axis of the reference light different from the first position, the object light is irradiated onto the test object, and the interferometer is applied to the test object. A second step of acquiring the interference fringes for each relative movement of a predetermined distance as a plurality of second interference fringes;
The reference plane is fixed at a third position on the optical axis of the reference light different from the first position and the second position, the object light is irradiated onto the test object, and the interferometer is A third step of obtaining the interference fringes as a plurality of third interference fringes each time the relative movement relative to the inspection object is performed by a predetermined distance;
An interference fringe using the first interference fringe obtained in the first step, the second interference fringe obtained in the second step, and the third interference fringe obtained in the third step. A phase analysis process for performing phase analysis of
With
The surface of the test object is a free-form surface expressed by a predetermined function,
In at least one of the first step, the second step, and the third step, the interferometer is configured to cause the object light to vertically enter the surface of the test object based on the function. While adjusting the irradiation angle of the object light, it is moved relative to the test object so as to scan the entire surface of the test object, and each time the interferometer moves relative to the predetermined distance, a plurality of interferences are intermittently generated. A shape measuring method, wherein fringes are acquired.
複数の干渉縞が断続的に取得される前記第1工程、前記第2工程、及び前記第3工程のいずれかにおいて、前記干渉計の前記相対移動の起点と終点とが同一であることを特徴とする請求項1に記載の形状測定方法。   The starting point and the ending point of the relative movement of the interferometer are the same in any one of the first step, the second step, and the third step in which a plurality of interference fringes are acquired intermittently. The shape measuring method according to claim 1. 前記位相解析工程において得られた位相解析結果を、前記所定距離に基づいてつなぎ合わせて前記被検物全体の表面形状を取得する統合工程をさらに備えることを特徴とする請求項1または2に記載の形状測定方法。   The phase analysis result obtained in the phase analysis step is further connected, based on the predetermined distance, further comprising an integration step of acquiring the entire surface shape of the test object. Shape measurement method.
JP2008223292A 2008-09-01 2008-09-01 Shape measurement method Expired - Fee Related JP5586134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008223292A JP5586134B2 (en) 2008-09-01 2008-09-01 Shape measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008223292A JP5586134B2 (en) 2008-09-01 2008-09-01 Shape measurement method

Publications (2)

Publication Number Publication Date
JP2010060304A true JP2010060304A (en) 2010-03-18
JP5586134B2 JP5586134B2 (en) 2014-09-10

Family

ID=42187275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008223292A Expired - Fee Related JP5586134B2 (en) 2008-09-01 2008-09-01 Shape measurement method

Country Status (1)

Country Link
JP (1) JP5586134B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179877A (en) * 2010-02-26 2011-09-15 Olympus Corp Method of measuring shape and shape measuring device
CN104251672A (en) * 2014-10-13 2014-12-31 南京理工大学 Spatial attitude adjusting method for free-form curved surface element to be measured in nonzero digit interference system
JP2015513093A (en) * 2012-06-15 2015-04-30 ファロ テクノロジーズ インコーポレーテッド Coordinate measuring machine with removable accessories
US9879976B2 (en) 2010-01-20 2018-01-30 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
US10060722B2 (en) 2010-01-20 2018-08-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287107A (en) * 1989-04-27 1990-11-27 Rikagaku Kenkyusho Two-dimensional information acquisition device
JPH05223541A (en) * 1992-02-14 1993-08-31 Nikon Corp Shape measuring method and shape measuring system
JP3162355B2 (en) * 1989-03-31 2001-04-25 キヤノン株式会社 Surface shape measurement method and device
JP2002048522A (en) * 2000-05-22 2002-02-15 Mitsutoyo Corp Scanning type shape analyzer for analyzing space of wide inspection face
JP2003057016A (en) * 2001-08-10 2003-02-26 Canon Inc High speed measuring method for shape of large caliber surface and measuring instrument therefor
JP2005249575A (en) * 2004-03-04 2005-09-15 Nikon Corp Interference measuring method and interferometer
JP2009192369A (en) * 2008-02-14 2009-08-27 Olympus Corp Shape measuring method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3162355B2 (en) * 1989-03-31 2001-04-25 キヤノン株式会社 Surface shape measurement method and device
JPH02287107A (en) * 1989-04-27 1990-11-27 Rikagaku Kenkyusho Two-dimensional information acquisition device
JPH05223541A (en) * 1992-02-14 1993-08-31 Nikon Corp Shape measuring method and shape measuring system
JP2002048522A (en) * 2000-05-22 2002-02-15 Mitsutoyo Corp Scanning type shape analyzer for analyzing space of wide inspection face
JP2003057016A (en) * 2001-08-10 2003-02-26 Canon Inc High speed measuring method for shape of large caliber surface and measuring instrument therefor
JP2005249575A (en) * 2004-03-04 2005-09-15 Nikon Corp Interference measuring method and interferometer
JP2009192369A (en) * 2008-02-14 2009-08-27 Olympus Corp Shape measuring method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9879976B2 (en) 2010-01-20 2018-01-30 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
US10060722B2 (en) 2010-01-20 2018-08-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
JP2011179877A (en) * 2010-02-26 2011-09-15 Olympus Corp Method of measuring shape and shape measuring device
JP2015513093A (en) * 2012-06-15 2015-04-30 ファロ テクノロジーズ インコーポレーテッド Coordinate measuring machine with removable accessories
CN104251672A (en) * 2014-10-13 2014-12-31 南京理工大学 Spatial attitude adjusting method for free-form curved surface element to be measured in nonzero digit interference system

Also Published As

Publication number Publication date
JP5586134B2 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
US10624720B1 (en) Imaging apparatus with temperature compensation
US9982994B2 (en) Optical measuring method and measuring device having a measuring head for capturing a surface topography by calibrating the orientation of the measuring head
KR101629545B1 (en) Shape measuring device, shape measuring method, structure manufacturing method, and program
US9074879B2 (en) Information processing apparatus and information processing method
US20110096182A1 (en) Error Compensation in Three-Dimensional Mapping
JP5586134B2 (en) Shape measurement method
EP2420796B1 (en) Shape measuring method and shape measuring apparatus using white light interferometry
JP2008292296A (en) Method for measuring film thickness of transparency film and its apparatus
JP2010256320A (en) Device for measurement of light wave interference
TWI388797B (en) Three - dimensional model reconstruction method and its system
US7548321B2 (en) Method for enhancing the measuring accuracy when determining the coordinates of structures on a substrate
JP5057848B2 (en) Method and apparatus for measuring refractive index of transparent film and method and apparatus for measuring film thickness of transparent film
JP5173629B2 (en) Shape measuring device
JP2009204382A (en) Mtf measuring method and mtf measuring instrument
US10504802B2 (en) Target location in semiconductor manufacturing
JP6047764B2 (en) White interferometer, image processing method, and image processing program
US20030184766A1 (en) Moire grating noise eliminating method
JP2014132252A (en) Measurement method, measurement device and article fabrication method
KR101772771B1 (en) Gap measuring method by using line scan and area scan
CN110940280B (en) Calibration method of focusing sensor
WO2023182095A1 (en) Surface shape measurement device and surface shape measurement method
JP2011064550A (en) Surface profile measuring method
JP5178419B2 (en) Shape data integration method
JP2009145231A (en) Device and method for measuring three-dimensional shape
JP5371606B2 (en) Shape measuring apparatus and shape measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130705

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140722

R151 Written notification of patent or utility model registration

Ref document number: 5586134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees