JP2002039824A - Flow rate measurement device - Google Patents

Flow rate measurement device

Info

Publication number
JP2002039824A
JP2002039824A JP2000224032A JP2000224032A JP2002039824A JP 2002039824 A JP2002039824 A JP 2002039824A JP 2000224032 A JP2000224032 A JP 2000224032A JP 2000224032 A JP2000224032 A JP 2000224032A JP 2002039824 A JP2002039824 A JP 2002039824A
Authority
JP
Japan
Prior art keywords
flow rate
flow
reynolds number
rate measurement
measuring unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000224032A
Other languages
Japanese (ja)
Inventor
Minoru Kumagai
稔 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2000224032A priority Critical patent/JP2002039824A/en
Publication of JP2002039824A publication Critical patent/JP2002039824A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flow rate measurement device capable of measuring a flow rate with high precision over the overall measurement range by setting a flow passage shape in a flow rate measurement part so as to form a laminar flow condition until a measurement maximum measurement flow rate. SOLUTION: This flow rate measurement device is provided with first and second ultrasonic oscillators arranged while putting a flow rate measurement part having a rectangular cross section between them, and on the basis of signals from the ultrasonic oscillators, a flow rate of fluid passing through the flow rate measurement part is measured. Each of a width dimension W and a height dimension H in the rectangular cross section of the flow rate measurement part and a long side dimension L of the flow rate measurement part is set so that a Reynolds number Re calculated according to the rectangular cross sectional shape of the flow rate measurement part is set below a critical Reynolds number Re0.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流体の流量を測定
する流量測定装置に関し、特に流量測定装置の流量測定
精度を向上する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow measurement device for measuring a flow rate of a fluid, and more particularly to a technique for improving the flow measurement accuracy of the flow measurement device.

【0002】[0002]

【従来の技術】従来の流量測定装置として、例えば特開
平9−280916号公報に開示された超音波流量計が
ある。この超音波流量計では、円管パイプの中心最大流
速と流路を斜めに横断するトランスデューサにより得ら
れる線流速に基づいて、流体流れが層流状態か乱流状態
かを判別し、それぞれの状態に対して異なる計算式を用
いて流量計算を行なっている。
2. Description of the Related Art As a conventional flow measuring device, there is, for example, an ultrasonic flow meter disclosed in JP-A-9-280916. This ultrasonic flowmeter determines whether the fluid flow is laminar or turbulent based on the maximum flow velocity at the center of the circular pipe and the linear flow velocity obtained by a transducer obliquely crossing the flow path. Is calculated using a different calculation formula.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記超
音波流量計においては、流量測定時に層流状態と乱流状
態との2つの領域が発生するため、層流状態と乱流状態
が切り替わる付近の流量測定が不安定となり、層流状態
から乱流状態までの全領域に亘って流量を安定して高精
度で測定することは困難となる。また、層流状態と乱流
状態との間を変遷する際に遷移領域が発生し、これによ
り流体の流れ状態が乱れて、測定精度を低下させるとい
った問題もあった。
However, in the above ultrasonic flowmeter, two regions, a laminar flow state and a turbulent flow state, are generated at the time of measuring the flow rate. The flow rate measurement becomes unstable, and it becomes difficult to measure the flow rate stably and with high accuracy over the entire region from the laminar flow state to the turbulent flow state. In addition, there is a problem that a transition region is generated when transitioning between the laminar flow state and the turbulent flow state, which disturbs the flow state of the fluid and lowers the measurement accuracy.

【0004】本発明は、このような従来の問題点に鑑み
てなされたもので、最大測定流量まで層流状態になるよ
うに流量測定部の流路形状を設定することにより、全測
定範囲に亘って高精度で流量測定が行える流量測定装置
を提供することを目的としている。
[0004] The present invention has been made in view of such a conventional problem. By setting the flow path shape of the flow rate measuring section so that the flow rate becomes laminar up to the maximum measured flow rate, the present invention is applied to the entire measuring range. It is an object of the present invention to provide a flow rate measuring device capable of measuring a flow rate with high accuracy over a wide range.

【0005】[0005]

【課題を解決するための手段】上記目的達成のため、本
発明に係る請求項1記載の流量測定装置は、断面が矩形
状の流量測定部を挟んで配置された第1及び第2の超音
波振動子を備え、前記超音波振動子の信号に基づいて前
記流量測定部を通過する流体の流量を測定する流量測定
装置であって、前記流量測定部の矩形断面における幅寸
法及び高さ寸法、並びに前記流量測定部の長辺寸法のそ
れぞれを、前記流量測定部の矩形断面形状に基づいて計
算したレイノルズ数が臨界レイノルズ数より小さくなる
ように設定したことを特徴とする。
In order to achieve the above-mentioned object, according to the present invention, there is provided a flow rate measuring device comprising a first and a second super-flow device arranged with a rectangular flow measuring section therebetween. A flow measuring device comprising an ultrasonic vibrator and measuring a flow rate of a fluid passing through the flow measuring unit based on a signal from the ultrasonic vibrator, wherein a width dimension and a height dimension in a rectangular cross section of the flow measuring section are provided. , And each of the long side dimensions of the flow rate measuring section is set such that the Reynolds number calculated based on the rectangular cross-sectional shape of the flow rate measuring section is smaller than the critical Reynolds number.

【0006】この流量測定装置によれば、流量測定部の
矩形断面における幅寸法及び高さ寸法、並びに流量測定
部の長辺寸法のそれぞれを、流量測定部の矩形断面形状
に基づいて計算したレイノルズ数が臨界レイノルズ数よ
り小さくなるように設定することで、流量測定部内の流
体の流れを常に層流状態にすることができ、流れが不安
定となることが防止される。このため、流量の測定精度
が向上し、また、層流状態と乱流状態との遷移領域が発
生することがないため、微少流量から最大測定流量まで
の測定域全体に亘って、安定した高精度な流量測定が行
える。
According to this flow rate measuring device, the width and height of the rectangular section of the flow rate measuring section and the long side dimension of the flow rate measuring section are calculated based on the rectangular cross section of the flow rate measuring section. By setting the number to be smaller than the critical Reynolds number, the flow of the fluid in the flow rate measurement unit can always be in a laminar state, and the flow is prevented from becoming unstable. For this reason, the measurement accuracy of the flow rate is improved, and the transition region between the laminar flow state and the turbulent flow state does not occur. Accurate flow measurement can be performed.

【0007】[0007]

【発明の実施の形態】以下、本発明に係る流量測定装置
の実施の形態を、図面を参照して詳細に説明する。図1
は本発明に係る流量測定装置の一実施形態における流量
測定部の斜視図、図2は図1に示す流量測定装置の全体
図であって(a)は上視図、(b)は側面図である。図
1に示すように、流量測定装置100は、長辺長さL、
幅W、高さHの矩形断面の流路管である流量測定部10
を有している。この流量測定部10は、その全長に亘っ
て断面形状及び断面積を一定に形成されている。そし
て、対向する側壁12a,12bのぞれぞれには、流量
測定部10内を通過する流体Gの流れに対して、幅W方
向の全体に亘って斜めに超音波ビームを発信又は受信す
る第1の超音波振動子14a及び第2の超音波振動子1
4bが流路管外方に突出して配設されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a flow measuring device according to the present invention will be described below in detail with reference to the drawings. Figure 1
1 is a perspective view of a flow measuring unit in one embodiment of the flow measuring device according to the present invention, FIG. 2 is an overall view of the flow measuring device shown in FIG. 1, (a) is a top view, and (b) is a side view. It is. As shown in FIG. 1, the flow measuring device 100 has a long side length L,
Flow measuring unit 10 which is a flow pipe with a rectangular cross section of width W and height H
have. The flow rate measuring section 10 has a constant cross-sectional shape and area over its entire length. Then, each of the opposed side walls 12a and 12b transmits or receives an ultrasonic beam obliquely over the entire width W direction with respect to the flow of the fluid G passing through the inside of the flow rate measuring unit 10. First ultrasonic vibrator 14a and second ultrasonic vibrator 1
4b is provided so as to protrude outward from the flow channel tube.

【0008】そして、図2に示すように上記構成の流量
測定部10は、上流側接続流路16が流量測定部10の
流路入口側18に、また、下流側接続流路20が流路出
口側22に接続されている。従って、上流側接続流路1
6から流入した流体Gは、流量測定部10内を流路入口
側18から流路出口側22へ向けて通過し、下流側接続
流路20から流出される。
As shown in FIG. 2, in the flow rate measuring section 10 having the above structure, the upstream connecting flow path 16 is provided on the flow path inlet side 18 of the flow measuring section 10, and the downstream connecting flow path 20 is provided with the flow path. It is connected to the outlet side 22. Therefore, the upstream connection flow path 1
The fluid G flowing from 6 passes through the flow measuring unit 10 from the flow path inlet side 18 to the flow path outlet side 22, and flows out of the downstream connection flow path 20.

【0009】ここで、第1及び第2の超音波振動子14
a,14bは、流量測定部10内を通過する流体Gに対
して図示しないトランスデューサ切り換え手段により、
一方を超音波ビームの発信側に、他方を超音波ビームの
受信側に切り換えて、超音波ビームを発受信する。この
ときの超音波ビームの伝播時間を測定することにより、
周知の方法に基づいて流量測定部10内を通過する流体
流量を測定する。
Here, the first and second ultrasonic vibrators 14
a and 14b are provided by a transducer switching unit (not shown) for the fluid G passing through the flow rate measuring unit 10.
One is switched to the transmitting side of the ultrasonic beam and the other is switched to the receiving side of the ultrasonic beam to transmit and receive the ultrasonic beam. By measuring the propagation time of the ultrasonic beam at this time,
The flow rate of the fluid passing through the flow rate measuring unit 10 is measured based on a known method.

【0010】この測定された流体流量は、各超音波振動
子14a,14bから発信される超音波ビームの軸線2
6上における平均流速であるため、精度良く流体流速を
測定するためには、軸線26上で流体の流速分布を一定
化させることが重要となる。そこで、本発明は、流量測
定部10の流路形状を、解析的に求めた形状に設定する
ことで、流量測定を常に層流状態として行い、微少流量
から最大測定流量までの測定域全体に亘って、安定して
精度良く流量測定が行えるようにしている。
The measured fluid flow rate corresponds to the axis 2 of the ultrasonic beam transmitted from each of the ultrasonic transducers 14a and 14b.
Since the average flow velocity is on the axis 6, it is important to make the flow velocity distribution of the fluid constant on the axis 26 in order to accurately measure the fluid flow velocity. Therefore, the present invention sets the flow path shape of the flow rate measurement unit 10 to a shape determined analytically, so that the flow rate measurement is always performed in a laminar flow state, and the flow rate measurement is performed over the entire measurement area from the minute flow rate to the maximum measurement flow rate. Throughout, the flow rate can be measured stably and accurately.

【0011】以下に、流量測定部10の形状を設定する
手法を詳細に説明する。まず、摩擦係数4fを(1)式
のように定義する。
Hereinafter, a method for setting the shape of the flow rate measuring unit 10 will be described in detail. First, the friction coefficient 4f is defined as in equation (1).

【0012】[0012]

【数1】 (Equation 1)

【0013】(1)式は、ファニングの式(Fanning's
equation)と呼ばれている。ここで、Δpは圧力損失、
ρは流体の密度、uは流体の平均流速、Dは相当直径で
あり(2)で表される。
Equation (1) is an equation of Fanning's (Fanning's
equation). Here, Δp is a pressure loss,
ρ is the density of the fluid, u is the average flow velocity of the fluid, D is the equivalent diameter and is expressed by (2).

【0014】[0014]

【数2】 (Equation 2)

【0015】ここで、一般的にレイノルズ数Reは、2
300の値が広く採用されているが、この値は流路が十
分に長い理想的な場合にだけ成立するものである。実際
の流路においてはこのような理想的な状態ではないた
め、レイノルズ数Reは必ずしも2300とはならな
い。このようなレイノルズ数Reは(3)式で表すこと
ができる。ここで、νは流体の運動粘度で、流速uは流
体流量Qから(4)式で表される。
Here, generally, the Reynolds number Re is 2
A value of 300 is widely used, but this value only holds when the flow path is ideally long enough. Since this is not an ideal state in an actual flow path, the Reynolds number Re is not always 2300. Such Reynolds number Re can be expressed by equation (3). Here, ν is the kinematic viscosity of the fluid, and the flow velocity u is represented by the equation (4) from the fluid flow rate Q.

【0016】[0016]

【数3】 (Equation 3)

【0017】ここで、(2)式及び(4)式を(3)式
に代入すると(5)式となる。
Here, when the equations (2) and (4) are substituted into the equation (3), the equation (5) is obtained.

【0018】[0018]

【数4】 (Equation 4)

【0019】(5)式から明らかなように、レイノルズ
数Reは流量Q及び断面形状W,Hによって変化する。
ここで、摩擦係数4fをレイノルズ数Reに対して両対
数紙上にプロットすると、図3(a)に示すようにな
る。即ち、レイノルズ数Reの小さい領域(I)では層
流状態となり、レイノルズ数Reと摩擦係数4fとの関
係としては、傾きαが−1となる。また、粗い壁面の場
合のようなレイノルズ数Reの大きい領域(III)では乱
流状態となり、管摩擦係数4fは一定となる。そして、
領域(I)と領域(III)の中間となる滑らかな管面の場合の
遷移領域(II)では乱流状態となり、傾きαは−1/4と
なる。ここで、領域(I)と領域(II)との境界となる層流
と乱流とが切り替わる点のレイノルズ数を臨界レイノル
ズ数Re0とする。
As is apparent from the equation (5), the Reynolds number Re changes depending on the flow rate Q and the sectional shapes W and H.
Here, when the friction coefficient 4f is plotted on a log-logarithmic paper against the Reynolds number Re, the result is as shown in FIG. That is, in the region (I) where the Reynolds number Re is small, a laminar flow state occurs, and as a relationship between the Reynolds number Re and the friction coefficient 4f, the inclination α is −1. Further, in a region (III) where the Reynolds number Re is large as in the case of a rough wall surface, a turbulent state occurs, and the pipe friction coefficient 4f is constant. And
In the transition region (II) in the case of a smooth tube surface between the region (I) and the region (III), a turbulent state occurs, and the inclination α becomes − /. Here, the Reynolds number at the point where laminar flow and turbulent flow that are the boundary between the region (I) and the region (II) are switched is defined as a critical Reynolds number Re 0 .

【0020】図3(b)は流量Qに対する圧力損失Δp
との関係を両対数紙上にプロットしたグラフである。図
示したグラフの傾きαが1.75以下になる点の流量を
0とすると、このQ0が図3(a)の臨界レイノルズ数
Re0の点に相当する。
FIG. 3B shows the pressure loss Δp with respect to the flow rate Q.
7 is a graph in which the relationship with is plotted on a logarithmic paper. Assuming that the flow rate at the point where the slope α of the illustrated graph becomes 1.75 or less is Q 0 , this Q 0 corresponds to the point of the critical Reynolds number Re 0 in FIG.

【0021】図3(a)の領域(I)では、摩擦係数4
fがレイノルズ数Reの−1乗に比例するので、次式の
関係にある。
In the area (I) of FIG.
Since f is proportional to the −1 power of the Reynolds number Re, the following relationship is established.

【数5】 (k1は比例定数)各寸法は一定であるため、次式で表
される。
(Equation 5) (K 1 is a proportional constant) Since each dimension is constant, it is expressed by the following equation.

【数6】 (7)式と(1)式より、(Equation 6) From equations (7) and (1),

【数7】 従って、図3(b)の領域(I)では、直線の傾きが1
となる。
(Equation 7) Therefore, in the region (I) of FIG.
Becomes

【0022】図3(b)の領域(II)では、摩擦係数4
fがレイノルズ数Reの−1/4乗に比例している。従
って、領域(II)では、ブラジウス(Blasius)の次式が
成立する。
In the area (II) of FIG.
f is proportional to the −−1 power of the Reynolds number Re. Therefore, in the region (II), the following expression of Blasius holds.

【数8】 各寸法は一定であるため、(Equation 8) Since each dimension is constant,

【数9】 (10)式と(1)式より(Equation 9) From equations (10) and (1)

【数10】 従って、図3(b)の領域(II)では傾きαがα=7/4
=1.75となる。
(Equation 10) Therefore, in the region (II) of FIG. 3B, the inclination α is α = 7/4.
= 1.75.

【0023】同様に、図3(a)の領域(III)では、
傾きαがα=0である。従って、次式となる。
Similarly, in the region (III) of FIG.
The inclination α is α = 0. Therefore, the following equation is obtained.

【数11】 各寸法は一定のため、次式で表される。[Equation 11] Since each dimension is constant, it is expressed by the following equation.

【数12】 (13)式と(1)式より、(Equation 12) From equations (13) and (1),

【数13】 となる。(Equation 13) Becomes

【0024】ここで、流量測定装置100による最大測
定流量Qmaxが、Qmax≦Q0となるように流量測定部1
0の形状を設定することで、流量測定を全て層流状態で
行うことができる。最大測定流量QmaxをQmax≦Q0
するためには、流量測定部10を通過する流体の流量が
最大測定流量Qmaxとなったときのレイノルズ数Re
を、臨界レイノルズ数Re0より低い層流領域(I)に入る
ように、矩形路の寸法を決定すればよい。
Here, the flow rate measuring unit 1 is set so that the maximum measured flow rate Q max by the flow rate measuring device 100 satisfies Q max ≦ Q 0.
By setting the shape to 0, the flow rate measurement can be all performed in a laminar flow state. Maximum measured flow rate Q max to the Q max ≦ Q 0 is the Reynolds number Re at which the flow rate of the fluid passing through the flow rate measurement unit 10 becomes the maximum measured flow rate Q max
May be determined so as to enter the laminar flow region (I) lower than the critical Reynolds number Re 0 .

【0025】具体的には、始めに圧損Δpと流量の関係
を測定する。次に、(1)式に示すファニングの式に基
づいて、流量測定部10の摩擦係数4fを求める。この
とき、4fとレイノルズ数Reの関係は、傾きαがα=
−1からα=−1/4に変化する。これにより臨界レイ
ノルズ数Re0を求める。次いで、臨界レイノルズ数R
0から流量Q0を計算し、最大流量Qmaxと比較する。
流量Q0がQ0≧Qmaxとなるように寸法関係(長辺長さ
L、幅W、高さH)を変化させて上記の方式を繰り返し
て実施する。又は、Qmaxのレイノルズ数Reと臨界レ
イノルズ数Re0とを比較して、Re0≧Reとなるよう
に寸法を変える。
Specifically, first, the relationship between the pressure loss Δp and the flow rate is measured. Next, the friction coefficient 4f of the flow rate measuring unit 10 is obtained based on the Fanning's equation shown in the equation (1). At this time, the relationship between 4f and the Reynolds number Re is such that the slope α is α =
It changes from −1 to α = − /. Thus, the critical Reynolds number Re 0 is obtained. Then, the critical Reynolds number R
The flow rate Q 0 is calculated from e 0 and compared with the maximum flow rate Q max .
The above method is repeated by changing the dimensional relationship (long side length L, width W, height H) so that the flow rate Q 0 satisfies Q 0 ≧ Q max . Alternatively, the Reynolds number Re of Q max is compared with the critical Reynolds number Re 0, and the dimensions are changed so that Re 0 ≧ Re.

【0026】このようにして全測定範囲を層流状態で測
定するので、流量測定中に流体の流量が増減することに
より、層流状態から乱流状態、又は乱流状態から層流状
態への遷移が発生せず、さらには、遷移領域自体も生じ
ないことから、流量測定部10内の流体流れが乱れるこ
とが防止される。これにより、各超音波振動子14a,
14bによる超音波ビームの伝播時間を安定して検出す
ることができ、以て、流量の測定精度を向上させること
ができる。
Since the entire measurement range is measured in a laminar flow state as described above, the flow rate of the fluid increases or decreases during the flow rate measurement, whereby the laminar flow state changes from the laminar flow state to the turbulent flow state. Since the transition does not occur and the transition region itself does not occur, the fluid flow in the flow rate measuring unit 10 is prevented from being disturbed. Thereby, each ultrasonic transducer 14a,
It is possible to stably detect the propagation time of the ultrasonic beam by 14b, thereby improving the flow rate measurement accuracy.

【0027】[0027]

【発明の効果】本発明によれば、流量測定部の矩形断面
における幅寸法及び高さ寸法、並びに流量測定部の長辺
寸法のそれぞれを、流量測定部の矩形断面形状に基づい
て計算したレイノルズ数が臨界レイノルズ数より小さく
なるように設定することで、流量測定を常に層流状態と
して行うことができ、層流状態と乱流状態との遷移領域
を発生させることなく、微少流量から最大測定流量まで
の測定域全体に亘って、安定して精度良く流量測定が行
える。
According to the present invention, each of the width dimension and the height dimension in the rectangular section of the flow rate measuring section and the long side dimension of the flow rate measuring section is calculated based on the rectangular sectional shape of the flow rate measuring section. By setting the number to be smaller than the critical Reynolds number, the flow measurement can always be performed in a laminar state, and the maximum measurement can be performed from a small flow rate without generating a transition region between laminar and turbulent states. The flow rate can be measured stably and accurately over the entire measurement area up to the flow rate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る流量測定装置における流量測定部
の斜視図である。
FIG. 1 is a perspective view of a flow measuring unit in a flow measuring device according to the present invention.

【図2】図1に示す流量測定装置の全体図である。FIG. 2 is an overall view of the flow measuring device shown in FIG.

【図3】(a)は摩擦係数4fをレイノルズ数Reに対
してプロットしたグラフで、(b)は流量Qに対する圧
力損失Δpとの関係を示すグラフである。
3A is a graph plotting a friction coefficient 4f against a Reynolds number Re, and FIG. 3B is a graph showing a relationship between a flow rate Q and a pressure loss Δp.

【符号の説明】[Explanation of symbols]

10 流量測定部 14a 第1の超音波振動子 14b 第2の超音波振動子 100 流量測定装置 G 流体 Q 流体流量 Qmax 最大測定流量 Re レイノルズ数 Re0 臨界レイノルズ数 L 長辺長さ(長辺寸法) W 幅(幅寸法) H 高さ(高さ寸法)Reference Signs List 10 Flow rate measuring unit 14a First ultrasonic vibrator 14b Second ultrasonic vibrator 100 Flow rate measuring device G Fluid Q Fluid flow rate Q max Maximum measured flow rate Re Reynolds number Re 0 Critical Reynolds number L Long side length (long side) Dimensions) W Width (width dimension) H Height (height dimension)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 断面が矩形状の流量測定部を挟んで配置
された第1及び第2の超音波振動子を備え、前記超音波
振動子の信号に基づいて前記流量測定部を通過する流体
の流量を測定する流量測定装置であって、 前記流量測定部の矩形断面における幅寸法及び高さ寸
法、並びに前記流量測定部の長辺寸法のそれぞれを、前
記流量測定部の矩形断面形状に基づいて計算したレイノ
ルズ数が臨界レイノルズ数より小さくなるように設定し
たことを特徴とする流量測定装置。
1. A fluid passing through the flow rate measuring unit based on a signal from the ultrasonic transducer, comprising first and second ultrasonic vibrators arranged with a rectangular flow rate measuring unit interposed therebetween. A flow measuring device for measuring the flow rate of the flow measuring unit, wherein the width dimension and the height dimension in the rectangular cross section of the flow measuring unit, and the long side dimension of the flow measuring unit, based on the rectangular cross sectional shape of the flow measuring unit A flow measurement device characterized in that the calculated Reynolds number is set to be smaller than the critical Reynolds number.
JP2000224032A 2000-07-25 2000-07-25 Flow rate measurement device Pending JP2002039824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000224032A JP2002039824A (en) 2000-07-25 2000-07-25 Flow rate measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000224032A JP2002039824A (en) 2000-07-25 2000-07-25 Flow rate measurement device

Publications (1)

Publication Number Publication Date
JP2002039824A true JP2002039824A (en) 2002-02-06

Family

ID=18718057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000224032A Pending JP2002039824A (en) 2000-07-25 2000-07-25 Flow rate measurement device

Country Status (1)

Country Link
JP (1) JP2002039824A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226693A (en) * 2005-02-15 2006-08-31 Matsushita Electric Ind Co Ltd Flow-measuring device for fluid
JP2007163478A (en) * 2005-12-14 2007-06-28 Thermo Fisher Scientific Inc Multi-path ultrasonic flow measuring method and system for flow cross section progressed partially
KR101298551B1 (en) 2008-05-01 2013-08-22 마이크로 모우션, 인코포레이티드 Method for detecting a deviation in a flow meter parameter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226693A (en) * 2005-02-15 2006-08-31 Matsushita Electric Ind Co Ltd Flow-measuring device for fluid
JP2007163478A (en) * 2005-12-14 2007-06-28 Thermo Fisher Scientific Inc Multi-path ultrasonic flow measuring method and system for flow cross section progressed partially
JP4668163B2 (en) * 2005-12-14 2011-04-13 サーモ フィッシャー サイエンティフィック インコーポレーテッド Multipath ultrasonic flow measurement method and system for partially developed flow cross section
KR101298551B1 (en) 2008-05-01 2013-08-22 마이크로 모우션, 인코포레이티드 Method for detecting a deviation in a flow meter parameter

Similar Documents

Publication Publication Date Title
RU2446393C2 (en) Method of diagnosing pipe roughness and ultrasonic flowmeter
JP3246851B2 (en) Ultrasonic flowmeter detector
CN101294833B (en) Ultrasonic fluid measurement instrument
JPS63118617A (en) Fluid vibrator type flowmeter
JP2895704B2 (en) Ultrasonic flow meter
JP4535065B2 (en) Doppler ultrasonic flow meter
RU2156443C2 (en) Vortex flowmeter including tube with shaped profile
JP2002039824A (en) Flow rate measurement device
Boucher Minimum flow optimization of fluidic flowmeters
NL8901044A (en) FLOW METER.
JP2009264906A (en) Flow meter
JP4675490B2 (en) Ultrasonic flow meter
CN209820549U (en) Flexible measuring sound channel for commercial ultrasonic gas meter
JP3732570B2 (en) Ultrasonic flow meter
JP2956805B2 (en) Ultrasonic flow meter
JP2956804B2 (en) Ultrasonic flow meter
JP4453341B2 (en) Ultrasonic flow meter
JP2004251700A (en) Fluid measuring device
RU2162206C2 (en) Vortex register of fluid medium
RU118744U1 (en) ULTRASONIC FLOW METER
JP4346458B2 (en) Ultrasonic flow meter
JP2001208585A (en) Flowmeter
JP3140860B2 (en) Fluidic flow meter
JP2004045425A (en) Flow rate measuring device
JPH05180679A (en) Ultrasonic flow meter

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324