JP5173629B2 - Shape measuring device - Google Patents

Shape measuring device Download PDF

Info

Publication number
JP5173629B2
JP5173629B2 JP2008170697A JP2008170697A JP5173629B2 JP 5173629 B2 JP5173629 B2 JP 5173629B2 JP 2008170697 A JP2008170697 A JP 2008170697A JP 2008170697 A JP2008170697 A JP 2008170697A JP 5173629 B2 JP5173629 B2 JP 5173629B2
Authority
JP
Japan
Prior art keywords
surface shape
data
test object
shape data
partial surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008170697A
Other languages
Japanese (ja)
Other versions
JP2010008345A (en
Inventor
康成 長池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2008170697A priority Critical patent/JP5173629B2/en
Publication of JP2010008345A publication Critical patent/JP2010008345A/en
Application granted granted Critical
Publication of JP5173629B2 publication Critical patent/JP5173629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、被検物の表面で反射される光によって生じる干渉縞を解析することにより、当該被検物の表面形状を測定する形状測定装置に関する。 The present invention, by analyzing the interference fringes caused by light reflected by the surface of the test object, relates to a shape measurement equipment for measuring the surface shape of the test object.

従来、干渉計を用いて大面積、高傾斜の被検物の表面形状を測定する場合に、当該被検物の表面を干渉計で測定可能な複数の測定領域に分割し、各領域の測定結果をつなぎ合わせて表面全体の形状測定を行う方法が提案されている(例えば、特許文献1参照)。
測定結果をつなぎ合わせる方法としては、予め複数の測定領域を互いに重なり合うように設定し、重なり合う部分の一方の測定データと他方の測定データとの相関関数が最大値をとるように他方の測定データ全部を座標変換してフィッティングをする方法が知られている(例えば、特許文献2参照)。
Conventionally, when measuring the surface shape of a large-area, high-inclined specimen using an interferometer, the surface of the specimen is divided into a plurality of measurement areas that can be measured by the interferometer, and measurement of each area is performed. A method for measuring the shape of the entire surface by connecting the results has been proposed (see, for example, Patent Document 1).
As a method of connecting the measurement results, a plurality of measurement areas are set in advance so as to overlap each other, and all the other measurement data are set so that the correlation function between one measurement data and the other measurement data in the overlapping portion takes a maximum value. There is known a method of performing coordinate fitting on the fitting (see, for example, Patent Document 2).

上述の方法において、分割された各測定領域の形状測定を高精度に行うためには、被検物表面の干渉縞の縞走査による位相解析が必要となる。そのために、通常は、被検物を測定領域ごとに静止させ、干渉計の参照面をその光軸上の複数の位置に移動させて当該測定領域の縞走査を行ってから次の測定領域の縞走査を行うという手順がとられている。
特開2003−57016号公報 特許第3162355号公報
In the above-described method, in order to measure the shape of each divided measurement region with high accuracy, it is necessary to perform a phase analysis by fringe scanning of the interference fringes on the surface of the test object. Therefore, normally, the test object is stopped for each measurement region, the reference surface of the interferometer is moved to a plurality of positions on the optical axis, and the measurement region is subjected to fringe scanning. The procedure of performing fringe scanning is taken.
JP 2003-57016 A Japanese Patent No. 3162355

しかしながら、上記のような手順で表面形状の測定を行うと、静止状態にある被検物が僅かに動くことによって測定誤差が発生することがある。また、測定領域ごとに被検物の回転及び停止、縞走査のための干渉計の移動(最少3位置、通常4位置以上)が行われるため、測定に長時間が必要となり、この事情は測定領域の分割数が増加するほど顕著になる。   However, when the surface shape is measured by the procedure as described above, a measurement error may occur due to a slight movement of the test object in a stationary state. In addition, rotation and stop of the test object and movement of the interferometer for fringe scanning (minimum 3 positions, usually 4 positions or more) are performed for each measurement area, which requires a long time for measurement. It becomes more prominent as the number of area divisions increases.

また、複数の測定領域をつなぎ合わせる場合に特許文献2に記載の方法を使用すると、処理時間がかかるため高速測定に適さない。さらにノイズによる測定誤差の影響も受けやすいという問題がある。   In addition, when the method described in Patent Document 2 is used to connect a plurality of measurement regions, it takes a processing time and is not suitable for high-speed measurement. Furthermore, there is a problem that it is easily affected by measurement errors due to noise.

本発明は上記事情に鑑みて成されたものであり、被検物の表面形状を短時間で測定可能な形状測定装置及び形状測定方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a shape measuring apparatus and a shape measuring method capable of measuring the surface shape of a test object in a short time.

本発明の第1の態様は、光源から発する光を被検物に照射される物体光と参照面で反射される参照光とに分離し、前記被検物の表面で反射された前記物体光と前記参照光との光路差によって得られる干渉縞を解析して前記被検物の表面形状を測定する形状測定装置であって、前記干渉縞を含む前記被検物の一部の表面画像を複数取得する撮像部と、前記表面画像を用いて前記干渉縞の位相解析を行い、前記被検物の一部の表面形状を示す部分表面形状データを取得する位相解析部と、各々の前記部分表面形状データをつなぎ合わせて、前記被検物の表面形状の一部である輪帯状領域又は前記被検物全体の表面形状データに統合するデータ統合部と、を備え、前記撮像部は、前記参照面を前記参照光の光軸上の異なる複数の位置に移動させ、前記被検物を一定速度で回転させながら前記表面画像を所定間隔で断続的に取得し、前記データ統合部は、互いに重複領域を有する一方の前記部分表面形状データに対してNURBS関数による当てはめを行って前記一方の前記部分表面形状データの近似曲線を取得し、前記NURBS関数と他方の前記部分表面形状データとの差の自乗和が最小となるように他方の前記部分表面形状データを座標変換して繋ぎ合わせ、前記NURBS関数を用いて前記近似曲線を取得する際に、前記部分表面形状データの点列データのうち、隣接する2つの点列データの差が所定値以上の場合に、前記2つの点列データの一方に対する前記NURBS関数の重み付けを小さくすることを特徴とする。 In the first aspect of the present invention, the light emitted from the light source is separated into object light irradiated on the test object and reference light reflected on the reference surface, and the object light reflected on the surface of the test object And a shape measuring device for measuring a surface shape of the test object by analyzing an interference fringe obtained by an optical path difference between the reference light and a reference image, wherein a surface image of a part of the test object including the interference fringe is obtained. A plurality of imaging units, a phase analysis unit that performs phase analysis of the interference fringes using the surface image and acquires partial surface shape data indicating a partial surface shape of the test object, and each of the portions A data integration unit that combines surface shape data and integrates the surface shape data of a ring-shaped region that is a part of the surface shape of the test object or the entire test object, and the imaging unit includes the Move the reference plane to different positions on the optical axis of the reference light, and Said surface image while rotating the test object at a constant speed and intermittently acquired at predetermined intervals, the data integration unit performs fitting by NURBS function to one of the partial surface shape data having overlapping regions to each other To obtain an approximate curve of the one partial surface shape data, and coordinate-transform the other partial surface shape data so that the sum of squares of the difference between the NURBS function and the other partial surface shape data is minimized. When the approximate curve is acquired using the NURBS function, when the difference between two adjacent point sequence data among the point sequence data of the partial surface shape data is a predetermined value or more, the 2 The weight of the NURBS function with respect to one of the two point sequence data is reduced .

本発明の形状測定装置によれば、被検物の各領域における干渉縞を含む表面画像が、被検物が回転している間に断続的に取得されるので、参照面を何度も移動させる必要がなくなる。   According to the shape measuring apparatus of the present invention, since the surface image including the interference fringes in each region of the test object is acquired intermittently while the test object is rotating, the reference surface is moved many times. There is no need to let them.

また、前記データ統合部は、互いに重複領域を有する一方の前記部分表面形状データに対して近似関数による当てはめを行って前記一方の前記部分表面形状データの近似曲線を取得し、前記近似関数と他方の前記部分表面形状データとの差の自乗和が最小となるように他方の前記部分表面形状データを座標変換して繋ぎ合わせるので、処理をより高速化することができる。 Further, the data integration unit obtains an approximate curve of the one partial surface shape data by performing fitting with an approximate function on one of the partial surface shape data having mutually overlapping regions, and the approximate function and the other the partial surface shape data and the difference between the square sum is aligned connecting to coordinate conversion and the other of said partial surface shape data so as to minimize Runode of, it is possible to further speed up the process.

さらに、これらのようにすると、被検物表面の不純物等による測定ノイズを好適に排除してより正確な表面形状測定を行うことができる。 Furthermore, if these are performed, it is possible to appropriately eliminate the measurement noise due to impurities on the surface of the test object and perform more accurate surface shape measurement.

本発明の第2の態様は、光源から発する光を被検物に照射される物体光と参照面で反射される参照光とに分離し、前記被検物の表面で反射された前記物体光と前記参照光との光路差によって得られる干渉縞を解析して前記被検物の表面形状を測定する形状測定装置であって、前記干渉縞を含む前記被検物の一部の表面画像を複数取得する撮像部と、前記表面画像を用いて前記干渉縞の位相解析を行い、前記被検物の一部の表面形状を示す部分表面形状データを取得する位相解析部と、各々の前記部分表面形状データをつなぎ合わせて、前記被検物の表面形状の一部である輪帯状領域又は前記被検物全体の表面形状データに統合するデータ統合部と、を備え、前記撮像部は、前記参照面を前記参照光の光軸上の異なる複数の位置に移動させ、前記被検物を一定速度で回転させながら前記表面画像を所定間隔で断続的に取得し、前記データ統合部は、互いに重複領域を有する一方の前記部分表面形状データに対してNURBS関数による当てはめを行って前記一方の前記部分表面形状データの近似曲線を取得し、前記NURBS関数と他方の前記部分表面形状データとの差の自乗和が最小となるように他方の前記部分表面形状データを座標変換して繋ぎ合わせ、前記NURBS関数を用いて前記近似曲線を取得する際に、前記部分表面形状データの点列データのうち、所定の周波数に相当する周期の点列データの重み付けを大きくすることを特徴とするAccording to a second aspect of the present invention, the light emitted from the light source is separated into object light irradiated on the test object and reference light reflected on the reference surface, and the object light reflected on the surface of the test object And a shape measuring device for measuring a surface shape of the test object by analyzing an interference fringe obtained by an optical path difference between the reference light and a reference image, wherein a surface image of a part of the test object including the interference fringe is obtained. A plurality of imaging units, a phase analysis unit that performs phase analysis of the interference fringes using the surface image and acquires partial surface shape data indicating a partial surface shape of the test object, and each of the portions A data integration unit that combines surface shape data and integrates the surface shape data of a ring-shaped region that is a part of the surface shape of the test object or the entire test object, and the imaging unit includes the Move the reference plane to different positions on the optical axis of the reference light, and The surface image is intermittently acquired at predetermined intervals while rotating the test object at a constant speed, and the data integration unit performs fitting by NURBS function on one of the partial surface shape data having overlapping regions. To obtain an approximate curve of the one partial surface shape data, and coordinate-transform the other partial surface shape data so that the sum of squares of the difference between the NURBS function and the other partial surface shape data is minimized. When obtaining the approximate curve using the NURBS function, the weight of the point sequence data having a period corresponding to a predetermined frequency is increased among the point sequence data of the partial surface shape data. And

本発明の形状測定装置によれば、被検物の各領域における干渉縞を含む表面画像が、被検物が回転している間に断続的に取得されるので、参照面を何度も移動させる必要がなくなる。また、処理をより高速化することができる。さらに、被検物表面の不純物等による測定ノイズを好適に排除してより正確な表面形状測定を行うことができる。 According to the shape measuring apparatus of the present invention, since the surface image including the interference fringes in each region of the test object is acquired intermittently while the test object is rotating, the reference surface is moved many times. There is no need to let them. Further, the processing can be further speeded up. Furthermore, measurement noise due to impurities on the surface of the test object can be suitably eliminated, and more accurate surface shape measurement can be performed.

本発明の形状測定装置によれば、被検物の表面形状を短時間で測定することができる。 According to the shape measuring equipment of the present invention can be measured in a short time the surface shape of the test object.

本発明の第1実施形態について、図1から図7を参照して説明する。図1は、本発明の形状測定装置1を示す図である。形状測定装置1は、干渉計2と、干渉計2の取得画像を処理する画像処理部3とを備えて構成されている。干渉計2は公知のフィゾータイプの干渉計である。その原理を簡潔に説明すると以下の通りである。   A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing a shape measuring apparatus 1 according to the present invention. The shape measuring apparatus 1 includes an interferometer 2 and an image processing unit 3 that processes an acquired image of the interferometer 2. The interferometer 2 is a known Fizeau type interferometer. The principle is briefly described as follows.

光源4から発せられた光Lは、被検物Sの表面に照射される物体光L1と、参照球面(参照面)5によって反射され、基準となる参照光L2とに分離される。被検物Sの表面で反射された物体光L1は、参照光L2と干渉し、干渉光L3となる。ビームスプリッタ6を通過した干渉光L3は結像レンズ7によってCCD素子(画像変換光電素子、撮像部)8上に結像し、物体光L1と参照光L2との光路差によって生じる干渉縞が得られる。参照球面5には、参照球面5を参照光L2の光軸に沿って移動させるための移動機構5Aが取り付けられている。移動機構5Aとしては、ピエゾ素子等を採用することができる。
CCD素子8によって取得された干渉縞を含む被検物Sの表面画像は画像処理部3に送られ、被検物Sの形状測定のために処理加工が行われる。画像処理部3の詳細な構成については後述する。
The light L emitted from the light source 4 is reflected by the object light L1 irradiated on the surface of the test object S and the reference spherical surface (reference surface) 5, and is separated into the reference light L2 serving as a reference. The object light L1 reflected from the surface of the test object S interferes with the reference light L2, and becomes interference light L3. The interference light L3 that has passed through the beam splitter 6 is imaged on a CCD element (image conversion photoelectric element, image pickup unit) 8 by the imaging lens 7, and interference fringes caused by the optical path difference between the object light L1 and the reference light L2 are obtained. It is done. A moving mechanism 5A for moving the reference spherical surface 5 along the optical axis of the reference light L2 is attached to the reference spherical surface 5. A piezo element or the like can be used as the moving mechanism 5A.
The surface image of the test object S including the interference fringes acquired by the CCD element 8 is sent to the image processing unit 3 and processed for measuring the shape of the test object S. The detailed configuration of the image processing unit 3 will be described later.

図2は、形状測定装置1が取付けられた光学素子SBの研磨機(加工機)20を示す図である。形状測定装置1の干渉計2は光学素子SBを被検物として、研磨加工後の光学素子SBの表面形状を測定し、当該測定結果を研磨機20にフィードバックして再加工を行うために取付けられている。   FIG. 2 is a diagram showing a polishing machine (processing machine) 20 of the optical element SB to which the shape measuring device 1 is attached. The interferometer 2 of the shape measuring apparatus 1 is mounted to measure the surface shape of the optical element SB after polishing using the optical element SB as a test object, and feed back the measurement result to the polishing machine 20 for reprocessing. It has been.

研磨機20は、スピンドル21と研磨部(加工部)22とを備えて構成されている。スピンドル21の軸線方向の一方の端部には、被検物である光学素子SBが取付けられている。スピンドル21の軸線を通る回転軸23は、モータ等の回転機構24に接続されており、スピンドル21及びスピンドルに取付けられた光学素子SBをスピンドル21の軸線回りに回転させることができる。   The polishing machine 20 includes a spindle 21 and a polishing unit (processing unit) 22. An optical element SB, which is a test object, is attached to one end of the spindle 21 in the axial direction. A rotation shaft 23 passing through the axis of the spindle 21 is connected to a rotation mechanism 24 such as a motor, and the spindle 21 and the optical element SB attached to the spindle can be rotated around the axis of the spindle 21.

研磨部22は、光学素子SBに対向する面に砥石25が設けられており、光学素子SBに接触する位置まで進退可能に構成されている。研磨部22の砥石25を光学素子SBに接触させた状態でスピンドル21を回転させることによって、スピンドル21に固定された光学素子SBに対して研磨加工が行われる。   The polishing unit 22 is provided with a grindstone 25 on the surface facing the optical element SB, and is configured to advance and retract to a position in contact with the optical element SB. By rotating the spindle 21 with the grindstone 25 of the polishing unit 22 in contact with the optical element SB, the optical element SB fixed to the spindle 21 is polished.

干渉計2は、スピンドル21の軸線に対して所定の角度(例えばδ)をなし、かつその光軸が光学素子SBの曲率中心に向かうように配置されている。干渉計2には移動機構9が取付けられており、干渉計2を自身の軸線(物体光L1の光軸X1と同一)方向に進退させること、及び、上記角度δを変化させるように干渉計2を回動させることが可能となっている。   The interferometer 2 forms a predetermined angle (for example, δ) with respect to the axis of the spindle 21 and is disposed so that its optical axis is directed toward the center of curvature of the optical element SB. A moving mechanism 9 is attached to the interferometer 2, and the interferometer 2 is moved forward and backward in its own axis (same as the optical axis X1 of the object light L1), and the angle δ is changed. 2 can be rotated.

図3は、形状測定装置1及び研磨機20の各部のつながりを示すブロック図である。図3に示すように、画像処理部3は、光学素子SBの表面形状データから後述する統合処理の指標となる形状を認識して抽出する指標形状抽出部10と、干渉縞の位相解析を行って光学素子SBの一部の表面形状データを取得する演算部(位相解析部)11と、光学素子SBの各部の表面形状データをつなぎ合わせて光学素子SB全体の表面形状データを得るデータ統合部12とを備えている。   FIG. 3 is a block diagram showing the connection of each part of the shape measuring apparatus 1 and the polishing machine 20. As shown in FIG. 3, the image processing unit 3 performs an interference fringe phase analysis, and an index shape extraction unit 10 that recognizes and extracts a shape as an index of an integration process described later from the surface shape data of the optical element SB. A data integration unit that obtains surface shape data of the entire optical element SB by connecting the surface shape data of each part of the optical element SB together with a calculation unit (phase analysis unit) 11 that acquires part of the surface shape data of the optical element SB 12.

演算部11は、CCD素子8、指標形状抽出部10及びデータ統合部12と接続されている。また、各移動機構5A、9、及び演算部11は、形状測定装置1全体の制御を行う制御部13に接続されている。
なお、画像処理部3及び制御部13は、形状測定装置1の内部に設けられてもよいし、干渉計2と接続されたパソコン等の外部機器に設けられてもよい。
The calculation unit 11 is connected to the CCD element 8, the index shape extraction unit 10, and the data integration unit 12. Moreover, each moving mechanism 5A, 9 and the calculating part 11 are connected to the control part 13 which controls the shape measuring apparatus 1 whole.
The image processing unit 3 and the control unit 13 may be provided inside the shape measuring apparatus 1 or may be provided in an external device such as a personal computer connected to the interferometer 2.

研磨機20の研磨部22及び回転機構24は、研磨機20の動作を制御する研磨機制御部26に接続されている。研磨機制御部26は、形状測定装置1の制御部13と接続されており、形状測定装置1の測定結果を研磨機20にフィードバック可能に構成されている。   The polishing unit 22 and the rotation mechanism 24 of the polishing machine 20 are connected to a polishing machine control unit 26 that controls the operation of the polishing machine 20. The polishing machine control unit 26 is connected to the control unit 13 of the shape measuring apparatus 1 and is configured to be able to feed back the measurement result of the shape measuring apparatus 1 to the polishing machine 20.

上記のように構成された形状測定装置1及び研磨機20によって光学素子SBの表面形状測定及び加工を行う手順について、図4から図8(c)を参照して以下に説明する。   A procedure for measuring and processing the surface shape of the optical element SB by the shape measuring apparatus 1 and the polishing machine 20 configured as described above will be described below with reference to FIGS. 4 to 8C.

図4は、研磨機20による光学素子SBの加工手順を示すフローチャートである。
まず、ステップS1において、スピンドル21に固定された光学素子SBに対して、研磨機制御部26を介して研磨部22の砥石25を接触させ、回転機構24によってスピンドル21を回転させて光学素子SBの表面加工を行う。加工終了後、形状測定装置1による表面形状測定を行うために、光学素子SBの表面を洗浄し、研磨機制御部26によって研磨部22が退避させられる。そして、続くステップS2において、形状測定装置1を用いて光学素子SBの表面形状が測定される。
FIG. 4 is a flowchart showing a processing procedure of the optical element SB by the polishing machine 20.
First, in step S1, the grindstone 25 of the polishing unit 22 is brought into contact with the optical element SB fixed to the spindle 21 via the polishing machine control unit 26, and the spindle 21 is rotated by the rotation mechanism 24 to rotate the optical element SB. Surface processing is performed. After the processing is completed, the surface of the optical element SB is cleaned and the polishing unit 22 is retracted by the polishing machine control unit 26 in order to perform surface shape measurement by the shape measuring apparatus 1. Then, in the subsequent step S2, the surface shape of the optical element SB is measured using the shape measuring apparatus 1.

図5は、ステップS2における表面形状測定の各工程を示すフローチャートである。本ステップで行われる形状測定方法は、干渉縞を含む光学素子SBの一部の表面画像(以下、単に「表面画像」と称する。)を取得する干渉縞取得工程S11と、複数の表面画像を用いて干渉縞の位相解析を行う位相解析工程S12と、すべての画像を統合して光学素子SB全体の表面形状データを取得する統合工程S13とを備えている。以下、各工程について図を参照して説明する。   FIG. 5 is a flowchart showing each step of the surface shape measurement in step S2. The shape measurement method performed in this step includes an interference fringe acquisition step S11 for acquiring a partial surface image of the optical element SB including the interference fringes (hereinafter simply referred to as “surface image”), and a plurality of surface images. And a phase analysis step S12 for performing phase analysis of interference fringes, and an integration step S13 for integrating all images and acquiring surface shape data of the entire optical element SB. Hereinafter, each step will be described with reference to the drawings.

まず、測定準備として、制御部13は、移動機構5Aにより参照球面5を、干渉縞を取得する参照球面5の位置の1つである第1位置P1に固定した状態で、移動機構9を介して干渉計2を、その光軸がスピンドル21の軸線に対して所定の角度δをなすように回動させる。次にユーザは、光学素子SBと干渉計2との距離が既定の位置になるように、移動機構9を介して干渉計2を移動させ固定する。
ここで、既定の位置としては、物体光L1が照射される領域内における光学素子SBの近似曲率半径に、物体光L1の波面の曲率半径が一致する位置、とすることが望ましい。この状態で、光学素子SBの外周上の任意の位置を基準位置PSと設定し、基準位置PSが図6における最上部に位置する状態(開始位置)から表面画像の取得を開始する。
First, as a measurement preparation, the control unit 13 fixes the reference spherical surface 5 to the first position P1, which is one of the positions of the reference spherical surface 5 from which interference fringes are acquired, by the moving mechanism 5A. Then, the interferometer 2 is rotated so that its optical axis forms a predetermined angle δ with respect to the axis of the spindle 21. Next, the user moves and fixes the interferometer 2 via the moving mechanism 9 so that the distance between the optical element SB and the interferometer 2 becomes a predetermined position.
Here, it is desirable that the predetermined position is a position where the curvature radius of the wavefront of the object light L1 coincides with the approximate curvature radius of the optical element SB within the region irradiated with the object light L1. In this state, an arbitrary position on the outer periphery of the optical element SB is set as the reference position PS, and the acquisition of the surface image is started from a state (start position) where the reference position PS is positioned at the top in FIG.

図6は、基準位置PSが設定された光学素子SBの表面を示す図である。本実施形態の測定方法においては、光学素子SBの表面画像を、互いに重なり合う4つの領域R1、R2、R3、R4に分割して取得し、位相解析によって各領域の表面形状データ(部分表面形状データ)を取得してから、後述する統合工程においてつなぎ合わせる(フィッティングする)ことによって光学素子SB全体の表面形状データ(全体表面形状データ)を取得する。   FIG. 6 is a diagram illustrating the surface of the optical element SB on which the reference position PS is set. In the measurement method of the present embodiment, the surface image of the optical element SB is acquired by being divided into four overlapping regions R1, R2, R3, and R4, and surface shape data (partial surface shape data) of each region is obtained by phase analysis. ) And then connecting (fitting) in an integration step to be described later to obtain surface shape data (total surface shape data) of the entire optical element SB.

次に、ステップS11の干渉縞取得工程において、制御部13は、研磨機制御部26を介して回転機構24を駆動し、スピンドル21を一定の速度、例えば毎分20回転で回転させる。そして、図6に示すように、基準位置PSが開始位置に移動した時点から、スピンドル21の回転速度に基づき所定のサンプリング周期で、干渉計2を用いて各領域R1からR4における表面画像を取得する。このとき、参照球面5の位置は第1位置P1に固定される。
例えば、本実施形態において、各領域R1からR4は、光学素子SBの回転角にして90度ずつ異なっているので、光学素子が90度回転する750ミリ秒(ms)のサンプリング周期で干渉縞を取得すればよい。このように、演算部11は、光学素子SBの回転速度と取得する表面画像の設定位置から必要なサンプリング周期を算出する。
Next, in the interference fringe acquisition process of step S11, the control unit 13 drives the rotation mechanism 24 via the polishing machine control unit 26 to rotate the spindle 21 at a constant speed, for example, 20 rotations per minute. Then, as shown in FIG. 6, from the time when the reference position PS moves to the start position, surface images in the respective regions R1 to R4 are acquired using the interferometer 2 at a predetermined sampling period based on the rotation speed of the spindle 21. To do. At this time, the position of the reference spherical surface 5 is fixed at the first position P1.
For example, in the present embodiment, each of the regions R1 to R4 differs by 90 degrees in terms of the rotation angle of the optical element SB, so that the interference fringes are generated at a sampling period of 750 milliseconds (ms) in which the optical element rotates 90 degrees. Get it. As described above, the calculation unit 11 calculates a necessary sampling period from the rotation speed of the optical element SB and the set position of the acquired surface image.

具体的には、制御部13は、光学素子SBが1回転する回転開始3秒後に、表面画像の取得を開始する。まず、干渉計2の参照球面5の位置を第1位置P1に固定した状態で、CCD素子8によって回転開始3秒後に図7(a)に示す領域R1の表面画像を取得し、光学素子SBが90度回転する750ms(所定時間)経過するごとに、図7(b)、図7(c)、及び図7(d)にそれぞれ示す領域R2,R3、及びR4の表面画像を取得する。このとき、CCD素子8の全画素において、同期読み出しを行うように設定すると、より高速で画像を取得することができる。こうして、参照球面5が第1位置P1に位置するときの光学素子SBの各領域R1ないしR4における表面画像(第1干渉縞)が連続的に取得される(第1工程)。   Specifically, the control unit 13 starts acquiring the surface image 3 seconds after the rotation start of the rotation of the optical element SB once. First, in a state where the position of the reference spherical surface 5 of the interferometer 2 is fixed at the first position P1, a surface image of the region R1 shown in FIG. Each time 750 ms (predetermined time) that rotates 90 degrees passes, surface images of regions R2, R3, and R4 shown in FIGS. 7B, 7C, and 7D, respectively, are acquired. At this time, if all pixels of the CCD element 8 are set to perform synchronous reading, an image can be acquired at a higher speed. In this way, surface images (first interference fringes) in the regions R1 to R4 of the optical element SB when the reference spherical surface 5 is located at the first position P1 are continuously acquired (first step).

ここで干渉縞の取得は一旦休止され、スピンドル21が空回りを行い、それにともなって、光学素子SBも空回りする。その間に制御部13は、移動機構5Aのピエゾ素子に電圧を印加して、参照球面5を図1に示す光軸X1に沿って所定の距離だけ後退させ、第1位置と異なる第2位置P2に移動させて固定する。スピンドル21の空回りは、移動機構5Aによる参照球面5の移動に必要な時間及び移動後の微調整に必要な時間を考慮して、複数回転行われてもよい。   Here, the acquisition of interference fringes is temporarily stopped, the spindle 21 idles, and the optical element SB also idles accordingly. In the meantime, the controller 13 applies a voltage to the piezo element of the moving mechanism 5A to retract the reference spherical surface 5 by a predetermined distance along the optical axis X1 shown in FIG. 1, and a second position P2 different from the first position. Move to and fix. The idle rotation of the spindle 21 may be performed a plurality of times in consideration of the time required for the movement of the reference spherical surface 5 by the moving mechanism 5A and the time required for fine adjustment after the movement.

参照球面5が第2位置P2に固定された後、基準位置PSが開始位置に移動する任意のタイミングから、再度表面画像の取得が開始される。そして上述した第1工程と同じ要領で、参照球面5が第2位置P2に位置するときの各領域R1ないしR4における表面画像(第2干渉縞)が連続的に取得される(第2工程)。   After the reference spherical surface 5 is fixed at the second position P2, the acquisition of the surface image is started again at an arbitrary timing at which the reference position PS moves to the start position. Then, in the same manner as in the first step described above, surface images (second interference fringes) in the regions R1 to R4 when the reference spherical surface 5 is located at the second position P2 are continuously acquired (second step). .

その後、同様の手順で、参照球面5は光軸X1に沿って移動され、第2位置P2と異なる第3位置P3及び第4位置P4に移動され、第3干渉縞及び第4干渉縞が、それぞれ連続的に取得される。すなわち、光学素子SB表面の表面画像は、各領域R1ないしR4において、それぞれ第1ないし第4干渉縞の4種類取得される。取得されたすべての表面画像のデータは、逐次CCD素子8から演算部11に送られる。ここで干渉縞取得工程は終了し、工程はステップS12に移行する。   Thereafter, in the same procedure, the reference spherical surface 5 is moved along the optical axis X1, moved to the third position P3 and the fourth position P4 different from the second position P2, and the third interference pattern and the fourth interference pattern are Each is acquired continuously. That is, four types of first to fourth interference fringes are acquired in the regions R1 to R4, respectively, as the surface image of the surface of the optical element SB. All the acquired surface image data are sequentially sent from the CCD element 8 to the calculation unit 11. Here, the interference fringe acquisition process ends, and the process proceeds to step S12.

ステップS12の位相解析工程において、演算部11は、特定の領域(例えば領域R1)について参照球面5を第1位置P1ないし第4位置P4に固定して取得した4つの補正後の表面画像を抽出し、これらの位相変化を解析して、光学素子SBの当該領域における部分表面形状データを得る。演算部11は同様の動作を、R1ないしR4のすべての領域において行って、各領域の部分表面形状データを得る。   In the phase analysis step of step S12, the calculation unit 11 extracts four corrected surface images obtained by fixing the reference spherical surface 5 to the first position P1 to the fourth position P4 for a specific region (for example, the region R1). Then, these phase changes are analyzed to obtain partial surface shape data in the region of the optical element SB. The calculation unit 11 performs the same operation in all regions R1 to R4 to obtain partial surface shape data of each region.

ステップS13の統合工程において、データ統合部12は、ステップS12で取得された各領域の表面形状データを、共通する指標形状Mを用いてつなぎ合わせて1つのデータに統合し、光学素子SBの表面全体の形状データを取得する。   In the integration step of step S13, the data integration unit 12 connects the surface shape data of each region acquired in step S12 using a common index shape M and integrates it into one data, and the surface of the optical element SB. Get the whole shape data.

まず指標形状抽出部10は、領域R1ないしR4の各表面形状データの中から任意の1領域を基準領域(フィッティング領域)として選択し、図6に示す4つの領域R1ないしR4すべてが重複する領域SR1の中から、公知の形状抽出方法等によって、フィッティングの指標となる指標形状Mを抽出する。したがって、指標形状Mは、図7(a)から図7(d)に示すように、位置や向きが異なった状態で領域R1ないしR4すべての表面形状データに含まれている。抽出した指標形状Mの情報は、データ統合部12に送信される。   First, the index shape extraction unit 10 selects an arbitrary region as a reference region (fitting region) from the surface shape data of the regions R1 to R4, and a region where all the four regions R1 to R4 shown in FIG. 6 overlap. An index shape M serving as a fitting index is extracted from SR1 by a known shape extraction method or the like. Therefore, as shown in FIGS. 7A to 7D, the index shape M is included in the surface shape data of all the regions R1 to R4 in a state where the position and orientation are different. The extracted index shape M information is transmitted to the data integration unit 12.

指標形状Mとしては、例えば光学素子SB表面の微細な傷等を用いることができる。その形状について特に制限はないが、領域SR1内に偶然同一の形状が存在するとフィッティングが良好に行えなくなるので、特異的な形状であることが好ましい。また、回転に対して非対称である形状が設定されると、位置及び向きの両方のパラメータを用いて補正が行えるため好ましい。ユーザは、抽出する指標形状について、所望の条件を予めデータ統合部12に設定しておく。   As the index shape M, for example, a fine scratch on the surface of the optical element SB can be used. There is no particular limitation on the shape, but if the same shape is accidentally present in the region SR1, fitting cannot be performed satisfactorily, and therefore a specific shape is preferable. In addition, it is preferable to set a shape that is asymmetric with respect to rotation because correction can be performed using both the position and orientation parameters. The user sets a desired condition in the data integration unit 12 in advance for the index shape to be extracted.

次に、データ統合部12は、基準領域の表面形状データから指標形状Mの部分の表面形状データを取り出して、数1に示すNURBS関数によるあてはめを行い、指標形状Mの表面形状データの近似曲面を示す曲線(近似曲線)を取得する。   Next, the data integration unit 12 extracts the surface shape data of the index shape M portion from the surface shape data of the reference region, performs fitting using the NURBS function shown in Equation 1, and approximates the curved surface of the surface shape data of the index shape M A curve (approximate curve) is obtained.

Figure 0005173629
Figure 0005173629

NURBS関数においては、ωの値を変更することによって座標ごとに重み付けをすることができる。そこで、ある座標の値が明らかに測定エラーや光学素子SBの表面に付着したゴミ等による不正値であると判断できる場合は、当該座標に重み付けを与えない、あるいは他の座標よりも重み付けを小さくすることによって、より正確な近似曲線を得ることができる。   In the NURBS function, weighting can be performed for each coordinate by changing the value of ω. Therefore, when it can be determined that the value of a certain coordinate is clearly an incorrect value due to a measurement error or dust adhering to the surface of the optical element SB, no weight is given to the coordinate or the weight is smaller than other coordinates. By doing so, a more accurate approximate curve can be obtained.

例えば、図8(a)に示す指標形状Mの表面形状のデータDMにおいて、点列データC1がゴミ等による不正値である場合、通常の多項式等を用いた当てはめでは、図8(b)に示すように、点列データC1のノイズを含む近似曲線A1が取得されるが、NURBS関数を用いると、図8(c)に示すように、点列データC1の影響が排除され、あるいは補正された、より正確な近似曲線A2を得ることができる。
不正値か否かの判断は、ユーザが表面形状データを見て逐次判断してもよいし、データ統合部12に当該判断のための条件を与えて自動判別させてもよい。例えば、所定の範囲から外れる外れ値を不正値と判断する、あるいは、隣接する点列データ間の差が所定値以上のときに、点列データの平均値からより離れた点列データの方を不正値と判断するなどの条件が挙げられる。
For example, in the surface shape data DM of the index shape M shown in FIG. 8A, when the point sequence data C1 is an illegal value due to dust or the like, the fitting using a normal polynomial or the like is shown in FIG. 8B. As shown, an approximate curve A1 including noise of the point sequence data C1 is acquired. However, when the NURBS function is used, the influence of the point sequence data C1 is eliminated or corrected as shown in FIG. 8C. In addition, a more accurate approximate curve A2 can be obtained.
The determination as to whether or not the value is an illegal value may be made sequentially by the user looking at the surface shape data, or may be automatically determined by giving a condition for the determination to the data integration unit 12. For example, it is determined that an outlier that falls outside a predetermined range is an incorrect value, or when the difference between adjacent point sequence data is greater than or equal to a predetermined value, the point sequence data that is further away from the average value of the point sequence data Conditions such as judging an illegal value.

指標形状Mの近似曲線を得たあと、残りの領域(被フィッティング領域)の表面形状データにおける指標形状Mの表面形状データを取り出し、近似曲線と当該表面形状データとの差の自乗和が最小となるように、最小自乗法によって、被フィッティング領域の補正量を算出する。補正量は、例えば、x軸、y軸、及びz軸それぞれに沿った平行移動量dx、dy、dzと、それぞれの軸周りのティルト量da、db、dc、及び光軸方向のシフトに伴う拡大・縮小変形の相似倍率Pの7種類である。演算部11は、上記の演算をすべての被フィッティング領域について行い、各被フィッティング領域の補正量を算出する。   After obtaining the approximate curve of the index shape M, the surface shape data of the index shape M in the surface shape data of the remaining region (fitting region) is extracted, and the sum of squares of the difference between the approximate curve and the surface shape data is minimized. Thus, the correction amount of the fitting area is calculated by the least square method. The correction amount is associated with, for example, translation amounts dx, dy, dz along the x-axis, y-axis, and z-axis, and tilt amounts da, db, dc around the respective axes, and a shift in the optical axis direction. There are seven types of similar magnification P for enlargement / reduction deformation. The calculation unit 11 performs the above calculation for all the fitting regions, and calculates the correction amount of each fitting region.

補正量算出後、データ統合部12は、各被フィッティング領域の表面形状データの全座標値を、補正量に基づいて変換し、基準として選択した領域の表面形状とフィッティングさせる。そして、すべての領域の表面形状データをつなぎ合わせて光学素子SBの全体表面形状データを得る。こうしてステップS2の表面形状測定が終了する。取得された全体表面形状データは研磨機制御部26に送られる。   After calculating the correction amount, the data integration unit 12 converts all coordinate values of the surface shape data of each fitting region based on the correction amount, and fits the surface shape of the region selected as the reference. Then, the entire surface shape data of the optical element SB is obtained by connecting the surface shape data of all the regions. Thus, the surface shape measurement in step S2 is completed. The acquired entire surface shape data is sent to the polishing machine controller 26.

ステップS3において、研磨機制御部26は、光学素子SBの表面が目標精度の範囲内に加工されたか否かを、形状測定装置1の制御部13から送られた全体表面形状データに基づいて判定する。判定結果がYESの場合は、表面加工が終了する。判定結果がNOの場合は、処理はステップS4に進み、研磨部22の補正加工軌跡が、研磨機制御部26によって当該全体表面形状データに基づいて設定される。   In step S3, the polishing machine control unit 26 determines whether or not the surface of the optical element SB has been processed within the target accuracy range based on the entire surface shape data sent from the control unit 13 of the shape measuring apparatus 1. To do. If the determination result is YES, the surface processing ends. If the determination result is NO, the process proceeds to step S4, and the corrected machining locus of the polishing unit 22 is set by the polishing machine control unit 26 based on the entire surface shape data.

そして工程はステップS1に戻り、研磨機制御部26は、研磨部22を介して、当該補正加工軌跡に基づいて2度目の加工を行う。加工後、再度形状測定装置1による光学素子SB表面の形状測定が行われる。この一連の動作が、ステップS3において「YES」の判定が出るまで繰り返される。   Then, the process returns to step S <b> 1, and the polishing machine control unit 26 performs the second processing based on the corrected processing locus via the polishing unit 22. After the processing, the shape measurement of the surface of the optical element SB is performed again by the shape measuring apparatus 1. This series of operations is repeated until “YES” is determined in step S3.

本実施形態の形状測定装置1によれば、光学素子SBが一定の回転速度で回転されながら、CCD素子8が所定間隔で断続的に表面画像を取得することによって、ロータリーエンコーダ等の機構を用いることなく光学素子SBの所望の位置における表面画像が取得される。そして、演算部11が取得された表面画像を用いた位相解析を行って光学素子SBの部分表面形状データが取得される。さらに、データ統合部12において各領域の測定結果がつなぎ合わされることによって、光学素子SBの全体表面形状データが取得される。
したがって、各領域の表面画像を取得する度に、参照球面5を第1位置P1ないし第4位置P4の各位置に移動させる必要がないので、従来の方法と同程度の精度を有する表面形状測定を、はるかに短い時間で完了することができる。
According to the shape measuring apparatus 1 of the present embodiment, a mechanism such as a rotary encoder is used by the CCD element 8 intermittently acquiring surface images at predetermined intervals while the optical element SB is rotated at a constant rotational speed. A surface image at a desired position of the optical element SB is acquired without any problem. And the phase analysis using the surface image which the calculating part 11 acquired is performed, and the partial surface shape data of optical element SB are acquired. Further, the surface integration data of the optical element SB is acquired by connecting the measurement results of the respective regions in the data integration unit 12.
Therefore, it is not necessary to move the reference spherical surface 5 to each position of the first position P1 to the fourth position P4 every time a surface image of each area is acquired, and thus surface shape measurement having the same degree of accuracy as the conventional method. Can be completed in a much shorter time.

また、被検物である光学素子SBの回転角度量を検知するためのロータリーエンコーダ等の回転量検知機構を必要としないので、本実施形態のように、研磨機20等の加工機に取付ける際も、当該機構を別途設置する必要がなく、加工機への組み込み汎用性が非常に高い形状測定装置を構成することができる。   In addition, since a rotation amount detection mechanism such as a rotary encoder for detecting the rotation angle amount of the optical element SB that is the test object is not required, when mounting to a processing machine such as the polishing machine 20 as in the present embodiment. However, it is not necessary to install the mechanism separately, and it is possible to configure a shape measuring apparatus that has a very high versatility for incorporation into a processing machine.

また、光学素子SBを、参照球面5を第1位置P1から第4位置P4の各位置に固定した状態においてそれぞれ1回転と、参照球面5の移動のための1回転あるいは数回転の空回りをさせるだけで、形状測定に必要な干渉縞を含む表面画像をすべて取得することができるので、より短時間で形状測定を行うことができる。   Further, the optical element SB is rotated by one rotation and one or several rotations for moving the reference spherical surface 5 in a state where the reference spherical surface 5 is fixed from the first position P1 to the fourth position P4. As a result, all the surface images including the interference fringes necessary for the shape measurement can be acquired, so that the shape measurement can be performed in a shorter time.

また、干渉縞取得の際に、光学素子SBを静止させる必要がないので、光学素子SBの静止時のブレによる形状測定誤差の発生を防ぐことができる。また、光学素子SBを静止させる必要がないので、スピンドル21にサーボ機構を設ける必要がない。したがって、より広い範囲の加工機に適用することができる。   In addition, since it is not necessary to stop the optical element SB when acquiring the interference fringes, it is possible to prevent the occurrence of a shape measurement error due to blurring when the optical element SB is stationary. Further, since it is not necessary to make the optical element SB stationary, it is not necessary to provide a servo mechanism on the spindle 21. Therefore, it can be applied to a wider range of processing machines.

さらに、測定精度を高めたい場合は、CCD素子8による表面画像のサンプリング周期を短くしてより多くの表面画像を取得するように調整するだけでよいため、測定時間を増加させることなく容易に形状測定の精度を高めることができる。このとき、CCD素子8の干渉縞取得に要する時間が、上述の干渉縞取得間隔よりも長くなってしまう場合は、光学素子SBの回転速度を遅くすることによって調整することが可能である。   Furthermore, when it is desired to increase the measurement accuracy, it is only necessary to adjust so that the sampling period of the surface image by the CCD element 8 is shortened to acquire a larger number of surface images, so that the shape can be easily formed without increasing the measurement time. Measurement accuracy can be increased. At this time, if the time required for acquiring the interference fringes of the CCD element 8 becomes longer than the above-described interference fringe acquisition interval, it can be adjusted by slowing the rotation speed of the optical element SB.

また、ステップS13の統合工程においては、データ統合部12がNURBS関数を用いて指標形状Mの表面形状データの近似曲線を取得し、当該近似曲線に基づいて各領域の表面形状データのフィッティングを行う。したがって、ゴミ等の不純物や測定エラーによる不正値を排除して、より正確な近似曲線に基づくフィッティングを行うことができ、精度の高い表面形状データを得ることができる。   Further, in the integration step of step S13, the data integration unit 12 acquires an approximate curve of the surface shape data of the index shape M using the NURBS function, and performs fitting of the surface shape data of each region based on the approximate curve. . Therefore, impurities such as dust and incorrect values due to measurement errors can be eliminated, fitting based on a more accurate approximate curve can be performed, and highly accurate surface shape data can be obtained.

本実施形態においては、基準として選択した領域の指標形状Mの表面形状データの近似曲線を取得し、被フィッティング領域の表面形状の点列データと最小自乗法によってフィッティングする例を説明したが、これに代えて、被フィッティング領域の指標形状Mの表面形状データについても同様の方法で近似曲線を取得し、相関係数を用いて両者のフィッティングを行ってもよい。
また、近似曲線を取得する際の座標の重み付けについては、特定の周波数に該当する座標の重みを重くしたり軽くしたりして変化させる、いわゆる周波数フィルタを用いて行ってもよい。
また、上述したNURBS関数のメリットはなくなるものの、一般的な多項式等によって近似曲線を取得して、フィッティングを行ってもよい。
In the present embodiment, an example has been described in which an approximate curve of the surface shape data of the index shape M of the region selected as the reference is acquired, and fitting is performed by the point square data of the surface shape of the fitting region and the least square method. Instead of this, an approximation curve may be acquired by the same method for the surface shape data of the index shape M in the fitting region, and the fitting of both may be performed using the correlation coefficient.
Further, the weighting of the coordinates when obtaining the approximate curve may be performed using a so-called frequency filter that changes the weights of the coordinates corresponding to a specific frequency by increasing or decreasing the weight.
In addition, although the above-described NURBS function does not have the merit, fitting may be performed by obtaining an approximate curve using a general polynomial or the like.

また、本実施形態においては、すべての領域の表面形状データに対して共通の指標形状Mを使用してフィッティングを行う例を説明したが、これに代えて、各領域が隣接する領域との重畳部分でそれぞれ異なる任意の指標形状を抽出することによって、領域ごとに異なる指標形状を用いてフィッティングを行ってもよい。   Further, in the present embodiment, the example in which the fitting is performed using the common index shape M for the surface shape data of all the regions has been described, but instead, each region is superimposed on the adjacent region. Fitting may be performed using different index shapes for each region by extracting arbitrary index shapes that differ from one part to another.

このとき、時計回りあるいは反時計回りに順次隣接する領域をフィッティングし、最後の領域をフィッティングする際に、あわせて最初に基準とした領域に対しても補正量の算出を行い、検出された補正量の誤差に基づいて、すべてのフィッティングの補正を行うように演算部及びデータ統合部を設定してもよい。   At this time, when fitting the adjacent areas sequentially clockwise or counterclockwise and fitting the last area, the correction amount is also calculated for the first reference area and the detected correction is performed. The calculation unit and the data integration unit may be set so as to correct all fittings based on the amount error.

なお、上記実施形態の形状測定方法によれば、光学素子SBの表面のうち、一部の輪帯状領域の形状データを取得することはできるが、物体光L1の照射される光学素子SBの領域は、一般的に光学素子SBの表面全体に比べて狭いので、光学素子SB全体の表面形状データを取得することは困難である。   In addition, according to the shape measuring method of the said embodiment, although the shape data of a part of ring-shaped area | region can be acquired among the surfaces of optical element SB, the area | region of optical element SB irradiated with object light L1 Is generally narrower than the entire surface of the optical element SB, it is difficult to obtain surface shape data of the entire optical element SB.

この場合には、上記ステップS2の工程が終了した後、移動機構9を介して干渉計1を例えば15度回動させ、角度δを変化させる。そして上記ステップS2と同様の工程を引続き行う。このように、複数の輪帯状領域の表面形状データを取得することによって、光学素子SB全体をカバーする干渉縞取得領域の表面形状データを得る。その後、ステップS15の統合工程と同様の処理によりすべての輪帯状領域の表面形状データを1つのデータに統合することによって、光学素子SB全体の表面形状データを取得する。   In this case, after the step S2 is completed, the interferometer 1 is rotated by, for example, 15 degrees through the moving mechanism 9 to change the angle δ. And the process similar to said step S2 is continued. In this manner, surface shape data of the interference fringe acquisition region that covers the entire optical element SB is obtained by acquiring the surface shape data of the plurality of annular regions. Thereafter, the surface shape data of the entire optical element SB is acquired by integrating the surface shape data of all the zonal regions into one data by the same process as the integration step of step S15.

以上、本発明の一実施形態について説明したが、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   As mentioned above, although one Embodiment of this invention was described, the technical scope of this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.

例えば、上述の実施形態においては、フィゾー型の干渉計が用いられる例を説明したが、本発明は、参照面及び被検物のいずれかを進退させてフリンジスキャンを行うものであれば、トワイマングリーン型等の他の方式の干渉計を用いた形状測定装置にも適用することができる。   For example, in the above-described embodiment, an example in which a Fizeau interferometer is used has been described. However, the present invention is not limited to any one that performs a fringe scan by advancing or retracting either the reference surface or the test object. The present invention can also be applied to a shape measuring apparatus using another type of interferometer such as a Wyman Green type.

さらに、上述の実施形態においては、演算部11が表面画像を取得するためのサンプリング周期を算出するとともに、位相解析を行う位相解析部としても機能する例を説明したが、これらの処理をそれぞれ異なる機構に分担させて、より高速の処理が可能となるように、本発明の形状測定装置が構成されても良い。   Furthermore, in the above-described embodiment, an example has been described in which the calculation unit 11 calculates a sampling period for acquiring a surface image and also functions as a phase analysis unit that performs phase analysis, but these processes are different. The shape measuring apparatus of the present invention may be configured so that it can be shared by the mechanism to enable faster processing.

本発明の一実施形態の形状測定装置の構成を示す図である。It is a figure which shows the structure of the shape measuring apparatus of one Embodiment of this invention. 同形状測定装置の干渉計が取付けられた研磨機を示す図である。It is a figure which shows the polisher with which the interferometer of the same shape measuring apparatus was attached. 同形状測定装置及び同研磨機の各部のつながりを示すブロック図である。It is a block diagram which shows the connection of each part of the same shape measuring apparatus and the polisher. 同研磨機による光学素子の加工手順を示すフローチャートである。It is a flowchart which shows the process sequence of the optical element by the polisher. 図4における表面形状測定の手順を示すフローチャートである。It is a flowchart which shows the procedure of the surface shape measurement in FIG. 光学素子の各表面画像を取得する領域を示す図である。It is a figure which shows the area | region which acquires each surface image of an optical element. (a)から(d)は、それぞれ同領域における表面画像と指標形状を示す図である。(A)-(d) is a figure which shows the surface image and index shape in the same area | region, respectively. (a)は、部分表面形状データの一例を、(b)及び(c)は、それぞれ同部分表面形状データに対する近似関数の当てはめの一例を示す図である。(A) is a figure which shows an example of partial surface shape data, (b) and (c) are figures which show an example of fitting of the approximate function with respect to the partial surface shape data, respectively.

符号の説明Explanation of symbols

1 形状測定装置
2 干渉計
4 光源
5 参照球面(参照面)
8 CCD素子(撮像部)
11 演算部(位相解析部)
12 データ統合部
L1 物体光
L2 参照光
M 指標形状
P1 第1位置
P2 第2位置
P3 第3位置
S12 位相解析工程
S13 統合工程
SB 光学素子(被検物)
DESCRIPTION OF SYMBOLS 1 Shape measuring device 2 Interferometer 4 Light source 5 Reference spherical surface (reference surface)
8 CCD element (imaging part)
11 Calculation unit (phase analysis unit)
12 data integration unit L1 object light L2 reference light M index shape P1 first position P2 second position P3 third position S12 phase analysis step S13 integration step SB optical element (test object)

Claims (2)

光源から発する光を被検物に照射される物体光と参照面で反射される参照光とに分離し、前記被検物の表面で反射された前記物体光と前記参照光との光路差によって得られる干渉縞を解析して前記被検物の表面形状を測定する形状測定装置であって、
前記干渉縞を含む前記被検物の一部の表面画像を複数取得する撮像部と、
前記表面画像を用いて前記干渉縞の位相解析を行い、前記被検物の一部の表面形状を示す部分表面形状データを取得する位相解析部と、
各々の前記部分表面形状データをつなぎ合わせて、前記被検物の表面形状の一部である輪帯状領域又は前記被検物全体の表面形状データに統合するデータ統合部と、
を備え、
前記撮像部は、前記参照面を前記参照光の光軸上の異なる複数の位置に移動させ、前記被検物を一定速度で回転させながら前記表面画像を所定間隔で断続的に取得し、
前記データ統合部は、互いに重複領域を有する一方の前記部分表面形状データに対してNURBS関数による当てはめを行って前記一方の前記部分表面形状データの近似曲線を取得し、前記NURBS関数と他方の前記部分表面形状データとの差の自乗和が最小となるように他方の前記部分表面形状データを座標変換して繋ぎ合わせ、前記NURBS関数を用いて前記近似曲線を取得する際に、前記部分表面形状データの点列データのうち、隣接する2つの点列データの差が所定値以上の場合に、前記2つの点列データの一方に対する前記NURBS関数の重み付けを小さくすることを特徴とする形状測定装置。
The light emitted from the light source is separated into the object light irradiated on the test object and the reference light reflected on the reference surface, and the optical path difference between the object light reflected on the surface of the test object and the reference light A shape measuring device for analyzing the obtained interference fringes and measuring the surface shape of the test object,
An imaging unit that acquires a plurality of surface images of a part of the test object including the interference fringes;
A phase analysis unit that performs phase analysis of the interference fringes using the surface image and acquires partial surface shape data indicating a partial surface shape of the test object;
A data integration unit that joins each partial surface shape data and integrates it into a ring-shaped region that is a part of the surface shape of the test object or the surface shape data of the entire test object,
With
The imaging unit moves the reference surface to different positions on the optical axis of the reference light, and intermittently obtains the surface image at predetermined intervals while rotating the test object at a constant speed ,
The data integration unit applies an NURBS function to one of the partial surface shape data having mutually overlapping regions to obtain an approximate curve of the one partial surface shape data, and the NURBS function and the other of the partial surface shape data When obtaining the approximate curve using the NURBS function, the other partial surface shape data is coordinate-transformed and joined so that the square sum of the difference from the partial surface shape data is minimized. A shape measuring apparatus for reducing the weight of the NURBS function for one of the two point sequence data when the difference between two adjacent point sequence data of the data is a predetermined value or more .
光源から発する光を被検物に照射される物体光と参照面で反射される参照光とに分離し、前記被検物の表面で反射された前記物体光と前記参照光との光路差によって得られる干渉縞を解析して前記被検物の表面形状を測定する形状測定装置であって、  The light emitted from the light source is separated into the object light irradiated on the test object and the reference light reflected on the reference surface, and the optical path difference between the object light reflected on the surface of the test object and the reference light A shape measuring device for analyzing the obtained interference fringes and measuring the surface shape of the test object,
前記干渉縞を含む前記被検物の一部の表面画像を複数取得する撮像部と、  An imaging unit that acquires a plurality of surface images of a part of the test object including the interference fringes;
前記表面画像を用いて前記干渉縞の位相解析を行い、前記被検物の一部の表面形状を示す部分表面形状データを取得する位相解析部と、  A phase analysis unit that performs phase analysis of the interference fringes using the surface image and acquires partial surface shape data indicating a partial surface shape of the test object;
各々の前記部分表面形状データをつなぎ合わせて、前記被検物の表面形状の一部である輪帯状領域又は前記被検物全体の表面形状データに統合するデータ統合部と、  A data integration unit that joins each partial surface shape data and integrates it into a ring-shaped region that is a part of the surface shape of the test object or the surface shape data of the entire test object,
を備え、With
前記撮像部は、前記参照面を前記参照光の光軸上の異なる複数の位置に移動させ、前記被検物を一定速度で回転させながら前記表面画像を所定間隔で断続的に取得し、  The imaging unit moves the reference surface to different positions on the optical axis of the reference light, and intermittently obtains the surface image at predetermined intervals while rotating the test object at a constant speed,
前記データ統合部は、互いに重複領域を有する一方の前記部分表面形状データに対してNURBS関数による当てはめを行って前記一方の前記部分表面形状データの近似曲線を取得し、前記NURBS関数と他方の前記部分表面形状データとの差の自乗和が最小となるように他方の前記部分表面形状データを座標変換して繋ぎ合わせ、前記NURBS関数を用いて前記近似曲線を取得する際に、前記部分表面形状データの点列データのうち、所定の周波数に相当する周期の点列データの重み付けを大きくする  The data integration unit applies an NURBS function to one of the partial surface shape data having mutually overlapping regions to obtain an approximate curve of the one partial surface shape data, and the NURBS function and the other of the partial surface shape data When obtaining the approximate curve using the NURBS function, the other partial surface shape data is coordinate-transformed and joined so that the square sum of the difference from the partial surface shape data is minimized. Increase the weighting of point sequence data with a period corresponding to a predetermined frequency among the data sequence
ことを特徴とする形状測定装置。A shape measuring apparatus characterized by that.
JP2008170697A 2008-06-30 2008-06-30 Shape measuring device Active JP5173629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008170697A JP5173629B2 (en) 2008-06-30 2008-06-30 Shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008170697A JP5173629B2 (en) 2008-06-30 2008-06-30 Shape measuring device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012281249A Division JP2013057688A (en) 2012-12-25 2012-12-25 Shape measurement method and shape measurement device

Publications (2)

Publication Number Publication Date
JP2010008345A JP2010008345A (en) 2010-01-14
JP5173629B2 true JP5173629B2 (en) 2013-04-03

Family

ID=41589021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008170697A Active JP5173629B2 (en) 2008-06-30 2008-06-30 Shape measuring device

Country Status (1)

Country Link
JP (1) JP5173629B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2792902C2 (en) * 2021-06-21 2023-03-28 Иван Дмитриевич Каширин Mobile unmanned aerial vehicle control system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5558139B2 (en) * 2010-02-26 2014-07-23 オリンパス株式会社 Shape measuring method and shape measuring apparatus
US9418431B2 (en) * 2012-12-19 2016-08-16 Tenaris Connections Limited Straightness measurements of linear stock material
US10794688B2 (en) * 2018-03-07 2020-10-06 Mitutoyo Corporation Optical interference measuring device
CN113983958B (en) * 2021-11-26 2024-01-05 中电科信息产业有限公司 Motion state determining method and device, electronic equipment and storage medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3162355B2 (en) * 1989-03-31 2001-04-25 キヤノン株式会社 Surface shape measurement method and device
JP2531596B2 (en) * 1991-03-19 1996-09-04 富士写真光機株式会社 Connection method between divided areas and wavefront connection method between divided areas on the surface to be measured
JPH05223541A (en) * 1992-02-14 1993-08-31 Nikon Corp Shape measuring method and shape measuring system
JP3528461B2 (en) * 1996-08-23 2004-05-17 アイシン精機株式会社 Surface shape measurement drawing device
JP3903022B2 (en) * 2003-04-30 2007-04-11 キヤノン株式会社 Interferometer
JP2009192369A (en) * 2008-02-14 2009-08-27 Olympus Corp Shape measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2792902C2 (en) * 2021-06-21 2023-03-28 Иван Дмитриевич Каширин Mobile unmanned aerial vehicle control system

Also Published As

Publication number Publication date
JP2010008345A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
JP4794753B2 (en) Shape measurement method
JP5442122B2 (en) Measuring method for measuring shape of test surface, measuring apparatus and optical element manufacturing method
US9228858B2 (en) Rotation angle detecting apparatus
JP5173629B2 (en) Shape measuring device
JP3923945B2 (en) Non-contact surface shape measurement method
KR101204485B1 (en) Shaft cone metrology system and method
JP2010169450A (en) Method and implement for inspecting shape of stator coil
JP2010256320A (en) Device for measurement of light wave interference
JP2017150993A (en) Inner wall measurement device and offset amount calculation method
JPH08128815A (en) Instrument for measuring hole diameter and concentricity of very small cylindrical component
JP2009192369A (en) Shape measuring method
JP5586134B2 (en) Shape measurement method
Jin et al. Measurement of spindle radial error based on target trajectory tracking
KR20180021132A (en) Interference roll-off measurements using static fringe patterns
TWI500963B (en) An image capturing device and method
JP2013057688A (en) Shape measurement method and shape measurement device
JPH0996589A (en) Method and apparatus for measuring performance of lens
JP2011117766A (en) Interference measuring method
JP5743408B2 (en) Rotating body position measurement method
JP5389579B2 (en) Surface shape measurement method
JP5558139B2 (en) Shape measuring method and shape measuring apparatus
JP2005136743A (en) Position adjusting instrument and position adjusting method for image pickup device
JP2005055217A (en) Method for measuring height
JP5781397B2 (en) Circular shape measuring method and apparatus
JP2002131035A (en) Absolute calibration method, information processor, computer readable storage medium, instrumentation measuring method and optical member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121227

R150 Certificate of patent or registration of utility model

Ref document number: 5173629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250