JP2005249575A - Interference measuring method and interferometer - Google Patents

Interference measuring method and interferometer Download PDF

Info

Publication number
JP2005249575A
JP2005249575A JP2004060339A JP2004060339A JP2005249575A JP 2005249575 A JP2005249575 A JP 2005249575A JP 2004060339 A JP2004060339 A JP 2004060339A JP 2004060339 A JP2004060339 A JP 2004060339A JP 2005249575 A JP2005249575 A JP 2005249575A
Authority
JP
Japan
Prior art keywords
interferometer
light
interference fringes
light beam
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004060339A
Other languages
Japanese (ja)
Inventor
Shikiyo Yanagi
志強 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2004060339A priority Critical patent/JP2005249575A/en
Publication of JP2005249575A publication Critical patent/JP2005249575A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an interference measuring method capable of acquiring data on luminance distributions of a plurality of significant interference fringes on which errors caused by environmental changes are not superposed. <P>SOLUTION: The interference measuring method includes procedures (11, 12, and 16) for dividing luminous flux to be projected to a surface to be inspected and a reference surface into a plurality of luminous fluxes (L<SB>1</SB>-L<SB>4</SB>) having different angles of light projection so as to simultaneously generate a plurality of interference fringes having phases different from one another and procedures (14, 18, and 15) for detecting the plurality of interference fringes simultaneously generated by the procedures. Even when environmental changes have occurred, only required differences (required phase differences) thereby occur between luminance distributions of the plurality of simultaneously generated interference fringes, on which errors caused by the environmental changes are not superposed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、面形状を測定する干渉測定方法及び干渉計に関し、特に、互いに位相の異なる複数の干渉縞の輝度分布データを測定データとして取得する干渉測定方法及び干渉計に関する。   The present invention relates to an interference measurement method and an interferometer for measuring a surface shape, and more particularly to an interference measurement method and an interferometer for acquiring luminance distribution data of a plurality of interference fringes having different phases as measurement data.

面形状の高精度な測定に、干渉計を用いた測定(干渉測定)が適用される(非特許文献1など)。
この干渉測定では、測定精度を向上させるために、測定データとして互いに位相の異なる複数の干渉縞の輝度分布データを取得している。
干渉縞の位相を変化(縞走査)させる方法は幾つかあり、参照面から射出した光束(参照光束)と被検面から射出した光束(被検光束)との光路差を、参照面又は被検面を移動させることにより変化させる方法や、光路差を変化させる代わりにそれら光束の波長を変化させる方法などがある。
Measurement (interference measurement) using an interferometer is applied to highly accurate measurement of the surface shape (Non-Patent Document 1, etc.).
In this interference measurement, in order to improve measurement accuracy, luminance distribution data of a plurality of interference fringes having different phases are acquired as measurement data.
There are several methods for changing the phase of the interference fringes (fringed scanning). The optical path difference between the light beam emitted from the reference surface (reference light beam) and the light beam emitted from the test surface (test light beam) There are a method of changing by moving the inspection surface, a method of changing the wavelengths of the light beams instead of changing the optical path difference, and the like.

このような縞走査中に干渉縞の輝度分布を複数回検出すれば、互いに位相の異なる複数の有意な干渉縞の輝度分布データを取得することができる。それら輝度分布データに基づき解析(縞解析)を行えば、参照面の形状を基準とした被検面の形状が高精度に求まる。
ダニエルマラカーラ(Daniel Malacara)編,「オプティカル・ショップ・テスティング(Optical Shop Testing)」,第2版,ウィレイ・インターサイエンス(Wiley-Interscience)発行,p.510-513
If the luminance distribution of interference fringes is detected a plurality of times during such fringe scanning, a plurality of significant interference fringe luminance distribution data having different phases can be acquired. If analysis (fringe analysis) is performed based on the luminance distribution data, the shape of the test surface based on the shape of the reference surface can be obtained with high accuracy.
Daniel Malacara, “Optical Shop Testing”, 2nd edition, published by Wiley-Interscience, p. 510-513

しかしながら、縞走査中に環境変化(振動、空気揺らぎ、光源の出力変化など)が生じると、各輝度分布データの間に不必要な差異が生じ、誤差となる。環境変化に起因するこの誤差は、縞解析により消去することはできない。
そこで本発明は、環境変化に起因する誤差の重畳されていない複数の有意な干渉縞の輝度分布データを取得することのできる干渉測定方法及び干渉計を提供することを目的とする。
However, if an environmental change (vibration, air fluctuation, light source output change, etc.) occurs during fringe scanning, an unnecessary difference occurs between the luminance distribution data, resulting in an error. This error due to environmental changes cannot be eliminated by fringe analysis.
Therefore, an object of the present invention is to provide an interference measurement method and an interferometer that can acquire luminance distribution data of a plurality of significant interference fringes on which errors due to environmental changes are not superimposed.

請求項1に記載の干渉測定方法は、互いに位相の異なる干渉縞が同時に複数生起するよう被検面及び参照面に投光すべき光束を互いに投光角度の異なる光束に複数化する手順と、前記手順により同時に生起した複数の干渉縞をそれぞれ検出する手順とを含むことを特徴とする。
請求項2に記載の干渉計は、互いに位相の異なる干渉縞が同時に複数生起するよう被検面及び参照面に投光すべき光束を互いに投光角度の異なる光束に複数化する投光光学系と、前記同時に生起した複数の干渉縞をそれぞれ検出する検出光学系とを備えたことを特徴とする。
The interference measurement method according to claim 1, wherein a plurality of light beams to be projected on the test surface and the reference surface are formed into light beams having different projection angles so that a plurality of interference fringes having different phases occur simultaneously. And detecting a plurality of interference fringes simultaneously generated by the procedure.
The interferometer according to claim 2, wherein a plurality of light beams to be projected onto the test surface and the reference surface are formed into light beams having different projection angles so that a plurality of interference fringes having different phases occur simultaneously. And a detection optical system for detecting each of the plurality of interference fringes generated at the same time.

請求項3に記載の干渉計は、請求項2に記載の干渉計において、前記投光光学系は、前記複数化された各光束の投光角度の関係を調整するための角度調整装置を有することを特徴とする。
請求項4に記載の干渉計は、請求項2又は請求項3に記載の干渉計において、前記検出光学系には、前記複数の干渉縞を分離する分離系と、生起位置の分離された複数の干渉縞を一括に検出する単一の撮像素子とが備えられることを特徴とする。
An interferometer according to a third aspect of the present invention is the interferometer according to the second aspect, wherein the light projecting optical system includes an angle adjusting device for adjusting a relationship between light projection angles of the plurality of light beams. It is characterized by that.
The interferometer according to claim 4 is the interferometer according to claim 2 or 3, wherein the detection optical system includes a separation system that separates the plurality of interference fringes and a plurality of occurrence positions separated from each other. And a single image sensor that collectively detects the interference fringes.

請求項5に記載の干渉計は、請求項2又は請求項3に記載の干渉計において、前記検出光学系には、前記複数の干渉縞を分離する分離系と、生起位置の分離された複数の干渉縞を個別に検出する複数の撮像素子とが備えられることを特徴とする。
請求項6に記載の干渉計は、請求項2〜請求項5の何れか一項に記載の干渉計において、前記投光光学系には、単一の光源から射出した前記光束を複数に分岐する分岐系が備えられることを特徴とする。
The interferometer according to claim 5 is the interferometer according to claim 2 or 3, wherein the detection optical system includes a separation system for separating the plurality of interference fringes and a plurality of occurrence positions separated from each other. And a plurality of image sensors that individually detect the interference fringes.
The interferometer according to claim 6 is the interferometer according to any one of claims 2 to 5, wherein the light projecting optical system branches the light beam emitted from a single light source into a plurality of light beams. A branching system is provided.

請求項7に記載の干渉計は、請求項2〜請求項6の何れか一項に記載の干渉計において、前記投光光学系には、前記被検面への入射光量分布が前記複数化された各光束の間で一致するようそれら各光束の光路の配置関係を調整する光路調整系が備えられることを特徴とする。   The interferometer according to claim 7 is the interferometer according to any one of claims 2 to 6, wherein the light projection optical system includes a plurality of incident light amount distributions on the test surface. An optical path adjustment system is provided for adjusting the arrangement relationship of the optical paths of the respective light beams so as to match each other.

本発明によれば、環境変化に起因する誤差の重畳されていない複数の有意な干渉縞の輝度分布データを取得することのできる干渉測定方法及び干渉計が実現する。   According to the present invention, an interference measurement method and an interferometer that can acquire luminance distribution data of a plurality of significant interference fringes on which errors due to environmental changes are not superimposed are realized.

以下、図面を参照して本発明の実施形態を説明する。
[実施形態]
本実施形態は、干渉計及びそれを用いた干渉測定方法の実施形態である。
先ず、本干渉計の構成を説明する。
干渉計には、図1に示すように、レーザ光源(その波長をλとする。)11、ビームエキスパンダ12、投光用ユニット16、ビームスプリッタ(ハーフミラー)13、結像レンズ14、検出用ユニット(請求項における分離系に対応。)18、撮像装置(請求項における撮像素子に対応。)15などが備えられる。撮像装置15から出力されるデータは、不図示の計算機に取り込まれる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Embodiment]
The present embodiment is an embodiment of an interferometer and an interference measurement method using the interferometer.
First, the configuration of the interferometer will be described.
As shown in FIG. 1, the interferometer includes a laser light source (having its wavelength λ) 11, a beam expander 12, a light projecting unit 16, a beam splitter (half mirror) 13, an imaging lens 14, and detection. Unit (corresponding to a separation system in claims) 18, an image pickup device (corresponding to an image sensor in claims) 15, and the like. Data output from the imaging device 15 is taken into a computer (not shown).

このうち、レーザ光源11、ビームエキスパンダ12、及び投光用ユニット16が請求項における投光光学系に対応し、結像レンズ14、検出用ユニット18、撮像装置15が請求項における検出光学系に対応する。
投光用ユニット16には、ビームススプリッタ161、2つの偏光ビームスプリッタ162、163、4つの平面反射鏡(第1反射鏡171,第2反射鏡172,第3反射鏡173,第4反射鏡174)が備えられる。
Among these, the laser light source 11, the beam expander 12, and the light projecting unit 16 correspond to the light projecting optical system in the claims, and the imaging lens 14, the detection unit 18, and the imaging device 15 are the detection optical system in the claims. Corresponding to
The light projecting unit 16 includes a beam splitter 161, two polarizing beam splitters 162 and 163, four plane reflecting mirrors (first reflecting mirror 171, second reflecting mirror 172, third reflecting mirror 173, and fourth reflecting mirror 174. ) Is provided.

このうち、ビームスプリッタ161、及び偏光ビームスプリッタ162,163が請求項における分岐系に対応する。
第1反射鏡171、第2反射鏡172、第3反射鏡173、第4反射鏡174のうち少なくとも3つは、不図示のステージ(請求項における角度調整装置に対応。)に支持されており、その姿勢が調整可能である。このステージは、光学素子のアライメント用などに一般に用いられる高精度なステージである。
Among these, the beam splitter 161 and the polarization beam splitters 162 and 163 correspond to the branching system in the claims.
At least three of the first reflecting mirror 171, the second reflecting mirror 172, the third reflecting mirror 173, and the fourth reflecting mirror 174 are supported by a stage (not shown) (corresponding to the angle adjusting device in the claims). The posture can be adjusted. This stage is a highly accurate stage generally used for alignment of optical elements.

以上の各要素を備えた本干渉計に、被検物1とフィゾー部材2とがセットされる。
次に、本干渉計における各光束の振る舞いを説明する。
図1に示すように、レーザ光源11から射出した光束は、ビームエキスパンダ12によって適切なサイズの径の平行光束に変換された後、投光用ユニット16内のビームスプリッタ161に入射する。
The test object 1 and the Fizeau member 2 are set on the interferometer having the above-described elements.
Next, the behavior of each light beam in this interferometer will be described.
As shown in FIG. 1, the light beam emitted from the laser light source 11 is converted into a parallel light beam having an appropriate size by the beam expander 12 and then enters the beam splitter 161 in the light projecting unit 16.

ビームスプリッタ161に入射した光束は、反射光と透過光との2つの光束に分岐され、一方の光束及び他方の光束は、偏光ビームスプリッタ162,163にそれぞれ入射する。
偏光ビームスプリッタ162に入射した光束は、その偏光方向に応じて反射光と透過光との2つの光束(以下、第1光束L1,第2光束L2とする。)に分岐され、第1光束L1及び第2光束L2は、第1反射鏡171の反射面171a及び第2反射鏡172の反射面172aにそれぞれ入射する。
The light beam incident on the beam splitter 161 is branched into two light beams of reflected light and transmitted light, and one light beam and the other light beam are incident on the polarization beam splitters 162 and 163, respectively.
The light beam incident on the polarization beam splitter 162 is branched into two light beams of reflected light and transmitted light (hereinafter referred to as a first light beam L 1 and a second light beam L 2 ) according to the polarization direction, and the first light beam is split. The light beam L 1 and the second light beam L 2 are incident on the reflecting surface 171a of the first reflecting mirror 171 and the reflecting surface 172a of the second reflecting mirror 172, respectively.

偏光ビームスプリッタ163に入射した光束も、その偏光方向に応じて反射光と透過光との2つの光束(以下、第3光束L3,第4光束L4とする。)に分岐され、第3光束L3及び第4光束L4は、第3反射鏡173の反射面173a及び第4反射鏡174の反射面174aにそれぞれ入射する。
第1光束L1、第2光束L2は、反射面171a,172aをそれぞれ反射し、偏光ビームスプリッタ162に再入射し、その後、ビームスプリッタ161に入射する。
The light beam incident on the polarizing beam splitter 163 is also branched into two light beams of reflected light and transmitted light (hereinafter referred to as a third light beam L 3 and a fourth light beam L 4 ) according to the polarization direction, and third. The light beam L 3 and the fourth light beam L 4 are incident on the reflecting surface 173 a of the third reflecting mirror 173 and the reflecting surface 174 a of the fourth reflecting mirror 174, respectively.
The first light beam L 1 and the second light beam L 2 are reflected by the reflecting surfaces 171a and 172a, reenter the polarization beam splitter 162, and then enter the beam splitter 161.

第3光束L3、第4光束L4は、反射面173a,174aをそれぞれ反射し、偏光ビームスプリッタ163に再入射し、その後、ビームスプリッタ161に入射する。
ビームスプリッタ161に入射した第1光束L1、第2光束L2、第3光束L3、第4光束L4は、ビームスプリッタ13を透過又は反射(図1では透過)した後、フィゾー部材2に対し入射する。
The third light beam L 3 and the fourth light beam L 4 are reflected by the reflecting surfaces 173a and 174a, reenter the polarization beam splitter 163, and then enter the beam splitter 161.
The first light beam L 1 , the second light beam L 2 , the third light beam L 3 , and the fourth light beam L 4 incident on the beam splitter 161 are transmitted or reflected (transmitted in FIG. 1) through the beam splitter 13, and then the Fizeau member 2. Is incident on.

第1光束L1の一部の光束L1r、第2光束L2の一部の光束L2r、第3光束L3の一部の光束L3r、第4光束L4の一部の光束L4rは、フィゾー部材2の参照面rにて反射し、参照面rの形状に応じた波面となってビームスプリッタ13に戻る(以下、これらの光束L1r,L2r,L3r,L4rを、それぞれ「第1参照光束」、「第2参照光束」、「第3参照光束」、「第4参照光束」と称す。)。 The first part of the light beam L 1 the light beam L 1r, second part of the light beam L 2 light beams L 2r, a third part of the light beam L 3 light beams L 3r, the part of the fourth light beam L four-beam L 4r is reflected by the reference surface r of the Fizeau member 2 and returns to the beam splitter 13 as a wavefront corresponding to the shape of the reference surface r (hereinafter, these light beams L 1r , L 2r , L 3r , L 4r are Are referred to as “first reference beam”, “second reference beam”, “third reference beam”, and “fourth reference beam”, respectively).

第1光束L1の他の一部の光束L1o、第2光束L2の他の一部の光束L2o、第3光束L3の他の一部の光束L3o、第4光束L4の他の一部の光束L4oは、フィゾー部材2を透過した後に、参照面rへの入射角度と同角度で被検物1の被検面oに入射する。
被検面oに入射した光束L1o,L2o,L3o,L4oは、被検面oにて反射し、被検面oの形状に応じた波面となってフィゾー部材2を介しビームスプリッタ13に戻る(以下、これらの光束L1o,L2o,L3o,L4oを、それぞれ「第1被検光束」、「第2被検光束」、「第3被検光束」、「第4被検光束」と称す。)。
First other part of the light beam L 1 the light beam L 1o, second other part of the light beam L 2 light beams L 2o, third other part of the light beam L 3 light beams L 3o, fourth light flux L 4 The other part of the light beam L 4o passes through the Fizeau member 2 and then enters the test surface o of the test object 1 at the same angle as the incident angle to the reference surface r.
The light beams L 1o , L 2o , L 3o , and L 4o incident on the test surface o are reflected by the test surface o, become wavefronts according to the shape of the test surface o, and pass through the Fizeau member 2. 13 (hereinafter, these light beams L 1o , L 2o , L 3o , and L 4o are respectively referred to as “first test light beam”, “second test light beam”, “third test light beam”, “fourth test light”. This is referred to as “test light flux”.)

因みに、このように、被検物1とフィゾー部材2とが光路に並べて挿入された本干渉計は、フィゾー型干渉計である。
ビームスプリッタ13に戻った第1参照光束L1r及び第1被検光束L1o(=第1光束L1)は、結像レンズ14及び検出用ユニット18(詳細は後述)を順に介して撮像装置15に入射し、干渉縞S1を生成する。
Incidentally, the present interferometer in which the test object 1 and the Fizeau member 2 are inserted side by side in the optical path in this way is a Fizeau interferometer.
The first reference light beam L 1r and the first test light beam L 1o (= first light beam L 1 ) returned to the beam splitter 13 pass through the imaging lens 14 and the detection unit 18 (details will be described later) in order. incident on 15, to produce an interference pattern S 1.

ビームスプリッタ13に戻った第2参照光束L2r及び第2被検光束L2o(=第2光束L2)も、結像レンズ14及び検出用ユニット18(詳細は後述)を順に介して撮像装置15に入射し、干渉縞S2を生成する。
ビームスプリッタ13に戻った第3参照光束L3r及び第3被検光束L3o(=第3光束L3)も、結像レンズ14及び検出用ユニット18(詳細は後述)を順に介して撮像装置15に入射し、干渉縞S3を生成する。
The second reference light beam L 2r and the second test light beam L 2o (= second light beam L 2 ) returned to the beam splitter 13 are also sequentially passed through the imaging lens 14 and the detection unit 18 (details will be described later). incident on 15, to produce an interference pattern S 2.
The third reference light beam L 3r and the third test light beam L 3o (= third light beam L 3 ) returned to the beam splitter 13 are also sequentially passed through the imaging lens 14 and the detection unit 18 (details will be described later). incident on 15, to produce an interference pattern S 3.

ビームスプリッタ13に戻った第4参照光束L4r及び第4被検光束L4o(=第4光束L4)も、結像レンズ14及び検出用ユニット18(詳細は後述)を順に介して撮像装置15に入射し、干渉縞S4を生成する。
撮像装置15内の撮像素子の撮像面(不図示)は、結像レンズ14に関し被検面oと共役な位置に配置される。
The fourth reference light beam L 4r and the fourth test light beam L 4o (= fourth light beam L 4 ) that have returned to the beam splitter 13 also pass through the imaging lens 14 and the detection unit 18 (details will be described later) in order. incident on 15, to produce an interference pattern S 4.
An imaging surface (not shown) of the imaging element in the imaging device 15 is disposed at a position conjugate with the test surface o with respect to the imaging lens 14.

この撮像面上に生起する干渉縞S1,S2,S3,S4の輝度分布は、それぞれ参照面rを基準とした被検面oの形状の情報を含む。撮像装置15から不図示の計算機に出力されるデータは、これらの干渉縞S1,S2,S3,S4の輝度分布データである。
次に、本干渉計の各部の詳細について説明する。
先ず、本干渉計において、第1反射鏡171の配置角度θ1(第1光束L1の反射面171aに対する入射角度)、第2反射鏡172の配置角度θ2(第2光束L2の反射面172aに対する入射角度)、第3反射鏡173の配置角度θ3(第3光束L3の反射面173aに対する入射角度)、第4反射鏡174の配置角度θ4(第4光束L4の反射面174aに対する入射角度)は、式(1)を満たす。
2kd(cosθ2−cosθ1)=π/2,
2kd(cosθ3−cosθ1)=π,
2kd(cosθ4−cosθ1)=3π/2 ・・・(1)
但し、kは光源11から射出される光束の波数(k=2π/λ),dは参照面rと被検面oとの間の光学的距離である。
The luminance distributions of the interference fringes S 1 , S 2 , S 3 , and S 4 that occur on the imaging surface include information on the shape of the test surface o based on the reference surface r. Data output from the imaging device 15 to a computer (not shown) is luminance distribution data of these interference fringes S 1 , S 2 , S 3 , S 4 .
Next, details of each part of the interferometer will be described.
First, in this interferometer, the arrangement angle θ 1 of the first reflecting mirror 171 (incident angle of the first light beam L 1 with respect to the reflecting surface 171a) and the arrangement angle θ 2 of the second reflecting mirror 172 (reflection of the second light beam L 2 ). The incident angle with respect to the surface 172a), the arrangement angle θ 3 of the third reflecting mirror 173 (the incident angle of the third light beam L 3 with respect to the reflecting surface 173a), the arrangement angle θ 4 of the fourth reflecting mirror 174 (the reflection of the fourth light beam L 4 ). (Incident angle with respect to the surface 174a) satisfies the formula (1).
2 kd (cosθ 2 −cosθ 1 ) = π / 2
2 kd (cosθ 3 −cosθ 1 ) = π,
2 kd (cosθ 4 −cosθ 1 ) = 3π / 2 (1)
Here, k is the wave number (k = 2π / λ) of the light beam emitted from the light source 11, and d is the optical distance between the reference surface r and the test surface o.

因みに、光源11の波長λの一般的な値、干渉計の各部のサイズの一般的な値を考慮すると、この式(1)を満たすようなθ1,θ2,θ3,θ4の間の差異は僅かである(最大で数分程度)。
このため、図1においては、第1反射鏡171の配置角度θ1、第2反射鏡172の配置角度θ2、第3反射鏡173の配置角度θ3、第4反射鏡174の配置角度θ4は、何れも「0」であるかのごとく示した。
Incidentally, in consideration of a general value of the wavelength λ of the light source 11 and a general value of the size of each part of the interferometer, it is between θ 1 , θ 2 , θ 3 , and θ 4 that satisfies this equation (1). The difference is slight (up to several minutes).
Therefore, in FIG. 1, the arrangement angle theta 1 of the first reflecting mirror 171, an arrangement angle theta 2 of the second reflecting mirror 172, an arrangement angle theta 3 of the third reflection mirror 173, an arrangement angle theta of the fourth reflecting mirror 174 4 was shown as if all were "0".

なお、第1反射鏡171の配置角度がθ1、第2反射鏡172の配置角度がθ2、第3反射鏡173の配置角度がθ3、第4反射鏡174の配置角度がθ4であるとき、参照面r及び被検面oに対する第1光束L1の入射角度、参照面r及び被検面oに対する第2光束L2の入射角度、参照面r及び被検面oに対する第3光束L3の入射角度、参照面r及び被検面oに対する第4光束L4の入射角度も、それぞれθ1,θ2,θ3,θ4と表せる(図2(a)参照)。 The arrangement angle of the first reflecting mirror 171 is θ 1 , the arrangement angle of the second reflecting mirror 172 is θ 2 , the arrangement angle of the third reflecting mirror 173 is θ 3 , and the arrangement angle of the fourth reflecting mirror 174 is θ 4 . At a certain time, the incident angle of the first light beam L 1 with respect to the reference surface r and the test surface o, the incident angle of the second light beam L 2 with respect to the reference surface r and the test surface o, the third with respect to the reference surface r and the test surface o. The incident angle of the light beam L 3 and the incident angle of the fourth light beam L 4 with respect to the reference surface r and the test surface o can also be expressed as θ 1 , θ 2 , θ 3 , and θ 4 , respectively (see FIG. 2A).

式(1)によれば、これらの入射角度θ1,θ2,θ3,θ4は互いに異なる。
また、θ1,θ2,θ3,θ4が互いに異なれば、図2(b)に示すように、結像レンズ14による第1光束L1の集光点F1と、結像レンズ14による第2光束L2の集光点F2と、結像レンズ14による第3光束L3の集光点F3と、結像レンズ14による第4光束L4の集光点F4とがずれる。
According to Equation (1), these incident angles θ 1 , θ 2 , θ 3 , and θ 4 are different from each other.
If θ 1 , θ 2 , θ 3 , and θ 4 are different from each other, as shown in FIG. 2B, the condensing point F 1 of the first light beam L 1 by the imaging lens 14 and the imaging lens 14 a converging point F 2 of the second light flux L 2 by a converging point F 3 of the third light flux L 3 by the imaging lens 14, a focal point F 4 of the fourth light beam L 4 by the image forming lens 14 is Shift.

本干渉計では、これら集光点F1,F2,F3,F4が図3(a)に示すとおり二次元的に分布するよう、第1反射鏡171、第2反射鏡172、第3反射鏡173、第4反射鏡174の各傾斜方向はそれぞれ適切に選定される。
また、式(1)によれば、干渉縞S1,S2,S3,S4の間に生じる位相差は、π/2,π,3π/2となる。以下、理由を示す。
In the present interferometer, the first reflecting mirror 171, the second reflecting mirror 172, and the second reflecting mirror F 1 , F 2 , F 3 , and F 4 are two-dimensionally distributed as shown in FIG. The inclination directions of the third reflecting mirror 173 and the fourth reflecting mirror 174 are appropriately selected.
Further, according to the equation (1), the phase difference generated between the interference fringes S 1 , S 2 , S 3 , S 4 is π / 2, π, 3π / 2. The reason is shown below.

先ず、第n反射鏡の配置角度がθnであるとき、図2(a)に示すように、第n参照光束Lnrと第n被検光束Lnoとの光路差は、2kdcosθnで表される。
よって、第n光束Lnによる干渉縞Snの輝度分布In(x,y)は、式(2)のとおり表される。
n(x,y)=I0(x,y)+A0(x,y)cos[ψ0(x,y)−ψr(x,y)+2kdcosθn] ・・・(2)
但し、ψ0(x,y)は被検面oの形状、ψr(x,y)は参照面rの形状、I0は輝度分布の0次成分、A0は輝度振幅である。
First, when the arrangement angle of the n reflector is theta n, as shown in FIG. 2 (a), the optical path difference between the n reference light beam L nr and the n test light beam L no, the table in 2Kdcosshita n Is done.
Therefore, the luminance distribution I n (x, y) of the interference pattern S n by the n-th light flux L n is expressed as equation (2).
I n (x, y) = I 0 (x, y) + A 0 (x, y) cos [ψ 0 (x, y) −ψ r (x, y) +2 kd cos θ n ] (2)
Where ψ 0 (x, y) is the shape of the test surface o, ψ r (x, y) is the shape of the reference surface r, I 0 is the 0th-order component of the luminance distribution, and A 0 is the luminance amplitude.

よって、干渉縞S1の輝度分布I1(x,y)、干渉縞S2の輝度分布I2(x,y)、干渉縞S3の輝度分布I3(x,y)、干渉縞S4の輝度分布I4(x,y)は、それぞれ式(3)のとおり表される。
1(x,y)=I0(x,y)+A0(x,y)cos[ψ0(x,y)−ψr(x,y)+2kdcosθ1],
2(x,y)=I0(x,y)+A0(x,y)cos[ψ0(x,y)−ψr(x,y)+2kdcosθ2],
3(x,y)=I0(x,y)+A0(x,y)cos[ψ0(x,y)−ψr(x,y)+2kdcosθ3],
4(x,y)=I0(x,y)+A0(x,y)cos[ψ0(x,y)−ψr(x,y)+2kdcosθ4] ・・・(3)
この式(3)に式(1)を代入すると、干渉縞S1と干渉縞S2との位相差はπ/2となり、干渉縞S1と干渉縞S3との位相差はπとなり、干渉縞S1と干渉縞S4との位相差は3/2πとなることが分かる。
Therefore, the luminance distribution I 1 of the interference pattern S 1 (x, y), the luminance distribution I 2 of the interference pattern S 2 (x, y), the luminance distribution I 3 of the interference pattern S 3 (x, y), the interference pattern S 4 luminance distribution I 4 (x, y) are respectively represented as formula (3).
I 1 (x, y) = I 0 (x, y) + A 0 (x, y) cos [ψ 0 (x, y) −ψ r (x, y) +2 kd cos θ 1 ],
I 2 (x, y) = I 0 (x, y) + A 0 (x, y) cos [ψ 0 (x, y) −ψ r (x, y) +2 kd cos θ 2 ],
I 3 (x, y) = I 0 (x, y) + A 0 (x, y) cos [ψ 0 (x, y) −ψ r (x, y) +2 kd cos θ 3 ],
I 4 (x, y) = I 0 (x, y) + A 0 (x, y) cos [ψ 0 (x, y) −ψ r (x, y) +2 kd cos θ 4 ] (3)
Substituting equation (1) into equation (3), the phase difference between interference fringe S 1 and interference fringe S 2 is π / 2, the phase difference between interference fringe S 1 and interference fringe S 3 is π, It can be seen that the phase difference between the interference fringes S 1 and S 4 is 3 / 2π.

次に、検出用ユニット18について詳細に説明する。
検出用ユニット18は、図3(a),(b)に示すとおり、四角錐状の分離素子18sと、4つの平面反射鏡181,182,183,184とからなる。
分離素子18sにおいて、四角錐の4側面に相当する面18s1,18s2,18s3,18s4がそれぞれ反射面となっている。
Next, the detection unit 18 will be described in detail.
As shown in FIGS. 3A and 3B, the detection unit 18 includes a quadrangular pyramid-shaped separation element 18 s and four planar reflecting mirrors 181, 182, 183, and 184.
In the separation element 18s, the surface 18s 1 corresponding to four sides of the quadrangular pyramid, 18s 2, 18s 3, 18s 4 is in the respective reflecting surfaces.

分離素子18sの姿勢は、これら反射面18s1,18s2,18s3,18s4が結像レンズ14の側を向くよう設定される。
これら反射面18s1,18s2,18s3,18s4の略中心に、結像レンズ14から射出した第1光束L1の集光点F1,第2光束L2の集光点F2,第3光束L3の集光点F3,第4光束L4の集光点F4がそれぞれ位置する。
The posture of the separating element 18s is set so that the reflecting surfaces 18s 1 , 18s 2 , 18s 3 , 18s 4 face the imaging lens 14 side.
These reflective surfaces 18s 1, 18s 2, 18s 3, substantially at the center of the 18s 4, the focal point F 1 of the first light flux L 1 emitted from the imaging lens 14, the focal point F 2 of the second light flux L 2, the third light flux L 3 of the focal point F 3, the focal point F 4 of the fourth light flux L 4 are positioned respectively.

反射面18s1,18s2,18s3,18s4は、第1光束L1、第2光束L2、第3光束L3、第4光束L4をそれぞれ異なる方向に偏向する。
平面反射鏡181,182,183,184は、それら第1光束L1、第2光束L2、第3光束L3、第4光束L4を図3(b)に示すとおり撮像装置15の方向に偏向する。
このような検出用ユニット18の働きにより、図4に示すとおり、第1光束L1による干渉縞S1と、第2光束L2による干渉縞S2と、第3光束L3による干渉縞S3と、第4光束L4による干渉縞S4とが撮像装置15の撮像面15a上で確実に分離される。
The reflecting surfaces 18s 1 , 18s 2 , 18s 3 , 18s 4 deflect the first light beam L 1 , the second light beam L 2 , the third light beam L 3 , and the fourth light beam L 4 in different directions.
The plane reflecting mirrors 181, 182, 183, and 184 have the first light beam L 1 , the second light beam L 2 , the third light beam L 3 , and the fourth light beam L 4 in the direction of the imaging device 15 as shown in FIG. To deflect.
By the action of such a detection unit 18, as shown in FIG. 4, the interference pattern S 1 of the first light flux L 1, the interference pattern S 2 of the second light flux L 2, the interference pattern S by the third light flux L 3 3, the interference pattern S 4 according to the fourth light flux L 4 can be reliably separated on the imaging surface 15a of the image pickup device 15.

次に、本干渉計を用いた干渉測定について説明する。
干渉測定では、以上の本干渉計が駆動される。
不図示の計算機は、本干渉計の撮像装置15から同じタイミングで出力される1つの輝度分布データを取り込み、その輝度分布データから干渉縞S1,S2,S3,S4の輝度分布データを個別に抽出する。
Next, interference measurement using this interferometer will be described.
In the interference measurement, the above interferometer is driven.
A computer (not shown) takes in one luminance distribution data output at the same timing from the imaging device 15 of this interferometer, and the luminance distribution data of the interference fringes S 1 , S 2 , S 3 , S 4 from the luminance distribution data. Are extracted individually.

ここで、干渉縞S1,S2の位相差、干渉縞S1,S3の位相差、干渉縞S1,S4の位相差は、上述した式(1)によってそれぞれπ/2,π,3π/2に設定されている。
計算機は、このような位相差を有した干渉縞S1,S2,S3,S4の輝度分布データに対し、それらに適した縞解析(例えば、4バケット法などの周知の縞解析)を施す。
この縞解析によれば、参照面rを基準とした被検面oの形状(ψ0(x,y)−ψr(x,y))を、波数k,輝度分布の0次成分I0(x,y),輝度振幅A0(x、y)に依らず、高精度に求めることができる。
Here, the phase difference between the interference fringes S 1 and S 2 , the phase difference between the interference fringes S 1 and S 3 , and the phase difference between the interference fringes S 1 and S 4 are respectively π / 2 and π according to the above-described equation (1). , 3π / 2.
The computer uses a fringe analysis suitable for the luminance distribution data of the interference fringes S 1 , S 2 , S 3 , S 4 having such a phase difference (for example, a well-known fringe analysis such as a 4-bucket method). Apply.
According to this fringe analysis, the shape (ψ 0 (x, y) −ψ r (x, y)) of the test surface o based on the reference surface r is expressed as the wave number k and the 0th-order component I 0 of the luminance distribution. It can be obtained with high accuracy irrespective of (x, y) and luminance amplitude A 0 (x, y).

次に、本干渉計及び干渉測定方法の効果を説明する。
本干渉計には、投光用ユニット16などの投光光学系が備えられ、被検面o及び参照面rに投光すべき光束が互いに投光角度の異なる光束L1,L2,L3,L4に複数化されている。これによって、互いに位相の異なる複数の干渉縞S1,S2,S3,S4が同時に生起する。
Next, effects of the present interferometer and the interference measurement method will be described.
The interferometer includes a light projecting optical system such as a light projecting unit 16, and light beams L 1 , L 2 , L having different light projecting angles from each other are projected onto the test surface o and the reference surface r. to 3, L 4 has a plurality of. As a result, a plurality of interference fringes S 1 , S 2 , S 3 , and S 4 having different phases are generated at the same time.

また、本干渉計には、検出用ユニット18などの検出光学系が備えられ、同時に生起した干渉縞S1,S2,S3,S4の輝度分布がそれぞれ検出される。
よって、本干渉計に環境変化が生じたとしても、同時に生起した干渉縞S1,S2,S3,S4の輝度分布データの間には必要な差異(必要な位相差)しか生じておらず、環境変化に起因する誤差は何ら重畳されない。
Further, the interferometer is provided with a detection optical system such as a detection unit 18 and detects the luminance distribution of the interference fringes S 1 , S 2 , S 3 , and S 4 that are generated at the same time.
Therefore, even if an environmental change occurs in the interferometer, only a necessary difference (necessary phase difference) occurs between the luminance distribution data of the interference fringes S 1 , S 2 , S 3 , and S 4 that occur at the same time. No error due to environmental changes is superimposed.

つまり、本干渉計を用いた干渉測定により取得される干渉縞S1,S2,S3,S4の輝度分布データは、環境変化に起因する誤差の重畳されていない複数の有意な干渉縞のデータである。
したがって、本干渉測定によれば、参照面rを基準とした被検面oの形状は、干渉計の環境変化の影響を受けることなく高精度に求まる。
That is, the luminance distribution data of the interference fringes S 1 , S 2 , S 3 , S 4 acquired by the interference measurement using the present interferometer is a plurality of significant interference fringes in which errors due to environmental changes are not superimposed. It is data of.
Therefore, according to this interference measurement, the shape of the test surface o based on the reference surface r can be obtained with high accuracy without being affected by the environmental change of the interferometer.

また、本干渉計においては、第1反射鏡171、第2反射鏡172、第3反射鏡173、第4反射鏡174のうち少なくとも3つの姿勢が調整可能であるので、光束L1,L2,L3,L4の被検面oに対する入射角度(投光角度)の関係は、調整可能である。
よって、参照面rと被検面oとの間の光学的距離dや光源11の波長λなどが各種に変更された場合にも、本干渉計は式(1)を満足させて同様の効果を得ることができる。
Further, in this interferometer, since at least three postures among the first reflecting mirror 171, the second reflecting mirror 172, the third reflecting mirror 173, and the fourth reflecting mirror 174 can be adjusted, the light beams L 1 and L 2 are adjusted. , L 3 , L 4 can be adjusted with respect to the incident angle (light projection angle) with respect to the test surface o.
Therefore, even when the optical distance d between the reference surface r and the test surface o and the wavelength λ of the light source 11 are changed in various ways, the interferometer satisfies the same expression (1) and has the same effect. Can be obtained.

また、本干渉計においては、複数の干渉縞S1,S2,S3,S4の生起位置を分離する検出用ユニット18が備えられ、干渉縞S1,S2,S3,S4を一括に検出する単一の撮像装置15とが備えられるので、撮像装置15の点数は最小に抑えられている。
また、本干渉計においては、単一の光源11から射出した光束を複数に分岐する投光用ユニット16が備えられるので、光源11の特性によって決まるパラメータ(波数k、輝度分布の0次成分I0、輝度振幅A0)を複数の干渉縞S1,S2,S3,S4の間でより確実に共通化することができる。つまり、本干渉計は、被検面oの形状を高精度に求めるために必要な複数の有意な輝度分布データを、より確実に取得することができる。
In addition, this interferometer is provided with a detection unit 18 for separating the occurrence positions of the plurality of interference fringes S 1 , S 2 , S 3 , S 4 , and the interference fringes S 1 , S 2 , S 3 , S 4 are provided. And the single imaging device 15 that collectively detects the number of points of the imaging device 15 is minimized.
In addition, since the interferometer includes a light projecting unit 16 that branches a light beam emitted from a single light source 11 into a plurality of parameters, parameters (wave number k, zero-order component I of luminance distribution) determined by the characteristics of the light source 11 are provided. 0 , luminance amplitude A 0 ) can be more reliably shared among the plurality of interference fringes S 1 , S 2 , S 3 , S 4 . That is, this interferometer can more reliably acquire a plurality of significant luminance distribution data necessary for obtaining the shape of the test surface o with high accuracy.

[実施形態の変形例]
なお、本干渉計においては、図5に示すとおり、被検面o及び参照面rと投光用ユニット16との間に結像レンズ(請求項における光路調整系に対応。)19を挿入し、結像レンズ19に関し被検面oと反射面171a、被検面oと反射面172a、被検面oと反射面173a、被検面oと反射面174aをそれぞれ共役関係に設定するとよい。
[Modification of Embodiment]
In this interferometer, as shown in FIG. 5, an imaging lens (corresponding to the optical path adjustment system in claims) 19 is inserted between the test surface o and the reference surface r and the light projecting unit 16. For the imaging lens 19, the test surface o and the reflection surface 171a, the test surface o and the reflection surface 172a, the test surface o and the reflection surface 173a, and the test surface o and the reflection surface 174a may be set in a conjugate relationship.

以下、その理由を説明する。ここでは、図6に基づいて代表する2つの反射面171a,172a、2つの光束L1,L2、2つの干渉縞S1,S2について説明する(他の2つの反射面,他の2つの光束、他の2つの干渉縞も同様のことが当てはまる。)。
反射面171a,172aは、共通の光源11からの光束によって照明されるので、その光束にたとえ強度斑が生じていたとしても、図6(a),(b)の上部に示すように、反射面171aの入射光量分布D1と反射面172aの入射光量分布D2とは、略等しい。
The reason will be described below. Here, two representative reflecting surfaces 171a and 172a, two light beams L 1 and L 2 , and two interference fringes S 1 and S 2 will be described based on FIG. 6 (the other two reflecting surfaces and the other two reflecting surfaces). The same applies to one light beam and the other two interference fringes.)
Since the reflecting surfaces 171a and 172a are illuminated by the light flux from the common light source 11, even if intensity spots are generated in the light flux, as shown in the upper part of FIGS. The incident light amount distribution D1 on the surface 171a and the incident light amount distribution D2 on the reflecting surface 172a are substantially equal.

但し、結像レンズ19が挿入されていないときには、図6(a)に示すように、光束L1と光束L2とは少しずつずれて進行し、被検面o上ではずれる。よって、図6(a)の下部に示すように、光束L1の被検面oに対する入射光量分布D1’と、光束L2の被検面oに対する入射光量分布D2’とは、異なる。
一方、結像レンズ19が挿入されているときにも、図6(b)に示すように、光束L1と光束L2とは少しずつずれて進行するが、結像レンズ19の作用によって、被検面o上では重なる。よって、図6(b)の下部に示すように、光束L1の被検面oに対する入射光量分布D1’と、光束L2の被検面oに対する入射光量分布D2’とは、一致する(つまり、被検面o上の同じ位置の入射光量が光束L1と光束L2との間で一致する。)。
However, when the imaging lens 19 is not inserted, as shown in FIG. 6 (a), the light beam L 1 and the light beam L 2 is progressed slightly shifted, outside on the surface to be detected o. Therefore, as shown in the lower part of FIG. 6 (a), 'and the light flux incident light quantity distribution relative to the test surface o the L 2 D2' light beam L 1 incident light quantity distribution D1 for test surface o and are different.
On the other hand, even when the imaging lens 19 is inserted, as shown in FIG. 6B, the light beam L 1 and the light beam L 2 travel while being shifted little by little. Overlap on the test surface o. Therefore, as shown in the lower part of FIG. 6 (b), 'and the incident light intensity distribution for the test surface o of the light beam L 2 D2' incident light intensity distribution D1 for test surface o of the light beam L 1 and is consistent ( In other words, the amount of incident light at the same position on the test surface o matches between the light beam L 1 and the light beam L 2 .

このように、入射光量分布D1’,D2’が一致すれば、光束L1による干渉縞S1と光束L2による干渉縞S2との間の輝度分布の0次成分I0(x,y)をより確実に共通化することができる。
その結果、被検面oの形状を高精度に求めるために必要な複数の有意な輝度分布データを、より確実に取得することができる。
Thus, if the incident light quantity distributions D1 ′ and D2 ′ match, the zero-order component I 0 (x, y) of the luminance distribution between the interference fringes S 1 caused by the light flux L 1 and the interference fringes S 2 caused by the light flux L 2 is obtained. ) Can be shared more reliably.
As a result, a plurality of significant luminance distribution data necessary for obtaining the shape of the test surface o with high accuracy can be acquired more reliably.

なお、言うまでもないが、光源11から射出される光束の強度斑が十分に小さいときには、ここで述べた結像レンズ19不要である。
また、本干渉計においては、偏光ビームスプリッタ162又は163(図1,図5参照)の代わりにビームスプリッタ(ハーフミラー)を用いてもよい。
また、本干渉計においては、図1、図5に示した分岐系(ビームスプリッタ161、偏光ビームスプリッタ162,163)に代えて、図7に示すように、それらの機能を併せ持った単一のプリズム261が適用されてもよい。図7では、このようなプリズム261を適用した投光用ユニットを符号26で示した。
Needless to say, when the intensity variation of the light beam emitted from the light source 11 is sufficiently small, the imaging lens 19 described here is unnecessary.
In this interferometer, a beam splitter (half mirror) may be used instead of the polarizing beam splitter 162 or 163 (see FIGS. 1 and 5).
Further, in this interferometer, instead of the branch system (beam splitter 161, polarization beam splitter 162, 163) shown in FIGS. 1 and 5, a single unit having these functions as shown in FIG. A prism 261 may be applied. In FIG. 7, a light projecting unit to which such a prism 261 is applied is denoted by reference numeral 26.

また、本干渉計においては、図1、図5、図7に示した投光用ユニット16,26、図1、図5に示した検出用ユニット18の少なくとも1つは、汎用の干渉計に対し挿脱可能に構成されていてもよい。このようなユニットを用意しておけば、汎用の干渉計を本干渉計として利用することが可能になる。
また、本干渉計においては、図3に示した検出用ユニット18に代えて、図8に示す検出用ユニット28が適用されてもよい。
In this interferometer, at least one of the light projecting units 16 and 26 shown in FIGS. 1, 5, and 7 and the detection unit 18 shown in FIGS. 1 and 5 is a general-purpose interferometer. On the other hand, it may be configured to be detachable. If such a unit is prepared, a general-purpose interferometer can be used as the present interferometer.
In this interferometer, the detection unit 28 shown in FIG. 8 may be applied instead of the detection unit 18 shown in FIG.

この検出用ユニット28が適用されるときには、結像レンズ14から射出した第1光束L1の集光点F1,第2光束L2の集光点F2,第3光束L3の集光点F3,第4光束L4の集光点F4が図8(a)に示すとおり一次元的に分布するよう、光源11からの光束に対する第1反射鏡171、第2反射鏡172、第3反射鏡173、第4反射鏡174の各傾斜方向はそれぞれ適切に選定される。 When this detection unit 28 is applied, the condensing point F 1 of the first light beam L 1 emitted from the imaging lens 14, the condensing point F 2 of the second light beam L 2 , and the condensing point of the third light beam L 3 . point F 3, 4 such that the focal point F 4 of the light beam L 4 is one-dimensionally distributed as shown in FIG. 8 (a), the first reflecting mirror 171 with respect to the light beam from the light source 11, the second reflecting mirror 172, The tilt directions of the third reflecting mirror 173 and the fourth reflecting mirror 174 are appropriately selected.

検出用ユニット28は、図8(a),(b)に示すとおり、分離素子28sと、4つの平面反射鏡281,282,283,284とからなる。
分離素子28sは、互いに異なる方向に傾斜し、かつ一列に並ぶ4つの反射面28s1,28s2,28s3,28s4を有する。
分離素子28sの姿勢は、4つの反射面28s1,28s2,28s3,28s4が結像レンズ14の側を向くよう設定される。
As shown in FIGS. 8A and 8B, the detection unit 28 includes a separation element 28s and four planar reflecting mirrors 281, 282, 283, and 284.
The separation element 28 s has four reflecting surfaces 28 s 1 , 28 s 2 , 28 s 3 , and 28 s 4 that are inclined in different directions and arranged in a line.
The posture of the separation element 28 s is set so that the four reflecting surfaces 28 s 1 , 28 s 2 , 28 s 3 , and 28 s 4 face the imaging lens 14 side.

分離素子28sの反射面28s1,28s2,28s3,28s4の略中心に、集光点F1,F2,F3,F4がそれぞれ位置する。
反射面28s1,28s2,28s3,28s4は、第1光束L1、第2光束L2、第3光束L3、第4光束L4をそれぞれ異なる方向に偏向する。平面反射鏡281,282,283,284は、それらの第1光束L1、第2光束L2、第3光束L3、第4光束L4を図8(b)に示すとおり撮像装置15の方向に偏向する。
The condensing points F 1 , F 2 , F 3 , and F 4 are located at substantially the centers of the reflecting surfaces 28 s 1 , 28 s 2 , 28 s 3 , and 28 s 4 of the separation element 28 s, respectively.
The reflecting surfaces 28s 1 , 28s 2 , 28s 3 , and 28s 4 deflect the first light beam L 1 , the second light beam L 2 , the third light beam L 3 , and the fourth light beam L 4 in different directions. The plane reflecting mirrors 281, 282, 283, and 284 have their first light beam L 1 , second light beam L 2 , third light beam L 3 , and fourth light beam L 4, as shown in FIG. Deflect in the direction.

このような検出用ユニット28も、図3に示した検出用ユニット18と同様の働きをする。
また、本干渉計には、撮像装置15が1つしか備えられないとしたが、図9(a),(b)に示すように、干渉縞S1,S2,S3,S4を個別に検出する複数の撮像装置15が備えられてもよい。その場合、図3に示した平面反射鏡181,182,183,184や、図8に示した平面反射鏡281,282,283,284は省略可能である。
Such a detection unit 28 also functions in the same manner as the detection unit 18 shown in FIG.
In addition, the interferometer is provided with only one imaging device 15, but as shown in FIGS. 9A and 9B, interference fringes S 1 , S 2 , S 3 , and S 4 are provided. A plurality of imaging devices 15 that individually detect may be provided. In that case, the plane reflecting mirrors 181, 182, 183 and 184 shown in FIG. 3 and the plane reflecting mirrors 281, 282, 283 and 284 shown in FIG. 8 can be omitted.

また、本干渉計は、同時に生起する干渉縞の数が「4」とされたが、被検面oの形状算出に要求される精度に応じて、「2」,「3」,又は「5以上の数」とされてもよい。
但し、波数k,輝度分布の0次成分I0(x,y),輝度振幅A0(x、y)に依らず高精度に形状算出をするためには、干渉縞の数は「3以上の数」である必要がある。
因みに、その数が「3」であるときには、検出用ユニット内の分離素子として、図10に示すような三角錐状の分離素子38s(反射面の数が「3」)を用いることができる。
Further, in this interferometer, the number of interference fringes that occur simultaneously is set to “4”, but “2”, “3”, or “5” depends on the accuracy required for calculating the shape of the test surface o. It may be “the number above”.
However, in order to calculate the shape with high accuracy regardless of the wave number k, the 0th-order component I 0 (x, y) of the luminance distribution, and the luminance amplitude A 0 (x, y), the number of interference fringes is “3 or more. Need to be "number of".
Incidentally, when the number is “3”, a triangular pyramid-shaped separation element 38s (the number of reflection surfaces is “3”) as shown in FIG. 10 can be used as the separation element in the detection unit.

また、同時に生起する各干渉縞S1,S2,S3,S4の位相差は、π/2、π、3π/2,2πに設定されたが、干渉縞の数が「5」であるときには、例えば、π/2、π、3π/2,2π,5π/2(つまり、π/2の整数倍)に設定される。
或いは、各干渉縞の位相差は、π/2の整数倍以外に設定されてもよい。但し、π/2の整数倍に設定された方が、縞解析の演算が簡単になるので都合がよい。
The phase difference between the interference fringes S 1 , S 2 , S 3 , and S 4 that occur simultaneously is set to π / 2, π, 3π / 2, and 2π, but the number of interference fringes is “5”. In some cases, for example, π / 2, π, 3π / 2, 2π, 5π / 2 (that is, an integer multiple of π / 2) is set.
Alternatively, the phase difference of each interference fringe may be set to a value other than an integer multiple of π / 2. However, setting to an integer multiple of π / 2 is advantageous because the calculation of fringe analysis is simplified.

また、図1、図5では、複数の光束L1,L2,L3,L4の光路が同一平面上に配置されたが、同一平面上に配置されていなくてもよい。
また、本干渉測定方法では、光束L1,L2,L3,L4の強度が共通である(輝度分布の0次成分I0(x,y)が干渉縞S1,S2,S3,S4の間で共通)とみなしたが、それらを別途測定し、その測定結果に基づく補正演算を、上述した縞解析に加えてもよい。
In FIG. 1 and FIG. 5, the optical paths of the plurality of light beams L 1 , L 2 , L 3 , and L 4 are arranged on the same plane, but they may not be arranged on the same plane.
Further, in this interference measurement method, the intensities of the light beams L 1 , L 2 , L 3 , and L 4 are common (the zero-order component I 0 (x, y) of the luminance distribution is the interference fringes S 1 , S 2 , S 3 and S 4 ). However, they may be measured separately, and a correction operation based on the measurement result may be added to the above-described fringe analysis.

本干渉計の構成図である。It is a block diagram of this interferometer. (a)は、被検面oと参照面rとの間隔d、被検面oへの第n光束の入射角度θnを示す図である。(b)は、光束L1,L2,L3,L4の集光点F1,F2,F3,F4の関係を示す図である。(A) is a figure which shows the space | interval d of the to-be-tested surface o and the reference surface r, and the incident angle (theta) n of the nth light beam to the to-be-tested surface o. (B) is a diagram showing a relationship between a light beam L 1, L 2, L 3 , the focal point F 1 of L 4, F 2, F 3 , F 4. (a)は、検出用ユニット18を結像レンズ14の側から見た側面図である。(b)は、検出用ユニット18の斜視図である。(A) is the side view which looked at the unit 18 for a detection from the imaging lens 14 side. FIG. 4B is a perspective view of the detection unit 18. 撮像面15a上における干渉縞S1,S2,S3,S4の配置関係を示す図である。Is a diagram showing the arrangement of the interference pattern S 1, S 2, S 3 , S 4 on the imaging surface 15a. 結像レンズ19を挿入した本干渉計の構成図である。It is a block diagram of this interferometer which inserted the imaging lens 19. FIG. (a)は、結像レンズ19を挿入していない状態の反射面171a,172aと被検面oとの光学的関係を示す概念図である。(b)は、結像レンズ19を挿入した状態の反射面171a,172aと被検面oとの光学的関係を示す概念図である。(A) is a conceptual diagram showing an optical relationship between the reflecting surfaces 171a and 172a and the surface to be examined o in a state where the imaging lens 19 is not inserted. FIG. 5B is a conceptual diagram showing an optical relationship between the reflection surfaces 171a and 172a and the test surface o in a state where the imaging lens 19 is inserted. 投光用ユニット16に代えて本干渉計に適用可能なプリズム261の周辺の構成図である。FIG. 6 is a configuration diagram around a prism 261 that can be applied to the present interferometer instead of the light projecting unit 16. (a)は、検出用ユニット18に代えて本干渉計に適用可能な検出用ユニット28を結像レンズ14の側から見た側面図である。(b)は、その検出用ユニット28の斜視図である。(A) is the side view which looked at the detection unit 28 applicable to this interferometer instead of the detection unit 18 from the imaging lens 14 side. (B) is a perspective view of the detection unit 28. (a)は、複数の撮像装置15と分離素子18sとからなる検出光学系を示す側面図(結像レンズ14の側から見た側面図)である。(b)は、複数の撮像素子15と分離素子28sとからなる検出光学系を示す側面図(結像レンズ14の側から見た側面図)である。(A) is a side view (a side view seen from the imaging lens 14 side) showing a detection optical system including a plurality of imaging devices 15 and separation elements 18s. (B) is a side view (a side view seen from the imaging lens 14 side) showing a detection optical system composed of a plurality of imaging elements 15 and separation elements 28s. 同時に生起する干渉縞の数が3であるときに適用可能な分離素子38sの斜視図である。It is a perspective view of the separation element 38s applicable when the number of the interference fringes generated simultaneously is three.

符号の説明Explanation of symbols

1 被検物
2 フィゾー部材
11 レーザ光源
12 ビームエキスパンダ
16 投光用ユニット
13,161 ビームスプリッタ
14 結像レンズ
18 検出用ユニット
15 撮像装置
162,163 偏光ビームスプリッタ
171 第1反射鏡
172 第2反射鏡
173 第3反射鏡
174 第4反射鏡
171a,172a,173a,174a 反射面
DESCRIPTION OF SYMBOLS 1 Test object 2 Fizeau member 11 Laser light source 12 Beam expander 16 Projection unit 13,161 Beam splitter 14 Imaging lens 18 Detection unit 15 Imaging device 162,163 Polarization beam splitter 171 First reflector 172 Second reflection Mirror 173 Third reflecting mirror 174 Fourth reflecting mirror 171a, 172a, 173a, 174a Reflecting surface

Claims (7)

互いに位相の異なる干渉縞が同時に複数生起するよう被検面及び参照面に投光すべき光束を互いに投光角度の異なる光束に複数化する手順と、
前記手順により同時に生起した複数の干渉縞をそれぞれ検出する手順と
を含むことを特徴とする干渉測定方法。
A procedure for making a plurality of light beams to be projected onto the test surface and the reference surface into light beams having different projection angles so that a plurality of interference fringes having different phases occur at the same time;
A method for detecting a plurality of interference fringes simultaneously generated by the procedure, respectively.
互いに位相の異なる干渉縞が同時に複数生起するよう被検面及び参照面に投光すべき光束を互いに投光角度の異なる光束に複数化する投光光学系と、
前記同時に生起した複数の干渉縞をそれぞれ検出する検出光学系と
を備えたことを特徴とする干渉計。
A light projecting optical system that multiplexes light beams to be projected onto the test surface and the reference surface into light beams having different light projection angles so that a plurality of interference fringes having different phases occur at the same time;
An interferometer comprising: a detection optical system that detects each of the plurality of interference fringes generated simultaneously.
請求項2に記載の干渉計において、
前記投光光学系は、
前記複数化された各光束の投光角度の関係を調整するための角度調整装置を有する
ことを特徴とする干渉計。
The interferometer according to claim 2, wherein
The projection optical system is:
An interferometer, comprising: an angle adjusting device for adjusting a relationship between projection angles of the plurality of light beams.
請求項2又は請求項3に記載の干渉計において、
前記検出光学系には、
前記複数の干渉縞を分離する分離系と、生起位置の分離された複数の干渉縞を一括に検出する単一の撮像素子とが備えられる
ことを特徴とする干渉計。
The interferometer according to claim 2 or claim 3,
In the detection optical system,
An interferometer, comprising: a separation system that separates the plurality of interference fringes; and a single image sensor that collectively detects the plurality of interference fringes separated from each other.
請求項2又は請求項3に記載の干渉計において、
前記検出光学系には、
前記複数の干渉縞を分離する分離系と、生起位置の分離された複数の干渉縞を個別に検出する複数の撮像素子とが備えられる
ことを特徴とする干渉計。
The interferometer according to claim 2 or claim 3,
In the detection optical system,
An interferometer, comprising: a separation system that separates the plurality of interference fringes; and a plurality of imaging elements that individually detect the plurality of interference fringes separated from each other at an occurrence position.
請求項2〜請求項5の何れか一項に記載の干渉計において、
前記投光光学系には、
単一の光源から射出した前記光束を複数に分岐する分岐系が備えられる
ことを特徴とする干渉計。
In the interferometer according to any one of claims 2 to 5,
In the light projecting optical system,
An interferometer, comprising: a branching system that branches the light beam emitted from a single light source into a plurality of parts.
請求項2〜請求項6の何れか一項に記載の干渉計において、
前記投光光学系には、
前記被検面への入射光量分布が前記複数化された各光束の間で一致するようそれら各光束の光路の配置関係を調整する光路調整系が備えられる
ことを特徴とする干渉計。
In the interferometer according to any one of claims 2 to 6,
In the light projecting optical system,
An interferometer, comprising: an optical path adjustment system that adjusts an arrangement relationship of optical paths of the respective light beams so that an incident light amount distribution on the test surface is matched between the plurality of the light beams.
JP2004060339A 2004-03-04 2004-03-04 Interference measuring method and interferometer Pending JP2005249575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004060339A JP2005249575A (en) 2004-03-04 2004-03-04 Interference measuring method and interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004060339A JP2005249575A (en) 2004-03-04 2004-03-04 Interference measuring method and interferometer

Publications (1)

Publication Number Publication Date
JP2005249575A true JP2005249575A (en) 2005-09-15

Family

ID=35030184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004060339A Pending JP2005249575A (en) 2004-03-04 2004-03-04 Interference measuring method and interferometer

Country Status (1)

Country Link
JP (1) JP2005249575A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060304A (en) * 2008-09-01 2010-03-18 Olympus Corp Shape measurement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060304A (en) * 2008-09-01 2010-03-18 Olympus Corp Shape measurement method

Similar Documents

Publication Publication Date Title
TWI618915B (en) Apparatus for detecting a 3d structure of an object
JP4538388B2 (en) Phase shift interferometer
JP5882674B2 (en) Multi-wavelength interferometer, measuring apparatus and measuring method
TWI326354B (en) Method and apparatus for simultaneously acquiring interferograms and method for solving the phase
US20090213386A1 (en) Apparatus and method for measuring surface topography of an object
JP6364551B2 (en) Interferometer
JP2679221B2 (en) Interferometer
JP2004184309A (en) Interferometer
JP2009162539A (en) Light wave interferometer apparatus
JP2003302205A (en) Shearing interference measuring method and shearing interferometer, method of manufacturing for projection optical system, and projection optical system, and projection exposure device
TW202214996A (en) Device and method for measuring interfaces of an optical element
JP2007298281A (en) Measuring method and device of surface shape of specimen
JP2001241914A (en) Optical system for oblique incidence interferometer and apparatus using it
JP2006349382A (en) Phase shift interferometer
JPH11337321A (en) Method and device for simultaneously measuring phase shift interference fringe
JP2005249575A (en) Interference measuring method and interferometer
JP4781702B2 (en) Tilt measurement interferometer device
US10175115B2 (en) Wavefront sensor and method for determining differences in piston and tilt existing between several light beams
JP2007093288A (en) Light measuring instrument and light measuring method
JP6904872B2 (en) Wavefront measuring device, wavefront measuring method, and manufacturing method of optical system
JP2007292650A (en) Optical interferometer
JP2006284233A (en) Apparatus for measuring system error and interferometer system for wavefront measurement equipped with the same
JP2595050B2 (en) Small angle measuring device
JPH07229721A (en) Device for generating aspherical wave and method for measuring aspherical shape
US20240003672A1 (en) Single frame-tilted wave interferometer