JP2002026299A - Semiconductor substrate and its manufacturing method and semiconductor device and its manufacturing method - Google Patents

Semiconductor substrate and its manufacturing method and semiconductor device and its manufacturing method

Info

Publication number
JP2002026299A
JP2002026299A JP2000202513A JP2000202513A JP2002026299A JP 2002026299 A JP2002026299 A JP 2002026299A JP 2000202513 A JP2000202513 A JP 2000202513A JP 2000202513 A JP2000202513 A JP 2000202513A JP 2002026299 A JP2002026299 A JP 2002026299A
Authority
JP
Japan
Prior art keywords
semiconductor
substrate
layer
soi
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000202513A
Other languages
Japanese (ja)
Inventor
Masaaki Koiizuka
正明 小飯塚
Naoyoshi Tamura
直義 田村
Kenichi Hizuya
健一 日数谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2000202513A priority Critical patent/JP2002026299A/en
Publication of JP2002026299A publication Critical patent/JP2002026299A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To significantly improve the operational performance and reliability of an element by reducing the interfacial level in the interface between the semiconductor layer and insulating layer of an SOI substrate and improving the carrier mobility of the substrate when improving the operating speed of a semiconductor device, reducing the power consumption of the device, and so on, by using the SOI substrate. SOLUTION: In constituting the semiconductor device by using the SOI(silicon (semiconductor) on insulator) substrate 1 as a semiconductor substrate, the interfacial level in the interface between the semiconductor layer (surface silicon layer: SOI layer) 12 and insulating layer (buried oxide layer: BOX(buried oxide) layer) 11 is reduced and the channel mobility in the interface is improved by segregating nitrogen in the interface to a prescribed concentration, in this case, about 5×1020 atoms/cm3 (0.9%).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、SOI構造の半導
体基板及びその製造方法、並びに当該半導体基板を備え
た半導体装置及びその製造方法に関し、半導体素子の動
作時における動作特性及び信頼性の向上に大きく寄与す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor substrate having an SOI structure and a method of manufacturing the same, and a semiconductor device provided with the semiconductor substrate and a method of manufacturing the same. It will greatly contribute.

【0002】[0002]

【従来の技術】近年、高性能トランジスタの半導体基板
として、SOI構造のウェハが注目されている。このS
OIウェハは、接合容量の低下によるデバイスの高速
化、低消費電力化、基板バイアス効果の低下による動作
電圧の低下、素子の完全分離によるソフトエラー耐性の
向上、ラッチアップの抑制、基板の干渉ノイズの抑制等
に寄与する。
2. Description of the Related Art In recent years, as a semiconductor substrate for a high-performance transistor, a wafer having an SOI structure has attracted attention. This S
OI wafers have higher device speed and lower power consumption due to lower junction capacitance, lower operating voltage due to lower substrate bias effect, improved soft error resistance due to complete isolation of elements, suppression of latch-up, and substrate interference noise. Contributes to the suppression of

【0003】[0003]

【発明が解決しようとする課題】SOIウェハを用いて
例えばMOSFETを製造するに際して、ゲート絶縁膜
の形成工程は、通常のウェハ(CZウェハ、エピタキシ
ャルウェハ等)を用いた場合と同様であり、ゲート絶縁
膜を形成した後、水素雰囲気中で熱処理することにより
ゲート絶縁膜の界面準位をパッシベートする方法が一般
的に行なわれている。しかしながら、ゲート絶縁膜の界
面準位をパッシベートした水素は、素子動作中に解離し
易く、素子特性(チャネル移動度)の劣化(経時変化)
を招来するという問題があり(J.W.Lyding et.al.,App
l.Phys.Lett.68,2526(1996))、当該水素処理はコスト
の負担も大きい。
When manufacturing, for example, a MOSFET using an SOI wafer, the step of forming a gate insulating film is the same as that when using a normal wafer (CZ wafer, epitaxial wafer, etc.). After the formation of the insulating film, a method of passivating the interface state of the gate insulating film by heat treatment in a hydrogen atmosphere is generally performed. However, hydrogen in which the interface state of the gate insulating film is passivated is easily dissociated during operation of the device, resulting in deterioration of device characteristics (channel mobility) (time-dependent change).
(JWLyding et.al., App
l. Phys. Lett. 68, 2526 (1996)), and the hydrogen treatment has a large cost burden.

【0004】また、半導体層(表面シリコン層:SOI
層)と絶縁層(埋め込み酸化膜層:BOX層)との界面
(SOI/BOX界面)に窒素を高濃度(0.4×10
15/cm2〜1.5×1015/cm2)に偏析させ、バー
ズビークの発生を防止することにより、SOI層の結晶
欠陥の発生を抑制する方法も報告されている(特開平5
−259418号公報)。しかしながら、この方法は、
SOI層の結晶欠陥の発生を抑制することには寄与する
が、窒素量が多いため、SOI/BOX界面における界
面準位の低減には寄与しない。
Further, a semiconductor layer (surface silicon layer: SOI
Layer (SOI / BOX interface) between the insulating layer (buried oxide film layer: BOX layer) and the insulating layer (buried oxide film layer: BOX layer).
A method has also been reported in which the occurrence of crystal defects in the SOI layer is suppressed by preventing segregation to 15 / cm 2 to 1.5 × 10 15 / cm 2 ) and preventing the occurrence of bird's beaks (Japanese Unexamined Patent Application Publication No. Hei 5 (1993) -205).
-259418). However, this method
Although this contributes to suppressing the generation of crystal defects in the SOI layer, it does not contribute to reducing the interface state at the SOI / BOX interface due to the large amount of nitrogen.

【0005】そこで本発明は、上記の課題に鑑みてなさ
れたものであり、SOI基板を用いてデバイスの高速動
作化や低消費電力化等を図るに際して、SOI基板の半
導体層と絶縁層との界面準位を低減し、キャリア移動度
を向上させて素子動作性能及び信頼性の大幅な向上をも
たらす半導体基板及びその製造方法、並びに半導体装置
及びその製造方法を提供することを目的とする。
The present invention has been made in view of the above-described problems, and is intended to improve the speed of operation and reduce power consumption of a device using an SOI substrate. It is an object of the present invention to provide a semiconductor substrate, a method of manufacturing the same, and a semiconductor device and a method of manufacturing the same, in which interface states are reduced and carrier mobility is improved to greatly improve element operation performance and reliability.

【0006】[0006]

【課題を解決するための手段】本発明者らは、鋭意検討
の結果、以下に示す発明の諸態様に想到した。
Means for Solving the Problems As a result of intensive studies, the present inventors have reached the following aspects of the invention.

【0007】本発明は、絶縁層上に半導体層を有するS
OI基板、具体的には貼り合わせ型やSIMOX型のも
の等を対象とする。この半導体基板は、前記絶縁層の前
記半導体層との界面に窒素が偏析し、当該窒素のピーク
濃度が1.45×1021(atoms/cm3)以下で
あることを特徴とする。
[0007] The present invention relates to an S-type semiconductor device having a semiconductor layer on an insulating layer.
An OI substrate, specifically, a bonded type or a SIMOX type is targeted. This semiconductor substrate is characterized in that nitrogen segregates at the interface between the insulating layer and the semiconductor layer and the peak concentration of the nitrogen is 1.45 × 10 21 (atoms / cm 3 ) or less.

【0008】上記構成のSOI基板を製造するに際し
て、貼り合わせ型の場合、第1の基板の半導体層上に絶
縁層を形成する工程と、前記第1の基板に窒化性ガス雰
囲気中で熱処理を施し、前記絶縁層の前記半導体層との
界面に、ピーク濃度が1.45×1021(atoms/
cm3)以下となるように窒素を偏析させる工程と、前
記第1の基板を前記絶縁層を介して第2の基板と貼り合
わせる工程とを経て、SOI基板を完成させる。
In manufacturing an SOI substrate having the above structure, in the case of a bonding type, a step of forming an insulating layer on a semiconductor layer of the first substrate and a heat treatment on the first substrate in a nitriding gas atmosphere are performed. A peak concentration of 1.45 × 10 21 (atoms / atom) at the interface between the insulating layer and the semiconductor layer.
cm 3 ) or less, and a step of bonding the first substrate to a second substrate via the insulating layer to complete the SOI substrate.

【0009】また、SIMOX型の場合、半導体基板に
酸素イオンを導入した後、熱処理を施して絶縁層を形成
する工程と、前記半導体基板に窒化性ガス雰囲気中で熱
処理を施し、前記半導体基板の前記絶縁層との界面に、
ピーク濃度が1.45×10 21(atoms/cm3
以下となるように窒素を偏析させる工程とを経て、SO
I基板を完成させる。
In the case of the SIMOX type, the semiconductor substrate
After introducing oxygen ions, heat treatment is applied to form an insulating layer
And heating the semiconductor substrate in a nitriding gas atmosphere.
Performing a process, at the interface between the semiconductor substrate and the insulating layer,
1.45 × 10 peak concentration twenty one(Atoms / cmThree)
Through the step of segregating nitrogen so that
Complete the I substrate.

【0010】更に本発明では、上記構成のSOI基板を
用い、このSOI基板上に半導体素子が形成されてなる
半導体装置を対象とする。
Further, the present invention is directed to a semiconductor device using the SOI substrate having the above structure and having a semiconductor element formed on the SOI substrate.

【0011】更に、この半導体装置を製造するに際し
て、前記SOI基板に窒化性ガス雰囲気中で熱処理を施
し、前記絶縁層の前記半導体層との界面に、ピーク濃度
が1.45×1021(atoms/cm3)以下となる
ように窒素を偏析させる。
Further, when manufacturing this semiconductor device, the SOI substrate is subjected to a heat treatment in a nitriding gas atmosphere, and a peak concentration of 1.45 × 10 21 (atoms) is present at the interface between the insulating layer and the semiconductor layer. / Cm 3 ).

【0012】具体的には、前記SOI基板に窒化性ガス
雰囲気中で熱処理を施し、前記絶縁層の前記半導体層と
の界面に、ピーク濃度が1.45×1021(atoms
/cm3)以下の窒素を偏析させることが好適である。
Specifically, the SOI substrate is subjected to a heat treatment in a nitriding gas atmosphere, and a peak concentration of 1.45 × 10 21 (atoms) is formed at an interface between the insulating layer and the semiconductor layer.
/ Cm 3 ) or less of nitrogen is preferable.

【0013】[0013]

【発明の実施の形態】以下、本発明を適用した具体的な
実施形態について、図面を参照しながら詳細に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings.

【0014】先ず始めに、本発明の主要構成について概
説する。本発明は、半導体基板としてSOI(Silicon
(Semiconductor) On insulator)基板を用いて半導体装
置を構成するに際して、半導体層(表面シリコン層:S
OI層)と絶縁層(埋め込み酸化層:BOX(Buried O
xide)層)との界面(SOI/BOX界面)に窒素を所
定濃度に偏析させ、これによりSOI/BOX界面にお
ける界面準位の低減、チャネル移動度の向上を図ること
を主な特徴とするものである。本発明では、SOI/B
OX界面に偏析させる窒素の濃度が重要であり、以下に
示す手法により最適な濃度値を決定した。
First, the main configuration of the present invention will be outlined. The present invention relates to an SOI (Silicon)
When a semiconductor device is constructed using a (Semiconductor) On insulator) substrate, a semiconductor layer (surface silicon layer: S)
OI layer) and insulating layer (buried oxide layer: BOX (Buried O
xide) layer is mainly characterized by segregating nitrogen to a predetermined concentration at the interface (SOI / BOX interface), thereby reducing the interface state at the SOI / BOX interface and improving the channel mobility. It is. In the present invention, SOI / B
The concentration of nitrogen segregated at the OX interface is important, and the optimum concentration value was determined by the following method.

【0015】図1は、本発明に係るSOI基板を用いた
MOSFETの製造方法の一例である。先ず、BOX層
11上に厚みが37nm程度の表面シリコン層12が形
成されたSOI基板1を5枚用意する(図1(a))。
FIG. 1 shows an example of a method for manufacturing a MOSFET using an SOI substrate according to the present invention. First, five SOI substrates 1 each having a surface silicon layer 12 having a thickness of about 37 nm formed on a BOX layer 11 are prepared (FIG. 1A).

【0016】続いて、それぞれのSOI基板1を窒素濃
度の異なる雰囲気(NO:流量(L/分)=0,0.
3,0.4,0.6 N2:流量(L/分)=10)中
で900℃,15分間熱処理する(図1(b))。この
熱処理により、SOI/BOX界面に窒素が導入されて
偏析分布し、窒化偏析層13が形成される。
Subsequently, each SOI substrate 1 is placed in an atmosphere having a different nitrogen concentration (NO: flow rate (L / min) = 0, 0.
3, 0.4, 0.6 N 2 : heat treatment at 900 ° C. for 15 minutes in a flow rate (L / min) = 10 (FIG. 1B). By this heat treatment, nitrogen is introduced into the SOI / BOX interface and segregated and distributed, whereby the nitride segregation layer 13 is formed.

【0017】続いて、これらのSOI基板1をフッ酸洗
浄し、表面シリコン層12の表面に形成された酸窒化膜
20を除去する(図1(c))。
Subsequently, the SOI substrate 1 is washed with hydrofluoric acid to remove the oxynitride film 20 formed on the surface of the surface silicon layer 12 (FIG. 1C).

【0018】このように、SOI/BOX界面に窒素の
偏析により窒化偏析層13が形成させたSOI基板1を
用いて、図1(d)に示すように、ゲート絶縁膜14上
にゲート電極15をパターン形成し、ゲート電極15の
両側における表面シリコン層12にソース/ドレイン1
6を形成し、これらゲート電極15及びソース/ドレイ
ン16とそれぞれ接続される各タングステン(W)電極
17を形成して、完全空乏型のMOSFETを作製し
た。この場合、ゲート電極15のゲート長が50μm、
ゲート絶縁膜14の膜厚が3nm程度、ゲート電極15
の面積が5000μm2程度となった。
As shown in FIG. 1D, the gate electrode 15 is formed on the gate insulating film 14 using the SOI substrate 1 in which the nitride segregation layer 13 is formed at the SOI / BOX interface by segregation of nitrogen. Are formed on the surface silicon layer 12 on both sides of the gate electrode 15 so that the source / drain 1
6 were formed, and tungsten (W) electrodes 17 connected to the gate electrode 15 and the source / drain 16, respectively, were formed, thereby producing a fully depleted MOSFET. In this case, the gate length of the gate electrode 15 is 50 μm,
The thickness of the gate insulating film 14 is about 3 nm,
Became about 5000 μm 2 .

【0019】前記MOSFETのSOI/BOX界面に
偏析した窒素濃度(対シリコン比)をSIMSで測定し
た結果、5枚のSOI基板1の界面窒素濃度は、各々
0.0,0.9,1.1,2.9,3.5(%)であっ
た。
The concentration of nitrogen segregated at the SOI / BOX interface of the MOSFET (to silicon) was measured by SIMS. As a result, the nitrogen concentration at the interface of the five SOI substrates 1 was 0.0, 0.9, 1.. 1,2.9,3.5 (%).

【0020】図2に、図1(d)に示すMOSFETに
おけるSOI/BOX界面の窒素濃度が0.9%の場合
の、SOI基板1の深さ方向の窒素、酸素、シリコンの
濃度分布を示す。図2の横軸は、図1(d)のW電極1
7からBOX層11に向かった深さを示している。窒素
がSOI/BOX界面に5×1020atoms/cm 3
(0.9%)偏析していることが分かる。なお、ゲート
酸化膜14とゲート電極15との界面(SiON層を形
成)及びゲート電極15とW電極17との界面にも窒素
の偏析が見られるが、これはデバイス作製工程の熱処理
により窒素が移動したものと考えられる。
FIG. 2 shows the MOSFET shown in FIG.
When the nitrogen concentration at the SOI / BOX interface is 0.9%
Of nitrogen, oxygen and silicon in the depth direction of the SOI substrate 1
3 shows a concentration distribution. The horizontal axis in FIG. 2 is the W electrode 1 in FIG.
7 shows the depth from 7 toward the BOX layer 11. nitrogen
Is 5 × 10 at the SOI / BOX interface20atoms / cm Three
(0.9%) It turns out that it has segregated. The gate
The interface between the oxide film 14 and the gate electrode 15 (a SiON layer is formed)
And nitrogen at the interface between the gate electrode 15 and the W electrode 17.
Is observed. This is due to the heat treatment in the device fabrication process.
It is considered that nitrogen moved due to the above.

【0021】図3に、各窒素濃度に対する電子の実効移
動度を示す。窒素濃度の増加と共に移動度が上昇し、
0.9%を超えると再び低下し、2.9%で最も優れた
高い実効移動度となり、3.5%では逆に窒素偏析のな
い(0%)場合よりも移動度の低下を来すようになる。
このことから、チャネル移動度の向上に寄与する窒素濃
度には最適値(約2.9×5×1020=1.45×10
21(atoms/cm3))を頂点とする適正範囲が存
在することが示唆される。
FIG. 3 shows the effective electron mobility for each nitrogen concentration. Mobility increases with increasing nitrogen concentration,
When it exceeds 0.9%, it again decreases, and at 2.9%, the highest effective mobility is obtained. At 3.5%, the mobility is lower than when nitrogen segregation is not performed (0%). Become like
From this, the optimum value of the nitrogen concentration contributing to the improvement of the channel mobility (about 2.9 × 5 × 10 20 = 1.45 × 10
21 (atoms / cm 3 )) suggests that there is an appropriate range with the peak.

【0022】次に、この移動度変化の原因がSOI/B
OX界面における界面準位の変化にあることを確かめる
ために、チャージポンピング法により界面準位密度を調
べた。その結果を図4に示す。この図4から明らかなよ
うに、移動度の場合と同様に、窒素濃度に応じて界面準
位が一旦減少し、再び増加している。このことから、移
動度変化の原因がSOI/BOX界面準位の変化にある
ことが分かる。
Next, the cause of the mobility change is SOI / B
In order to confirm that there was a change in the interface state at the OX interface, the interface state density was examined by the charge pumping method. FIG. 4 shows the results. As is clear from FIG. 4, as in the case of the mobility, the interface state temporarily decreases and increases again according to the nitrogen concentration. From this, it can be seen that the cause of the mobility change is a change in the SOI / BOX interface state.

【0023】以上のことから、SOI/BOX界面に適
正範囲の濃度、好ましくは1.45×1021(atom
s/cm3)以下の窒素を偏析させることにより、SO
I/BOX界面における界面準位を低減し、チャネル移
動度を向上させることができる。そして、このように界
面準位が適正化されたSOI基板を用いて半導体素子を
形成することにより、高性能且つ高信頼性の半導体装置
を得ることが可能となる。
From the above, the concentration within the appropriate range at the SOI / BOX interface, preferably 1.45 × 10 21 (atom)
s / cm 3 ) or less by segregating nitrogen
The interface state at the I / BOX interface can be reduced, and the channel mobility can be improved. In addition, by forming a semiconductor element using an SOI substrate whose interface state is optimized as described above, a high-performance and highly reliable semiconductor device can be obtained.

【0024】なお、上記の例では完全空乏型のMOSF
ETについて説明し、ゲート絶縁膜の界面だけではな
く、SOI/BOX界面もチャネル移動度、スイッチン
グ特性に大きな影響を及ぼすことに着目して、SOI/
BOX界面準位を安定してパッシベートすることにより
MOSFETの性能及び信頼性向上を可能にしたが、部
分空乏型のMOSFETにおいても同様であり、オフ電
流がSOI/BOX界面準位に起因することから、SO
I/BOX界面準位を低減化してMOSFETの信頼性
向上を可能にする。
In the above example, the MOSF of the fully depleted type is used.
The ET will be described, and not only the interface of the gate insulating film but also the SOI / BOX interface will have a significant effect on channel mobility and switching characteristics.
Although the performance and reliability of the MOSFET can be improved by stabilizing and passivating the BOX interface state, the same applies to the partially depleted MOSFET, because the off-state current is caused by the SOI / BOX interface state. , SO
An I / BOX interface state is reduced to improve the reliability of the MOSFET.

【0025】以上説明した本発明の主要構成を踏まえ、
本実施形態のMOSFETの構成をその製造方法と共に
説明する。図5は、本実施形態によるSOI基板を用い
たMOSFETの製造方法を工程順に示す概略断面図で
ある。
Based on the main configuration of the present invention described above,
The configuration of the MOSFET according to the present embodiment will be described together with its manufacturing method. FIG. 5 is a schematic cross-sectional view showing the method of manufacturing the MOSFET using the SOI substrate according to the present embodiment in the order of steps.

【0026】先ず、図5(a)に示すように、SOI基
板1を窒素雰囲気中で900℃、15分間熱処理してS
OI/BOX界面に1.45×1021(atoms/c
3)の濃度で窒素を偏析させた後、リン酸(H3
4)で洗浄して表層の窒化膜を除去する。ここで、前
記熱処理は窒素含有雰囲気(一酸化窒素ガス、アンモニ
ア、NF3、亜酸化窒素、ECRにより誘起された窒素
プラズマ等)の中で行なってもよい。また、上述の窒素
偏析工程によらず、予めSOI/BOX界面に前記濃度
の窒素が偏析したSOI基板で代用してもよい。
First, as shown in FIG. 5A, the SOI substrate 1 is heat-treated at 900 ° C. for 15 minutes in a nitrogen atmosphere to
1.45 × 10 21 (atoms / c) at the OI / BOX interface
m 3 ), after phosphoric acid (H 3 P)
Cleaning with O 4 ) removes the surface nitride film. Here, the heat treatment may be performed in a nitrogen-containing atmosphere (nitrogen oxide gas, ammonia, NF 3 , nitrous oxide, nitrogen plasma induced by ECR, or the like). Instead of the above-described nitrogen segregation step, an SOI substrate in which the above concentration of nitrogen is segregated in advance at the SOI / BOX interface may be used instead.

【0027】更に比較のため、熱処理していない、即ち
SOI/BOX界面に窒素の偏析のない従来のSOI基
板も用意する。なお便宜上、図5の各図においては、本
実施形態のSOI基板1を用いた製造工程を図示する。
For comparison, a conventional SOI substrate that has not been heat-treated, that is, has no nitrogen segregation at the SOI / BOX interface, is also prepared. For convenience, in each of FIGS. 5A and 5B, a manufacturing process using the SOI substrate 1 of the present embodiment is illustrated.

【0028】続いて、図5(b)に示すように、これら
のSOI基板(本実施形態によるSOI基板1及び比較
例のSOI基板)を950℃のドライ酸素雰囲気中で熱
処理し、表面にシリコン酸化膜21を膜厚3nm程度に
形成する。
Subsequently, as shown in FIG. 5B, these SOI substrates (the SOI substrate 1 according to the present embodiment and the SOI substrate of the comparative example) are heat-treated in a dry oxygen atmosphere at 950 ° C. Oxide film 21 is formed to a thickness of about 3 nm.

【0029】次に、このシリコン酸化膜21上にシリコ
ン窒化膜22をCVD法(SiH2Cl2+NH3)によ
り750℃で膜厚112nm程度に堆積する。更に、シ
リコン窒化膜22上にフォトレジスト23を塗布する。
Next, a silicon nitride film 22 is deposited on the silicon oxide film 21 by CVD (SiH 2 Cl 2 + NH 3 ) at 750 ° C. to a thickness of about 112 nm. Further, a photoresist 23 is applied on the silicon nitride film 22.

【0030】続いて、図5(c)に示すように、フォト
リソグラフィーによりフォトレジスト23を加工してレ
ジストマスク(不図示)を形成し、これをマスクとして
用いてシリコン窒化膜22をCF4を用いたプラズマエ
ッチングによりパターニングする。その後、例えば酸素
プラズマを用いた灰化処理によりレジストマスクを除去
する。
Subsequently, as shown in FIG. 5C, the photoresist 23 is processed by photolithography to form a resist mask (not shown), and the silicon nitride film 22 is formed of CF 4 using this as a mask. Patterning is performed by the used plasma etching. Thereafter, the resist mask is removed by, for example, an ashing process using oxygen plasma.

【0031】続いて、図5(d)に示すように、パター
ニングされたシリコン窒化膜22をマスクにして、90
0℃のウェット雰囲気にて選択酸化を行い、膜厚350
nm程度のフィールド絶縁膜(LOCOS)25を形成
して素子領域を画定する。その後、シリコン窒化膜22
を除去する。更に、画定された素子領域にp型不純物、
ここでは硼素(B)を加速エネルギー30keV、ドー
ズ量8×1012/cm 2でチャネルイオン注入した後、
800℃のウェット雰囲気にて熱処理し、膜厚5nm程
度のゲート絶縁膜26を形成する。
Subsequently, as shown in FIG.
Using the silicon nitride film 22 as a mask,
Selective oxidation is performed in a wet atmosphere at 0 ° C.
Form field insulating film (LOCOS) 25 of about nm
To define an element region. Then, the silicon nitride film 22
Is removed. Further, a p-type impurity is added to the defined element region.
Here, boron (B) is accelerated at an energy of 30 keV,
8 × 1012/ Cm TwoAfter channel ion implantation with
Heat-treated in a wet atmosphere at 800 ° C. to a thickness of about 5 nm
A gate insulating film 26 is formed.

【0032】続いて、図5(e)に示すように、ゲート
絶縁膜26上にCVD法(SiH4+H2)により620
℃で多結晶シリコン膜27を膜厚180nm程度に積層
し、これにn型不純物、ここではリン(P)を加速エネ
ルギー20keV,ドーズ量4×1015/cm2でイオ
ン注入して、800℃、60分間の熱処理によりリンを
多結晶シリコン膜27中に拡散させる。更に、多結晶シ
リコン膜27上に、プラズマCVD法(SiH4+N
3)により400℃でシリコン窒化膜28を膜厚29
nm程度に堆積する。
Subsequently, as shown in FIG. 5E, 620 is formed on the gate insulating film 26 by the CVD method (SiH 4 + H 2 ).
At 180 ° C., a polycrystalline silicon film 27 is laminated to a thickness of about 180 nm, and an n-type impurity, here, phosphorus (P) is ion-implanted at an acceleration energy of 20 keV and a dose of 4 × 10 15 / cm 2 to 800 ° C. The phosphorus is diffused into the polycrystalline silicon film 27 by a heat treatment for 60 minutes. Further, a plasma CVD method (SiH 4 + N) is formed on the polycrystalline silicon film 27.
H 3) by a silicon nitride film 28 thickness 29 at 400 ° C.
It is deposited to about nm.

【0033】続いて、図5(f)に示すように、シリコ
ン窒化膜28上にフォトレジスト(不図示)を塗布し、
フォトリソグラフィーによりフォトレジストを加工して
レジストマスクを形成し、これをマスクとして用いてシ
リコン窒化膜28、多結晶シリコン膜27及びゲート絶
縁膜26をプラズマエッチング(CF4及びHBr)に
よりパターニングし、ゲート絶縁膜26上にゲート電極
29及びそのキャップ絶縁膜30を形成する。
Subsequently, as shown in FIG. 5F, a photoresist (not shown) is applied on the silicon nitride film 28,
The photoresist is processed by photolithography to form a resist mask, and the silicon nitride film 28, the polycrystalline silicon film 27, and the gate insulating film 26 are patterned by plasma etching (CF 4 and HBr) using the resist mask as a mask. A gate electrode 29 and its cap insulating film 30 are formed on the insulating film 26.

【0034】次に、レジストマスクを除去した後、キャ
ップ絶縁膜30及びフィールド絶縁膜25をマスクにし
てSOI基板に加速エネルギーが5keV,ドーズ量が
1×1015/cm2でn型不純物、ここでは砒素(A
s)をイオン注入し、1000℃で10秒間熱処理し
て、SOI基板におけるゲート電極29の両側にソース
/ドレイン30を形成する。
Next, after removing the resist mask, an n-type impurity having an acceleration energy of 5 keV and a dose of 1 × 10 15 / cm 2 is applied to the SOI substrate using the cap insulating film 30 and the field insulating film 25 as a mask. Then arsenic (A
s) is ion-implanted and heat-treated at 1000 ° C. for 10 seconds to form a source / drain 30 on both sides of the gate electrode 29 in the SOI substrate.

【0035】続いて、図5(g)に示すように、CVD
法(SiH4+N2O)により750℃で全面にシリコン
酸化膜を膜厚100nm程度に堆積し、このシリコン酸
化膜の全面を異方性エッチング(エッチバック)し、ゲ
ート電極29の側壁をシリコン酸化膜で覆うサイドウォ
ール31を形成する。そして、シリコン窒化膜28を有
機溶剤等を用いて除去する。
Subsequently, as shown in FIG.
A silicon oxide film is deposited to a thickness of about 100 nm on the entire surface at 750 ° C. by the method (SiH 4 + N 2 O), the entire surface of the silicon oxide film is anisotropically etched (etched back), and the side wall of the gate electrode 29 is formed on the silicon. A sidewall 31 covered with an oxide film is formed. Then, the silicon nitride film 28 is removed using an organic solvent or the like.

【0036】続いて、図5(h)に示すように、全面に
プラズマCVD法によりシリコン窒化膜(温度750
℃、膜厚80nm程度)及びシリコン酸化膜(温度35
0℃、膜厚400nm程度)を順次堆積し、層間絶縁膜
32を形成する。
Subsequently, as shown in FIG. 5H, a silicon nitride film (temperature 750) is formed on the entire surface by a plasma CVD method.
° C, film thickness of about 80 nm) and silicon oxide film (temperature of 35
(0 ° C., film thickness of about 400 nm) are sequentially deposited to form an interlayer insulating film 32.

【0037】次に、層間絶縁膜32上にフォトレジスト
を塗布し、フォトリソグラフィーにより加工してレジス
トマスク(不図示)を形成する。このレジストマスクを
用いて層間絶縁膜32をプラズマエッチング(CF4
し、ゲート電極29及びソース/ドレイン30の表面の
一部をそれぞれ露出させる各コンタクト孔33を形成す
る。
Next, a photoresist is applied on the interlayer insulating film 32 and processed by photolithography to form a resist mask (not shown). Using this resist mask, the interlayer insulating film 32 is plasma-etched (CF 4 ).
Then, each contact hole 33 exposing a part of the surface of the gate electrode 29 and the source / drain 30 is formed.

【0038】次に、スパッタ法により、各コンタクト孔
33を埋め込み層間絶縁膜32の表面を覆う膜厚にタン
グステン(W)を堆積し、フォトリソグラフィー及びそ
れに続くドライエッチングによりタングステンをパター
ニングして、ゲート電極29及びソース/ドレイン30
の各々と導通する引き出し電極34を形成する。
Next, tungsten (W) is deposited by sputtering so as to fill each contact hole 33 and cover the surface of the interlayer insulating film 32. The tungsten is patterned by photolithography and subsequent dry etching to form a gate. Electrode 29 and source / drain 30
Are formed to be connected to each of the electrodes.

【0039】しかる後、更なる層間絶縁膜や接続用配線
の形成等の後工程を経て、本実施形態のSOI基板1を
用いたMOSFET及びその比較例である従来のMOS
FETをそれぞれ完成させる。
Thereafter, the MOSFET using the SOI substrate 1 of the present embodiment and a conventional MOS which is a comparative example thereof are subjected to a post-process such as formation of an additional interlayer insulating film and connection wiring.
Complete each FET.

【0040】このようにして作製した各MOSFET
(本実施形態及び比較例)を用いて、電子の実効移動度
とSOI/BOX界面における界面準位密度を測定し
た。その結果を図6に示す。ここで、(a)が実効移動
度、(b)が界面準位密度をそれぞれ表す。
Each MOSFET fabricated in this manner
Using (the present embodiment and a comparative example), the effective mobility of electrons and the interface state density at the SOI / BOX interface were measured. FIG. 6 shows the result. Here, (a) represents the effective mobility, and (b) represents the interface state density.

【0041】本実施形態のMOSFETでは、比較例に
比して、窒素のSOI/BOX界面への偏析により、実
効移動度の増加及び界面準位密度の低減が見られる。ソ
ース/ドレイン電流ISDは、 ISD=(W/L)COX(VD−Vth2 と表せるので、 (Vg−Vth)=3(MV/cm) の場合、図6から、窒素がSOI/BOX界面へ偏析し
た本実施形態のMOSFETは、窒素がSOI/BOX
界面に偏析していない従来のMOSFETに比べて移動
度が1割程大きく、ソース/ドレイン電流ISDも同様に
1割程度向上する、
In the MOSFET of this embodiment, the effective mobility is increased and the interface state density is reduced due to the segregation of nitrogen at the SOI / BOX interface, as compared with the comparative example. Since the source / drain current I SD can be expressed as I SD = (W / L) C ox (V D −V th ) 2 , when (V g −V th ) = 3 (MV / cm), FIG. In the MOSFET of the present embodiment in which nitrogen segregates at the SOI / BOX interface,
The mobility is about 10% larger than the conventional MOSFET not segregated at the interface, and the source / drain current I SD is also improved by about 10%.

【0042】以上のことから、SOI/BOX界面に所
定の濃度(1.45×1021atoms/cm3程度以
下)の窒素を偏析させることにより、SOI/BOX界
面における界面準位を低減し、チャネル移動度を向上さ
せることができ、ソース/ドレイン電流ISDの向上が実
現する。
From the above, by segregating nitrogen at a predetermined concentration (about 1.45 × 10 21 atoms / cm 3 or less) at the SOI / BOX interface, the interface state at the SOI / BOX interface is reduced. The channel mobility can be improved, and the source / drain current I SD can be improved.

【0043】従って、本実施形態によれば、SOI基板
を用いてデバイスの高速動作化や低消費電力化等を図る
に際して、SOI/BOX界面における界面準位を低減
し、キャリア移動度を向上させることが可能であり、素
子動作性能及び信頼性の大幅な向上を実現することがで
きる。
Therefore, according to the present embodiment, when achieving high-speed operation and low power consumption of the device using the SOI substrate, the interface state at the SOI / BOX interface is reduced and the carrier mobility is improved. It is possible to realize a significant improvement in element operation performance and reliability.

【0044】また、製造工程中の熱処理により、ゲート
絶縁膜26の界面にも窒素が偏析し、ゲート絶縁膜界面
準位の低減という二次的効果も期待できる。
In addition, due to the heat treatment during the manufacturing process, nitrogen is segregated at the interface of the gate insulating film 26, and a secondary effect of reducing the gate insulating film interface level can be expected.

【0045】[0045]

【実施例】以下、本発明の主要構成であるSOI基板の
具体的な諸態様について、その構造を製造方法と共に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of an SOI substrate, which is a main component of the present invention, will be described below in terms of its structure together with a manufacturing method.

【0046】(実施例1)ここでは、いわゆる貼り合わ
せ型のSOI基板を対象とする。図7は、実施例1によ
る貼り合わせ型のSOI基板の製造方法を工程順に示す
概略断面図である。
(Embodiment 1) Here, a so-called bonded SOI substrate is used. FIG. 7 is a schematic cross-sectional view illustrating a method for manufacturing a bonded SOI substrate according to the first embodiment in the order of steps.

【0047】先ず、図7(a)に示すように、半導体基
板41を用意し、この半導体基板41に1000℃のウ
ェット雰囲気中で熱処理し、表面に膜厚400nm程度
の絶縁層42を形成する。
First, as shown in FIG. 7A, a semiconductor substrate 41 is prepared, and the semiconductor substrate 41 is heat-treated in a wet atmosphere at 1000 ° C. to form an insulating layer 42 having a thickness of about 400 nm on the surface. .

【0048】続いて、図7(b)に示すように、この半
導体基板41に、窒素含有雰囲気中(一酸化窒素ガス、
アンモニア、NF3、亜酸化窒素、ECRより誘起され
た窒素プラズマ等)で900℃、4時間熱処理し、ピー
ク濃度が1.45×1021(atoms/cm3)程度
となるように窒素を半導体基板41と絶縁層42の界
面、即ちSOI/BOX界面に偏析させて窒化偏析層4
3を形成する。
Subsequently, as shown in FIG. 7B, the semiconductor substrate 41 is placed in a nitrogen-containing atmosphere (nitrogen monoxide gas,
Heat treatment at 900 ° C. for 4 hours with ammonia, NF 3 , nitrous oxide, nitrogen plasma induced by ECR, etc., and nitrogen is turned into a semiconductor so that the peak concentration becomes about 1.45 × 10 21 (atoms / cm 3 ). The nitride segregation layer 4 is segregated at the interface between the substrate 41 and the insulating layer 42, that is, at the SOI / BOX interface.
Form 3

【0049】続いて、図7(c)に示すように、以上の
処理を施した半導体基板41を、無処理の半導体基板4
4と絶縁層42と半導体基板44の鏡部分とを対面させ
て貼り合わせ、1100℃で熱処理して両者を完全に密
着させる。
Subsequently, as shown in FIG. 7C, the semiconductor substrate 41 having been subjected to the above-described processing is replaced with the unprocessed semiconductor substrate 4.
4, the insulating layer 42, and the mirror portion of the semiconductor substrate 44 are bonded to face each other, and heat-treated at 1100 ° C. so that the two are completely adhered to each other.

【0050】しかる後、図7(d)に示すように、貼り
合わせた半導体基板41,44の上面(即ち、半導体基
板41の下面)を研磨して薄くすることにより、SOI
/BOX界面に窒素が偏析した貼り合わせ型のSOI基
板を完成させる。
Thereafter, as shown in FIG. 7D, the upper surfaces of the bonded semiconductor substrates 41 and 44 (that is, the lower surfaces of the semiconductor substrates 41) are polished and thinned to obtain SOI.
A bonded SOI substrate having nitrogen segregated at the / BOX interface is completed.

【0051】(実施例2)ここでは、いわゆるSIMO
X型のSOI基板を対象とする。図8は、実施例2によ
るSIMOX型のSOI基板の製造方法を工程順に示す
概略断面図である。
(Embodiment 2) Here, a so-called SIMO
Targets an X-type SOI substrate. FIG. 8 is a schematic cross-sectional view showing a method for manufacturing a SIMOX SOI substrate according to the second embodiment in the order of steps.

【0052】先ず、図8(a)に示すように、半導体基
板51を用意し、この半導体基板51内の所定部位に酸
素イオンが到達するように、加速エネルギー170ke
V、ドーズ量4×1017/cm2の条件で酸素イオンを
イオン注入する。その後、1300℃で6時間の熱処理
を施し、半導体基板51の酸素イオンを注入した部位に
絶縁層(埋め込み酸化層:BOX層)52を形成する。
First, as shown in FIG. 8A, a semiconductor substrate 51 is prepared, and an acceleration energy of 170 ke is applied so that oxygen ions reach a predetermined portion in the semiconductor substrate 51.
V ions and oxygen ions are implanted under the conditions of a dose of 4 × 10 17 / cm 2 . Thereafter, a heat treatment is performed at 1300 ° C. for 6 hours to form an insulating layer (buried oxide layer: BOX layer) 52 in the portion of the semiconductor substrate 51 into which oxygen ions have been implanted.

【0053】しかる後、図8(b)に示すように、この
半導体基板51に、窒素含有雰囲気中(一酸化窒素ガ
ス、アンモニア、NF3、亜酸化窒素、ECRより誘起
された窒素プラズマ等)で900℃、15分間熱処理
し、ピーク濃度が1.45×10 21(atoms/cm
3)程度となるように窒素を半導体基板51とBOX層
52の界面、即ちSOI/BOX界面に偏析させて窒化
偏析層53を形成する。
Thereafter, as shown in FIG.
The semiconductor substrate 51 is placed in a nitrogen-containing atmosphere (nitrogen monoxide gas).
Water, ammonia, NFThreeInduced by Nitrous oxide, ECR
Heat treatment at 900 ° C for 15 minutes
And the peak concentration is 1.45 × 10 twenty one(Atoms / cm
Three) Nitrogen to the semiconductor substrate 51 and the BOX layer.
52 segregated at the SOI / BOX interface
The segregation layer 53 is formed.

【0054】ここで、酸素イオン注入後におけるBOX
層52を形成するための熱処理の雰囲気が酸化性雰囲気
の場合には、半導体基板51の表面に酸化膜が付着する
ため、この酸化膜を剥離した後に、上記の熱処理を施し
てSOI/BOX界面に窒素を偏析させて窒化偏析層5
3を形成する。
Here, the BOX after oxygen ion implantation is used.
In the case where the atmosphere for the heat treatment for forming the layer 52 is an oxidizing atmosphere, an oxide film adheres to the surface of the semiconductor substrate 51. Therefore, after removing the oxide film, the above heat treatment is performed to perform the SOI / BOX interface. Segregation of nitrogen into the nitrided segregation layer 5
Form 3

【0055】以上の工程により、SOI/BOX界面に
所定濃度(1.45×1021(atoms/cm3)程
度)の窒素が偏析されたSOI基板を完成させる。
Through the above steps, an SOI substrate having a predetermined concentration (about 1.45 × 10 21 (atoms / cm 3 )) of nitrogen segregated at the SOI / BOX interface is completed.

【0056】このように作製したSOI基板では、特定
の濃度(1.45×1021(atoms/cm3)程
度)の窒素をSOI/BOX界面に偏析させることによ
り、SOI/BOX界面準位が低減し、その結果として
実効移動度の電界依存を見るに高電界側にて傾きの低減
が確認される。これは界面準位の低減もしくは界面平滑
化の効果の現れである(T.Hori,Gate Dielectrics of M
OS ULSIs,Springer-verlag(1998))。以上により、実効
移動度の電界効果依存性の変化から、界面準位低減効果
によるキャリア移動度が向上することが明らかとなっ
た。
In the SOI substrate manufactured as described above, nitrogen of a specific concentration (about 1.45 × 10 21 (atoms / cm 3 )) is segregated at the SOI / BOX interface, so that the SOI / BOX interface state is reduced. As a result, the dependence of the effective mobility on the electric field shows a decrease in the inclination on the high electric field side. This is a manifestation of the effect of reducing the interface state or smoothing the interface (T. Hori, Gate Dielectrics of M
OS ULSIs, Springer-verlag (1998)). From the above, it has been clarified that the carrier mobility is improved by the effect of reducing the interface state from the change in the field effect dependence of the effective mobility.

【0057】以下、本発明の諸態様をまとめて記載す
る。
Hereinafter, various aspects of the present invention will be described.

【0058】(付記1) 絶縁層上に半導体層を有する
SOI基板上に半導体素子が形成されてなる半導体装置
であって、前記絶縁層の前記半導体層との界面に窒素が
偏析し、当該窒素のピーク濃度が1.45×1021(a
toms/cm3)以下であることを特徴とする半導体
装置。
(Supplementary Note 1) A semiconductor device in which a semiconductor element is formed on an SOI substrate having a semiconductor layer on an insulating layer, wherein nitrogen segregates at an interface of the insulating layer with the semiconductor layer, and Has a peak concentration of 1.45 × 10 21 (a
(toms / cm 3 ) or less.

【0059】(付記2) 前記SOI基板がSIMOX
基板であることを特徴とする付記1に記載の半導体装
置。
(Supplementary Note 2) The SOI substrate is SIMOX
The semiconductor device according to claim 1, wherein the semiconductor device is a substrate.

【0060】(付記3) 前記SOI基板が貼り合わせ
基板であることを特徴とする付記1に記載の半導体装
置。
(Supplementary Note 3) The semiconductor device according to supplementary note 1, wherein the SOI substrate is a bonded substrate.

【0061】(付記4) 絶縁層上に半導体層を有する
SOI基板上に半導体素子が形成されてなる半導体装置
の製造方法であって、前記SOI基板に窒化性ガス雰囲
気中で熱処理を施し、前記絶縁層の前記半導体層との界
面に、ピーク濃度が1.45×1021(atoms/c
3)以下となるように窒素を偏析させることを特徴と
する半導体装置の製造方法。
(Supplementary Note 4) A method of manufacturing a semiconductor device in which a semiconductor element is formed on an SOI substrate having a semiconductor layer on an insulating layer, wherein the SOI substrate is subjected to a heat treatment in a nitriding gas atmosphere. The peak concentration at the interface between the insulating layer and the semiconductor layer is 1.45 × 10 21 (atoms / c).
m 3 ) A method for manufacturing a semiconductor device, wherein nitrogen is segregated to be as follows.

【0062】(付記5) 前記SOI基板がSIMOX
基板であることを特徴とする付記4に記載の半導体装置
の製造方法。
(Supplementary Note 5) The SOI substrate is SIMOX
5. The method for manufacturing a semiconductor device according to claim 4, wherein the method is a substrate.

【0063】(付記6) 前記SOI基板が貼り合わせ
基板であることを特徴とする付記4に記載の半導体装置
の製造方法。
(Supplementary Note 6) The method of manufacturing a semiconductor device according to supplementary note 4, wherein the SOI substrate is a bonded substrate.

【0064】(付記7) 前記界面に窒素を偏析させた
後、前記半導体層の表面を洗浄し、前記半導体素子のゲ
ート絶縁膜を形成することを特徴とする付記4に記載の
半導体装置の製造方法。
(Supplementary Note 7) The manufacturing of the semiconductor device according to Supplementary Note 4, wherein after segregating nitrogen at the interface, the surface of the semiconductor layer is washed to form a gate insulating film of the semiconductor element. Method.

【0065】(付記8) 絶縁層上に半導体層を有する
半導体基板であって、前記絶縁層の前記半導体層との界
面に、ピーク濃度が1.45×1021(atoms/c
3)以下の窒素が偏析されていることを特徴とする半
導体基板。
(Supplementary Note 8) A semiconductor substrate having a semiconductor layer on an insulating layer, wherein an interface between the insulating layer and the semiconductor layer has a peak concentration of 1.45 × 10 21 (atoms / c).
m 3 ) A semiconductor substrate characterized in that the following nitrogen is segregated.

【0066】(付記9) SIMOX型のSOI構造で
あることを特徴とする付記8に記載の半導体基板。
(Supplementary note 9) The semiconductor substrate according to supplementary note 8, wherein the semiconductor substrate has a SIMOX type SOI structure.

【0067】(付記10) 貼り合わせ型のSOI構造
であることを特徴とする付記8に記載の半導体基板。
(Supplementary Note 10) The semiconductor substrate according to Supplementary Note 8, wherein the semiconductor substrate has a bonding type SOI structure.

【0068】(付記11) 貼り合わせ型のSOI構造
に半導体基板を製造するに際して、第1の基板の半導体
層上に絶縁層を形成する工程と、前記第1の基板に窒化
性ガス雰囲気中で熱処理を施し、前記半導体層の前記絶
縁層との界面に、ピーク濃度が1.45×1021(at
oms/cm3)以下となるように窒素を偏析させる工
程と、前記第1の基板を前記絶縁層を介して第2の基板
と貼り合わせる工程とを有することを特徴とする半導体
基板の製造方法。
(Supplementary Note 11) In manufacturing a semiconductor substrate having a bonded SOI structure, a step of forming an insulating layer on a semiconductor layer of the first substrate; A heat treatment is performed so that the interface between the semiconductor layer and the insulating layer has a peak concentration of 1.45 × 10 21 (at
oms / cm 3 ) or less, and a step of bonding the first substrate to a second substrate via the insulating layer. .

【0069】(付記12) SIMOX型のSOI構造
に半導体基板を製造するに際して、半導体基板に酸素イ
オンを導入した後、熱処理を施して絶縁層を形成する工
程と、前記第1の基板に窒化性ガス雰囲気中で熱処理を
施し、前記半導体基板の前記絶縁層との界面に、ピーク
濃度が1.45×1021(atoms/cm3)以下と
なるように窒素を偏析させる工程とを有することを特徴
とする半導体基板の製造方法。
(Supplementary Note 12) In manufacturing a semiconductor substrate having a SIMOX type SOI structure, a step of introducing oxygen ions into the semiconductor substrate and then performing a heat treatment to form an insulating layer; Performing a heat treatment in a gas atmosphere to segregate nitrogen at the interface between the semiconductor substrate and the insulating layer so that the peak concentration is 1.45 × 10 21 (atoms / cm 3 ) or less. A method for manufacturing a semiconductor substrate.

【0070】[0070]

【発明の効果】本発明によれば、SOI基板を用いてデ
バイスの高速動作化や低消費電力化等を図るに際して、
SOI基板の半導体層と絶縁層との界面準位を低減し、
キャリア移動度を向上させて素子動作性能及び信頼性の
大幅な向上をもたらすことが可能となる。
According to the present invention, when achieving high-speed operation and low power consumption of a device using an SOI substrate,
Reducing the interface state between the semiconductor layer and the insulating layer of the SOI substrate,
By improving the carrier mobility, it is possible to significantly improve the device operation performance and reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るSOI基板を用いたMOSFET
の製造方法の一例を示す概略断面図である。
FIG. 1 is a MOSFET using an SOI substrate according to the present invention.
It is a schematic sectional drawing which shows an example of the manufacturing method of.

【図2】MOSFETにおけるSOI/BOX界面の窒
素濃度が0.9%の場合におけるSOI基板の深さ方向
の窒素、酸素、シリコンの濃度分布を示す特性図であ
る。
FIG. 2 is a characteristic diagram showing a concentration distribution of nitrogen, oxygen, and silicon in a depth direction of an SOI substrate when a nitrogen concentration at an SOI / BOX interface in a MOSFET is 0.9%.

【図3】各窒素濃度に対する電子の実効移動度を示す特
性図である。
FIG. 3 is a characteristic diagram showing the effective mobility of electrons with respect to each nitrogen concentration.

【図4】チャージポンピング法により界面準位密度を調
べた結果を示す特性図である。
FIG. 4 is a characteristic diagram showing a result of examining an interface state density by a charge pumping method.

【図5】本実施形態によるSOI基板を用いたMOSF
ETの製造方法を工程順に示す概略断面図である。
FIG. 5 shows a MOSF using the SOI substrate according to the present embodiment.
It is an outline sectional view showing a manufacturing method of ET in order of a process.

【図6】電子の実効移動度とSOI/BOX界面におけ
る界面準位密度を測定した結果を示す特性図である。
FIG. 6 is a characteristic diagram showing the results of measuring the effective mobility of electrons and the interface state density at the SOI / BOX interface.

【図7】実施例1による貼り合わせ型のSOI基板の製
造方法を工程順に示す概略断面図である。
FIG. 7 is a schematic cross-sectional view showing a method for manufacturing a bonded SOI substrate according to Example 1 in the order of steps;

【図8】実施例2によるSIMOX型のSOI基板の製
造方法を工程順に示す概略断面図である。
FIG. 8 is a schematic cross-sectional view showing a method for manufacturing a SIMOX SOI substrate according to the second embodiment in the order of steps;

【符号の説明】[Explanation of symbols]

1 SOI基板 11,42,52 BOX層 12 表面シリコン層 13,43,53 窒化偏析層 14,26 ゲート絶縁膜 15,29 ゲート電極 16 ソース/ドレイン 17 各タングステン(W)電極 21 シリコン酸化膜 22,28 シリコン窒化膜 23 フォトレジスト 24 レジストマスク 25 フィールド絶縁膜 27 多結晶シリコン膜 30 ソース/ドレイン 31 サイドウォール 32 層間絶縁膜 41,44,51 半導体基板 42 絶縁層 Reference Signs List 1 SOI substrate 11, 42, 52 BOX layer 12 Surface silicon layer 13, 43, 53 Nitride segregation layer 14, 26 Gate insulating film 15, 29 Gate electrode 16 Source / drain 17 Each tungsten (W) electrode 21 Silicon oxide film 22, Reference Signs List 28 silicon nitride film 23 photoresist 24 resist mask 25 field insulating film 27 polycrystalline silicon film 30 source / drain 31 side wall 32 interlayer insulating film 41, 44, 51 semiconductor substrate 42 insulating layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 日数谷 健一 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 Fターム(参考) 5F110 AA01 AA14 CC02 DD05 DD12 DD13 DD14 DD15 DD17 DD25 EE04 EE09 EE32 EE38 EE44 EE45 FF02 FF23 GG02 GG12 GG25 GG28 GG32 GG34 HJ01 HJ04 HJ13 HL04 HL23 NN03 NN23 NN24 NN35 NN62 NN66 QQ08 QQ11 QQ17  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kenichi Hitsuya 4-1-1, Kamiodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa F-term within Fujitsu Limited (reference) 5F110 AA01 AA14 CC02 DD05 DD12 DD13 DD14 DD15 DD17 DD25 EE04 EE09 EE32 EE38 EE44 EE45 FF02 FF23 GG02 GG12 GG25 GG28 GG32 GG34 HJ01 HJ04 HJ13 HL04 HL23 NN03 NN23 NN24 NN35 NN62 NN66 QQ08 QQ11 QQ17

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 絶縁層上に半導体層を有するSOI基板
上に半導体素子が形成されてなる半導体装置であって、 前記絶縁層の前記半導体層との界面に窒素が偏析し、当
該窒素のピーク濃度が1.45×1021(atoms/
cm3)以下であることを特徴とする半導体装置。
1. A semiconductor device in which a semiconductor element is formed on an SOI substrate having a semiconductor layer on an insulating layer, wherein nitrogen segregates at an interface between the insulating layer and the semiconductor layer, and a peak of the nitrogen is generated. When the concentration is 1.45 × 10 21 (atoms /
cm 3 ) or less.
【請求項2】 絶縁層上に半導体層を有するSOI基板
上に半導体素子が形成されてなる半導体装置の製造方法
であって、 前記SOI基板に窒化性ガス雰囲気中で熱処理を施し、
前記絶縁層の前記半導体層との界面に、ピーク濃度が
1.45×1021(atoms/cm3)以下となるよ
うに窒素を偏析させることを特徴とする半導体装置の製
造方法。
2. A method for manufacturing a semiconductor device in which a semiconductor element is formed on an SOI substrate having a semiconductor layer on an insulating layer, wherein the SOI substrate is subjected to a heat treatment in a nitriding gas atmosphere.
A method for manufacturing a semiconductor device, wherein nitrogen is segregated at an interface between the insulating layer and the semiconductor layer such that a peak concentration is 1.45 × 10 21 (atoms / cm 3 ) or less.
【請求項3】 前記界面に窒素を偏析させた後、前記半
導体層の表面を洗浄し、前記半導体素子のゲート絶縁膜
を形成することを特徴とする請求項2に記載の半導体装
置の製造方法。
3. The method according to claim 2, wherein after segregating nitrogen at the interface, a surface of the semiconductor layer is washed to form a gate insulating film of the semiconductor element. .
【請求項4】 絶縁層上に半導体層を有する半導体基板
であって、 前記絶縁層の前記半導体層との界面に、ピーク濃度が
1.45×1021(atoms/cm3)以下の窒素が
偏析されていることを特徴とする半導体基板。
4. A semiconductor substrate having a semiconductor layer over an insulating layer, wherein nitrogen having a peak concentration of 1.45 × 10 21 (atoms / cm 3 ) or less is provided at an interface between the insulating layer and the semiconductor layer. A semiconductor substrate characterized by being segregated.
【請求項5】 貼り合わせ型のSOI構造に半導体基板
を製造するに際して、 第1の基板の半導体層上に絶縁層を形成する工程と、 前記第1の基板に窒化性ガス雰囲気中で熱処理を施し、
前記半導体層の前記絶縁層との界面に、ピーク濃度が
1.45×1021(atoms/cm3)以下となるよ
うに窒素を偏析させる工程と、 前記第1の基板を前記絶縁層を介して第2の基板と貼り
合わせる工程とを有することを特徴とする半導体基板の
製造方法。
5. A step of forming an insulating layer on a semiconductor layer of a first substrate when manufacturing a semiconductor substrate with a bonded SOI structure, and subjecting the first substrate to a heat treatment in a nitriding gas atmosphere. Alms,
A step of segregating nitrogen at an interface of the semiconductor layer with the insulating layer so that the peak concentration is 1.45 × 10 21 (atoms / cm 3 ) or less; And bonding the substrate to a second substrate.
【請求項6】 SIMOX型のSOI構造に半導体基板
を製造するに際して、 半導体基板に酸素イオンを導入した後、熱処理を施して
絶縁層を形成する工程と、 前記半導体基板に窒化性ガス雰囲気中で熱処理を施し、
前記半導体基板の前記絶縁層との界面に、ピーク濃度が
1.45×1021(atoms/cm3)以下となるよ
うに窒素を偏析させる工程とを有することを特徴とする
半導体基板の製造方法。
6. A method of manufacturing a semiconductor substrate having a SIMOX type SOI structure, comprising the steps of: introducing oxygen ions into the semiconductor substrate and performing a heat treatment to form an insulating layer; Heat treatment,
A step of segregating nitrogen at an interface between the semiconductor substrate and the insulating layer so that a peak concentration is 1.45 × 10 21 (atoms / cm 3 ) or less. .
JP2000202513A 2000-07-04 2000-07-04 Semiconductor substrate and its manufacturing method and semiconductor device and its manufacturing method Pending JP2002026299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000202513A JP2002026299A (en) 2000-07-04 2000-07-04 Semiconductor substrate and its manufacturing method and semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000202513A JP2002026299A (en) 2000-07-04 2000-07-04 Semiconductor substrate and its manufacturing method and semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002026299A true JP2002026299A (en) 2002-01-25

Family

ID=18700032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000202513A Pending JP2002026299A (en) 2000-07-04 2000-07-04 Semiconductor substrate and its manufacturing method and semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002026299A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100476901B1 (en) * 2002-05-22 2005-03-17 삼성전자주식회사 Method of forming SOI(Silicon-On-Insulator) semiconductor substrate
JP2006196821A (en) * 2005-01-17 2006-07-27 Fujitsu Ltd Semiconductor device and manufacturing method thereof
JP2007207874A (en) * 2006-01-31 2007-08-16 Sumco Corp Manufacturing method of silicon wafer and silicon wafer
US7282766B2 (en) 2005-01-17 2007-10-16 Fujitsu Limited Fin-type semiconductor device with low contact resistance
JP4849419B2 (en) * 2005-02-03 2012-01-11 ソイテック Method for reducing trap density in semiconductor wafers
US8816417B2 (en) 2009-02-26 2014-08-26 Samsung Electronics Co., Ltd. Semiconductor devices and methods of forming semiconductor devices
US11429004B2 (en) 2019-03-07 2022-08-30 Seiko Epson Corporation Electro-optical device having predetermined element in insulating layers, electronic apparatus and method for manufacturing electro-optical device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845868A (en) * 1994-06-17 1996-02-16 Sharp Corp Method of improving electrical insulation properties of semiconductor substrate provided with embedding insulation layer and simox semiconductor substrate and manufacture of simox semiconductor substrate
JPH11340476A (en) * 1998-05-15 1999-12-10 Siemens Ag Soi semiconductor and fabrication thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845868A (en) * 1994-06-17 1996-02-16 Sharp Corp Method of improving electrical insulation properties of semiconductor substrate provided with embedding insulation layer and simox semiconductor substrate and manufacture of simox semiconductor substrate
JPH11340476A (en) * 1998-05-15 1999-12-10 Siemens Ag Soi semiconductor and fabrication thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100476901B1 (en) * 2002-05-22 2005-03-17 삼성전자주식회사 Method of forming SOI(Silicon-On-Insulator) semiconductor substrate
JP2006196821A (en) * 2005-01-17 2006-07-27 Fujitsu Ltd Semiconductor device and manufacturing method thereof
US7282766B2 (en) 2005-01-17 2007-10-16 Fujitsu Limited Fin-type semiconductor device with low contact resistance
US7396710B2 (en) 2005-01-17 2008-07-08 Fujitsu Limited Fin-type semiconductor device with low contact resistance and its manufacture method
JP4849419B2 (en) * 2005-02-03 2012-01-11 ソイテック Method for reducing trap density in semiconductor wafers
JP2007207874A (en) * 2006-01-31 2007-08-16 Sumco Corp Manufacturing method of silicon wafer and silicon wafer
US8816417B2 (en) 2009-02-26 2014-08-26 Samsung Electronics Co., Ltd. Semiconductor devices and methods of forming semiconductor devices
US11429004B2 (en) 2019-03-07 2022-08-30 Seiko Epson Corporation Electro-optical device having predetermined element in insulating layers, electronic apparatus and method for manufacturing electro-optical device

Similar Documents

Publication Publication Date Title
JP4317523B2 (en) Semiconductor device and manufacturing method thereof
US5707889A (en) Process for forming field isolation
US6232244B1 (en) Methodology for achieving dual gate oxide thicknesses
US6838695B2 (en) CMOS device structure with improved PFET gate electrode
US6759302B1 (en) Method of generating multiple oxides by plasma nitridation on oxide
US7098154B2 (en) Method for fabricating semiconductor device and semiconductor device
JP4128396B2 (en) Manufacturing method of semiconductor device
JP4582837B2 (en) Manufacturing method of semiconductor device
US6821868B2 (en) Method of forming nitrogen enriched gate dielectric with low effective oxide thickness
JP2002506579A (en) Method of forming side dielectric insulated semiconductor device and MOS semiconductor device manufactured by this method
US6653201B2 (en) Method for forming an isolation region in a semiconductor device
US6864149B2 (en) SOI chip with mesa isolation and recess resistant regions
JPH11145273A (en) Manufacture of semiconductor device
JP2002026299A (en) Semiconductor substrate and its manufacturing method and semiconductor device and its manufacturing method
US5612247A (en) Method for fabricating isolation region for a semiconductor device
JP2004207560A (en) Semiconductor device and its manufacturing method
JPH0974196A (en) Manufacture of semiconductor device
US7517760B2 (en) Semiconductor device manufacturing method including three gate insulating films
KR100603510B1 (en) Method for manufacturing a semiconductor device
KR100770499B1 (en) Manufacturing method of gate oxidation films
JPH0637106A (en) Manufacture of semiconductor device
US6242295B1 (en) Method of fabricating a shallow doped region for a shallow junction transistor
JP2968548B2 (en) Semiconductor device and manufacturing method thereof
JPH113935A (en) Semiconductor device and its manufacture
JP2005252052A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070424

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110201

A131 Notification of reasons for refusal

Effective date: 20110215

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111213