JP2002035779A - Volume reduction treatment system and apparatus for sludge - Google Patents

Volume reduction treatment system and apparatus for sludge

Info

Publication number
JP2002035779A
JP2002035779A JP2000227134A JP2000227134A JP2002035779A JP 2002035779 A JP2002035779 A JP 2002035779A JP 2000227134 A JP2000227134 A JP 2000227134A JP 2000227134 A JP2000227134 A JP 2000227134A JP 2002035779 A JP2002035779 A JP 2002035779A
Authority
JP
Japan
Prior art keywords
sludge
volume reduction
treatment
gas
reduction treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000227134A
Other languages
Japanese (ja)
Other versions
JP3958504B2 (en
Inventor
Takao Hagino
隆生 萩野
Norio Yamada
紀夫 山田
Akira Watanabe
昭 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2000227134A priority Critical patent/JP3958504B2/en
Publication of JP2002035779A publication Critical patent/JP2002035779A/en
Application granted granted Critical
Publication of JP3958504B2 publication Critical patent/JP3958504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wastewater treatment system and apparatus constructed to achieve the enhancement of the efficiency of the total system, energy saving, and the recovery of useful substances and their use as resources in a volume reduction treatment process for sludge occurring in an organic wastewater treatment system. SOLUTION: To an organic wastewater treatment system comprising a biological reaction step based on the metabolism of aerobic microorganisms, a microorganisms solid-liquid separation step, and a sludge volume reduction treatment step for applying a volume reduction treatment to sludge separated at the separation step, a combustible gas recovery step for taking organic components contained in the volume-reduced sludge obtained at the volume reduction treatment step out of the system as a gas mainly comprising a CH4 gas is added as a step after the sludge volume reduction treatment step in order to utilize the combustion energy of the CH4 gas as a heat source and/or a power source used in the volume reduction step, thus providing a sludge volume reduction system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水処理場、し尿
処理場、または各種廃水処理施設等において、活性汚泥
法に代表される微生物処理を介して有機性廃水を処理す
るシステムに係り、更に詳しくは有機性廃水の処理シス
テムの処理過程において発生した余剰汚泥を減容化する
ことにより、余剰汚泥の処理および処分に伴うコストを
軽減させると共に、省エネルギー化、有用物質の回収と
その効率的活用を考慮した汚泥の減容化処理システムお
よび減容化処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for treating organic wastewater in a sewage treatment plant, human waste treatment plant, various wastewater treatment facilities, etc. through a microorganism treatment represented by an activated sludge method. Specifically, by reducing the volume of excess sludge generated during the treatment process of organic wastewater treatment systems, the costs associated with the treatment and disposal of excess sludge are reduced, as well as energy conservation, recovery of useful substances, and their efficient use. The present invention relates to a sludge volume reduction processing system and a volume reduction processing apparatus that take into account the above.

【0002】[0002]

【従来の技術】従来の有機性廃水の処理システムにおけ
る汚泥の減容化処理方法において、処理システム全体に
対する建設費、ランニングコストおよび環境に対する影
響等を総合的に考慮したシステムは非常に少なかった。
例えば、活性汚泥法において発生する余剰汚泥を減容化
する手段として、嫌気性消化処理を採用する方式(ケー
ス、図2)では、汚泥が固形物比として約半分に減量
化するものの、嫌気性消化処理により発生する消化汚泥
は難脱水性で、ケーキ含水率は約83%程度と比較的高
く(嫌気性消化を行わない混合生汚泥を脱水した場合の
一般的なケーキ含水率は約75%程度である場合が多
い)、湿潤ベースでのケーキ発生量が大きく、ケーキの
処分費用が大きくなる。なお、図2において、4は具体
的には嫌気性消化処理からなる燃焼性ガス回収工程であ
る。また、消化汚泥の脱水処理の前処理で添加する凝集
剤の添加率は、混合生汚泥の場合と比較して2倍以上に
なる場合(例えば、凝集剤添加率として、混合生汚泥の
SSに対して0.7%、消化汚泥のSSに対して2.0
%)が多く、処理プラントのランニングコストと比較し
た場合に、嫌気性消化を行う場合と行わない場合の差が
殆ど無いケースが多かった。
2. Description of the Related Art In conventional methods for reducing the volume of sludge in an organic wastewater treatment system, very few systems comprehensively consider the construction cost, running cost, and environmental impact of the entire treatment system.
For example, in a method (case, FIG. 2) adopting anaerobic digestion treatment as a means for reducing the volume of excess sludge generated in the activated sludge method, sludge is reduced to about half as a solid matter ratio, but anaerobic. Digested sludge generated by digestion treatment is hardly dewaterable, and has a relatively high cake moisture content of about 83% (a typical cake moisture content when dewatering mixed raw sludge that is not subjected to anaerobic digestion is about 75%). In many cases), the amount of cake generated on a wet basis is large, and the disposal cost of the cake increases. Incidentally, in FIG. 2, reference numeral 4 denotes a combustible gas recovery step specifically composed of an anaerobic digestion treatment. In addition, the rate of addition of the coagulant added in the pretreatment of the dewatering treatment of digested sludge is twice or more as compared with the case of mixed raw sludge (for example, as the coagulant addition rate, the SS of mixed raw sludge is 0.7%, 2.0 for digested sludge SS
%), And there were many cases where there was almost no difference between the case where anaerobic digestion was performed and the case where anaerobic digestion was not performed, as compared with the running cost of the treatment plant.

【0003】また、汚泥減容化の手段として、余剰汚泥
に対してオゾン処理を施す方式(ケース)では、発生
する余剰汚泥量が大幅に減少し、時には余剰汚泥が発生
しなかったとの報告もなされているが、オゾン製造に伴
うランニングコストが非常に大きく、可溶化した汚泥中
の有機成分をすべて生物反応槽において、好気性条件下
において処理しているために、好気性生物反応槽におけ
るブロワーの動力を大幅に増加させる必要があり、コス
ト高となる。その上、前記ケースにあっては、汚泥中
に含まれている有機性成分からエネルギー回収を全く行
うことなく、CO2 やH2 Oの形態まで好気的分解を行
うことから、ケースの場合よりもエネルギーの消費を
大きくしていた。
[0003] Further, as a means for reducing the volume of sludge, it has been reported that in a system (case) in which excess sludge is subjected to ozone treatment, the amount of excess sludge generated is greatly reduced, and sometimes no excess sludge is generated. However, the running cost associated with the production of ozone is very high, and all organic components in the solubilized sludge are treated under aerobic conditions in the biological reaction tank. Power needs to be greatly increased, which increases costs. In addition, in the case, the aerobic decomposition to the form of CO 2 or H 2 O is performed without recovering any energy from the organic components contained in the sludge. Energy consumption than that.

【0004】[0004]

【発明が解決しようとする課題】このように、従来の方
法では処理システム全体に対する建設費、ランニングコ
ストおよび環境に対する影響を総合的に考慮した有機性
廃水の処理システムは、極めて少なかったと言うことが
できる。本発明は、前項において縷々説明したように、
従来の技術において採り上げられた種々の問題点を解決
することを目的とする。即ち、有機性廃水処理システム
の中で発生する汚泥の減容化処理プロセスにおいて、有
機性廃水中の処理対象成分の形態とその特性をできるだ
け生かし、処理システム全体に対する建設費、ランニン
グコスト、環境に対する影響等を総合的に考慮したシス
テムを提案することで、汚泥減容化処理システム、延い
ては有機性廃水処理システム全体の高効率化、省エネル
ギー化、ならびに、有用物質の回収とその資源化を考慮
した廃水処理システムおよび処理装置を提供することを
課題とする。
As described above, in the conventional method, there are very few organic wastewater treatment systems that comprehensively consider the construction cost, running cost, and environmental impact of the entire treatment system. it can. The present invention, as explained in the previous section,
An object of the present invention is to solve various problems raised in the related art. That is, in the process of reducing the volume of sludge generated in the organic wastewater treatment system, the form and characteristics of the components to be treated in the organic wastewater are utilized as much as possible, and construction costs, running costs, and environmental costs for the entire treatment system are reduced. By proposing a system that comprehensively considers the effects, etc., it is possible to increase the efficiency and energy saving of sludge volume reduction treatment systems and, consequently, organic wastewater treatment systems as a whole, and to recover and recycle useful substances. An object of the present invention is to provide a wastewater treatment system and a treatment device that take into account the above.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するためになされたものであり、本発明においては以
下に示す基本処理フローからなる汚泥の減容化処理シス
テム及びこれを実施する処理装置を提示する。 (1)好気性微生物の代謝を利用した生物反応工程、生
物反応工程の後段に設ける微生物固液分離工程、および
微生物固液分離工程において分離した汚泥の一部または
全部に対して減容化処理を施す汚泥減容化処理工程の3
種の工程を含む有機性排水の処理システムにおいて、前
記汚泥減容化処理工程を経た減容化汚泥中に含まれる有
機性成分を、主にCH4 ガスの形態で系外に取り出す燃
焼性ガス回収工程を前記汚泥減容化処理工程の後段に設
け、前記CH4 ガスの燃焼エネルギーを前記汚泥減容化
処理工程において使用する熱源及び/又は動力源の一部
または全部とすることを特徴とする汚泥の減容化処理シ
ステム。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned problems, and in the present invention, a sludge volume reduction processing system comprising the following basic processing flow and its implementation. A processing device is presented. (1) A biological reaction step utilizing the metabolism of aerobic microorganisms, a microorganism solid-liquid separation step provided at a stage subsequent to the biological reaction step, and a volume reduction treatment for part or all of the sludge separated in the microorganism solid-liquid separation step Of sludge volume reduction treatment process of applying
In the organic wastewater treatment system including the above steps, a combustible gas for removing organic components contained in the volume-reduced sludge that has passed through the above-mentioned sludge volume-reduction treatment step to the outside of the system mainly in the form of CH 4 gas A recovery step is provided after the sludge volume reduction processing step, and the combustion energy of the CH 4 gas is used as part or all of a heat source and / or a power source used in the sludge volume reduction processing step. Sludge volume reduction processing system.

【0006】(2)燃焼性ガス回収工程において、CH
4 ガスを回収した後の残渣汚泥の一部または全部を汚泥
減容化処理工程に返送することを特徴とする前記(1)
記載の汚泥の減容化処理システム。 (3)汚泥減容化処理工程の方式として、酸化剤、酸性
剤またはアルカリ剤等の添加、または、オゾン処理、破
砕処理、加熱処理および加圧処理のうちの少なくとも1
種を使用することを特徴とする前記(1)又は(2)記
載の汚泥の減容化処理システム。 (4)燃焼性ガス回収工程の方式として、前記減容化汚
泥を嫌気的条件下におくことにより、CH4 ガスを回収
することを特徴とする前記(1)〜(3)のいずれか1
項記載の汚泥の減容化処理システム。
(2) In the combustible gas recovery step, CH
The above (1), wherein part or all of the residual sludge after collecting the four gases is returned to the sludge volume reduction treatment step.
The sludge volume reduction treatment system described in the above. (3) As a method of the sludge volume reduction treatment step, at least one of addition of an oxidizing agent, an acidizing agent or an alkali agent, or ozone treatment, crushing treatment, heat treatment and pressure treatment
The sludge volume reduction treatment system according to the above (1) or (2), wherein a seed is used. (4) As a method of the combustible gas recovery step, any one of the above (1) to (3), wherein the CH 4 gas is recovered by subjecting the reduced volume sludge to anaerobic conditions.
The sludge volume reduction treatment system described in the paragraph.

【0007】(5)好気性微生物の代謝を利用した生物
反応槽、生物反応槽の後段に設ける微生物固液分離槽、
および微生物固液分離槽において分離した汚泥の一部ま
たは全部に対して減容化処理を施す汚泥減容化処理槽を
有する有機性排水の処理装置において、前記汚泥減容化
処理槽を経た減容化汚泥中に含まれる有機性成分を、主
にCH4 ガスの形態で系外に取り出す燃焼性ガス回収工
程を前記汚泥減容化処理槽の後段に設け、前記CH4
スの燃焼エネルギーを前記汚泥減容化処理槽において使
用する熱源及び/又は動力源の一部または全部とするこ
とを特徴とする汚泥の減容化処理装置。
(5) a biological reaction tank utilizing the metabolism of aerobic microorganisms, a microorganism solid-liquid separation tank provided at a stage subsequent to the biological reaction tank,
And an organic wastewater treatment apparatus having a sludge volume reduction treatment tank for performing volume reduction treatment on a part or all of the sludge separated in the microorganism solid-liquid separation tank, wherein the reduction through the sludge volume reduction treatment tank is performed. A combustible gas recovery step of taking out the organic components contained in the volume of the sludge out of the system mainly in the form of CH 4 gas is provided at the latter stage of the sludge volume reduction treatment tank, and the combustion energy of the CH 4 gas is reduced. A sludge volume reduction treatment apparatus, wherein a part or all of a heat source and / or a power source used in the sludge volume reduction treatment tank is used.

【0008】即ち、前記汚泥減容化処理工程を経た減容
化汚泥中に含まれる有機性成分を主にCH4 ガスの形態
で系外に取り出す燃焼性ガス回収工程を、前記汚泥減容
化処理工程の後段に設けて、可溶化された汚泥中からC
4 ガス等の有用な燃焼性ガスを回収し、該ガスの燃焼
エネルギーを活用することにより、前記汚泥減容化処理
工程において使用する熱源及び/又は動力源の一部また
は全部とし、熱源及び/又は動力コストの軽減、および
汚泥発生量の軽減を同時に行うシステムを提供するもの
である。
That is, the combustible gas recovery step of extracting organic components contained in the volume-reduced sludge that has passed through the sludge volume-reduction treatment step mainly in the form of CH 4 gas to the outside of the system is performed by the sludge volume-reduction process. Provided at the later stage of the treatment process,
By recovering a useful combustible gas such as H 4 gas and utilizing the combustion energy of the gas, a part or all of a heat source and / or a power source used in the sludge volume reduction treatment step is used, and the heat source and Another object of the present invention is to provide a system that simultaneously reduces power cost and sludge generation.

【0009】また、前記燃焼性ガス回収工程において、
CH4 ガスを回収した後の残渣汚泥の一部または全部を
汚泥減容化処理工程に返送することにより、さらにシス
テム全体から発生する汚泥量を軽減、または発生させな
いことが可能となる。前記汚泥減容化処理工程の方式と
しては、酸化剤、酸性剤またはアルカリ剤等の添加、ま
たは、オゾン処理、破砕処理、過熱処理、加圧処理の
内、少なくとも1種の処理を使用することにより、効率
よく汚泥の減容化が進行する。破砕処理ではボールミル
を用いるのが好ましい。これらの減容化処理方式の組み
合わせは、処理対象成分、目標水質レベルおよび処理施
設の環境条件により、最も適した方式を選択することが
望ましい。また、燃焼性ガス回収工程の方式としては、
前記減容化汚泥を嫌気的条件下に置くことにより、酸発
酵およびメタン発酵を行う汚泥中の嫌気性微生物の代謝
を作用を促進させて、CH4 ガス等を発生させ、CH4
ガス等を回収する方法が簡単かつ効果的な方式として望
ましい。
[0009] Further, in the combustible gas recovery step,
By returning part or all of the residual sludge after the recovery of the CH 4 gas to the sludge volume reduction treatment step, the amount of sludge generated from the entire system can be further reduced or not generated. As a method of the sludge volume reduction treatment step, use of at least one of an oxidizing agent, an acidizing agent, an alkaline agent, or the like, or an ozone treatment, a crushing treatment, a superheat treatment, or a pressure treatment is used. Thereby, sludge volume reduction proceeds efficiently. In the crushing treatment, it is preferable to use a ball mill. As for the combination of these volume reduction treatment methods, it is desirable to select the most appropriate method depending on the component to be treated, the target water quality level and the environmental conditions of the treatment facility. In addition, as a method of the combustible gas recovery process,
By placing the volume reduction sludge under anaerobic conditions, the metabolism of anaerobic microorganisms in sludge performing acid fermentation and methane fermentation by promoting the action to generate a CH 4 gas or the like, CH 4
A method of recovering gas or the like is desirable as a simple and effective method.

【0010】[0010]

【発明の実施の形態】本発明の実施の形態を実施例に基
づき、図面を参照して説明する。図1は、本発明に基づ
く実験装置を組み込んだ全体の流れを示す。燃焼性ガス
回収工程は、前記減容化汚泥を嫌気的条件下に置くこと
により、酸発酵およびメタン発酵を行う汚泥中の嫌気性
微生物の代謝を作用を促進させて、CH4 ガス等を発生
させる装置を使用し、CH4 ガス等を回収する手段を採
用した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described based on embodiments with reference to the drawings. FIG. 1 shows the overall flow incorporating an experimental device according to the present invention. Combustion gas recovery step, the reduced by placing the iodide sludge under anaerobic conditions, the metabolism of anaerobic microorganisms in sludge performing acid fermentation and methane fermentation by promoting action, generating a CH 4 gas or the like A means for recovering CH 4 gas and the like was employed by using an apparatus for causing the reaction.

【0011】[0011]

【実施例】実施例 次に、本発明を実際に組み込んだ実験プラントの運転結
果の一例(「本発明法」という)について詳細に説明す
る。図1に実験プラントのフローを示す。本発明法で
は、実際の下水処理場に流入する汚水の一部を実験プラ
ントに流入させて連続的に3ケ月運転を行った。実験プ
ラントは設計処理量500リットル/dとした。好気性
微生物の代謝を利用した生物反応工程1は、最初沈殿池
を持たない滞留時間8時間の活性汚泥処理法を採用し
た。微生物固液分離工程2は、一般的な重力沈降分離方
式の沈殿槽を使用した。本処理場の原水と活性汚泥の性
状分析結果及び事前に行った減容化回分試験結果から判
断して、実験プラントの汚泥減容化処理フローを以下の
ようにした。
EXAMPLE Next, an example of an operation result of an experimental plant in which the present invention is actually incorporated (referred to as "the present invention method") will be described in detail. FIG. 1 shows the flow of the experimental plant. In the method of the present invention, part of the sewage flowing into the actual sewage treatment plant was allowed to flow into the experimental plant and operated continuously for three months. The experimental plant had a design throughput of 500 l / d. In the biological reaction step 1 utilizing the metabolism of aerobic microorganisms, an activated sludge treatment method without a sedimentation basin and a residence time of 8 hours was employed. In the microbial solid-liquid separation step 2, a sedimentation tank of a general gravity sedimentation separation system was used. Judging from the results of property analysis of raw water and activated sludge of this treatment plant and the results of a batch reduction test conducted in advance, the sludge volume reduction treatment flow of the experimental plant was as follows.

【0012】余剰汚泥21を遠心濃縮機8により約4%
まで濃縮し、濃縮余剰汚泥81の90%を加熱・加圧処
理機3に送り可溶化し、その可溶化汚泥31を燃焼性ガ
ス回収工程4に送る。濃縮余剰汚泥81の残り10%は
可溶化しないでバイパス管を通じて燃焼性ガス回収工程
4に送る。加熱・加圧処理機3により可溶化した汚泥の
一部31は、遠心分離型脱水装置5により無薬注で脱水
処理し、脱水ケーキ51を系外に排出する。燃焼性ガス
回収工程4は嫌気性微生物の代謝利用した方式を採用し
ており、酸発酵槽、メタン発酵槽、及び燃焼性ガス濃縮
装置の3つで構成されている(図示しない)。燃焼性ガ
ス回収工程4において処理された消化汚泥41は全量加
圧浮上濃縮機6により濃縮された後、濃縮消化汚泥61
は加熱・加圧処理機3に返送され、消化汚泥分離水62
は、生物反応工程1に戻る。また、燃焼性ガス回収工程
4において回収されたCH4 ガス等は、ガス発電装置7
により熱エネルギーと電気エネルギーに変換してエネル
ギーを回収し、加熱・加圧処理機3と加圧浮上濃縮機6
の熱源及び動力源として利用した。一方、対照系とし
て、従来法である嫌気性消化による汚泥の減容化処理方
式を採用した実験プラントにおいて、本発明法で使用し
た原水と同一のものを使用して連続実験を行った。従来
法の水処理系は本発明法と同一のものを使用した。
The excess sludge 21 is reduced to about 4% by the centrifugal concentrator 8.
90% of the concentrated excess sludge 81 is sent to the heating / pressurizing processor 3 for solubilization, and the solubilized sludge 31 is sent to the combustible gas recovery step 4. The remaining 10% of the concentrated excess sludge 81 is sent to the combustible gas recovery step 4 through a bypass pipe without being solubilized. A part 31 of the sludge solubilized by the heating / pressurizing unit 3 is subjected to dehydration treatment without chemical injection by the centrifugal dewatering device 5, and the dewatered cake 51 is discharged out of the system. The flammable gas recovery step 4 employs a method utilizing the metabolism of anaerobic microorganisms, and includes three components: an acid fermenter, a methane fermenter, and a flammable gas concentrator (not shown). The digested sludge 41 treated in the combustible gas recovery step 4 is concentrated by the pressurized flotation concentrator 6, and then concentrated digested sludge 61.
Is returned to the heating / pressurizing processor 3 and the digested sludge separated water 62
Returns to the biological reaction step 1. The CH 4 gas or the like recovered in the combustible gas recovery step 4 is supplied to the gas power generator 7.
And converts the energy into heat energy and electric energy to recover the energy.
It was used as a heat source and a power source for the system. On the other hand, as a control system, a continuous experiment was performed using the same raw water used in the method of the present invention in an experimental plant employing a conventional sludge volume reduction treatment method by anaerobic digestion. The water treatment system of the conventional method used was the same as the method of the present invention.

【0013】(実験結果)第1表に、本発明法と従来法
の処理性能を示す。表中の数値は、3ケ月の運転成績の
平均値として表記した。一般的に、汚泥処理プラントの
ランニングコストの内、汚泥処理費、凝集剤、プラント
運転用電力費の3つで全体の80%を占める場合が大き
い。本発明法は、従来法と比較して、発生余剰汚泥量と
してはほとんど差がないものの、脱水ケーキ発生量は乾
燥重量ベースで27.1g−DS/dと、従来法の5
7.4g−DS/dより30.3g−DS/d小さい。
これは、本発明法が加熱・加圧処理と嫌気性消化処理を
組み合わせて効率良く汚泥を減量化することができるた
めである。汚泥減容化率は、従来法45.5%に対して
本発明法75.6%であり、本発明法の方が30.6ポ
イント高くなった。脱水ケーキ含水率は、従来法83.
8%に対して本発明法68.6%と15.2ポイント本
発明法の方が低く、その分ウエットベースでのケーキ発
生量は少なくなった。ウエットベースのケーキ発生量
は、従来法が354g/dであるのに対して、本発明法
が128g/dで、ほぼ1/4に減量化できた。
(Experimental Results) Table 1 shows the processing performance of the method of the present invention and the conventional method. The numerical values in the table are shown as the average of the driving results for three months. Generally, among the running costs of a sludge treatment plant, three of the sludge treatment cost, the flocculant, and the power cost for plant operation often occupy 80% of the whole. Although the method of the present invention has almost no difference in the amount of excess sludge generated compared to the conventional method, the amount of dewatered cake generated is 27.1 g-DS / d on a dry weight basis, which is 5% of the conventional method.
It is 30.3 g-DS / d smaller than 7.4 g-DS / d.
This is because the method of the present invention can efficiently reduce the amount of sludge by combining the heat / pressure treatment and the anaerobic digestion treatment. The sludge volume reduction ratio was 75.6% according to the present invention method compared to 45.5% according to the conventional method, and was 30.6 points higher in the present invention method. The water content of the dehydrated cake is determined by the conventional method.
The method of the present invention was 68.6%, which was 8%, which was 15.2 points lower than that of the method of the present invention. The amount of cake generated on a wet basis was 354 g / d in the conventional method, whereas it was 128 g / d in the method of the present invention, which was almost reduced to 1/4.

【0014】凝集剤は、従来法0.78g/dに対し
て、本発明法0.16g/dで、本発明法の1/5以下
となった。本発明法での脱水ケーキ含水率が非常に低
く、凝集剤使用量が非常に少ない理由は、加熱加圧処理
により、汚泥中の蛋白質やコロイド成分が変化したこと
によるものと考えられる。CH4 発生量は、従来法が2
1.7リットル/dで、本発明法が35.0リットル/
dで、本発明法の方が13.3リットル/d大きかっ
た。これは、本発明法のプロセスにおいて、汚泥の減容
化効率が高い分汚泥中の有機成分の多くがCH4 に変換
されたためである。以上の結果から、本発明法の方が従
来法よりもはるかに汚泥の減容化効率が高く、ランニン
グコストが大幅に低下することがわかる。
The coagulant was 0.16 g / d according to the present invention, compared with 0.78 g / d according to the conventional method, which was 1/5 or less of the method according to the present invention. The reason why the water content of the dewatered cake in the method of the present invention is very low and the amount of the flocculant used is very small is considered to be that the protein and colloid components in the sludge are changed by the heating and pressurizing treatment. The amount of CH 4 generated is 2
1.7 liter / d, the method of the present invention is 35.0 liter / d
d, the method of the present invention was 13.3 l / d larger. This, in the process of the present invention method is because many of the organic components of the high volume reduction efficiency of sludge min in the sludge is converted to CH 4. From the above results, it can be seen that the method of the present invention has much higher sludge volume reduction efficiency than the conventional method, and the running cost is greatly reduced.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【発明の効果】本発明においては、燃焼ガス回収工程に
おいて回収したCH4 ガス等を燃焼させることによりエ
ネルギーを回収して、加熱・加圧処理機の熱源やボール
ミル破砕機等の動力源として利用できるので、省エネル
ギー化をもたらし、また、余剰汚泥の減容化を可能にす
ることから、これが処分に要するコストを軽減するの
で、この種処理にあって極めて有益である。
According to the present invention, energy is recovered by burning the CH 4 gas and the like recovered in the combustion gas recovery step and used as a heat source of a heating / pressurizing processor or a power source of a ball mill crusher or the like. Since it is possible to save energy and to reduce the volume of excess sludge, this reduces the cost required for disposal, which is extremely useful in this type of treatment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実験装置を組み込んだ全体の流れを示
す。
FIG. 1 shows an overall flow incorporating an experimental apparatus of the present invention.

【図2】従来の汚泥減容化処理の全体の流れを示す。FIG. 2 shows an overall flow of a conventional sludge volume reduction treatment.

【符号の説明】[Explanation of symbols]

1 生物反応工程 2 微生物固液分離工程 21 余剰汚泥 22 返送汚泥 3 加熱・加圧処理機 31 可溶化汚泥 4 燃焼性ガス回収工程 41 消化汚泥 42 燃焼性ガス 5 遠心分離型脱水装置 51 脱水ケーキ 52 脱水ろ液 6 加圧浮上濃縮機 61 濃縮消化汚泥 62 消化汚泥分離水 7 ガス発電装置 71 回収エネルギー 8 遠心濃縮機 81 濃縮余剰汚泥 82 余剰汚泥分離水 DESCRIPTION OF SYMBOLS 1 Biological reaction process 2 Microbial solid-liquid separation process 21 Excess sludge 22 Returned sludge 3 Heating / pressurizing processing unit 31 Solubilized sludge 4 Flammable gas recovery process 41 Digested sludge 42 Flammable gas 5 Centrifugal dehydration device 51 Dehydration cake 52 Dewatered filtrate 6 Pressurized flotation concentrator 61 Concentrated digested sludge 62 Separated digested sludge 7 Gas power generator 71 Recovery energy 8 Centrifugal concentrator 81 Concentrated excess sludge 82 Excess sludge separated water

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 昭 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 Fターム(参考) 4D028 AC01 AC03 AC09 BB07 BC01 BC18 BD00 BD11 BD16 BE04 BE08 4D059 AA05 BA12 BC02 BE49 BE54 BF02 BF11 BF20 BK11 BK12 CA07 CA22 CA28 CC03 DA43 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Akira Watanabe 4-2-1 Motofujisawa, Fujisawa-shi, Kanagawa F-term in Ebara Research Institute, Ltd. (Reference) 4D028 AC01 AC03 AC09 BB07 BC01 BC18 BD00 BD11 BD16 BE04 BE08 4D059 AA05 BA12 BC02 BE49 BE54 BF02 BF11 BF20 BK11 BK12 CA07 CA22 CA28 CC03 DA43

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 好気性微生物の代謝を利用した生物反応
工程、生物反応工程の後段に設ける微生物固液分離工
程、および微生物固液分離工程において分離した汚泥の
一部または全部に対して減容化処理を施す汚泥減容化処
理工程の3種の工程を含む有機性排水の処理システムに
おいて、前記汚泥減容化処理工程を経た減容化汚泥中に
含まれる有機性成分を、主にCH4 ガスの形態で系外に
取り出す燃焼性ガス回収工程を前記汚泥減容化処理工程
の後段に設け、前記CH4 ガスの燃焼エネルギーを前記
汚泥減容化処理工程において使用する熱源及び/又は動
力源の一部または全部とすることを特徴とする汚泥の減
容化処理システム。
1. A biological reaction step utilizing the metabolism of aerobic microorganisms, a microorganism solid-liquid separation step provided at a stage subsequent to the biological reaction step, and a reduction in volume of a part or all of the sludge separated in the microorganism solid-liquid separation step. In an organic wastewater treatment system including three types of sludge volume reduction treatment processes for performing a sludge reduction process, organic components contained in the volume-reduced sludge that has passed through the sludge volume reduction process are mainly converted into CH. A combustible gas recovery step to be taken out of the system in the form of four gases is provided at the latter stage of the sludge volume reduction step, and the combustion energy of the CH 4 gas is used as a heat source and / or power for the sludge volume reduction step. A sludge volume reduction treatment system characterized in that it is part or all of the source.
【請求項2】 燃焼性ガス回収工程において、CH4
スを回収した後の残渣汚泥の一部または全部を汚泥減容
化処理工程に返送することを特徴とする請求項1記載の
汚泥の減容化処理システム。
2. The sludge reduction according to claim 1, wherein, in the combustible gas recovery step, a part or all of the residual sludge after the recovery of the CH 4 gas is returned to the sludge volume reduction treatment step. Consolidation processing system.
【請求項3】 汚泥減容化処理工程の方式として、酸化
剤、酸性剤またはアルカリ剤等の添加、または、オゾン
処理、破砕処理、加熱処理および加圧処理のうちの少な
くとも1種を使用することを特徴とする請求項1又は請
求項2記載の汚泥の減容化処理システム。
3. As a method of the sludge volume reduction treatment step, an oxidizing agent, an acid agent or an alkali agent is added, or at least one of ozone treatment, crushing treatment, heat treatment and pressure treatment is used. The sludge volume reduction treatment system according to claim 1 or 2, wherein
【請求項4】 燃焼性ガス回収工程の方式として、前記
減容化汚泥を嫌気的条件下におくことにより、CH4
スを回収することを特徴とする請求項1〜3のいずれか
1項記載の汚泥の減容化処理システム。
4. The method for recovering CH 4 gas as a method of recovering combustible gas, wherein the volume-reduced sludge is placed under anaerobic conditions to recover CH 4 gas. The sludge volume reduction treatment system described in the above.
【請求項5】 好気性微生物の代謝を利用した生物反応
槽、生物反応槽の後段に設ける微生物固液分離槽、およ
び微生物固液分離槽において分離した汚泥の一部または
全部に対して減容化処理を施す汚泥減容化処理槽を有す
る有機性排水の処理装置において、前記汚泥減容化処理
槽を経た減容化汚泥中に含まれる有機性成分を、主にC
4 ガスの形態で系外に取り出す燃焼性ガス回収工程を
前記汚泥減容化処理槽の後段に設け、前記CH4 ガスの
燃焼エネルギーを前記汚泥減容化処理槽において使用す
る熱源及び/又は動力源の一部または全部とすることを
特徴とする汚泥の減容化処理装置。
5. A volume reduction for a biological reaction tank utilizing the metabolism of aerobic microorganisms, a microorganism solid-liquid separation tank provided at a latter stage of the biological reaction tank, and a part or all of the sludge separated in the microorganism solid-liquid separation tank. In an organic wastewater treatment apparatus having a sludge volume reduction treatment tank for subjecting the organic component contained in the volume-reduced sludge passed through the sludge volume reduction treatment tank to C
A step of recovering a combustible gas to be taken out of the system in the form of H 4 gas is provided at a subsequent stage of the sludge volume reduction treatment tank, and the combustion energy of the CH 4 gas is used as a heat source and / or a heat source used in the sludge volume reduction treatment tank. An apparatus for reducing sludge volume, which is used as a part or all of a power source.
JP2000227134A 2000-07-27 2000-07-27 Sludge volume reduction treatment system and treatment apparatus Expired - Fee Related JP3958504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000227134A JP3958504B2 (en) 2000-07-27 2000-07-27 Sludge volume reduction treatment system and treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000227134A JP3958504B2 (en) 2000-07-27 2000-07-27 Sludge volume reduction treatment system and treatment apparatus

Publications (2)

Publication Number Publication Date
JP2002035779A true JP2002035779A (en) 2002-02-05
JP3958504B2 JP3958504B2 (en) 2007-08-15

Family

ID=18720632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000227134A Expired - Fee Related JP3958504B2 (en) 2000-07-27 2000-07-27 Sludge volume reduction treatment system and treatment apparatus

Country Status (1)

Country Link
JP (1) JP3958504B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007061710A (en) * 2005-08-30 2007-03-15 Kobelco Eco-Solutions Co Ltd Organic sludge treatment method and apparatus
CN101980969A (en) * 2008-03-28 2011-02-23 西门子水处理技术公司 Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
US8801931B2 (en) 2010-02-25 2014-08-12 Evoqua Water Technologies Llc Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
US8894857B2 (en) 2008-03-28 2014-11-25 Evoqua Water Technologies Llc Methods and systems for treating wastewater
US9359236B2 (en) 2010-08-18 2016-06-07 Evoqua Water Technologies Llc Enhanced biosorption of wastewater organics using dissolved air flotation with solids recycle
JP2018103080A (en) * 2016-12-22 2018-07-05 株式会社日立製作所 Wastewater treatment apparatus and wastewater treatment method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007061710A (en) * 2005-08-30 2007-03-15 Kobelco Eco-Solutions Co Ltd Organic sludge treatment method and apparatus
CN101980969A (en) * 2008-03-28 2011-02-23 西门子水处理技术公司 Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
US8623213B2 (en) 2008-03-28 2014-01-07 Siemens Water Technologies Llc Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
US8894857B2 (en) 2008-03-28 2014-11-25 Evoqua Water Technologies Llc Methods and systems for treating wastewater
US8894855B2 (en) 2008-03-28 2014-11-25 Evoqua Water Technologies Llc Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
US8894856B2 (en) 2008-03-28 2014-11-25 Evoqua Water Technologies Llc Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
US9359238B2 (en) 2008-03-28 2016-06-07 Evoqua Water Technologies Llc Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
US9359239B2 (en) 2008-03-28 2016-06-07 Evoqua Water Technologies Llc Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
US8801931B2 (en) 2010-02-25 2014-08-12 Evoqua Water Technologies Llc Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
US9359236B2 (en) 2010-08-18 2016-06-07 Evoqua Water Technologies Llc Enhanced biosorption of wastewater organics using dissolved air flotation with solids recycle
US9783440B2 (en) 2010-08-18 2017-10-10 Evoqua Water Technologies Llc Enhanced biosorption of wastewater organics using dissolved air flotation with solids recycle
JP2018103080A (en) * 2016-12-22 2018-07-05 株式会社日立製作所 Wastewater treatment apparatus and wastewater treatment method

Also Published As

Publication number Publication date
JP3958504B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
JP3452439B2 (en) Recovery and recycling of useful substances from organic waste
JP2003200198A (en) Method and apparatus for treating sludge
JP5371510B2 (en) Combined treatment of wastewater and organic residue
JP2006095377A (en) Biological treatment method and apparatus for oil and fat-containing wastewater
JP3698419B2 (en) Organic sludge reduction method and apparatus
JP4979614B2 (en) Disposer wastewater treatment method and treatment equipment
JP2002035779A (en) Volume reduction treatment system and apparatus for sludge
JP3977174B2 (en) Sludge treatment method and apparatus for reducing generation amount of excess sludge
JP2003024972A (en) Biological treatment method for organic sewage and apparatus therefor
JP3276139B2 (en) Organic waste treatment method
JP4457391B2 (en) Organic sludge treatment method and treatment apparatus
Aveni et al. Biogas recovery from olive-oil mill waste water by anaerobic digestion.
JP2000246280A (en) Treatment apparatus of organic waste water
JP2005169329A (en) Treatment method for organic waste
JP2003088833A (en) Organic waste treatment equipment
CN212425814U (en) Advanced treatment system for aromatic and heterocyclic compound wastewater
JP2006239625A (en) Method and equipment for treating organic waste
JP2006326438A (en) Apparatus and method for treating sludge
JP2001079584A (en) Cleaning method of organic waste water
JP2008030008A (en) Methane fermentation method of organic waste
JP3672091B2 (en) Organic wastewater treatment method and equipment
JP3781216B2 (en) Anaerobic sludge digestion method and device enabling re-digestion of persistent organic substances in anaerobic digested sludge
JP2003047928A (en) Method and apparatus for treating organic waste
JP4010733B2 (en) Organic wastewater treatment method and apparatus
JPS6038099A (en) Treatment of organic waste material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050303

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees