JP3474448B2 - Calibration method of coordinate axis squareness error and three-dimensional shape measuring device - Google Patents
Calibration method of coordinate axis squareness error and three-dimensional shape measuring deviceInfo
- Publication number
- JP3474448B2 JP3474448B2 JP24660498A JP24660498A JP3474448B2 JP 3474448 B2 JP3474448 B2 JP 3474448B2 JP 24660498 A JP24660498 A JP 24660498A JP 24660498 A JP24660498 A JP 24660498A JP 3474448 B2 JP3474448 B2 JP 3474448B2
- Authority
- JP
- Japan
- Prior art keywords
- coordinate
- measured
- measurement
- data
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Description
【0001】[0001]
【発明の属する技術分野】この発明は、例えばレンズ等
の光学素子、特に非球面の形状を測定するときの座標軸
直角度誤差の校正方法及び三次元形状測定装置に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element such as a lens, and more particularly to a method of calibrating a perpendicularity error of a coordinate axis when measuring the shape of an aspherical surface and a three-dimensional shape measuring apparatus.
【0002】[0002]
【従来の技術】非球面レンズ等の形状を測定する代表的
な方法は、X軸ステージとY軸ステージ及びZ軸ステー
ジを有する3軸直交ステージに設けられたプローブと対
向する位置に被測定物を固定し、3軸直交ステージを駆
動してプローブにより被測定物表面をならい走査する。
この走査中のプローブの位置をレーザ測長器等を用いて
逐次測定して被測定物表面の形状を点列データとして得
ている。2. Description of the Related Art A typical method for measuring the shape of an aspherical lens is an object to be measured at a position facing a probe provided on a three-axis orthogonal stage having an X-axis stage, a Y-axis stage and a Z-axis stage. Is fixed, the three-axis orthogonal stage is driven, and the surface of the object to be measured is scanned by the probe.
The position of the probe during this scanning is successively measured using a laser length measuring device or the like to obtain the shape of the surface of the measured object as point sequence data.
【0003】この形状測定用のプローブは接触式と非接
触式の2種類に大別できる。接触式プローブ2aは、図
5の構成図に示すように、ハウジング21に対してバネ
22によりスラスト方向に弾性支持され接触子23を有
し、外部から吸気ポート24を通して多孔質材料25に
吸気することによって接触子23の静圧空気案内を構成
している。接触子23の被測定面28に接触する側の先
端には真球26が固定され、反対側の端面に対向した位
置に変位計27が設けられている。そしてハウジング2
1を固定した3軸直交ステージを駆動して、接触子23
の先端の真球26を被測定物表面に押し付けると、バネ
22が変形して変位計27の出力が変化する。そこで3
軸直交ステージを駆動して変位計27の出力が一定にな
るように制御しながら被測定面28を走査すると同時
に、レーザ測長器等を用いて走査中のプローブ2aの位
置を逐次測定して被測定物の形状を測定する。また、走
査中における変位計27のわずかな出力変動分をレーザ
測長器等の出力に加算することによって、被測定面28
の凹凸に対するプローブ2aの追従誤差を補正すること
ができ、より高精度な測定を行うことができる。The probe for measuring the shape can be roughly classified into a contact type and a non-contact type. As shown in the configuration diagram of FIG. 5, the contact-type probe 2a has a contactor 23 elastically supported in a thrust direction by a spring 22 with respect to a housing 21, and has a contactor 23 from the outside to suck air into a porous material 25 through an intake port 24. This constitutes the static pressure air guide of the contact 23. A true sphere 26 is fixed to the tip of the contactor 23 on the side in contact with the surface to be measured 28, and a displacement gauge 27 is provided at a position facing the end surface on the opposite side. And housing 2
1 is fixed to drive the 3-axis orthogonal stage, and the contact 23
When the true sphere 26 at the tip of is pressed against the surface of the object to be measured, the spring 22 deforms and the output of the displacement meter 27 changes. There 3
The surface to be measured 28 is scanned while controlling the output of the displacement meter 27 to be constant by driving the axis orthogonal stage, and at the same time, the position of the probe 2a being scanned is sequentially measured using a laser length measuring device or the like. The shape of the measured object is measured. Further, by adding a slight output fluctuation of the displacement meter 27 during scanning to the output of the laser length measuring device or the like, the measured surface 28
It is possible to correct the tracking error of the probe 2a with respect to the unevenness of, and it is possible to perform more accurate measurement.
【0004】また、非接触式プローブの代表例として光
プローブが使用されている。光プローブ2bは、図6の
構成図に示すように、光源31から射出された光はハー
フミラー32からレンズ33に送られ、レンズ33によ
り被測定面27に数μm前後の微小スポットで集光され
る。被測定面28で反射した光は、再びレンズ33とハ
ーフミラー32を通りフォーカス検出系34に導かれ
る。フォーカス検出系34には、例えば光ディスクドラ
イブのピックアップと同様の光学系が用いられ、被測定
面28との距離に応じた電気信号が出力される。この光
プローブ2bを取り付けた3軸直交ステージを駆動し
て、光プローブ2bを被測定面28に近づけて出力信号
を捉え、出力信号が一定になるように3軸直交ステージ
を制御しながら被測定面28を走査し、走査中の光プロ
ーブ2bの位置をレーザ測長器等を用いて逐次測定して
被測定物の形状を測定する。An optical probe is used as a typical example of the non-contact type probe. In the optical probe 2b, as shown in the configuration diagram of FIG. 6, the light emitted from the light source 31 is sent from the half mirror 32 to the lens 33, and is condensed by the lens 33 on the measured surface 27 with a minute spot of about several μm. To be done. The light reflected by the measured surface 28 passes through the lens 33 and the half mirror 32 again and is guided to the focus detection system 34. For the focus detection system 34, for example, an optical system similar to a pickup of an optical disk drive is used, and an electric signal according to the distance to the measured surface 28 is output. The three-axis orthogonal stage to which the optical probe 2b is attached is driven to bring the optical probe 2b close to the surface 28 to be measured to capture the output signal, and the three-axis orthogonal stage is controlled so that the output signal becomes constant. The surface 28 is scanned, and the position of the optical probe 2b during scanning is sequentially measured using a laser length measuring device or the like to measure the shape of the measured object.
【0005】[0005]
【発明が解決しようとする課題】上記のように接触式あ
るいは非接触式のプローブを用いて被測定物の表面を走
査して形状を測定する場合、例えば、文献「超高精度三
次元測定機の精度校正方法」(吉住恵一、光学Vol.
20,No.5(1991))に示されているように、
測定座標系のx,y,zの3軸の直交度が測定精度に影
響し、3軸の直交度によっては無視できない大きさの測
定誤差を生じる。When the contact type or non-contact type probe is used to scan the surface of the object to be measured to measure the shape as described above, for example, the document "Ultra High Precision Three-dimensional Measuring Machine" is used. Accuracy calibration method "(Keiichi Yoshizumi, Optics Vol.
20, No. 5 (1991)),
The orthogonality of the three axes x, y, and z of the measurement coordinate system affects the measurement accuracy, and a measurement error of a size that cannot be ignored occurs depending on the orthogonality of the three axes.
【0006】例えば図7に示すように、3軸の座標軸直
交度誤差を含む現実の座標系(X,Y,Z)を、直交度
誤差を含まない理想的な直交座標系(X0,Y0,Z0)
の上に重ねて示した場合、現実の座標系(X,Y,Z)
における点Pの座標(px,py,pz)と理想的な直
交座標系(X0,Y0,Z0)における点Pの座標(p
x0,py0,pz0)は下記(1)式の関係が成り立
つ。For example, as shown in FIG. 7, an actual coordinate system (X, Y, Z) including three coordinate axis orthogonality errors is converted into an ideal orthogonal coordinate system (X 0 , Y) that does not include orthogonality errors. 0 , Z 0 )
When overlaid on top, the actual coordinate system (X, Y, Z)
Coordinates of the point P in (px, py, pz) and the coordinates of the point P in the ideal Cartesian coordinate system (X 0 , Y 0 , Z 0 ) (p
x 0 , py 0 , pz 0 ) has the relationship of the following expression (1).
【0007】[0007]
【数1】 [Equation 1]
【0008】ただし、(is,js,ks)はs方向の
単位ベクトルを示し、Aは座標変換行列である。However, (is, js, ks) represents a unit vector in the s direction, and A is a coordinate conversion matrix.
【0009】このとき、理想の座標系において、原点か
ら距離Rの点Pの集合、すなわち半径Rの球面は、現実
の座標系(X,Y,Z)においては、下記(2)式の内
積で表わされる曲面となる。At this time, in the ideal coordinate system, a set of points P at a distance R from the origin, that is, a spherical surface having a radius R is the inner product of the following equation (2) in the actual coordinate system (X, Y, Z). The curved surface is represented by.
【0010】[0010]
【数2】 [Equation 2]
【0011】一般に(2)式は楕円面を表わしている。
すなわち、(2)式は測定座標系の直角度が正確に出て
いないと、球面が楕円面として測定されてしまうことを
示している。そこで被測定物として半径20mmの球面
を想定し、直角度誤差の影響を試算した結果を図8〜図
10に示す。図8はY軸とZ軸間の直角度誤差が5秒
(2.42×10-5rad)の場合の測定誤差を示し、
図9はZ軸とX軸間の直角度誤差が5秒の場合の測定誤
差を示し、図10はX軸とY軸間の直角度誤差が5秒の
場合の測定誤差を示す。いずれの場合も数100nmの
オーダで測定誤差が生じるいる。In general, the equation (2) represents an elliptical surface.
That is, the expression (2) indicates that the spherical surface will be measured as an elliptic surface unless the squareness of the measurement coordinate system is accurate. Then, assuming a spherical surface having a radius of 20 mm as the object to be measured, the results of trial calculation of the influence of the squareness error are shown in FIGS. FIG. 8 shows the measurement error when the squareness error between the Y axis and the Z axis is 5 seconds (2.42 × 10 −5 rad),
FIG. 9 shows the measurement error when the squareness error between the Z axis and the X axis is 5 seconds, and FIG. 10 shows the measurement error when the squareness error between the X axis and the Y axis is 5 seconds. In either case, a measurement error occurs on the order of several hundred nm.
【0012】このようにサブμmオーダの測定を行う場
合には、3軸の座標軸の直角度誤差を秒オーダで抑える
必要がある。しかも、秒オーダの角度ずれを問題として
いるので経時変化を無視できず、定期的な校正作業が必
要である。この校正作業として、従来は、何らかの方法
で直角度誤差を実測する方法と、校正用の基準球面を測
定し、図8〜図10に例示したような測定結果がなるべ
く平坦になるように、直角度誤差を試行錯誤で求める方
法が採用されている。しかしながら、いずれの方法も熟
練した作業者を必要とするとともに校正作業に非常に時
間を要するという短所があった。When measuring in the order of sub-μm, it is necessary to suppress the squareness error of the three coordinate axes on the order of seconds. Moreover, since the angular deviation of the second order is a problem, the change over time cannot be ignored, and regular calibration work is required. As this calibration work, conventionally, a method of actually measuring a squareness error is used, and a reference spherical surface for calibration is measured so that the measurement result as illustrated in FIGS. 8 to 10 is as flat as possible. The method of finding the angle error by trial and error is adopted. However, each method has a disadvantage that it requires a skilled worker and requires a very long time for the calibration work.
【0013】この発明はかかる短所を解消し、簡単な作
業で、特に熟練した作業者を必要としないで補正パラメ
ータを自動的に推定して、短い演算処理時間で3軸の座
標軸の直角度誤差を補正する座標軸直角度誤差の校正方
法及び三次元形状測定装置を提供することを目的とする
ものである。The present invention solves the above drawbacks and automatically estimates the correction parameters by a simple operation without requiring a particularly skilled worker, and in a short calculation processing time, the squareness error of the coordinate axes of the three axes. It is an object of the present invention to provide a method of calibrating a perpendicularity error of a coordinate axis for correcting the error and a three-dimensional shape measuring apparatus.
【0014】[0014]
【課題を解決するための手段】この発明に係る座標軸直
角度誤差の校正方法は、被測定物表面をならい走査し、
走査経路の座標を3次元直交座標点列データとして測定
し、測定した点列データに座標変換を施して測定座標軸
間の直角度誤差に起因する測定データの歪みを補正する
座標軸直角度誤差の校正方法であって、基準球面の形状
を実測し、理想球面を測定用の座標系に座標変換して得
られる楕円面と基準球面の実測データとの差を最小化す
るように測定用の座標系から理想的な座標系への座標変
換行列を推定し、推定した座標変換行列のパラメータを
利用して被測定物の3次元直交座標点列データに座標変
換を施して測定座標軸間の直角度誤差補正を行うことを
特徴とする。A method of calibrating a perpendicularity error of a coordinate axis according to the present invention comprises:
Calibration of the coordinate axis squareness error that measures the coordinates of the scanning path as three-dimensional orthogonal coordinate point sequence data and performs coordinate conversion on the measured point sequence data to correct the distortion of the measurement data caused by the squareness error between the measurement coordinate axes. The measurement coordinate system is designed to minimize the difference between the measurement data of the reference spherical surface and the elliptical surface obtained by measuring the shape of the reference spherical surface and converting the ideal spherical surface into the coordinate system for measurement. Transformation from a to the ideal coordinate system
It is characterized in that a conversion matrix is estimated, and the three-dimensional orthogonal coordinate point sequence data of the object to be measured is subjected to coordinate conversion using the parameters of the estimated coordinate conversion matrix to correct the squareness error between the measurement coordinate axes.
【0015】上記基準球面の測定範囲の中心近傍に測定
基準点を設定し、基準点を含んで放射状に配列する複数
経路上の点列データ若しは基準点に対して同心円状に配
列する複数経路上の点列データ又は基準点に対して同心
多角形状に配列する複数経路上の点列データを用いて座
標変換行列を推定することが望ましい。Measurement reference points are set in the vicinity of the center of the measurement range of the reference spherical surface, and the point sequence data on a plurality of paths are radially arranged including the reference points, or a plurality of points are arranged concentrically with respect to the reference points. It is desirable to estimate the coordinate conversion matrix using point sequence data on the route or point sequence data on a plurality of routes arranged in a concentric polygonal shape with respect to the reference point.
【0016】この発明の三次元形状測定装置は、3軸の
直交移動手段に設けられた形状測定用プローブと直交移
動手段の各軸の移動量を測定する移動量測定手段と座標
データ算出手段及び演算処理手段とを有し、直交移動手
段は基準球面及び被測定物表面で形状測定用プローブを
移動してならい走査を行い、移動量測定手段は直交移動
手段の各軸の移動量を測定し、座標データ算出手段は移
動量測定手段で測定した移動量から形状測定用プローブ
の走査経路の座標を3次元直交座標点列データとして算
出し、演算処理手段は理想球面を測定用の座標系に座標
変換して得られる楕円面と基準球面の測定データとの差
を最小化するように測定用の座標系から理想的な座標系
への座標変換行列を推定し、推定した座標変換行列のパ
ラメータを利用して被測定物の3次元直交座標点列デー
タに座標変換を施して測定座標軸間の直角度誤差補正を
行うことを特徴とする。The three-dimensional shape measuring apparatus of the present invention comprises a shape measuring probe provided on the three-axis orthogonal moving means, a moving amount measuring means for measuring the moving amount of each axis of the orthogonal moving means, a coordinate data calculating means, and The orthogonal movement means performs scanning following the shape measurement probe on the reference spherical surface and the surface of the object to be measured, and the movement amount measurement means measures the movement amount of each axis of the orthogonal movement means. The coordinate data calculation means calculates the coordinates of the scanning path of the shape measuring probe from the movement amount measured by the movement amount measurement means as three-dimensional orthogonal coordinate point sequence data, and the arithmetic processing means uses the ideal spherical surface as the measurement coordinate system. From the coordinate system for measurement to the ideal coordinate system so as to minimize the difference between the ellipsoid obtained by coordinate transformation and the measurement data of the reference sphere.
The coordinate transformation matrix to the 3D orthogonal coordinate point sequence data of the DUT is estimated by using the parameters of the estimated coordinate transformation matrix.
And performing the perpendicularity error correction between the measurement axes by performing coordinate transformation data.
【0017】上記座標データ算出手段は、基準球面の測
定範囲の中心近傍に測定基準点を設定し、該基準点を含
んで放射状に配列する複数経路上の点列データ若しくは
基準点に対して同心円状に配列する複数経路上の点列デ
ータ又は基準点に対して同心多角形状に配列する複数経
路上の点列データを演算処理手段に送ることが望まし
い。The coordinate data calculating means sets a measurement reference point near the center of the measurement range of the reference spherical surface, and concentric circles with respect to the point sequence data or the reference points on a plurality of paths radially arranged including the reference point. It is desirable to send point sequence data on a plurality of paths arranged in a line or point sequence data on a plurality of paths arranged in a concentric polygonal shape to the reference point to the arithmetic processing means.
【0018】また、上記移動量測定手段はレーザ干渉測
長器であることが望ましい。さらに移動量測定手段のレ
ーザ干渉測長器と形状測定用プローブとを同一移動台上
に設置し、形状測定用プローブ先端の位置がレーザ干渉
測長器の各測長光路と常に同一直線上に位置するように
レーザ干渉測長器を配置すると良い。The moving amount measuring means is preferably a laser interferometer. Further, the laser interferometer of the movement amount measuring means and the shape measuring probe are installed on the same moving table, and the position of the tip of the shape measuring probe is always on the same straight line as each measuring optical path of the laser interferometer. It is advisable to dispose the laser interferometer lengthwise.
【0019】また、上記直交移動手段として静圧流体案
内を用いると良い。Further, a static pressure fluid guide may be used as the orthogonal moving means.
【0020】[0020]
【発明の実施の形態】この発明の三次元形状測定装置
は、3軸直交ステージに設けられた形状測定用プローブ
と移動量測定手段と座標データ算出部と演算処理部と出
力部を有する。形状測定用プローブは載置台に固定され
た被測定物の表面を3軸直交ステージの駆動によりなら
い走査する。移動量測定手段は、例えばレーザ干渉測長
器からなり、3軸直交ステージの各軸の移動量を測定す
る。座標データ算出部は移動量測定手段で測定した移動
量から形状測定用プローブの走査経路の座標を3次元直
交座標点列データ(以下、点列データという)として算
出する。演算処理部は切換部と座標変換行列推定部及び
直角度誤差補正部を有する。BEST MODE FOR CARRYING OUT THE INVENTION The three-dimensional shape measuring apparatus of the present invention has a shape measuring probe, a movement amount measuring means, a coordinate data calculating section, an arithmetic processing section and an output section which are provided on a three-axis orthogonal stage. The shape measuring probe scans the surface of the object to be measured, which is fixed on the mounting table, by driving the three-axis orthogonal stage. The moving amount measuring means is, for example, a laser interferometer, and measures the moving amount of each axis of the three-axis orthogonal stage. The coordinate data calculation unit calculates the coordinates of the scanning path of the shape measuring probe from the movement amount measured by the movement amount measuring means as three-dimensional orthogonal coordinate point sequence data (hereinafter referred to as point sequence data). The arithmetic processing unit has a switching unit, a coordinate conversion matrix estimation unit, and a squareness error correction unit.
【0021】この三次元形状測定装置でレンズ等の被測
定物の形状を測定するとき、まず、載置台に基準球面を
固定し、3軸直交ステージを駆動して形状測定用プロー
ブにより基準球面をならい走査しながら、移動量測定手
段で3軸直交ステージの各軸の移動量を検出して座標デ
ータ算出部に送る。座標データ算出部は送られた移動量
から基準球面の走査経路の点列データを算出して演算処
理部に送る。演算処理部の切換部は基準球面のならい走
査をしているときに座標データ算出部から送られた点列
データを座標変換行列推定部に送る。座標変換行列推定
部は、理想球面を座標変換して得られる楕円面と送られ
た基準球面の点列データとの差を最小化するように座標
変換行列を推定する。次ぎに、被測定物を載置台に固定
し、3軸直交ステージを駆動して形状測定用プローブに
より被測定物の表面をならい走査しながら、移動量測定
手段で3軸直交ステージの各軸の移動量を検出して座標
データ算出部に送る。座標データ算出部は送られた移動
量から被測定物の表面の走査経路の点列データを算出し
て演算処理部に送る。演算処理部の切換部は被測定物の
ならい走査をしているときに座標データ算出部から送ら
れた点列データを直角度誤差補正部に送る。直角度誤差
補正部は送られた点列データを座標変換行列推定部で推
定した座標変換行列のパラメータを利用して座標変換
し、測定座標軸間の直角度誤差補正をした点列データを
形状データとして出力部に送る。出力部は送られた形状
データを表示装置や記憶装置等に出力する。When measuring the shape of an object to be measured such as a lens with this three-dimensional shape measuring apparatus, first, the reference spherical surface is fixed to the mounting table, the triaxial orthogonal stage is driven, and the reference spherical surface is measured by the shape measuring probe. While following the profile scanning, the moving amount measuring means detects the moving amount of each axis of the three-axis orthogonal stage and sends it to the coordinate data calculating section. The coordinate data calculation unit calculates point sequence data of the scanning path of the reference spherical surface from the transmitted movement amount and sends it to the arithmetic processing unit. The switching unit of the arithmetic processing unit sends the point sequence data sent from the coordinate data calculation unit to the coordinate conversion matrix estimation unit during the contour scanning of the reference spherical surface. The coordinate transformation matrix estimation unit estimates the coordinate transformation matrix so as to minimize the difference between the elliptical surface obtained by coordinate transformation of the ideal sphere and the sent point sequence data of the reference sphere. Next, the object to be measured is fixed to a mounting table, and while driving the three-axis orthogonal stage to scan the surface of the object to be measured by the shape measuring probe, the movement amount measuring means is used to move each axis of the three-axis orthogonal stage. The amount of movement is detected and sent to the coordinate data calculation unit. The coordinate data calculation unit calculates point sequence data of the scanning path of the surface of the object to be measured from the sent movement amount and sends it to the arithmetic processing unit. The switching unit of the arithmetic processing unit sends the point sequence data sent from the coordinate data calculation unit to the squareness error correction unit during the contour scan of the measured object. The squareness error correction unit performs coordinate transformation of the sent point sequence data using the parameters of the coordinate transformation matrix estimated by the coordinate transformation matrix estimation unit, and transforms the point sequence data between the measurement coordinate axes into the shape data. And send it to the output section. The output unit outputs the sent shape data to a display device, a storage device, or the like.
【0022】[0022]
【実施例】図1はこの発明の一実施例の構成を示すブロ
ック図である。図に示すように、三次元形状測定装置は
3軸直交ステージ1と形状測定用プローブ2と移動量測
定手段3と座標データ算出部4と演算処理部5及び出力
部6を有する。3軸直交ステージ1は、図2に示すよう
に、X軸ステージ7とY軸ステージ8及びZ軸ステージ
9を有し、接触式又は非接触式の形状測定用プローブ2
が取り付けられ、形状測定用プローブ2と対向する位置
に被測定物10を固定する載置台11が設けられてい
る。形状測定用プローブ2は被測定物10の表面を3軸
直交ステージ1の駆動によりならい走査する。移動量測
定手段3は、例えばレーザ干渉測長器からなり、3軸直
交ステージ1の各軸の移動量すなわち形状測定用プロー
ブ2の移動量を測定する。座標データ算出部4は移動量
測定手段3で測定した移動量から形状測定用プローブ2
の走査経路の座標を3次元直交座標点列データ(以下、
点列データという)として算出する。演算処理部5は切
換部12と座標変換行列推定部13及び直角度誤差補正
部14を有する。切換部12は座標データ算出部4から
入力される点列データの出力先を処理モードに応じて座
標変換行列推定部13か直角度誤差補正部14に切り換
える。座標変換行列推定部13は理想球面を座標変換し
て得られる楕円面と基準球面の測定データとの差を最小
化するように座標変換行列を推定する。直角度誤差補正
部14は推定した座標変換行列のパラメータを利用して
被測定物10の点列データに座標変換を施して測定座標
軸間の直角度誤差補正を行う。出力部6は直角度誤差補
正部14で測定座標軸間の直角度誤差補正を行った被測
定物10の形状データを表示装置や記憶装置等に出力す
る。1 is a block diagram showing the configuration of an embodiment of the present invention. As shown in the figure, the three-dimensional shape measuring device has a three-axis orthogonal stage 1, a shape measuring probe 2, a movement amount measuring means 3, a coordinate data calculation unit 4, an arithmetic processing unit 5, and an output unit 6. As shown in FIG. 2, the three-axis orthogonal stage 1 has an X-axis stage 7, a Y-axis stage 8 and a Z-axis stage 9, and is a contact type or non-contact type shape measurement probe 2
And a mounting table 11 for fixing the object to be measured 10 is provided at a position facing the shape measuring probe 2. The shape measuring probe 2 scans the surface of the object to be measured 10 by driving the three-axis orthogonal stage 1. The movement amount measuring means 3 is, for example, a laser interferometer, and measures the movement amount of each axis of the triaxial orthogonal stage 1, that is, the movement amount of the shape measuring probe 2. The coordinate data calculation unit 4 uses the movement amount measured by the movement amount measuring means 3 to determine the shape measurement probe 2
3D Cartesian coordinate point sequence data (hereinafter,
It is calculated as point sequence data). The arithmetic processing unit 5 has a switching unit 12, a coordinate transformation matrix estimation unit 13, and a squareness error correction unit 14. The switching unit 12 switches the output destination of the point sequence data input from the coordinate data calculation unit 4 to the coordinate conversion matrix estimation unit 13 or the squareness error correction unit 14 depending on the processing mode. The coordinate transformation matrix estimation unit 13 estimates the coordinate transformation matrix so as to minimize the difference between the ellipsoidal surface obtained by coordinate transformation of the ideal sphere and the measurement data of the reference sphere. The squareness error correction unit 14 performs coordinate conversion on the point sequence data of the DUT 10 using the parameters of the estimated coordinate conversion matrix to correct the squareness error between the measurement coordinate axes. The output unit 6 outputs the shape data of the DUT 10 on which the squareness error correction between the measurement coordinate axes is performed by the squareness error correction unit 14 to a display device, a storage device, or the like.
【0023】上記のように構成した三次元形状測定装置
の処理を説明するに当たり、まず、直角度誤差補正を行
うための座標変換行列のパラメータを推定する原理を説
明する。In explaining the processing of the three-dimensional shape measuring apparatus configured as described above, first, the principle of estimating the parameters of the coordinate conversion matrix for correcting the squareness error will be described.
【0024】図3に示すように、直交度誤差を含まない
理想的な直交座標系(X0,Y0,Z0)に対する3軸の座
標軸直交度誤差を含む現実の座標系(X,Y,Z)の直
角度誤差をα,β,γで定義する。図3においては、現
実の座標系(X,Y,Z)に対して理想的な直交座標系
(X0,Y0,Z0 )を、Z軸方向とZX平面が重なるよ
うに選んでいるが、例えばX軸方向とXY平面とが重な
るように選んでも良い。あるいは、Y軸方向のみが重な
るように選んでも、X軸,Y軸,Z軸の全てが任意の方
向を向いていても良いが、Y軸方向のみが重なるように
選んだり、X軸,Y軸,Z軸の全てが任意の方向を向い
ている場合は、基準球面のような回転対象体を用いる場
合に解が不定となるので、そのようにならないための制
約条件が必要となる。As shown in FIG. 3, the coordinate system of three axes with respect to an ideal Cartesian coordinate system (X 0, Y 0, Z 0 ) which does not include the orthogonality error, the actual coordinate system (X, Y , Z) is defined by α, β, γ. In FIG. 3, an ideal orthogonal coordinate system (X 0 , Y 0 , Z 0 ) with respect to the actual coordinate system (X, Y, Z) is selected so that the Z-axis direction and the ZX plane overlap. However, for example, it may be selected so that the X-axis direction and the XY plane overlap. Alternatively, only the Y-axis direction may be selected to be overlapped, or all of the X-axis, Y-axis, and Z-axis may be oriented in arbitrary directions. If all of the axes and the Z-axis are oriented in arbitrary directions, the solution becomes indefinite when a rotating object such as a reference spherical surface is used, so a constraint condition for preventing such a case is required.
【0025】直角度誤差を、図3に示すように定義する
と、α<<1,β<<1,γ<<1のとき、現実の座標
系(X,Y,Z)から理想的な直交座標系(X0,Y0,Z
0)への線型変換行列Aは下記(3)式で表わされる。When the squareness error is defined as shown in FIG. 3, when α << 1, β << 1, γ << 1, ideal orthogonality is obtained from the actual coordinate system (X, Y, Z). Coordinate system (X 0 , Y 0, Z
The linear conversion matrix A to 0 ) is expressed by the following equation (3).
【0026】[0026]
【数3】 [Equation 3]
【0027】この変換行列Aを(2)式に代入すると、
下記(4)式が得られる。Substituting this conversion matrix A into the equation (2),
The following formula (4) is obtained.
【0028】[0028]
【数4】 [Equation 4]
【0029】(4)式において、α<<1,β<<1,
γ<<1を考慮して高次の微小量を無視すると、(4)
式は下記(5)式で表わされる。In equation (4), α << 1, β << 1,
Considering γ << 1 and ignoring high-order minute amounts, (4)
The equation is expressed by the following equation (5).
【0030】[0030]
【数5】 [Equation 5]
【0031】上記(4)式又は(5)式は(3)式の変
換行列Aによる座標変換によって半径Rの球面に写像さ
れる楕円面を表わしている。この(4)式または(5)
式のx,y,zにそれぞれ(x−xs),(y−y
s),(z−zs)を代入した式をモデル式とし、実測
データとの差を最小化する最適化問題としてα,β,
γ,xs,ys,zsを求める。このようにして直角度
誤差α,β,γを決定でき、現実の座標系(X,Y,
Z)から理想的な直交座標系(X0, Y0,Z0 )への
座標変換行列Aを求めることができる。The above equation (4) or equation (5) represents an ellipsoidal surface that is mapped onto a spherical surface of radius R by coordinate transformation by the transformation matrix A of equation (3). This equation (4) or (5)
(X-xs) and (y-y) are added to x, y, and z of the equation, respectively.
s), (z−zs) are used as model expressions, and α, β, as optimization problems that minimize the difference from the actual measurement data.
γ, xs, ys, zs are calculated. In this way, the squareness errors α, β, γ can be determined, and the actual coordinate system (X, Y,
The coordinate conversion matrix A from Z) to the ideal rectangular coordinate system (X 0 , Y 0 , Z 0 ) can be obtained.
【0032】この原理により被測定物の形状データを直
角度誤差補正を行うときの処理を図4のフローチャート
を参照して説明する。The process for correcting the squareness error of the shape data of the object to be measured based on this principle will be described with reference to the flowchart of FIG.
【0033】まず、三次元形状測定装置の載置台11に
基準球面を固定し、3軸直交ステージ1を駆動して形状
測定用プローブ2により基準球面をならい走査しながら
(ステップS1)、移動量測定手段3で3軸直交ステー
ジ1の各軸すなわち形状測定用プローブ2の移動量を検
出して座標データ算出部4に送る。この3軸直交ステー
ジ1の各軸の移動量を測定する移動量算出手段3として
安定化された光の波長を測定基準とするレーザ干渉測長
器を用いることにより、直角度誤差とは関係のない測定
誤差を極力排除して、3軸直交ステージ1の各軸の移動
量を極めて正確に測定することができ、直角度誤差を秒
オーダで正確に決定することができる。First, the reference spherical surface is fixed on the mounting table 11 of the three-dimensional shape measuring apparatus, the three-axis orthogonal stage 1 is driven, and the reference spherical surface is scanned by the shape measuring probe 2 (step S1). The measuring means 3 detects the amount of movement of each axis of the triaxial orthogonal stage 1, that is, the movement amount of the shape measuring probe 2, and sends it to the coordinate data calculating section 4. By using a laser interferometer as a movement amount calculating means 3 for measuring the movement amount of each axis of the three-axis orthogonal stage 1, a stabilized light wavelength is used as a measurement reference, and a relation with a squareness error is obtained. The amount of movement of each axis of the three-axis orthogonal stage 1 can be measured extremely accurately by eliminating a measurement error that is not present as much as possible, and the squareness error can be accurately determined on the order of seconds.
【0034】また、3軸直交ステージ1の移動量を正確
に測定しようとする場合、アッベ誤差に十分注意を払う
必要がある。アッベ誤差を排除する一つの方法は、測定
対象物と同軸上で測長することである。そこで移動量測
定手段3としてレーザ干渉測長器を使用し、レーザ干渉
測長器の干渉計を形状測定用プローブ2と同一移動台に
配置し、形状測定用プローブ2の先端が常にレーザ干渉
測長器の測長光路の延長線上にあるようにする。このよ
うにレーザ干渉測長器を配置することにより、形状測定
用プローブ2が移動してもアッベ誤差の影響を受けずに
形状測定用プローブ2の先端位置を正確に測定すること
ができる。In order to accurately measure the movement amount of the triaxial orthogonal stage 1, it is necessary to pay sufficient attention to Abbe error. One method of eliminating the Abbe error is to measure the length coaxially with the object to be measured. Therefore, a laser interferometer is used as the movement amount measuring means 3, and the interferometer of the laser interferometer is placed on the same moving table as the shape measuring probe 2 so that the tip of the shape measuring probe 2 is always laser interferometer. It should be on the extension of the length measuring optical path of the long instrument. By arranging the laser interferometer in this way, the tip position of the shape measuring probe 2 can be accurately measured without being affected by the Abbe error even if the shape measuring probe 2 moves.
【0035】さらに、アッベ誤差を排除する他の方法と
しては、アッベ誤差の原因となる3軸直交ステージ1の
姿勢精度よ真直精度を高めることである。そこで3軸直
交ステージ1として静圧流体案内を使用することにより
姿勢情報と真直精度を高めることができ、移動量測定手
段3のレーザ測長器により形状測定用プローブ2先端と
同軸上で測長するのが困難な場合であっても、アッベ誤
差を最小限に抑制することができる。Another method for eliminating the Abbe error is to increase the straightness accuracy rather than the attitude accuracy of the three-axis orthogonal stage 1 which causes the Abbe error. Therefore, by using a hydrostatic fluid guide as the three-axis orthogonal stage 1, posture information and straightness accuracy can be improved, and the laser length measuring device of the movement amount measuring means 3 measures the length coaxially with the tip of the shape measuring probe 2. Even if it is difficult to do so, the Abbe error can be minimized.
【0036】座標データ算出部4は送られた移動量から
基準球面の走査経路の点列データを算出して演算処理部
5に送る(ステップS2)。演算処理部5の切換部12
は基準球面のならい走査をしているときに座標データ算
出部4から送られた点列データを座標変換行列推定部1
3に送る。座標変換行列推定部13は送られた基準球面
の点列データを(4)式又は(5)式のx,y,zにそ
れぞれ代入して理想球面を座標変換して得られる楕円面
と基準球面の実測データとの差を最小化するような座標
変換行列のパラメータα,β,γを推定する(ステップ
S3)。次ぎに被測定物10を三次元形状測定装置の載
置台11に固定し、3軸直交ステージ1を駆動して形状
測定用プローブ2により被測定物10の表面をならい走
査しながら(ステップS4)、移動量測定手段3で3軸
直交ステージ1の各軸の移動量を検出して座標データ算
出部4に送る。座標データ算出部4は送られた移動量か
ら被測定物10の表面の走査経路の点列データを算出し
て演算処理部5に送る(ステップS5)。演算処理部5
の切換部12は被測定物10のならい走査をしていると
きに座標データ算出部4から送られた点列データを直角
度誤差補正部14に送る。直角度誤差補正部14は送ら
れた点列データを座標変換行列推定部13で推定した座
標変換行列のパラメータα,β,γを利用して座標変換
し(ステップS6)、測定座標軸間の直角度誤差補正を
した点列データを形状データとして出力部6に送る。出
力部6は送られた形状データを表示装置や記憶装置等に
出力する(ステップS7)。The coordinate data calculation unit 4 calculates point sequence data of the scanning path of the reference spherical surface from the sent movement amount and sends it to the arithmetic processing unit 5 (step S2). Switching unit 12 of arithmetic processing unit 5
Is the coordinate conversion matrix estimation unit 1 based on the point sequence data sent from the coordinate data calculation unit 4 during the contour scanning of the reference spherical surface.
Send to 3. The coordinate transformation matrix estimation unit 13 substitutes the sent point sequence data of the reference sphere into x, y, and z of the equation (4) or (5), respectively, and transforms the ideal sphere into coordinates and the reference ellipsoid. The parameters α, β, γ of the coordinate transformation matrix that minimize the difference from the measured data of the spherical surface are estimated (step S3). Next, the object to be measured 10 is fixed to the mounting table 11 of the three-dimensional shape measuring apparatus, the three-axis orthogonal stage 1 is driven, and the surface of the object to be measured 10 is scanned by the shape measuring probe 2 (step S4). The movement amount measuring means 3 detects the movement amount of each axis of the three-axis orthogonal stage 1 and sends it to the coordinate data calculation section 4. The coordinate data calculation unit 4 calculates the point sequence data of the scanning path on the surface of the DUT 10 from the sent movement amount and sends it to the arithmetic processing unit 5 (step S5). Arithmetic processing unit 5
The switching section 12 sends the point sequence data sent from the coordinate data calculation section 4 to the squareness error correction section 14 while the object 10 is being scanned. The squareness error correction unit 14 performs coordinate conversion of the sent point sequence data using the parameters α, β, γ of the coordinate conversion matrix estimated by the coordinate conversion matrix estimation unit 13 (step S6), and the straight line between the measurement coordinate axes is corrected. The point sequence data with the corrected angle error is sent to the output unit 6 as shape data. The output unit 6 outputs the sent shape data to a display device, a storage device or the like (step S7).
【0037】このようにして、三次元形状測定装置の演
算処理部5で自動的に測定座標軸間の直角度誤差補正を
する座標変換行列を推定して直角度誤差補正を行うこと
により、レンズ等の光学素子や非球面の形状測定を作業
者によるばらつきがなく、かつ、手間のかかる煩雑な校
正作業を行うことなしで精度良く測定することができ
る。In this way, the arithmetic processing unit 5 of the three-dimensional shape measuring apparatus automatically estimates the coordinate conversion matrix for correcting the squareness error between the measurement coordinate axes and corrects the squareness error, thereby correcting the lens etc. It is possible to accurately measure the shape of the optical element or the aspherical surface without any variation among operators and without performing troublesome and complicated calibration work.
【0038】上記のように座標変換行列のパラメータを
推定したり、被測定物の点列データを座標変換するとき
に、演算時間の短縮という観点から、演算に使用するデ
ータ数は極力少ない方が都合がよい。座標軸間の直角度
誤差による測定誤差は、図8〜図10に示したように、
Y軸方向に沿ったS字面と、X軸方向に沿ったS字面
と、X軸とY軸方向に対して45度傾いた鞍型面と、こ
れらが複合した形状となって現れるから、測定範囲の中
心近傍点を通る放射状に配列したデータ、すなわち、X
軸とY軸に平行な方向及びX軸とY軸と45度で交わる
方向に沿ったデータを使えば、演算に使用するデータ数
を少なくして、理想球面を座標変換して得られる楕円面
と基準球面の実測データとの差を最小化する座標変換行
列のパラメータを安定して推定できるとともに座標軸間
の直角度誤差補正の演算時間を短縮することができる。
また、測定範囲の中心近傍点に対して同心多角形状に配
列したデータ又は同心円状に配列したデータを抽出して
も、演算に使用するデータ数を少なくして演算時間を短
縮することができる。そこで座標データ算出部4は、こ
れらのデータを選択して演算処理部5に送ることによ
り、演算処理部5の処理時間を大幅に短縮することがで
きる。When the parameters of the coordinate conversion matrix are estimated or the point sequence data of the object to be measured are coordinate-converted as described above, the number of data used for the calculation should be as small as possible from the viewpoint of shortening the calculation time. convenient. The measurement error due to the squareness error between the coordinate axes is as shown in FIGS.
Since an S-shaped surface along the Y-axis direction, an S-shaped surface along the X-axis direction, a saddle-shaped surface inclined by 45 degrees with respect to the X-axis and Y-axis directions, and a combination of these appear, measurement is made. Data arranged radially through the points near the center of the range, that is, X
If the data along the direction parallel to the axis and the Y-axis and the direction intersecting the X-axis and the Y-axis at 45 degrees are used, the number of data used for the calculation is reduced, and the ellipsoidal surface obtained by converting the coordinates of the ideal spherical surface. It is possible to stably estimate the parameter of the coordinate transformation matrix that minimizes the difference between the measured value of the reference spherical surface and the measured data of the reference spherical surface, and it is possible to shorten the calculation time for correcting the squareness error between coordinate axes.
Further, even if the data arranged in a concentric polygonal shape or the data arranged in a concentric circle with respect to the point near the center of the measurement range is extracted, the number of data used for the calculation can be reduced and the calculation time can be shortened. Therefore, the coordinate data calculation unit 4 can significantly reduce the processing time of the arithmetic processing unit 5 by selecting these data and sending them to the arithmetic processing unit 5.
【0039】[0039]
【発明の効果】この発明は以上説明したように、理想球
面を座標変換して得られる楕円面と基準球面の実測デー
タとの差を最小化するように座標変換行列を推定し、推
定した座標変換行列のパラメータを利用して被測定物の
点列データに座標変換を施して測定座標軸間の直角度誤
差補正を自動的に行うようにしたから、レンズ等の光学
素子や非球面の形状測定を作業者によるばらつきがな
く、かつ、手間のかかる煩雑な校正作業を行うことなし
で精度良く測定することができる。As described above, according to the present invention, the coordinate transformation matrix is estimated so as to minimize the difference between the measured data of the ellipsoidal surface obtained by coordinate transformation of the ideal spherical surface and the reference spherical surface. By using the parameters of the transformation matrix to perform coordinate transformation on the point sequence data of the DUT and automatically correct the squareness error between the measurement coordinate axes, it is possible to measure the shape of optical elements such as lenses and aspherical surfaces. Can be measured with high accuracy without any variation among operators and without performing a troublesome and complicated calibration work.
【0040】また、基準球面の測定範囲の中心近傍点を
通る放射状に配列したデータを使用して座標変換行列を
推定することにより、演算に使用するデータ数を少なく
して演算時間を短縮することができる。Further, the coordinate conversion matrix is estimated by using the data radially arranged passing through the points near the center of the measurement range of the reference spherical surface, thereby reducing the number of data used for the calculation and shortening the calculation time. You can
【0041】また、移動量算出手段として安定化された
光の波長を測定基準とするレーザ干渉測長器を用いるこ
とにより、直角度誤差とは関係のない測定誤差を極力排
除して、3軸の直交移動手段の各軸の移動量を極めて正
確に測定することができ、直角度誤差を秒オーダで正確
に決定することができる。Further, by using a laser interferometer as a moving amount calculating means, which uses the wavelength of the stabilized light as a measurement reference, a measurement error unrelated to the squareness error is eliminated as much as possible, and the three axes are measured. The amount of movement of each axis of the orthogonal moving means can be measured extremely accurately, and the squareness error can be accurately determined on the order of seconds.
【0042】さらに、レーザ干渉測長器の干渉計を形状
測定用プローブと同一移動台に配置し、形状測定用プロ
ーブの先端が常にレーザ干渉測長器の測長光路の延長線
上にあるようにすることにより、形状測定用プローブが
移動してもアッベ誤差の影響を受けずに形状測定用プロ
ーブの先端位置を正確に測定することができ、信頼性の
高い直角度誤差推定値を得ることができる。Further, the interferometer of the laser interferometer is placed on the same moving table as the shape measuring probe so that the tip of the shape measuring probe is always on the extension line of the measuring optical path of the laser interferometer. By doing so, even if the shape measuring probe moves, the tip position of the shape measuring probe can be accurately measured without being affected by the Abbe error, and a highly reliable squareness error estimated value can be obtained. it can.
【0043】さらに、3軸の直交移動手段として静圧流
体案内を使用することにより姿勢情報と真直精度を高め
ることができ、レーザ干渉測長器により形状測定用プロ
ーブ先端と同軸上で測長するのが困難な場合であって
も、アッベ誤差を最小限に抑制することができる。Further, by using the hydrostatic fluid guide as the three-axis orthogonal moving means, the posture information and the straightness accuracy can be enhanced, and the length is measured coaxially with the tip of the shape measuring probe by the laser interferometer. Even if it is difficult to obtain, the Abbe error can be suppressed to the minimum.
【図1】この発明の実施例の構成を示すブロック図であ
る。FIG. 1 is a block diagram showing a configuration of an embodiment of the present invention.
【図2】3軸直交ステージの構成図である。FIG. 2 is a configuration diagram of a three-axis orthogonal stage.
【図3】現実の座標系の直角度誤差を示す説明図であ
る。FIG. 3 is an explanatory diagram showing a squareness error of an actual coordinate system.
【図4】上記実施例の処理を示すフローチャートであ
る。FIG. 4 is a flowchart showing the processing of the above embodiment.
【図5】接触式プローブの構成図である。FIG. 5 is a configuration diagram of a contact type probe.
【図6】非接触式プローブの構成図である。FIG. 6 is a configuration diagram of a non-contact type probe.
【図7】理想的な直交座標系と現実の座標系を示す説明
図である。FIG. 7 is an explanatory diagram showing an ideal rectangular coordinate system and an actual coordinate system.
【図8】直角度誤差の影響を試算した第1の結果を示す
説明図である。FIG. 8 is an explanatory diagram showing a first result of trial calculation of an influence of a squareness error.
【図9】直角度誤差の影響を試算した第2の結果を示す
説明図である。FIG. 9 is an explanatory diagram showing a second result of trial calculation of an influence of a squareness error.
【図10】直角度誤差の影響を試算した第3の結果を示
す説明図である。FIG. 10 is an explanatory diagram showing a third result of trial calculation of influence of squareness error.
1 3軸直交ステージ 2 形状測定用プローブ 3 移動量測定手段 4 座標データ算出部 5 演算処理部 6 出力部 10 被測定物 12 切換部 13 座標変換行列推定部 14 直角度誤差補正部 1 3-axis orthogonal stage 2 Shape measurement probe 3 Moving amount measuring means 4 Coordinate data calculation unit 5 Arithmetic processing unit 6 Output section 10 DUT 12 Switching unit 13 Coordinate conversion matrix estimation unit 14 Squareness error correction unit
Claims (2)
の座標を3次元直交座標点列データとして測定し、測定
した点列データに座標変換を施して測定座標軸間の直角
度誤差に起因する測定データの歪みを補正する座標軸直
角度誤差の校正方法であって、 基準球面の形状を実測し、理想球面を測定用の座標系に
座標変換して得られる楕円面と基準球面の実測データと
の差を最小化するように測定用の座標系から理想的な座
標系への座標変換行列を推定し、推定した座標変換行列
のパラメータを利用して被測定物の3次元直交座標点列
データに座標変換を施して測定座標軸間の直角度誤差補
正を行うことを特徴とする座標軸直角度誤差の校正方
法。1. The surface of the object to be measured is traced and scanned, the coordinates of the scanning path are measured as three-dimensional orthogonal coordinate point sequence data, and the measured point sequence data is subjected to coordinate conversion to cause a squareness error between measurement coordinate axes. This is a method of calibrating the perpendicularity error of the coordinate axis to correct the distortion of the measured data.The shape of the reference sphere is measured and the ideal sphere is converted into the coordinate system for measurement. The ideal coordinate system for measurement should be used to minimize the difference from the measured data on the spherical surface.
Estimating the coordinate transformation matrix to the standard system, and using the parameters of the estimated coordinate transformation matrix, the three-dimensional orthogonal coordinate point sequence of the DUT
A method of calibrating a squareness error of a coordinate axis, which comprises performing coordinate transformation on data to correct a squareness error between measurement coordinate axes.
定用プローブと直交移動手段の各軸の移動量を測定する
移動量測定手段と座標データ算出手段及び演算処理手段
とを有し、 直交移動手段は基準球面及び被測定物表面で形状測定用
プローブを移動してならい走査を行い、移動量測定手段
は直交移動手段の各軸の移動量を測定し、座標データ算
出手段は移動量測定手段で測定した移動量から形状測定
用プローブの走査経路の座標を3次元直交座標点列デー
タとして算出し、演算処理手段は理想球面を測定用の座
標系に座標変換して得られる楕円面と基準球面の測定デ
ータとの差を最小化するように測定用の座標系から理想
的な座標系への座標変換行列を推定し、推定した座標変
換行列のパラメータを利用して被測定物の3次元直交座
標点列データに座標変換を施して測定座標軸間の直角度
誤差補正を行うことを特徴とする三次元形状測定装置。2. A shape measuring probe provided on a triaxial orthogonal moving means, a moving amount measuring means for measuring a moving amount of each axis of the orthogonal moving means, a coordinate data calculating means, and an arithmetic processing means, The orthogonal movement means performs scanning by moving the shape measurement probe on the reference spherical surface and the surface of the object to be measured, the movement amount measurement means measures the movement amount of each axis of the orthogonal movement means, and the coordinate data calculation means moves the movement amount. The coordinates of the scanning path of the shape measuring probe are calculated as three-dimensional orthogonal coordinate point sequence data from the movement amount measured by the measuring means, and the arithmetic processing means uses the ideal spherical surface as a measuring seat.
Ideal from the coordinate system for measurement so as to minimize the difference between the ellipsoid obtained by coordinate conversion to the standard system and the measurement data of the reference sphere.
Three-dimensional orthogonal locus coordinates with the coordinate transformation matrix estimates to system, the object to be measured by using the parameters of the estimated coordinate transformation matrix
A three-dimensional shape measuring apparatus characterized by performing coordinate conversion on the reference point string data to correct squareness error between measurement coordinate axes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24660498A JP3474448B2 (en) | 1998-09-01 | 1998-09-01 | Calibration method of coordinate axis squareness error and three-dimensional shape measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24660498A JP3474448B2 (en) | 1998-09-01 | 1998-09-01 | Calibration method of coordinate axis squareness error and three-dimensional shape measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000074662A JP2000074662A (en) | 2000-03-14 |
JP3474448B2 true JP3474448B2 (en) | 2003-12-08 |
Family
ID=17150889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24660498A Expired - Fee Related JP3474448B2 (en) | 1998-09-01 | 1998-09-01 | Calibration method of coordinate axis squareness error and three-dimensional shape measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3474448B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2306144A1 (en) | 2009-10-01 | 2011-04-06 | Canon Kabushiki Kaisha | Surface shape measurement apparatus |
US8462353B2 (en) | 2009-10-01 | 2013-06-11 | Canon Kabushiki Kaisha | Surface shape measurement apparatus |
US8514407B2 (en) | 2009-10-01 | 2013-08-20 | Canon Kabushiki Kaisha | Surface shape measurement apparatus |
CN107782222A (en) * | 2016-08-26 | 2018-03-09 | 株式会社三丰 | Coordinate correcting method and coordinate measuring device |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9823228D0 (en) * | 1998-10-24 | 1998-12-16 | Renishaw Plc | Method of calibrating analogue probes |
GB2350429B (en) * | 1999-05-28 | 2003-11-12 | Taylor Hobson Ltd | A metrological instrument |
JP2003014431A (en) * | 2001-07-03 | 2003-01-15 | Mitaka Koki Co Ltd | Correction method of inclined surface error for laser probe type shape measuring instrument |
GB0205332D0 (en) * | 2002-03-06 | 2002-04-17 | Renishaw Plc | Dynamic artefact comparison |
JP4705792B2 (en) * | 2005-03-17 | 2011-06-22 | 株式会社ミツトヨ | Inter-axis angle correction method |
JP2007064670A (en) * | 2005-08-29 | 2007-03-15 | Tokyo Seimitsu Co Ltd | Device for measuring surface shape |
JP5183884B2 (en) * | 2006-05-08 | 2013-04-17 | 株式会社ミツトヨ | Correction method and measuring apparatus |
CN100402978C (en) * | 2006-08-30 | 2008-07-16 | 天津大学 | Tilt error compensation method based on coordinate transformation in micro-nano structure 3-D contour measuring |
DE102020102064B3 (en) | 2020-01-29 | 2021-05-27 | Schaeffler Technologies AG & Co. KG | Clutch actuator, detection system and method for detecting an angular position of a rotating component |
CN114858090B (en) * | 2022-04-27 | 2023-10-03 | 西安工业大学 | Surface shape error measurement method for array structure optical element |
-
1998
- 1998-09-01 JP JP24660498A patent/JP3474448B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2306144A1 (en) | 2009-10-01 | 2011-04-06 | Canon Kabushiki Kaisha | Surface shape measurement apparatus |
US8411280B2 (en) | 2009-10-01 | 2013-04-02 | Canon Kabushiki Kaisha | Surface shape measurement apparatus |
US8462353B2 (en) | 2009-10-01 | 2013-06-11 | Canon Kabushiki Kaisha | Surface shape measurement apparatus |
US8514407B2 (en) | 2009-10-01 | 2013-08-20 | Canon Kabushiki Kaisha | Surface shape measurement apparatus |
CN107782222A (en) * | 2016-08-26 | 2018-03-09 | 株式会社三丰 | Coordinate correcting method and coordinate measuring device |
Also Published As
Publication number | Publication date |
---|---|
JP2000074662A (en) | 2000-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3474448B2 (en) | Calibration method of coordinate axis squareness error and three-dimensional shape measuring device | |
JP4504818B2 (en) | Workpiece inspection method | |
JP2764103B2 (en) | Method of using analog measuring probe and positioning device | |
JP4246071B2 (en) | Method for determining and correcting guidance errors in coordinate measuring machines. | |
JP7105769B2 (en) | Coordinate positioning device and method of operation | |
US20110043827A1 (en) | Surface sensing device with optical sensor | |
KR960015052B1 (en) | Error correcting method for measuring object surface using three-dimension measuring apparatus | |
JP2013061349A (en) | Method for rearranging articulated coordinate measuring machine and retroreflector assembly for articulated coordinate measuring machine | |
US20230194247A1 (en) | Shape measuring apparatus and shape measuring method | |
JPH07260471A (en) | Measuring apparatus of surface shape | |
JP2012177620A (en) | Measurement instrument | |
JP2000304529A (en) | Probe device and shape measuring device | |
JP2005121370A (en) | Surface shape measuring apparatus and method | |
JP5593109B2 (en) | CMM calibration method | |
JP3999063B2 (en) | CMM, CMM calibration method, and computer-readable storage medium storing program for executing the method | |
JP2000193449A (en) | Probe device and shape measuring device | |
JP7431216B2 (en) | Supplementary metrology position coordinate determination system including alignment sensors used with robots | |
JPH07260470A (en) | Measuring apparatus of surface shape | |
JP4490793B2 (en) | Three-dimensional measurement method | |
JPH11281306A (en) | Calibrated-value detection method for coordinate-measuring machine and calibration method for shape data using the same calibrated data | |
JP3633863B2 (en) | Autonomous determination method of systematic error of surface profile measurement system using calibration object | |
JP2002221409A (en) | Method, apparatus and recording medium for measuring shape of optical surface | |
JP4566534B2 (en) | Shape measuring method and shape measuring apparatus | |
JPH09243304A (en) | Shape measuring device, and method of positioning surface to be measured using it | |
JP2003097939A (en) | Device and method for shape measuring, computer program and storage medium storing computer program for shape measuring, shape correcting process method, type, mold goods and optical system for shape copying |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080919 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080919 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090919 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090919 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100919 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130919 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |