JP4566534B2 - Shape measuring method and shape measuring apparatus - Google Patents

Shape measuring method and shape measuring apparatus Download PDF

Info

Publication number
JP4566534B2
JP4566534B2 JP2003320567A JP2003320567A JP4566534B2 JP 4566534 B2 JP4566534 B2 JP 4566534B2 JP 2003320567 A JP2003320567 A JP 2003320567A JP 2003320567 A JP2003320567 A JP 2003320567A JP 4566534 B2 JP4566534 B2 JP 4566534B2
Authority
JP
Japan
Prior art keywords
probe
scanning
shape
diffraction grating
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003320567A
Other languages
Japanese (ja)
Other versions
JP2005090968A (en
JP2005090968A5 (en
Inventor
健男 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003320567A priority Critical patent/JP4566534B2/en
Publication of JP2005090968A publication Critical patent/JP2005090968A/en
Publication of JP2005090968A5 publication Critical patent/JP2005090968A5/ja
Application granted granted Critical
Publication of JP4566534B2 publication Critical patent/JP4566534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Description

本発明は、レンズ、ミラー等光学素子の三次元形状を測定するための形状測定方法および形状測定装置に関するものである。   The present invention relates to a shape measuring method and a shape measuring apparatus for measuring a three-dimensional shape of an optical element such as a lens and a mirror.

レンズ、ミラー等光学素子の形状を高精度に測定するためには、プローブ式の三次元形状測定装置が用いられている。この形状測定装置は、測定面に当接されるプローブと、プローブの位置を測定する座標測定手段と、プローブを三次元的に移動させるプローブ移動手段等によって構成されている。   In order to measure the shape of an optical element such as a lens and a mirror with high accuracy, a probe-type three-dimensional shape measuring apparatus is used. This shape measuring apparatus includes a probe that comes into contact with a measurement surface, coordinate measuring means that measures the position of the probe, probe moving means that moves the probe in three dimensions, and the like.

例えば、特開平10−19504号公報に示されている形状測定装置においては、プローブを移動させるためのプローブ移動手段として、ボールねじを利用した3軸ステージを備えている。また、座標測定手段として、3軸ステージのそれぞれの軸に直交した方向に配置された基準ミラーを持っている。   For example, the shape measuring apparatus disclosed in Japanese Patent Application Laid-Open No. 10-19504 includes a three-axis stage using a ball screw as probe moving means for moving the probe. Further, the coordinate measuring means has a reference mirror arranged in a direction orthogonal to the respective axes of the three-axis stage.

3軸ステージは、プローブを上下させる方向の軸(Z軸)と、プローブを前後・左右の方向へ動作させる2軸(X軸・Y軸)を持っており、プローブと基準ミラーの間の距離を測定することにより、測定面の三次元形状データを得ている。   The 3-axis stage has an axis for moving the probe up and down (Z-axis) and two axes (X-axis and Y-axis) for moving the probe back and forth and left and right. The distance between the probe and the reference mirror The three-dimensional shape data of the measurement surface is obtained by measuring.

このような形状測定装置を用いて、図11に示すような円形の測定面を測定する場合には、まず、Z軸を駆動して測定面の端(始点A)にプローブを着地(タッチダウン)させた後、倣い制御をかけつつ、X軸だけ動作させて、直線状の1ラインだけの測定を行い、測定面の端Bまで走査する。その後、XY軸を動かしてプローブを次の直線ラインの始点Cまで移動させる。そして、再びX軸だけを動作させ次の1ラインの測定を行い、上記と同様に端Dまで走査したらXY軸を動作させて次の直線ラインの始点Fまでプローブを移動し測定する。このような直線走査を繰り返しながら測定を行って、最終ラインの終点Gまで走査して測定面全面の形状データを得ている。すなわち、1ラインづつ平行に走査しながら測定を行い、その結果として測定面全面の測定を行っている。   When measuring such a circular measurement surface as shown in FIG. 11 using such a shape measuring apparatus, first, the probe is placed on the end (start point A) of the measurement surface by driving the Z axis (touch down). ), The scanning operation is performed and only the X axis is operated to measure only one linear line and scan to the end B of the measurement surface. Thereafter, the XY axes are moved to move the probe to the start point C of the next straight line. Then, only the X axis is operated again to measure the next line, and after scanning to the end D as described above, the XY axis is operated to move the probe to the start point F of the next straight line and measure. Measurement is performed while repeating such linear scanning, and scanning is performed up to the end point G of the final line to obtain shape data of the entire measurement surface. That is, the measurement is performed while scanning one line at a time in parallel, and as a result, the entire measurement surface is measured.

一方、近年、図12に示すように、測定面に回折格子が刻まれている光学素子(回折光学素子)が利用されるようになっている。図13の(a)に示すように、回折光学素子W0 の光学面の断面をみるとノコギリ波状の回折格子R0 が刻まれている。また、光学面を正面からみると、図13の(b)に示すように、楕円状の回折格子R0 が同心状に刻まれている。 On the other hand, in recent years, as shown in FIG. 12, an optical element (diffractive optical element) in which a diffraction grating is engraved on a measurement surface has been used. As shown in FIG. 13A, when the cross section of the optical surface of the diffractive optical element W 0 is seen, a sawtooth diffraction grating R 0 is engraved. When the optical surface is viewed from the front, an elliptical diffraction grating R 0 is concentrically engraved as shown in FIG.

この回折光学素子W0 を従来例と同じような走査により測定する場合は、図13の(c)に示すようにプローブを走査することになる。すなわち、プローブを図13の(c)の始点Aへ着地させて、順にラインL1、ラインL2、ラインL3、ラインL4、・・・に沿ってX方向に走査し、終点Bまで走査する測定経路を辿る。しかしながら、このような方法で測定すると以下のような問題が発生する。 When the diffractive optical element W 0 is measured by scanning similar to the conventional example, the probe is scanned as shown in FIG. That is, a measurement path in which the probe is landed on the starting point A in FIG. 13C, sequentially scanned in the X direction along the line L1, line L2, line L3, line L4,. Follow. However, when the measurement is performed by such a method, the following problems occur.

(1)回折格子の頂点付近は、安定して倣い制御を行うことができずにエラーなどで測定が停止してしまう。   (1) In the vicinity of the top of the diffraction grating, the scanning control cannot be stably performed, and measurement stops due to an error or the like.

(2)エラーなどで測定が停止せずに、測定面全面をトレースできたとしても、回折格子の頂点付近は設計形状どおりに加工や成形ができていない場合が多く、そのような不安定な部位の形状データを用いて、光学素子の形状を評価しても正確な評価が行うことが出来ない。
特開平10−19504号公報
(2) Even if the entire measurement surface can be traced without stopping measurement due to an error etc., the vicinity of the apex of the diffraction grating is often not processed or molded as designed, and such instability Even if the shape of the optical element is evaluated using the shape data of the part, accurate evaluation cannot be performed.
Japanese Patent Laid-Open No. 10-19504

本発明は、上記従来の技術の有する未解決の課題に鑑みてなされたものであり、回折格子の複雑な三次元形状を効率的かつ高精度に計測し、回折光学素子の形状評価を安定して正確に行うことを可能にする形状測定方法および形状測定装置を提供することを目的とするものである。   The present invention has been made in view of the above-mentioned unsolved problems of the prior art, and can measure a complicated three-dimensional shape of a diffraction grating efficiently and with high accuracy, thereby stabilizing the shape evaluation of a diffractive optical element. It is an object of the present invention to provide a shape measuring method and a shape measuring apparatus that can be accurately performed.

上記の課題を解決するため、本発明の形状測定方法は、輪帯状の回折格子を有する光学素子に、二次元的に走査するプローブを当接して前記光学素子の三次元形状を測定する形状測定方法であって、前記光学素子の設計形状情報を用いた演算によって前記回折格子の輪帯に直交する複数の走査経路を決定し、各走査経路に沿って前記プローブを走査させながら前記プローブの高さ位置を計測することを特徴とする。 In order to solve the above problems, the shape measuring method of the present invention is a shape measuring method for measuring a three-dimensional shape of an optical element by contacting a probe that scans two-dimensionally with an optical element having an annular diffraction grating. A plurality of scanning paths orthogonal to the annular zone of the diffraction grating are determined by calculation using design shape information of the optical element, and the height of the probe is scanned while scanning the probe along each scanning path. The position is measured.

前記回折格子の位相関数から格子の勾配方向を算出し、前記勾配方向と直交する方向に微小量だけずらした計算点をつなぎ合せることで各走査経路を決定するとよい。 Wherein calculating the gradient direction of the grating from the phase function of the diffraction grating, it may be determined each scan path by stitching the calculation points shifted by a minute amount in a direction orthogonal to the gradient direction.

本発明の形状測定装置は、輪状の回折格子を有する光学素子を保持するベース上を二次元的に移動自在であるXYステージと、前記XYステージ上を垂直に移動自在であるZステージと、前記Zステージに保持されたプローブと、前記プローブを前記被測定物に当接した状態で前記Zステージの位置を計測し前記プローブのZ位置データを得るためのZ位置計測手段と、前記XYステージの位置を計測し前記プローブの走査位置データを得るためのXY位置計測手段と、前記回折格子の設計形状情報に基づいて前記XYステージを制御し、前記回折格子の輪帯に平行する複数の走査経路に沿って順次前記プローブを走査させるためのステージ制御手段とを有することを特徴とする。 Shape measuring apparatus of the present invention, an XY stage on the base is movable two-dimensionally holding an optical element having a diffraction grating annular shape, and the Z stage is movable on the XY stage vertically A probe held on the Z stage, a Z position measuring means for measuring the position of the Z stage while the probe is in contact with the object to be measured, and obtaining Z position data of the probe, and the XY XY position measuring means for measuring the position of the stage and obtaining scanning position data of the probe, and controlling the XY stage based on the design shape information of the diffraction grating, and a plurality of parallel to the annular zone of the diffraction grating And stage control means for sequentially scanning the probe along a scanning path.

光学素子の設計形状情報を用いて、回折格子の輪帯(凹凸)に対して平行するようにプローブの走査経路を設定する。回折格子の輪帯の頂点をできるだけ横切ることのないようにプローブを走査することで、倣い制御のエラーを防ぎ、かつ、誤差の多い頂点の形状データの取り込みを回避する。   Using the design shape information of the optical element, the scanning path of the probe is set so as to be parallel to the annular zone (unevenness) of the diffraction grating. By scanning the probe so as not to cross the vertex of the annular zone of the diffraction grating as much as possible, an error in scanning control is prevented, and the shape data of the vertex having a large error is avoided.

形状が不安定で倣い制御のエラーが発生しやすい回折格子の輪帯の頂点における計測を避けることで、測定のエラーや誤差を低減する。これによって、高精度な三次元形状の測定を安定して行い、回折光学素子の品質評価を正確に行うことが可能となる。   Measurement errors and errors are reduced by avoiding measurement at the apex of the annular zone of the diffraction grating, where the shape is unstable and scanning control errors are likely to occur. This makes it possible to stably measure a highly accurate three-dimensional shape and accurately evaluate the quality of the diffractive optical element.

図1の(a)に示す被測定物である回折光学素子W1 の回折格子形状を、同図の(b)に示す形状測定装置Mの3軸ステージによって三次元的に移動自在であるプローブ11によって計測するに当り、回折光学素子W1 の設計形状情報に基づいて後述するようにプローブ11の走査経路T1 〜T8 を決定する。測定面の内周上の走査始点S1 から、走査経路T1 に沿ってプローブ11を走査させ、その走査経路T1 の終点E1 まで辿り着いたら、隣の走査経路T2 の始点S2 までプローブ11を動かして、走査経路T2 を走査させる。上記と同様の動作を残りの走査経路T3 →T4 →T5 →T6 →T7 →T8 と繰り返して走査終点E8 まで走査させ、走査中のプローブ11の高さ位置であるZ位置データを走査位置データ(XYデータ)とともに取り込むことで、測定面全面の形状データを得る。 Figure 1 of the diffraction grating shape of the diffractive optical element W 1 to be measured shown in (a), is movable in three dimensions by the three-axis stage of a shape measuring device M shown in the figure (b) Probe 11, the scanning paths T 1 to T 8 of the probe 11 are determined based on the design shape information of the diffractive optical element W 1 as will be described later. From the scan starting point S 1 on the inner periphery of the measuring surface, is scanned with the probe 11 along the scanning path T 1, Once we arrived to the end point E 1 of the scanning path T 1, the start point of the next scan path T 2 S 2 moving the probe 11 until, scanning the scanning path T 2. The same operation as described above is scanned until the remaining scanning path T 3 → T 4 → T 5 T 6 → T 7 → T 8 and repeatedly scanning end point E 8, the height position of the probe 11 in the scan Z By capturing the position data together with the scanning position data (XY data), the shape data of the entire measurement surface is obtained.

ここで、各走査経路T1 〜T8 を決定するに当り、測定面の回折格子の輪帯と平行するような曲線を回折格子の設計形状情報を用いた演算によって求めて各走査経路とする。 Here, in determining each of the scanning paths T 1 to T 8 , a curve that is parallel to the annular zone of the diffraction grating on the measurement surface is obtained by calculation using the design shape information of the diffraction grating to be each scanning path. .

すなわち、上記の走査経路T1 〜T8 を算出する際に、回折格子の位相関数から算出した格子の勾配方向と直交する方向へ微小量だけずらした計算点をつなぎ合せて輪帯状の走査経路を形成する。 That is, when calculating the above scanning paths T 1 to T 8 , the calculation points shifted by a minute amount in a direction orthogonal to the grating gradient direction calculated from the phase function of the diffraction grating are connected to each other to connect the calculation points. Form.

各走査経路T1 〜T8 が各回折格子の輪帯すなわち凹凸の頂点を通過しないため、エラーによって測定作業が中断したり、形状が不安定な頂点付近のデータを取り込むことで誤差を発生する等のトラブルを効果的に回避して、安定した高精度な計測を行うことができる。 Since each of the scanning paths T 1 to T 8 does not pass through the annular zone of each diffraction grating, that is, the apex of the unevenness, the measurement operation is interrupted due to an error, or an error is generated by capturing data near the apex where the shape is unstable. It is possible to effectively avoid such troubles and perform stable and highly accurate measurement.

形状測定装置Mは、ベース1と、ベース1上で回折光学素子W1 を保持する治具2と、プローブ11を回折光学素子W1 に当接して各走査経路に沿って移動させるための三次元ステージを有する。 Shape measuring device M includes a base 1, a jig 2 for holding the diffractive optical element W 1 on the base 1, tertiary for moving along each scan path in contact with the probe 11 to the diffractive optical element W 1 Has a former stage.

この三次元ステージは、ベース1と一体であるXガイド12上をX方向に移動するXスライダ13と、Xスライダ13を駆動するXモータ14と、Xスライダ13と一体であるYガイド15上をY方向に移動するYスライダ16と、Yスライダ16を駆動するボールネジ17aを有する図示しないYモータ17と、Yスライダ16と一体であるZガイド18と、Zガイド18上をZ方向に移動するZスライダ19と、Zスライダ19を駆動するZモータ20を有し、プローブ11はZスライダ19によって保持されている。すなわちプローブ11は、ベース1上のXスライダ13およびYスライダ16からなるXYステージ上のZステージであるZスライダ19によって三次元的に移動自在である。   The three-dimensional stage includes an X slider 13 that moves in the X direction on an X guide 12 that is integral with the base 1, an X motor 14 that drives the X slider 13, and a Y guide 15 that is integral with the X slider 13. A Y slider 16 that moves in the Y direction, a Y motor 17 (not shown) having a ball screw 17a that drives the Y slider 16, a Z guide 18 that is integral with the Y slider 16, and a Z that moves on the Z guide 18 in the Z direction A slider 19 and a Z motor 20 that drives the Z slider 19 are provided, and the probe 11 is held by the Z slider 19. That is, the probe 11 can be moved three-dimensionally by a Z slider 19 which is a Z stage on an XY stage including an X slider 13 and a Y slider 16 on the base 1.

Zスライダ19は、プローブ11のX方向の位置を測定するためのX干渉計21、22と、プローブ11のY方向の位置を測定するための図示しないY干渉計からなるXY位置計測手段を有し、かつ、プローブ11のZ方向の位置を測定するためのZ位置計測手段であるZ干渉計23を備えており、各干渉計はZスライダ19と一体であるミラー24、25等の基準ミラーに対向している。   The Z slider 19 has XY position measuring means including X interferometers 21 and 22 for measuring the position of the probe 11 in the X direction and a Y interferometer (not shown) for measuring the position of the probe 11 in the Y direction. And a Z interferometer 23 which is a Z position measuring means for measuring the position of the probe 11 in the Z direction. Each interferometer is a reference mirror such as mirrors 24 and 25 integrated with the Z slider 19. Opposite to.

各干渉計の出力は、図1の(a)に示す走査経路T1 〜T8 を回折光学素子W1 の設計形状情報を用いた演算によって求めて記憶する機能を有するステージ制御手段である制御装置30に入力され、X、Y、Zモータ14、17、20の制御と、各走査経路T1 〜T8 におけるプローブ11の走査位置データおよびZ位置データの取り込みが行われる。 The output of each interferometer is a stage control means having a function of obtaining and storing the scanning paths T 1 to T 8 shown in FIG. 1A by calculation using design shape information of the diffractive optical element W 1. Input to the apparatus 30, X, Y, Z motors 14, 17, 20 are controlled, and scanning position data and Z position data of the probe 11 in each of the scanning paths T 1 to T 8 are captured.

図2は回折光学素子W1 の形状を説明するもので、楕円形状の回折光学素子W1 の2つの光学面a、bのうちの上面側の光学面aが、図3に示す回折格子R1 、R2 、R3 、R4 ・・・Re を有する測定面である。 Figure 2 is intended to explain the shape of the diffractive optical element W 1, 2 one optical surface a diffractive optical element W 1 elliptical, the optical surface a of the upper surface side of the b is a diffraction grating R shown in FIG. 3 1 , R 2 , R 3 , R 4 ... Re .

回折格子Re を有するa面の設計形状は、図3に示すように、a面であるベース面と回折格子Re を定義する位相関数の2つによって定義される。べース面Fb (x,y)は、図3に示すXYZ座標に対して以下のように定義される。 Design shape of a surface having a diffraction grating R e, as shown in FIG. 3, is defined by two of the phase function that defines the base plane and a diffraction grating R e is a plane. The base surface F b (x, y) is defined as follows with respect to the XYZ coordinates shown in FIG.

Figure 0004566534
Figure 0004566534

ただし、式(1)のrは本実施例では、250mmとする。また、回折格子を定義する位相関数Fp (x,y)は、
p =R ・・・(2)
と定義されている。ただし、本実施例において、Rは、
p =0.1x2 +y2 ・・・(3)
である。位相関数Fp から回折格子形状Fp1へ変換するには、図4に示すような方法で変換する。すなわち、回折格子の段差高さがλであるとすると、
p1=Fp −INT(Fp /λ)×λ ・・・(4)
により、位相関数Fp から回折格子形状Fp1へ変換される。ただし、(4)式中のINT(・・・)は括弧内の数字の整数部分を取り出すことを意味している。
However, r in the formula (1) is 250 mm in this embodiment. The phase function F p (x, y) that defines the diffraction grating is
F p = R ... (2)
It is defined as However, in this embodiment, R is
F p = 0.1x 2 + y 2 (3)
It is. In order to convert from the phase function F p to the diffraction grating shape F p1 , conversion is performed by the method shown in FIG. That is, if the step height of the diffraction grating is λ,
F p1 = F p −INT (F p / λ) × λ (4)
Thus, the phase function F p is converted into the diffraction grating shape F p1 . However, INT (...) in the equation (4) means that the integer part of the number in parentheses is taken out.

本実施例では、式(1)で定義されたベース面から式(4)で決定された回折格子形状を取り去った形状が、a面の設計値Fd となっている。式で表現すると、 In this embodiment, the shape obtained by removing the diffraction grating pattern that is determined from the base surface defined by equation (1) in equation (4) has become a design value F d of a surface. Expressed as an expression

Figure 0004566534
Figure 0004566534

本実施例における測定面の有効測定範囲は、図3に示す座標系に対して、
(x2 +y2 )<52
を満たす領域とする。なお、上式における単位はmmである。
The effective measurement range of the measurement surface in this example is relative to the coordinate system shown in FIG.
(X 2 + y 2 ) <5 2
An area that satisfies The unit in the above formula is mm.

以上により定義された測定面(a面)を走査するときの、走査経路T1 〜T8 は以下の手順で求められる。 The scanning paths T 1 to T 8 when scanning the measurement surface (a surface) defined as described above are obtained by the following procedure.

(1)測定するライン数nを決定する。本実施例の場合はn=8である。   (1) The number n of lines to be measured is determined. In this embodiment, n = 8.

Figure 0004566534
Figure 0004566534

計算結果を以下の表1に示す。   The calculation results are shown in Table 1 below.

Figure 0004566534
Figure 0004566534

Figure 0004566534
Figure 0004566534

Figure 0004566534
Figure 0004566534

(3)これから、Ps1における勾配▽Fp は、 (3) From now on, the gradient ▽ F p in P s1 is

Figure 0004566534
となる。
Figure 0004566534
It becomes.

Figure 0004566534
Figure 0004566534

Figure 0004566534
Figure 0004566534

Figure 0004566534
Figure 0004566534

Figure 0004566534
Figure 0004566534

Figure 0004566534
Figure 0004566534

計算例として、走査経路T3 の計算データを表2に示す。 As a calculation example, calculation data of the scanning path T 3 is shown in Table 2.

Figure 0004566534
Figure 0004566534

Figure 0004566534
Figure 0004566534

Figure 0004566534
Figure 0004566534

Figure 0004566534
Figure 0004566534

Figure 0004566534
Figure 0004566534

Figure 0004566534
Figure 0004566534

表4に計算結果を示す。   Table 4 shows the calculation results.

Figure 0004566534
Figure 0004566534

Figure 0004566534
Figure 0004566534

Figure 0004566534
Figure 0004566534

Figure 0004566534
Figure 0004566534

図8に示すように、本実施例は円形の回折光学素子の三次元形状を測定するもので、円形の回折格子の位相関数Fp (x,y)は以下のように定義されている。
p =x2 +y2
As shown in FIG. 8, this embodiment measures the three-dimensional shape of a circular diffractive optical element, and the phase function F p (x, y) of the circular diffraction grating is defined as follows.
F p = x 2 + y 2

また、測定面の有効測定範囲は、図2と同様の座標系に対して、
(x2 +y2 )<102
を満たす領域とする。上式における単位はmmである。
Also, the effective measurement range of the measurement surface is relative to the coordinate system similar to FIG.
(X 2 + y 2 ) <10 2
An area that satisfies The unit in the above formula is mm.

以上により定義された測定面を走査するときの、走査経路を求めるに当り、基本的な走査経路の算出方法は実施例1と同じである。本実施例における計算条件を以下に示す。   In obtaining the scanning path when scanning the measurement surface defined above, the basic method of calculating the scanning path is the same as that of the first embodiment. The calculation conditions in this example are shown below.

Figure 0004566534
Figure 0004566534

Figure 0004566534
Figure 0004566534

一例として、走査経路T3 の計算データを表6に示す。 As an example, Table 6 shows calculation data of the scanning path T 3 .

Figure 0004566534
Figure 0004566534

Figure 0004566534
Figure 0004566534

Figure 0004566534
Figure 0004566534

Figure 0004566534
Figure 0004566534

Figure 0004566534
Figure 0004566534

Figure 0004566534
Figure 0004566534

実施例1を説明するもので、(a)はプローブの走査経路を示す図、(b)は形状測定装置を示す模式図である。Example 1 will be described, in which (a) is a diagram showing a scanning path of a probe, and (b) is a schematic diagram showing a shape measuring apparatus. 実施例1において用いられている回折光学素子の全体形状を示す図である。FIG. 2 is a diagram illustrating an overall shape of a diffractive optical element used in Example 1. 回折格子形状を示す座標を説明する図である。It is a figure explaining the coordinate which shows a diffraction grating shape. 回折格子形状を表わす位相関数を説明する図である。It is a figure explaining the phase function showing a diffraction grating shape. 図1の走査経路の計算始点を説明する図である。It is a figure explaining the calculation start point of the scanning path | route of FIG. 図1の走査経路をつなぐ直線経路を説明する図である。It is a figure explaining the linear path | route which connects the scanning path | route of FIG. 位相関数の値が異なる測定点をつなぐ直線経路を説明する図である。It is a figure explaining the linear path | route which connects the measurement point from which the value of a phase function differs. 実施例2において設定した走査経路およびその計算始点を示す図である。It is a figure which shows the scanning path | route set in Example 2, and its calculation start point. 実施例2において求めた走査経路に沿って移動するプローブの測定経路を示す図である。It is a figure which shows the measurement path | route of the probe which moves along the scanning path | route calculated | required in Example 2. FIG. 図8の走査経路をつなぐ直線経路の計算方法を説明する図である。It is a figure explaining the calculation method of the linear path | route which connects the scanning path | route of FIG. 従来例による走査経路を説明する図である。It is a figure explaining the scanning path | route by a prior art example. 一般的な回折光学素子の鳥瞰図である。It is a bird's-eye view of a general diffractive optical element. 楕円形の回折光学素子を示すもので、(a)はその断面図、(b)は平面図、(c)は走査経路を示す図である。1 shows an elliptical diffractive optical element, where (a) is a sectional view, (b) is a plan view, and (c) is a diagram showing a scanning path.

符号の説明Explanation of symbols

1 〜T8 走査経路
1 ベース
2 治具
11 プローブ
13 Xスライダ
16 Yスライダ
19 Zスライダ
21、22 X干渉計
23 Z干渉計
24、25 ミラー
30 制御装置
T 1 to T 8 scanning path 1 base 2 jig 11 probe 13 X slider 16 Y slider 19 Z slider 21, 22 X interferometer 23 Z interferometer 24, 25 mirror 30 control device

Claims (3)

状の回折格子を有する光学素子に、二次元的に走査するプローブを当接して前記光学素子の三次元形状を測定する形状測定方法であって、前記光学素子の設計形状情報を用いた演算によって前記回折格子の輪帯に平行する複数の走査経路を決定し、各走査経路に沿って前記プローブを走査させながら前記プローブの高さ位置を計測することを特徴とする形状測定方法。 The optical element having an annular shape of the diffraction grating, a shape measuring method for measuring a three-dimensional shape of the optical element in contact with the probe to scan two-dimensionally, using the design shape information of the optical element A shape measuring method comprising: determining a plurality of scanning paths parallel to the annular zone of the diffraction grating by calculation, and measuring the height position of the probe while scanning the probe along each scanning path. 前記回折格子の位相関数から格子の勾配方向を算出し、前記勾配方向と直交する方向に微小量だけずらした計算点をつなぎ合せることで各走査経路を決定することを特徴とする請求項1記載の形状測定方法。   2. The scanning path is determined by calculating a gradient direction of the grating from a phase function of the diffraction grating and connecting calculation points shifted by a minute amount in a direction orthogonal to the gradient direction. Shape measurement method. 状の回折格子を有する光学素子を保持するベース上を二次元的に移動自在であるXYステージと、前記XYステージ上を垂直に移動自在であるZステージと、前記Zステージに保持されたプローブと、前記プローブを前記被測定物に当接した状態で前記Zステージの位置を計測し前記プローブのZ位置データを得るためのZ位置計測手段と、前記XYステージの位置を計測し前記プローブの走査位置データを得るためのXY位置計測手段と、前記回折格子の設計形状情報に基づいて前記XYステージを制御し、前記回折格子の輪帯に平行する複数の走査経路に沿って順次前記プローブを走査させるためのステージ制御手段とを有することを特徴とする形状測定装置。 Z stage and the XY stage on the base is movable two-dimensionally holding the optical element is movable on the XY stage vertically with zonal shape of the diffraction grating, which is held on the Z stage A probe, Z position measuring means for obtaining the Z position data of the probe by measuring the position of the Z stage in a state where the probe is in contact with the object to be measured, and measuring the position of the XY stage. XY position measuring means for obtaining scanning position data of the probe, and the XY stage is controlled on the basis of the design shape information of the diffraction grating, and the probes are sequentially arranged along a plurality of scanning paths parallel to the annular zone of the diffraction grating. And a stage control means for scanning the shape measuring apparatus.
JP2003320567A 2003-09-12 2003-09-12 Shape measuring method and shape measuring apparatus Expired - Fee Related JP4566534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003320567A JP4566534B2 (en) 2003-09-12 2003-09-12 Shape measuring method and shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003320567A JP4566534B2 (en) 2003-09-12 2003-09-12 Shape measuring method and shape measuring apparatus

Publications (3)

Publication Number Publication Date
JP2005090968A JP2005090968A (en) 2005-04-07
JP2005090968A5 JP2005090968A5 (en) 2006-10-26
JP4566534B2 true JP4566534B2 (en) 2010-10-20

Family

ID=34452489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003320567A Expired - Fee Related JP4566534B2 (en) 2003-09-12 2003-09-12 Shape measuring method and shape measuring apparatus

Country Status (1)

Country Link
JP (1) JP4566534B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100923108B1 (en) * 2007-10-15 2009-10-22 (주)리캠 Method and Apparatus for Measuring the Tilt angle of VCM Lens, and a Computer-Readable Medium thereof
JP5713660B2 (en) * 2010-12-21 2015-05-07 キヤノン株式会社 Shape measurement method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159746A (en) * 1994-12-02 1996-06-21 Nikon Corp Method for preparing measurement information for multi-dimensional shape measuring device
JPH09243349A (en) * 1996-03-13 1997-09-19 Nikon Corp Screw hole measurement information preparing device
JPH09304003A (en) * 1996-05-17 1997-11-28 Hitachi Ltd Contact-type 3-d measuring method and its system
JPH11351858A (en) * 1998-06-09 1999-12-24 Mitsutoyo Corp Noncontact three-dimensional measuring equipment
JP2000304528A (en) * 1999-04-19 2000-11-02 Honda Motor Co Ltd Control method for three-dimensional measuring machine and shape verification method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159746A (en) * 1994-12-02 1996-06-21 Nikon Corp Method for preparing measurement information for multi-dimensional shape measuring device
JPH09243349A (en) * 1996-03-13 1997-09-19 Nikon Corp Screw hole measurement information preparing device
JPH09304003A (en) * 1996-05-17 1997-11-28 Hitachi Ltd Contact-type 3-d measuring method and its system
JPH11351858A (en) * 1998-06-09 1999-12-24 Mitsutoyo Corp Noncontact three-dimensional measuring equipment
JP2000304528A (en) * 1999-04-19 2000-11-02 Honda Motor Co Ltd Control method for three-dimensional measuring machine and shape verification method

Also Published As

Publication number Publication date
JP2005090968A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
JP3678915B2 (en) Non-contact 3D measuring device
KR101629545B1 (en) Shape measuring device, shape measuring method, structure manufacturing method, and program
JP7105769B2 (en) Coordinate positioning device and method of operation
JP2006509194A (en) Workpiece inspection method
JP2013059809A (en) Method for correcting systematic error in laser processing system
JP2007529734A (en) Object scanning
JP2008256462A (en) Image display method of shape data
JP3474448B2 (en) Calibration method of coordinate axis squareness error and three-dimensional shape measuring device
JP3678916B2 (en) Non-contact 3D measurement method
JP2007085912A (en) Position measurement method, position measuring device and position measuring system
JP4566534B2 (en) Shape measuring method and shape measuring apparatus
JP4791568B2 (en) 3D measuring device
JPH11351840A (en) Noncontact type three-dimensional measuring method
JP4566533B2 (en) Shape measuring method and shape measuring apparatus
JP2005172610A (en) Three-dimensional measurement apparatus
JP2017053793A (en) Measurement device, and manufacturing method of article
JP2005114549A (en) Surface profile measuring apparatus and method
JP4578538B2 (en) Non-contact 3D measurement method
JP5064725B2 (en) Shape measurement method
JP6287153B2 (en) Sensor unit, shape measuring device, and structure manufacturing system
JP2003097939A (en) Device and method for shape measuring, computer program and storage medium storing computer program for shape measuring, shape correcting process method, type, mold goods and optical system for shape copying
JPH11281306A (en) Calibrated-value detection method for coordinate-measuring machine and calibration method for shape data using the same calibrated data
US11371828B2 (en) Coordinate measuring machine and method for measuring coordinates of a workpiece
JP4340138B2 (en) Non-contact 3D shape measuring device
JP4638077B2 (en) Scanning wide area shape analyzer for test surface

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees