JP2531596B2 - Connection method between divided areas and wavefront connection method between divided areas on the surface to be measured - Google Patents
Connection method between divided areas and wavefront connection method between divided areas on the surface to be measuredInfo
- Publication number
- JP2531596B2 JP2531596B2 JP3105017A JP10501791A JP2531596B2 JP 2531596 B2 JP2531596 B2 JP 2531596B2 JP 3105017 A JP3105017 A JP 3105017A JP 10501791 A JP10501791 A JP 10501791A JP 2531596 B2 JP2531596 B2 JP 2531596B2
- Authority
- JP
- Japan
- Prior art keywords
- measured
- divided
- divided areas
- area
- reproduction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 24
- 238000005259 measurement Methods 0.000 claims description 19
- 230000002093 peripheral effect Effects 0.000 claims description 5
- 230000014509 gene expression Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 3
- CPBQJMYROZQQJC-UHFFFAOYSA-N helium neon Chemical compound [He].[Ne] CPBQJMYROZQQJC-UHFFFAOYSA-N 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/14—Transformations for image registration, e.g. adjusting or mapping for alignment of images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2200/00—Indexing scheme for image data processing or generation, in general
- G06T2200/32—Indexing scheme for image data processing or generation, in general involving image mosaicing
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Length Measuring Devices By Optical Means (AREA)
Description
【0001】 この発明は、形状測定装置の測定開口以
上の広い被測定面を複数に測定領域を分割させて測定す
る際に、その分割測定された測定領域どうしの連続的な
接続を図ることができる被測定面における分割域間の接
続方法及び分割域間の波面接続方法に関するものであ
る。The present invention makes it possible to continuously connect the divided measurement areas when the measurement area of the shape measuring apparatus is divided into a plurality of measurement areas that are wider than the measurement opening and the measurement areas are divided. The present invention relates to a method of connecting between divided areas and a method of connecting a wavefront between divided areas on a surface to be measured.
【0002】 各種部品等(以下被測定物とよぶ)にお
ける平面や曲面(以下被測定面とよぶ)の状態を精密に
測定する手段として干渉計等を用いた装置(以下形状測
定装置とよぶ)が開発されており、形成される干渉縞の
模様等から、その被測定物の被測定面の形状を測定する
ことができるものである。この形状計測装置は、一回の
測定当りの測定可能な領域が一定に制限されており、一
定以上の広さを有する被測定面については一回の測定だ
けで全範囲を測定できない。そこで、大型の被測定物を
測定しようとする場合には、被測定面を複数の区域に分
割し、何度かに分けて測定することが考えられる。A device using an interferometer or the like (hereinafter referred to as a shape measuring device) as a means for precisely measuring a state of a flat surface or a curved surface (hereinafter referred to as a measured surface) of various parts (hereinafter referred to as a measured object). Has been developed, and the shape of the measured surface of the measured object can be measured from the pattern of interference fringes formed. In this shape measuring device, the measurable area per measurement is limited to a certain value, and the entire range cannot be measured only once with respect to the surface to be measured having a certain width or more. Therefore, when a large object to be measured is to be measured, it is conceivable to divide the surface to be measured into a plurality of areas and measure the area several times.
【0003】 即ち、この測定方法によれば、大型被測
定物等の各分割域毎に測定作業を行い、これにより得ら
れたデータから各分割域の被測定面を表す像(以下これ
を再生面とよぶ)を形成し、これらの再生面どうしを接
続一体化させて合成された全体像を得ることが可能であ
る。That is, according to this measuring method, a measurement operation is performed for each divided area of a large object to be measured, and an image representing the measured surface of each divided area (hereinafter referred to as reproduction) is obtained from the data obtained by this. It is possible to obtain a composite overall image by forming a surface) and connecting and reproducing these reproduction surfaces.
【0004】 ところで、このような部分的な測定方法
によれば、分割した各領域内毎に正確な測定データを得
ることは可能である。ところが、全体の形状を得るため
これらを単純に接続させるだけでは不十分であり、図9
に示す如く接続部分で不連続面Dを発生する場合が多
く、実際の形状に対応した正確な全体像を得るのが困難
である。つまり、これは、分割域に応じて被測定物を逐
次移動させる際に、その被測定物が上下方向や前後・左
右方向に微小変位を発生するからである。そこで、この
発明は、上記した従来の欠点に鑑み、分割域毎の測定に
より得られたデータに基づいて、各分割域毎に算出した
再生面どうしを連続的につなぎ合わせ、被測定面全体に
亙り限りなく実際の形状に近い正確な再生面の全体像を
得ることができる被測定面における分割域間の接続方法
及び分割域間の波面接続方法を提供することを目的とす
るものである。By the way, according to such a partial measurement method, it is possible to obtain accurate measurement data for each of the divided regions. However, it is not enough to simply connect these in order to obtain the overall shape.
In many cases, a discontinuous surface D is generated at the connecting portion as shown in, and it is difficult to obtain an accurate overall image corresponding to the actual shape. That is, this is because when the object to be measured is sequentially moved according to the divided areas, the object to be measured causes minute displacements in the up-down direction and the front-back and left-right directions. Therefore, in view of the above-described conventional drawbacks, the present invention, based on the data obtained by the measurement for each divided area, continuously connects the reproduction surfaces calculated for each divided area, and the entire measured surface. It is an object of the present invention to provide a connection method between divided areas and a wavefront connection method between divided areas on a surface to be measured, which can obtain an accurate whole image of a reproducing surface as close as possible to an actual shape.
【0005】 即ち、この発明の請求項1に係る被測定
面における分割域間の接続方法は、測定すべき被測定面
の分割された各分割域毎に一定の割合で周縁部側を重複
させながら逐次測定し、この測定により得られた情報に
基づいて前記各分割域毎にその被測定面の形状に対応し
た再生面を算出し、前記重複する領域を互いに含む少な
くとも2種の再生面上において前記重複領域内の対応す
る各地点についての位置の誤差を算出し、前記誤差が最
小となるように再生面上の重複部分を各分割域毎に補正
して連続的に一体に接続した再生面を形成し、前記被測
定面全体に亙る形状に相当する再生面を合成するもので
ある。また、この発明の請求項2に係る被測定面におけ
る分割域間の波面接続方法は、測定すべき被測定面の分
割された各分割域を、一定の割合で重複させながら光源
からの参照光により測定し、この測定した情報に基づい
て前記各分割域での被測定面の固有形状に応じた波面を
示す関数を決定し、前記重複する領域内での各対応する
任意点について、夫々その重複領域を含む各分割域にて
決定された関数における対応した座標値どうしの誤差を
算出し、前記誤差が最小となるように関数どうしの補正
を行うことにより、前記各分割域の形状に対応した関数
において重複部分を連続的に接続し、前記被測定面全体
の形状に対応する波面を全域に亙り一義的に決定するも
のである。That is, the connecting method between the divided areas on the surface to be measured according to claim 1 of the present invention makes the peripheral side overlap at a constant rate for each of the divided areas of the surface to be measured. However, the reproduction surface corresponding to the shape of the surface to be measured is calculated for each of the divided areas based on the information obtained by the measurement, and the reproduction surface is formed on at least two kinds of reproduction surfaces including the overlapping areas. In, the error of the position for each corresponding point in the overlap area is calculated, and the overlap portion on the reproduction surface is corrected for each divided area so that the error is minimized, and the reproduction is continuously and integrally connected. A surface is formed and a reproduction surface corresponding to the shape over the entire surface to be measured is synthesized. According to a second aspect of the present invention, in the wavefront connection method between the divided areas on the measured surface, the divided light divided areas of the measured surface to be measured are overlapped at a constant ratio while the reference light from the light source is overlapped. By, by determining the function showing the wavefront according to the unique shape of the measured surface in each of the divided areas based on the measured information, for each corresponding arbitrary point in the overlapping region, respectively, Corresponding to the shape of each divided area by calculating the error between corresponding coordinate values in the function determined in each divided area including the overlap area and correcting the functions so that the error is minimized. In the above function, the overlapping portions are continuously connected, and the wavefront corresponding to the shape of the entire surface to be measured is uniquely determined over the entire area.
【0006】 以下この発明の一実施例について添付図
面を参照しながら説明する。図1はこの発明に係る被測
定面における分割域間の位相波面接続方法を示すもので
あり、第1ステップ1〜第5ステップ5で構成されてお
り、矩形状の比較的広い被測定面全体がn個の方形状の
分割域Sに等分割されている。なお、この実施例では、
互いにWだけ重なりあった第k番目の分割域Sk と第k
+1番目の分割域Sn+1 との2分割域間を接続する場合
について具体的に説明していく。An embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a method of connecting a phase wavefront between divided areas on a surface to be measured according to the present invention, which is composed of first step 1 to step 5 and has a rectangular shape and a relatively wide entire surface to be measured. Are equally divided into n rectangular divided areas S. In this embodiment,
The k-th sub-region S k and k-th overlapped with each other by W
A case of connecting two + 1st divided areas S n + 1 and two divided areas will be specifically described.
【0007】 また、この実施例では、各分割域Sk に
ついてその面形状を測定するため、次に示す計測手段が
使用されている。即ち、この実施例では波長λのレーザ
光を出射するヘリウム−ネオン(He−Ne)レーザ及
びCCD(電荷結合素子)カメラを内蔵した計測装置が
使用されており、形成される干渉縞から被測定面の平面
状態を測定するようになっている。なお、この計測手段
としては、特にこのレーザ光により干渉縞を発生させて
その干渉縞から平面の凹凸具合を測定する構成のものに
限定されるものではない。例えば、キセノンランプ等の
ような通常の光源からインコヒーレントな光を投光させ
てモアレ縞を形成させ、これにより平面度や曲面度等を
測定してもよい。Further, in this embodiment, in order to measure the surface shape of each divided area S k , the following measuring means is used. That is, in this embodiment, a measuring device incorporating a helium-neon (He-Ne) laser emitting a laser beam of wavelength λ and a CCD (charge-coupled device) camera is used, and the measured fringes are measured from the formed interference fringes. It is designed to measure the planar state of a surface. It should be noted that this measuring means is not particularly limited to one having a configuration in which interference fringes are generated by this laser light and the degree of unevenness of the plane is measured from the interference fringes. For example, incoherent light may be projected from an ordinary light source such as a xenon lamp to form moire fringes, and thereby the flatness and the curvedness may be measured.
【0008】 (I)ステップ1では、各分割域におい
て夫々互いに隣り合う分割域の縁部が重複するように被
測定面を測定し、この測定により得られたデータから被
測定面の固有形状つまり、再生面を表示するための関数
Ψを、マイクロプロセッサ(図略)等が算出する。換言
すれば、マイクロプロセッサを用い、各分割域毎にCR
T等の画面上に被測定面を再現させる(グラフィック化
させる)ことのできる関数を導出するのである。これに
より、図2に示すように、例えば第k番目の分割域(S
k )及び第k+1番目の分割域(Sk+1 )における被測
定面形状を示す関数Ψとして、つまり図3に示す(X,
Y,Z)の3次元座標において再生面の凹凸量(Z)を
表わす関数Z=Ψ(X,Y)として、図4に示すような
関数Ψk ,Ψk+ 1 が得られるものとする。(I) In step 1, the surface to be measured is measured such that the edges of the adjacent divided areas overlap in each divided area, and the characteristic shape of the surface to be measured, that is, the characteristic shape of the measured surface, is obtained from the data obtained by this measurement. , A function Ψ for displaying the reproduction surface is calculated by a microprocessor (not shown) or the like. In other words, a microprocessor is used and CR is set for each divided area.
A function that can reproduce (graphically display) the surface to be measured on the screen such as T is derived. As a result, as shown in FIG. 2, for example, the k-th divided area (S
k ) and the k + 1-th divided area (S k + 1 ) as a function Ψ indicating the shape of the surface to be measured, that is, (X,
It is assumed that functions Ψ k and Ψ k + 1 as shown in FIG. 4 are obtained as a function Z = Ψ (X, Y) representing the amount of unevenness (Z) on the reproduction surface in the three-dimensional coordinates (Y, Z).
【0009】 なお、このときの各関数Ψk ,Ψk+1 は
夫々原点を基準とした別々の座標系での関数であり、し
かも分割域(Sk )から次位の分割域(Sk+1 )への移
動の際に、上下(Z),左右(X,Y)の各方向に被測
定物が所定のステージ位置で微小変位をおこすおそれが
ある。そこで、この実施例では、まず関数Ψk とΨ
k+1 とを後に示す所定の変換式により同一座標系での関
数として変換させるとともに、双方の関数が重複領域
内の各対応する同一地点で面の高さ(Z)での凹凸量差
(ΔZ)が極小となるように、最小二乗法を用いて先の
変換式を最適なものに設定させるようになっており、こ
れについて以下のステップにて具体的に説明する。[0009] Each function [psi k at this time, [psi k + 1 is a function of a separate coordinate system based on the respective origin, moreover divided area next order division region from (S k) (S k When moving to ( +1 ), the object to be measured may be slightly displaced in a predetermined stage position in the up and down (Z) direction and the left and right (X, Y) directions. Therefore, in this embodiment, first, the functions Ψ k and Ψ
k + 1 is converted as a function in the same coordinate system by a predetermined conversion formula described later, and both functions have a difference in the amount of unevenness at the surface height (Z) at each corresponding same point in the overlapping area ( The above-mentioned conversion formula is set to an optimum one by using the least square method so that ΔZ) becomes a minimum, which will be specifically described in the following steps.
【0010】 (II)第2ステップ2では、互いに隣接
する分割域(例えば、Sk ,Sk+1 )毎に算出した固有
の関数式(Ψk,Ψk+1 )について、双方の関数式を
統一座標系に変換させるとともに座標変換後、つまり
統一座標系上での双方の関数の描く再生面の重複領域に
おいて、各対応地点を算出する。なお、ここで、統一座
標系O−X,Yとは、図5に示すような被測定面全体を
同時に表示するときの基準となる座標系であって、同図
中S領域が被測定面全体の再生面と一致するものであ
り、S領域がN個の分割域S1 ,S2 ,・・・,SN に
分割されているものとする。(II) In the second step 2, both the functions of the peculiar functional formula (Ψ k , Ψ k + 1 ) calculated for each of the adjacent divided areas (eg, S k , S k + 1 ) After the formula is converted into the unified coordinate system, each corresponding point is calculated after the coordinate transformation, that is, in the overlapping area of the reproduction surface drawn by both functions on the unified coordinate system. Here, the unified coordinate system O-X, Y is a coordinate system that serves as a reference when the entire surface to be measured as shown in FIG. 5 is displayed at the same time, and the area S in FIG. It corresponds to the entire reproduction surface, and the S area is divided into N divided areas S 1 , S 2 , ..., SN .
【0011】 (1)まず、分割域Sk の基準となる座
標系O−x,yに対してSk+1 の基準となる座標系O−
x′,y′が、x方向に−x0 ,y方向に−y0 だけ原
点位置がずれているとすると、次式、即ち、(1) First, with respect to the coordinate system O-x, y serving as the reference of the divided area S k , the coordinate system O- serving as the reference of S k + 1.
Assuming that x ′ and y ′ are displaced from the origin position by −x 0 in the x direction and −y 0 in the y direction,
【0012】[0012]
【数1】 [Equation 1]
【0013】 によって、双方の関数が以下のように座
標変換される。つまり、Both functions are coordinate-transformed by the following. That is,
【0014】[0014]
【数2】 [Equation 2]
【0015】 が成立する。Is satisfied.
【0016】 なお、被測定面全体を一つの再生面とし
て描像させるには、さらにその関数を統一座標系に変換
させる必要があるが、説明を簡単にするため、以下最終
ステップまで、統一座標系への変換を行わないままその
後の手続を行っていく。 (2)ところで、かりにこれら隣り合う2つの再生面の
重複領域が完全に一致するならば、その重複領域におい
ては、It should be noted that, in order to visualize the entire surface to be measured as one reproduction surface, it is necessary to further convert the function into a unified coordinate system. Subsequent procedures will be performed without conversion to. (2) By the way, if the overlapping areas of these two adjacent reproduction surfaces completely match, in the overlapping area,
【0017】[0017]
【数3】 (Equation 3)
【0018】 が成立し、これに補正を加える必要はな
いのである。The above is established, and it is not necessary to add a correction to this.
【0019】 ところが、実際上は、干渉測定の精度、
例えばλ/100(λは測定に使用するレーザ光の波
長)以下の誤差を生じないようにして次位の分割域へ測
定動作を移動させるのは困難である。つまり、現実には
測定に係る誤差を多少伴うのは避け難い。この誤差を発
生する要因については、関数Ψk の示す再生面を基準と
したときに、関数Ψk+1 の示す再生面が図4に示す如
く、三次元空間内において、x方向に傾きa,y方向に
傾きb,z方向にcだけ変位をおこしていることによる
もの、とみなすことができる。従って、これら双方の関
数の間には、次式(以下これを変換式とよぶ)のような
関係が成立していると考えることができる。However, in practice, the accuracy of the interferometric measurement,
For example, it is difficult to move the measurement operation to the next division area without causing an error of λ / 100 (λ is the wavelength of the laser beam used for measurement) or less. That is, in reality, it is inevitable that some measurement errors are involved. With respect to the factor that causes this error, when the reproduction surface indicated by the function Ψ k is used as a reference, the reproduction surface indicated by the function Ψ k + 1 is inclined a in the x direction in the three-dimensional space as shown in FIG. , Due to the displacement b in the y direction and displacement c in the z direction. Therefore, it can be considered that the relationship as shown in the following expression (hereinafter referred to as a conversion expression) is established between these two functions.
【0020】[0020]
【数4】 [Equation 4]
【0021】 ところで、これら双方の関数Ψk ,Ψ
k+1 が示す再生面どうしをできるだけ連続的につなぎ合
わせるためには、双方の重複領域において、各対応する
同一地点(以下これを対応点とよぶ)における関数値
(Z,Z′)の誤差を最小に抑える必要がある。そこ
で、これらの関数値、換言すれば双方の再生面における
対応点での高さについての誤差σ=Z−Z′の値を最小
とするように、式(ホ)における係数a,b,cを決定
するため、ここで最小二乗法を用いて算出する。By the way, both functions Ψ k and Ψ
In order to connect the reproduction surfaces indicated by k + 1 as continuously as possible, the error of the function value (Z, Z ′) at each corresponding same point (hereinafter referred to as corresponding point) in both overlapping areas Should be minimized. Therefore, in order to minimize the value of these function values, in other words, the error σ = Z−Z ′ regarding the heights at corresponding points on both reproduction surfaces, the coefficients a, b, and c in the equation (e) are set. Is calculated by using the method of least squares.
【0022】 (III)ステップ3では、重複領域内のN
個の対応点における各再生面のデータを次に説明する所
定の補正式に代入し、未知の係数、a,b,cをもとめ
るための連立方程式を立てる。即ち、N個の対応点のう
ち任意の点(xi ,yi )での関数値が関数Ψk ,Ψ
k+1 においてZi ,Zi ′だとすると、その点での誤差
σi は次式(以下これを補正式とよぶ)によって得られ
る。(III) In Step 3, N in the overlapping area
The data of each reproduction surface at the corresponding points is substituted into a predetermined correction formula described below to establish a simultaneous equation for obtaining unknown coefficients a, b, and c. That is, the function value at any point (x i , y i ) of the N corresponding points is the function Ψ k , Ψ
Assuming that Z i and Z i ′ at k + 1 , the error σ i at that point is obtained by the following equation (hereinafter referred to as correction equation).
【0023】[0023]
【数5】 (Equation 5)
【0024】 ここで、いまΨk (xi ,yi )−〔Ψ
k+1 (xi −x0,yi −y0 )〕をΔ(xi ,yi )と
おき、N個の対応点での誤差Sijの二乗和を求めると、Here, Ψ k (x i , y i ) − [Ψ
If k + 1 (x i −x 0 , y i −y 0 )] is set to Δ (x i , y i ), and the sum of squares of the errors S ij at N corresponding points is calculated,
【0025】[0025]
【数6】 (Equation 6)
【0026】 となる。そして、このΣσi 2 が最小値
をとるときの定数a,b,cを求めればよい。従って、
Σσi 2 をa,b,cの関数とみると、Σσi 2 が極値
(最小値)をとる場合には、Σσi 2 をa,b,cで夫
々偏微分したときの値が0となるので、It becomes Then, the constants a, b, and c when this Σσ i 2 takes the minimum value may be obtained. Therefore,
Considering Σσ i 2 as a function of a, b, and c, when Σσ i 2 has an extreme value (minimum value), the value when Σσ i 2 is partially differentiated by a, b, and c is 0. Therefore,
【0027】[0027]
【数7】 (Equation 7)
【0028】 から3元連立方程式が得られる。A simultaneous three-dimensional equation is obtained from
【0029】 (IV) ステップ4では、連立された方程
式(チ)について、a,b,cを求め(a=a0 ,b=
b0 ,c=c0)によって所定の各分割域どうしの関数
間について固有の連続式数8を決定する。(IV) In step 4, a, b, c are obtained for the simultaneous equations (h) (a = a 0 , b =
b 0 , c = c 0 ) is used to determine the unique continuous equation number 8 between the functions of the predetermined divided areas.
【0030】[0030]
【数8】 (Equation 8)
【0031】 そして、このようにして決定された連続
式(リ)にもとづいて隣り合う両分割域における再生面
を示す各関数を補正することにより、これら双方の関数
が示す再生面が連続的に接続されるのである。なお、
(チ)に示す連立方程式からa,b,cを算出するに
は、次に示す行列式により簡単に行うことができる。即
ち、先の連立方程式(チ)は、Then, by correcting each function indicating the reproduction surface in both adjacent divided areas based on the continuous expression (i) determined in this way, the reproduction surfaces represented by these two functions are continuously obtained. It is connected. In addition,
Calculation of a, b, and c from the simultaneous equations shown in (h) can be easily performed by the following determinant. That is, the above simultaneous equations (h) are
【0032】[0032]
【数9】 [Equation 9]
【0033】 で表されるので、これからa,b,cは
次のようにして決定される。Since it is represented by, a, b, and c are determined from this as follows.
【0034】[0034]
【数10】 [Equation 10]
【0035】 なお、この式において重要なのは、3
×3の逆行列式中に含まれているものがxi ,yi 及び
nの定数だけであり、一義的に決定できるということで
ある。従ってこの逆行列式を予め算出しておけば、あと
は各分割域S毎に測定されるデータΔi から機械的に
a,b,cを算出することができ、毎回連続式を算出す
るのが非常に容易である。また、各対応点(xi ,
yi )をある点(xj ,yj)を中心として対称に設定
させると、It should be noted that the important factor in this equation is 3
What is included in the inverse determinant of x3 is only the constants of x i , y i, and n, which can be uniquely determined. Therefore, if this inverse determinant is calculated in advance, then a, b, and c can be mechanically calculated from the data Δ i measured for each divided area S, and the continuous expression is calculated every time. Is very easy. In addition, each corresponding point (x i ,
If y i ) is set symmetrically with respect to a certain point (x j , y j ),
【0036】[0036]
【数11】 [Equation 11]
【0037】 となり、逆行列式中の各数値の計算が容
易である。Thus, it is easy to calculate each numerical value in the inverse determinant.
【0038】 (V)ステップ5では、ステップ4にて
得られた定数a,b,cから再生面どうしの重複領域部
分を連続的になめらかに接続させるため、固有の連続式
が各分割域毎に決定され、これによって各分割域毎の再
生面を表示する関数を補正することができる。以上、第
k番目の分割域と第k+1番目の分割域との間につい
て、説明してきたが、他の分割域についても全く同様に
して固有の連続式を決定し、これに基づいて各分割域毎
に再生面を表示する関数の補正を行えばよい。また、こ
れら第1〜第N番目について得られた補正関数は、所要
の座標変換式を用いて統一座標系における関数に変換さ
せれば、その統一座標系において各分割域間に不連続な
段差等のないつまり図8に示すような連続した再生面の
全体像Fを得ることができる。(V) In step 5, since the overlapping areas of the reproduction surfaces are continuously and smoothly connected from the constants a, b, and c obtained in step 4, a unique continuous expression is used for each divided area. And the function for displaying the reproduction surface for each divided area can be corrected. Although the above description has been made between the k-th divided area and the (k + 1) -th divided area, a unique continuous equation is determined in the same manner for other divided areas, and based on this, each divided area is determined. The function for displaying the reproduction surface may be corrected each time. Further, if the correction functions obtained for the first to Nth are converted into a function in the unified coordinate system by using a required coordinate transformation formula, discontinuous steps between the divided areas in the unified coordinate system. That is, it is possible to obtain the whole image F of the continuous reproducing surface as shown in FIG.
【0039】 なお、以上の実施例にあっては、2分割
域間において再生面の重複を行うとともに、その2再生
面間の連続的な接続方法について説明してきたが、特に
これに限定されるものではない。例えば、互いに隣接す
るM個の再生面について重複領域が存在する場合には、
何れか1つの再生面を基準としたときに、In the above embodiment, the reproduction planes are overlapped between the two divided areas and the continuous connection method between the two reproduction planes has been described. However, the present invention is not limited to this. Not a thing. For example, if there are overlapping areas for M playback surfaces adjacent to each other,
When any one of the playback surfaces is used as a reference,
【0040】[0040]
【数12】 (Equation 12)
【0041】 の(M−1)個の変換式が得られ、これ
らの式から(M−1)×3個の係数を求めればよい。な
お、この場合、先の実施例の2面の場合と同様に、夫々
の面の重複部分について誤差σを求め、これらすべての
二乗和が最小となる様に最小二乗法から各面についての
a,b,cの係数を求め、固有の連続式を決定すればよ
い。(M-1) conversion equations of are obtained, and (M-1) × 3 coefficients may be obtained from these equations. In this case, as in the case of the two surfaces of the previous embodiment, the error σ is obtained for the overlapping parts of the respective surfaces, and the a for each surface is calculated from the least squares method so that the sum of squares of all of them is minimized. , B, c, the inherent continuous equation may be determined.
【0042】 例えば、図6に示す5面A〜Eが重複し
た場合について説明すると、まずA面を示す関数ΨA に
ついての係数aA ,bA ,cA を求める。A面と接しな
い面はA面と重複する部分がないので、誤差の二乗Σσ
i 2 は得られない。従って、B,C,D,Eについて先
のΣσi 2 を求める。例えばB面に対しては、For example, the case where the five planes A to E shown in FIG. 6 overlap will be described. First, the coefficients a A , b A , and c A for the function Ψ A indicating the A plane are obtained. Since the surface that does not contact the A surface does not overlap with the A surface, the square of the error Σσ
i 2 cannot be obtained. Therefore, the above Σσ i 2 is obtained for B, C, D and E. For example, for side B,
【0043】[0043]
【数13】 (Equation 13)
【0044】 が得られ、C,D,E面についても夫々
同様の式が得られる。従って、これらの和σA 2 つまり[Mathematical formula-see original document] is obtained, and similar expressions are obtained for the C, D, and E planes. Therefore, the sum of these σ A 2
【0045】[0045]
【数14】 [Equation 14]
【0046】 について、夫々aA ,bA ,cA で偏微
分すればよい。ただし、With respect to, it suffices to perform partial differentiation with respect to a A , b A , and c A , respectively. However,
【0047】[0047]
【数15】 (Equation 15)
【0048】 この様にしてもとめたaA ,bA ,cA
はB,C,D,E面が正確であれば正しい値であるが、
実際にはB,C,D,E面に対しても補正が必要であ
る。そこで適当な基準面に対して測定面すべてを同時に
補正しなくてはならない。これは数15と同様の係数を
他の面についてももとめ、これによって(M−1)×3
元の連立方程式が立てられ、先の実施例と同様に各係数
が算出できる。In this way, the determined a A , b A , c A
Is a correct value if the B, C, D and E surfaces are accurate,
Actually, it is necessary to correct the B, C, D, and E surfaces. Therefore, it is necessary to simultaneously correct all the measurement surfaces with respect to an appropriate reference surface. This finds the same coefficient as in the equation (15) for other planes, and thus (M−1) × 3
The original simultaneous equations are established, and each coefficient can be calculated as in the previous embodiment.
【0049】 つまり、図7に示すように3×3面の間
での接続、即ち8面に亙る接続については、次に示す行
列式から係数を求めることができる。ただし、基準面を
Aとし、数16,数17は周辺面との和(例えば数1
8,数19,数20,数21等)とすると、次の数22
が成立する。That is, as shown in FIG. 7, for the connection between 3 × 3 planes, that is, for the connection over 8 planes, the coefficient can be obtained from the determinant shown below. However, the reference surface is A, and the equations 16 and 17 are the sum of the peripheral surface (for example, the equation 1
(8, number 19, number 20, number 21 etc.)
Is established.
【0050】[0050]
【数16】 [Equation 16]
【0051】[0051]
【数17】 [Equation 17]
【0052】[0052]
【数18】 (Equation 18)
【0053】[0053]
【数19】 [Formula 19]
【0054】[0054]
【数20】 (Equation 20)
【0055】[0055]
【数21】 [Equation 21]
【0056】[0056]
【数22】 [Equation 22]
【0057】 この場合も数23の行列の逆行列を得
ることで、容易にa,b,cが求められ。Also in this case, a, b, and c can be easily obtained by obtaining the inverse matrix of the matrix of Expression 23.
【0058】[0058]
【数23】 (Equation 23)
【0059】 なお、この発明においてレーザを使用
する場合には、波長633nmのHe−Neレーザや波
長880nmの半導体レーザを用いるのが好ましい。When a laser is used in the present invention, it is preferable to use a He—Ne laser having a wavelength of 633 nm or a semiconductor laser having a wavelength of 880 nm .
【0060】 以上説明してきたように、この発明に係
る分割域間の接続方法によれば、各分割域の周縁部を重
複させながら逐次測定し、この測定により得られた情報
に基づいて再生面を算出し、この再生面どうしの重複領
域内の任意の各地点の再生面どうしの誤差を算出し、そ
の誤差が最小となるよう再生面の補正を行い、これによ
って連続して一体となった再生面を形成するように再生
面どうしの接続が図られているので、実際の被測定面に
限りなく近似した位相分布の再生面を得ることができ
る。As described above, according to the connection method between the divided areas according to the present invention, the peripheral portions of the divided areas are successively measured while being overlapped with each other, and the reproduction surface is based on the information obtained by this measurement. Then, the error between the playback surfaces at each arbitrary point in the overlapping area of the playback surfaces is calculated, and the playback surface is corrected so that the error is minimized. Since the reproduction surfaces are connected to each other so as to form the reproduction surface, it is possible to obtain a reproduction surface having a phase distribution that is as close as possible to the actual measured surface.
【図1】この発明に係る分割域間の接続方法を示すフロ
ーチャートである。FIG. 1 is a flowchart showing a connection method between divided areas according to the present invention.
【図2】この発明に係る接続方法を説明するため接続す
べき分割域における被測定面どうしの重複状態を示す説
明図である。FIG. 2 is an explanatory diagram showing an overlapping state of measured surfaces in divided areas to be connected for explaining the connection method according to the present invention.
【図3】3次元座標空間における再生面の一部の凹凸状
態を示す説明図である。FIG. 3 is an explanatory diagram showing a concavo-convex state of a part of a reproduction surface in a three-dimensional coordinate space.
【図4】この発明に係る接続方法によって重複する再生
面どうしの接続を行うときの状態を示す説明図である。FIG. 4 is an explanatory diagram showing a state in which overlapping reproduction surfaces are connected by the connection method according to the present invention.
【図5】この発明に係る接続方法によって接続しようと
する分割域の被測定面全体における位置関係を示す説明
図である。FIG. 5 is an explanatory diagram showing a positional relationship on the entire surface to be measured of divided areas to be connected by the connection method according to the present invention.
【図6】この発明に係る他の接続方法によって接続しよ
うとする分割域の分布状態を示す説明図である。FIG. 6 is an explanatory diagram showing a distribution state of divided areas to be connected by another connecting method according to the present invention.
【図7】この発明に係るさらに他の接続方法によって接
続しようとする分割域の分布状態を示す説明図である。FIG. 7 is an explanatory diagram showing a distribution state of divided areas to be connected by still another connecting method according to the present invention.
【図8】この発明によって接続された再生面の全体画像
を示す斜視図である。FIG. 8 is a perspective view showing an entire image of a reproduction surface connected by the present invention.
【図9】従来の方法を用いて形成された再生面の全体像
を示す斜視図である。FIG. 9 is a perspective view showing an overall image of a reproducing surface formed using a conventional method.
F 再生面 Sk ,Sk+1 分割域 Ψk ,Ψk+1 再生面を表わす関数F reproduction plane S k , S k + 1 divided area Ψ k , Ψ k + 1 function representing the reproduction plane
Claims (2)
分割された各分割域毎に周縁部を重複させながら逐次測
定し、この測定により得られた情報に基づいて前記各分
割域毎にその被測定面の形状に対応した再生面を算出
し、前記重複する領域を互いに含む少なくとも2種の再
生面上において前記重複領域内の対応する各地点につい
ての位置の誤差を算出し、前記誤差が最小となるように
再生面上の重複部分を各分割域毎に補正して連続的に一
体に接続した再生面を形成し、前記被測定面全体に亙る
形状に相当する再生面を合成することを特徴とする被測
定面における分割域間の接続方法。1. A surface to be measured is divided into a plurality of areas to be measured, and the divided areas are successively measured while overlapping the peripheral portions, and the respective divided areas are based on the information obtained by this measurement. A reproduction surface corresponding to the shape of the measured surface is calculated for each, and a position error is calculated for each corresponding point in the overlapping area on at least two kinds of reproducing surfaces including the overlapping area, A reproduction surface corresponding to a shape over the entire surface to be measured is formed by correcting the overlapping portion on the reproduction surface for each divided area so as to minimize the error and forming a reproduction surface that is continuously and integrally connected. A method for connecting between divided areas on a surface to be measured, which is characterized by combining.
分割された各分割域の周縁部を重複させながら測定し、
この測定した情報に基づいて前記各分割域での被測定面
の固有形状に応じた波面を示す関数を決定し、前記重複
する領域内での各対応する任意点について、夫々その重
複領域を含む各分割域にて決定された関数における対応
した座標値どうしの誤差を算出し、前記誤差が最小とな
るように関数どうしの補正を行うことにより、前記各分
割域の形状に応じた関数において重複部分を連続的に接
続し、前記被測定面全体の形状に対応する波面を全域に
亙り決定することを特徴とする被測定面における分割域
間の波面接続方法。2. The surface to be measured is divided into a plurality of areas to be measured, and measurement is performed while overlapping the peripheral portions of the divided areas.
Based on this measured information, the function indicating the wavefront according to the unique shape of the surface to be measured in each of the divided areas is determined, and for each corresponding arbitrary point in the overlapping area, the overlapping area is included. By calculating the error between corresponding coordinate values in the function determined in each divided area and correcting the functions so that the error is minimized, the functions overlap depending on the shape of each divided area. A wavefront connecting method between divided areas on a surface to be measured, characterized in that parts are continuously connected and a wavefront corresponding to the shape of the entire surface to be measured is determined over the entire area.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3105017A JP2531596B2 (en) | 1991-03-19 | 1991-03-19 | Connection method between divided areas and wavefront connection method between divided areas on the surface to be measured |
US07/852,595 US5343410A (en) | 1991-03-19 | 1992-03-17 | Method for divisional measurement of object surface, and method for joining object surface sub-areas measured by same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3105017A JP2531596B2 (en) | 1991-03-19 | 1991-03-19 | Connection method between divided areas and wavefront connection method between divided areas on the surface to be measured |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04290907A JPH04290907A (en) | 1992-10-15 |
JP2531596B2 true JP2531596B2 (en) | 1996-09-04 |
Family
ID=14396298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3105017A Expired - Lifetime JP2531596B2 (en) | 1991-03-19 | 1991-03-19 | Connection method between divided areas and wavefront connection method between divided areas on the surface to be measured |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2531596B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007097244A1 (en) | 2006-02-20 | 2007-08-30 | Jtec Corporation | Ultra precision profile measuring method |
JP2008292438A (en) * | 2007-05-23 | 2008-12-04 | J Tec:Kk | Ultraprecisely shape measuring method and device |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3309743B2 (en) * | 1996-11-27 | 2002-07-29 | 富士ゼロックス株式会社 | Shape measuring method and device |
US6414752B1 (en) * | 1999-06-18 | 2002-07-02 | Kla-Tencor Technologies Corporation | Method and apparatus for scanning, stitching, and damping measurements of a double-sided metrology inspection tool |
JP4634657B2 (en) * | 2001-06-29 | 2011-02-16 | 株式会社ミツトヨ | Calibration method for surface texture measuring device |
JP2008544295A (en) * | 2005-06-28 | 2008-12-04 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Method for reconstructing the surface topology of an object |
JP2009122066A (en) * | 2007-11-19 | 2009-06-04 | Mitsutoyo Corp | Non-contact three-dimensional measurement method and device thereof |
JP5173629B2 (en) * | 2008-06-30 | 2013-04-03 | オリンパス株式会社 | Shape measuring device |
JP2013057688A (en) * | 2012-12-25 | 2013-03-28 | Olympus Corp | Shape measurement method and shape measurement device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3162355B2 (en) * | 1989-03-31 | 2001-04-25 | キヤノン株式会社 | Surface shape measurement method and device |
-
1991
- 1991-03-19 JP JP3105017A patent/JP2531596B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007097244A1 (en) | 2006-02-20 | 2007-08-30 | Jtec Corporation | Ultra precision profile measuring method |
JP2008292438A (en) * | 2007-05-23 | 2008-12-04 | J Tec:Kk | Ultraprecisely shape measuring method and device |
Also Published As
Publication number | Publication date |
---|---|
JPH04290907A (en) | 1992-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bergmann | New approach for automatic surface reconstruction with coded light | |
JP5346033B2 (en) | Method for optically measuring the three-dimensional shape of an object | |
US7502125B2 (en) | Measuring technology and computer numerical control technology | |
JP5689681B2 (en) | Non-contact probe | |
US5135308A (en) | Method and apparatus for non-contact measuring of object surfaces | |
JP5140761B2 (en) | Method for calibrating a measurement system, computer program, electronic control unit, and measurement system | |
EP1192414B1 (en) | Method and system for measuring the relief of an object | |
JP3309743B2 (en) | Shape measuring method and device | |
US20040130730A1 (en) | Fast 3D height measurement method and system | |
US5953448A (en) | Contour measurement of an object having a discontinuous surface using block point identification techniques | |
JP2531596B2 (en) | Connection method between divided areas and wavefront connection method between divided areas on the surface to be measured | |
US20030038945A1 (en) | Method and apparatus for testing objects | |
US5343410A (en) | Method for divisional measurement of object surface, and method for joining object surface sub-areas measured by same | |
JP3871309B2 (en) | Phase shift fringe analysis method and apparatus using the same | |
US7443516B2 (en) | Optical-distortion correcting apparatus and optical-distortion correcting method | |
US6683977B1 (en) | Method of taking three-dimensional measurements of object surfaces | |
JP3509005B2 (en) | Shape measurement method | |
JP3410779B2 (en) | Calibration method of moving stage in image input device | |
JP3835505B2 (en) | Non-contact surface shape measuring device | |
JP3336357B2 (en) | Alignment device and alignment method | |
JP3228436B2 (en) | How to increase the number of interference fringes | |
JP2001324313A (en) | Three-dimensional shape measuring instrument | |
JP3483139B2 (en) | Method and apparatus for unwrapping two-dimensional phase data in an interferometer | |
JP3781762B2 (en) | 3D coordinate calibration system | |
JP3880882B2 (en) | Surface shape measuring method and apparatus |