JP2002016085A - Junction field-effect transistor - Google Patents

Junction field-effect transistor

Info

Publication number
JP2002016085A
JP2002016085A JP2000194464A JP2000194464A JP2002016085A JP 2002016085 A JP2002016085 A JP 2002016085A JP 2000194464 A JP2000194464 A JP 2000194464A JP 2000194464 A JP2000194464 A JP 2000194464A JP 2002016085 A JP2002016085 A JP 2002016085A
Authority
JP
Japan
Prior art keywords
type semiconductor
conductivity type
film
conductive
channel region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000194464A
Other languages
Japanese (ja)
Other versions
JP4830179B2 (en
Inventor
Makoto Harada
真 原田
Kenichi Hirotsu
研一 弘津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000194464A priority Critical patent/JP4830179B2/en
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to DE60045260T priority patent/DE60045260D1/en
Priority to DE60045497T priority patent/DE60045497D1/en
Priority to TW089118554A priority patent/TW456042B/en
Priority to EP09006349A priority patent/EP2081218B1/en
Priority to EP00957106A priority patent/EP1284496B1/en
Priority to CNB008183619A priority patent/CN1243373C/en
Priority to EP09006462A priority patent/EP2081219B1/en
Priority to CA2395608A priority patent/CA2395608C/en
Priority to US10/168,265 priority patent/US6870189B1/en
Priority to PCT/JP2000/006211 priority patent/WO2001048809A1/en
Priority to KR1020027008192A priority patent/KR100661691B1/en
Priority to EP00979959A priority patent/EP1248302B1/en
Priority to CA2689613A priority patent/CA2689613A1/en
Priority to US10/168,263 priority patent/US6822275B2/en
Priority to CA2783659A priority patent/CA2783659A1/en
Priority to CA002395264A priority patent/CA2395264A1/en
Priority to CNB008176000A priority patent/CN1194416C/en
Priority to PCT/JP2000/008645 priority patent/WO2001047029A1/en
Priority to KR1020027007939A priority patent/KR100613042B1/en
Priority to CNB2004100752442A priority patent/CN100370626C/en
Publication of JP2002016085A publication Critical patent/JP2002016085A/en
Priority to US10/973,976 priority patent/US20050056872A1/en
Application granted granted Critical
Publication of JP4830179B2 publication Critical patent/JP4830179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a JFET which is superior in breakdown voltage and will not be easily affected by impurity concentration or variations in the thickness of a channel region or the like. SOLUTION: The JFET is provided with a second conductivity-type SiC film 2 formed on an SiC substrate 1, a first conductivity-type SiC film 3, including a channel region 4 formed on the second conductivity-type SiC film, source and drain regions 5 and 6 formed on the first conductivity-type SiC film, so as to be formed on the both sides o the channel region, gate electrodes 13 formed on the second conductivity-SiC film, and a conductive film 7 which is brought into contact on the channel region.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、SiCを用いた接
合型電界効果トランジスタに関し、より特定的には、オ
ン抵抗の小さい接合型電界効果トランジスタに関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a junction field effect transistor using SiC, and more particularly, to a junction field effect transistor having low on-resistance.

【0002】[0002]

【従来の技術】従来の接合型電界効果トランジスタ(J
FET:Junction Field Effect Transistor)では、JF
ETがオン状態のときチャネル領域を電流が流れてい
た。チャネル領域の不純物濃度は、所定のトランジスタ
特性を確保するために制約を受け、あまり高くできな
い。このため、チャネル領域の電気抵抗は、高くなる傾
向がある。
2. Description of the Related Art Conventional junction type field effect transistors (J
FET: Junction Field Effect Transistor)
When the ET was in the ON state, a current was flowing through the channel region. The impurity concentration in the channel region is limited to secure predetermined transistor characteristics, and cannot be so high. For this reason, the electric resistance of the channel region tends to increase.

【0003】[0003]

【発明が解決しようとする課題】トランジスタの特性
は、上記チャネル領域の高い電気抵抗の影響を強く受け
る。また、チャネル領域の電気抵抗は、不純物濃度やチ
ャネル領域の厚さ等によって増減するので、トランジス
タ特性は、これら不純物濃度や厚さ等のばらつきに応じ
て大きく変動する。このような素子間のばらつきを避け
るために、チャネル領域の電気抵抗減少を目的に高濃度
の不純物元素を注入すると、耐圧性能が劣化する。この
ため、高濃度の不純物を用いることなく、チャネル領域
の不純物濃度やその厚さ等のばらつきの影響を受けにく
いJFETが望まれていた。
The characteristics of the transistor are strongly affected by the high electric resistance of the channel region. Further, since the electric resistance of the channel region increases and decreases depending on the impurity concentration, the thickness of the channel region, and the like, the transistor characteristics greatly fluctuate according to variations in the impurity concentration, the thickness, and the like. If a high-concentration impurity element is implanted for the purpose of reducing the electric resistance of the channel region in order to avoid such a variation between the elements, the withstand voltage performance deteriorates. For this reason, there has been a demand for a JFET that is not easily affected by variations in the impurity concentration of the channel region and its thickness without using a high-concentration impurity.

【0004】そこで、本発明は、耐圧性に優れかつチャ
ネル領域の不純物濃度やその厚さ等のばらつきの影響を
受けにくいJFETを提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a JFET which has excellent withstand voltage and is not easily affected by variations in the impurity concentration of the channel region and its thickness.

【0005】[0005]

【課題を解決するための手段】本発明の第一の局面にお
けるJFETは、半導体基板の上に形成された第2導電
型半導体膜と、第2導電型半導体膜の上に形成された、
チャネル領域を含む第1導電型半導体膜と、第1導電型
半導体膜の上に形成された第1導電型半導体からなる膜
であって、チャネル領域の両側にそれぞれ分かれて形成
されているソース領域およびドレイン領域と、第2導電
型半導体膜に接して設けられたゲート電極と、チャネル
領域の表面に接して配置された導電膜を有する(請求項
1)。
According to a first aspect of the present invention, a JFET includes a second conductive type semiconductor film formed on a semiconductor substrate, and a second conductive type semiconductor film formed on the second conductive type semiconductor film.
A first conductivity type semiconductor film including a channel region, and a first conductivity type semiconductor film formed on the first conductivity type semiconductor film, the source regions being separately formed on both sides of the channel region And a drain region, a gate electrode provided in contact with the second conductivity type semiconductor film, and a conductive film provided in contact with the surface of the channel region.

【0006】上記の構成により、チャネル領域と導電膜
とは、チャネルを流れる電流に対して並列に配置され
る。このため、例えば、導電膜の電気抵抗がチャネル領
域に比べて1オーダー低い場合、オン状態において導電
膜を流れる電流は、チャネル領域のそれに比べて約10
倍高くなる。このため、不純物濃度のばらつきやチャネ
ル領域の厚さのばらつきがあっても、トランジスタ特性
に及ぼす影響は軽微となり、これら因子のばらつきの影
響は実質的に問題にならなくなる。一方、オフ状態で
は、ゲート電極に印加する負電位(逆バイアス電圧)に
よって、チャネル領域が含まれる第1導電型半導体層
と、その下層の第2導電型半導体層との接合部におい
て、第1導電型半導体層の側に空乏層が延びてゆく。こ
の空乏層は、上記逆バイアス電圧に比例し、第1導電層
と第2導電層との不純物濃度に逆比例して、濃度の低い
側により幅広く拡大する。この空乏層がチャネル領域を
遮断すると、キャリアがチャネル領域を通る経路は遮断
される。上記の導電膜は、例えば、チャネル領域をはさ
む両側の第1導電型半導体層にはその側部を接しないよ
うに配置される場合、上記の遮断により、チャネル領域
だけでなく導電膜も遮断される。この結果、オフ状態を
容易に実現することができる。また、上記の導電膜が上
記第1導電型半導体層の片側のみで接し、他方で接して
いない場合にも、上記オフ状態を容易に実現することが
でき、かつ抵抗を低くすることができる。この抵抗の減
少は、不純物濃度のばらつきやチャネル領域の厚さのば
らつきの影響を小さくする。上記の導電膜の両側の側部
が、ともにそれぞれ上記第1導電型半導体層と接してい
る場合、抵抗がさらに低くなり、上記不純物濃度のばら
つきやチャネル領域の厚さのばらつきの影響をさらに受
けにくくなる。なお、第1導電型はn型でもp型でもよ
く、また第2導電型はp型でもn型でもよい。また、半
導体基板は、n型Si基板でもp型Si基板でもよく、
n型SiC基板でもp型SiC基板でもよい。
[0006] With the above configuration, the channel region and the conductive film are arranged in parallel to the current flowing through the channel. Therefore, for example, when the electric resistance of the conductive film is lower by one order than that of the channel region, the current flowing through the conductive film in the ON state is about 10 times lower than that of the channel region.
Twice as high. For this reason, even if there is a variation in the impurity concentration or a variation in the thickness of the channel region, the influence on the transistor characteristics is negligible, and the influence of the fluctuation of these factors does not substantially matter. On the other hand, in the off state, the negative potential (reverse bias voltage) applied to the gate electrode causes the first conductive type semiconductor layer including the channel region to be connected to the second conductive type semiconductor layer below the first conductive type semiconductor layer. The depletion layer extends toward the conductive semiconductor layer. The depletion layer is wider in proportion to the reverse bias voltage and inversely proportional to the impurity concentration of the first conductive layer and the second conductive layer. When the depletion layer blocks the channel region, the path of carriers passing through the channel region is blocked. For example, in the case where the above conductive film is disposed so as not to be in contact with the first conductive type semiconductor layers on both sides sandwiching the channel region, the above-described cutoff cuts off not only the channel region but also the conductive film. You. As a result, the off state can be easily realized. Further, even when the conductive film is in contact with only one side of the first conductivity type semiconductor layer and is not in contact with the other, the off state can be easily realized and the resistance can be reduced. This decrease in resistance reduces the effects of variations in impurity concentration and variations in the thickness of the channel region. When both side portions of the conductive film are in contact with the first conductivity type semiconductor layer, respectively, the resistance is further reduced and further affected by the variation in the impurity concentration and the variation in the thickness of the channel region. It becomes difficult. The first conductivity type may be n-type or p-type, and the second conductivity type may be p-type or n-type. Further, the semiconductor substrate may be an n-type Si substrate or a p-type Si substrate,
An n-type SiC substrate or a p-type SiC substrate may be used.

【0007】上記第一の局面のJFETでは、導電膜の
チャネル長さ方向に沿う長さが、チャネル長さよりも短
くされている(請求項2)。
In the JFET according to the first aspect, the length of the conductive film along the channel length direction is shorter than the channel length.

【0008】この構成により、導電膜の両端が側壁に接
している場合のオフ動作達成の困難性を解消することが
できる。すなわち、上記導電膜少なくとも一端は側壁か
ら絶縁されているので、空乏層がその絶縁されている側
でチャネル領域を遮断すればオフすることができる。
With this configuration, it is possible to eliminate the difficulty of achieving the off operation when both ends of the conductive film are in contact with the side walls. That is, since at least one end of the conductive film is insulated from the side wall, it can be turned off by blocking the channel region on the side where the depletion layer is insulated.

【0009】上記第一の局面のJFETでは、チャネル
領域の厚みが、第2導電型半導体膜と、当該第2導電型
半導体膜の上に形成された第1導電型半導体膜との接合
部における拡散電位による当該第1導電型半導体膜内で
の空乏層幅より小さくされている(請求項3)。
In the JFET according to the first aspect, the channel region has a thickness in the junction between the second conductive type semiconductor film and the first conductive type semiconductor film formed on the second conductive type semiconductor film. The width is smaller than the width of the depletion layer in the first conductivity type semiconductor film due to the diffusion potential.

【0010】上記の構成により、ゲート電位ゼロのと
き、該第2導電型半導体膜と第1導電型半導体膜との接
合部において拡散電位によって生じる空乏層が、チャネ
ル領域の入口および出口を遮断する。このため、ノーマ
リーオフのJFETを得ることができ、ゲート回路の故
障対策等を施すことなく回転機等の制御に用いることが
できる。また、オン状態での消費電力の低減を得ること
ができ、さらにチャネル領域の不純物濃度のばらつき等
の影響を避けることができる。
With the above structure, when the gate potential is zero, the depletion layer generated by the diffusion potential at the junction between the second conductivity type semiconductor film and the first conductivity type semiconductor film blocks the entrance and exit of the channel region. . For this reason, a normally-off JFET can be obtained, and can be used for controlling a rotating machine or the like without taking measures against failure of the gate circuit. Further, power consumption in the ON state can be reduced, and furthermore, influences such as variations in impurity concentration in the channel region can be avoided.

【0011】本発明の第二の局面におけるJFETは、
表(おもて)面において、当該表面上に成膜された素子
耐圧により決定される不純物濃度を有する第1の第1導
電型半導体層および当該第1の第1導電型半導体層の表
面より高い位置にまで堆積された導電膜、を有する基板
を備える。そのJFETは、また、その基板の上であっ
て、導電膜の両側に当該導電膜の表面より高い位置にま
で設けられた第2の第1導電型半導体層の領域と、第2
の第1導電型半導体層の2つの領域のそれぞれの上に配
置された第1導電型半導体層のソース領域と、基板の上
であって、第2の第1導電型半導体層のそれぞれの外側
に成膜された、当該第2の第1導電型不純物層の第1導
電型不純物の濃度の値よりも高い値の第2導電型不純物
濃度を有する、ゲート電極が設けられた第2導電型半導
体層と、基板の裏面に設けられた第1導電型半導体層の
ドレイン領域とを備える(請求項4)。
The JFET according to the second aspect of the present invention comprises:
In the front (front) surface, the first first conductivity type semiconductor layer having an impurity concentration determined by the element breakdown voltage formed on the surface and the surface of the first first conductivity type semiconductor layer A substrate having a conductive film deposited to a high position. The JFET further includes a region of the second first conductivity type semiconductor layer provided on the substrate and on both sides of the conductive film up to a position higher than the surface of the conductive film;
A source region of the first conductivity type semiconductor layer disposed on each of the two regions of the first conductivity type semiconductor layer; and a region on the substrate and outside of each of the second first conductivity type semiconductor layers. A second conductivity type provided with a gate electrode and having a second conductivity type impurity concentration higher than the value of the first conductivity type impurity concentration of the second first conductivity type impurity layer formed on the substrate; The semiconductor device includes a semiconductor layer and a drain region of the first conductivity type semiconductor layer provided on the back surface of the substrate.

【0012】上記の構成により、半導体基板の表(おも
て)面側に設けた2つのソース領域から裏面のドレイン
領域に向けて、基板を厚さ方向に横断するドリフト(チ
ャネル)経路の電気抵抗が小さくなる。すなわち、上記
経路に対して上記導電膜が堆積されている部分は、上記
経路に対して部分的に並列の回路を形成する。上記のよ
うに基板の厚さ方向にキャリアが流れるJFETの場合
にも、同方向に沿うチャネル領域の電気抵抗を実質的に
低減することが可能となる。このため、上記縦型JFE
Tに特有の高い耐圧特性とともに、チャネル領域で消費
される電力を低減し、発熱問題を解消することが可能と
なる。第2の第1導電型半導体層と第2導電型半導体層
との接合部に逆バイアス電圧を印加して空乏層を第2の
第1導電型半導体層に延ばしてオフ状態を実現するため
には、この両層の濃度について、上記関係が満たされる
必要がある。しかし、上記の第2の第1導電型半導体層
の不純物濃度は、第1の第1導電型半導体層の不純物濃
度より高くても低くてもよい。なお、上記素子耐圧によ
り決定される不純物濃度を有する第1の第1導電型半導
体層は、基板の表面上に形成されていてもよいし、基板
自身がこの第1の第1導電型半導体層であってもよい。
With the above structure, the electric current of the drift (channel) path that traverses the substrate in the thickness direction from the two source regions provided on the front (front) surface side of the semiconductor substrate to the drain region on the back surface of the semiconductor substrate. Resistance decreases. That is, the portion where the conductive film is deposited on the path forms a circuit partially parallel to the path. Even in the case of a JFET in which carriers flow in the thickness direction of the substrate as described above, it is possible to substantially reduce the electric resistance of the channel region along the same direction. Therefore, the vertical JFE
In addition to the high withstand voltage characteristic unique to T, the power consumed in the channel region can be reduced, and the heat generation problem can be solved. In order to apply a reverse bias voltage to the junction between the second first conductivity type semiconductor layer and the second conductivity type semiconductor layer to extend the depletion layer to the second first conductivity type semiconductor layer and realize an off state It is necessary that the above relationship be satisfied for the concentrations of these two layers. However, the impurity concentration of the second first conductivity type semiconductor layer may be higher or lower than the impurity concentration of the first first conductivity type semiconductor layer. The first first conductivity type semiconductor layer having the impurity concentration determined by the element withstand voltage may be formed on the surface of the substrate, or the substrate itself may be the first first conductivity type semiconductor layer. It may be.

【0013】上記第二の局面におけるJFETでは、半
導体基板の表(おもて)面には溝が設けられ、導電膜は
当該溝を埋めて堆積している(請求項5)。
In the JFET according to the second aspect, a groove is provided on the front surface of the semiconductor substrate, and the conductive film is deposited so as to fill the groove.

【0014】上記の構成により、縦型JFETにおい
て、より深いドリフト(チャネル)経路にまで導電膜が
装入されるので、ドリフト(チャネル)を流れる電流は
より低くなり、電流は導電膜のほうにより多く流れるこ
とになる。このため、ドリフト(チャネル)経路の不純
物濃度等による素子間のばらつきは、より小さくなる。
According to the above configuration, in the vertical JFET, the conductive film is inserted into the deeper drift (channel) path, so that the current flowing through the drift (channel) is lower, and the current is more increased by the conductive film. It will flow a lot. Therefore, variation between elements due to the impurity concentration of the drift (channel) path and the like is further reduced.

【0015】上記第二の局面におけるJFETでは、低
濃度の第1導電型半導体層の、第2導電型半導体膜から
導電膜にいたる長さである断面長さが、前記第2導電型
半導体膜と、当該第2導電型半導体膜の内側の前記低濃
度の第1導電型半導体膜との接合部における拡散電位に
よる当該低濃度の第1導電型半導体膜内での空乏層幅よ
り小さい(請求項6)。
In the JFET according to the second aspect, the low-concentration first-conductivity-type semiconductor layer has a cross-sectional length from the second-conductivity-type semiconductor film to the conductive film, the second-conductivity-type semiconductor film having a low-concentration. And a width of a depletion layer in the low-concentration first-conductivity-type semiconductor film due to a diffusion potential at a junction between the low-concentration first-conductivity-type semiconductor film inside the second-conductivity-type semiconductor film (claim) Item 6).

【0016】上記の構成により、ゲート電圧がゼロの場
合、上記拡散電位により上記低濃度第1導電型半導体膜
は、その外側に位置する第2導電型半導体膜との接合部
で生じる空乏層に遮断される。上記導電膜は、上記低濃
度の第1導電型半導体膜の上に接するソース領域とは、
接していないので、上記の遮断により導電膜への経路も
遮断される。この結果、耐圧性が高く、オン状態での消
費電力の小さい縦型JFETでも、ノーマリーオフとす
ることができる。
According to the above configuration, when the gate voltage is zero, the low-concentration first conductivity type semiconductor film is reduced by the diffusion potential into a depletion layer formed at a junction with the second conductivity type semiconductor film located outside the first conductivity type semiconductor film. Will be shut off. The conductive film is a source region in contact with the low-concentration first conductivity type semiconductor film,
Since there is no contact, the path to the conductive film is also blocked by the above-described blocking. As a result, even a vertical JFET having high withstand voltage and low power consumption in the ON state can be normally off.

【0017】上記第一および第二の局面におけるJFE
Tでは、導電膜が、金属膜および高濃度の不純物を含む
半導体膜のうちのいずれかである(請求項7)。
JFE in the first and second aspects
In T, the conductive film is any one of a metal film and a semiconductor film containing a high concentration of impurities.

【0018】上記の構成により、低抵抗の金属膜を用い
てチャネル領域に低抵抗の並列バイパスを簡便に設ける
ことができる。金属膜としては、電極材料となるもので
あれば、何でもよいが、エッチングのしやすさおよび高
い導電率を考慮するとアルミニウム(Al)、またはア
ルミニウム合金であることが望ましい。
With the above configuration, a low-resistance parallel bypass can be easily provided in the channel region using a low-resistance metal film. Any metal film can be used as long as it becomes an electrode material. However, considering ease of etching and high conductivity, aluminum (Al) or an aluminum alloy is preferable.

【0019】上記第一および第二の局面におけるJFE
Tでは、半導体基板がSiC基板であり、第1導電型半
導体膜が第1導電型SiC膜であり、第2導電型半導体
膜が第2導電型SiC膜である(請求項8)。
JFE in the above first and second aspects
In T, the semiconductor substrate is a SiC substrate, the first conductivity type semiconductor film is a first conductivity type SiC film, and the second conductivity type semiconductor film is a second conductivity type SiC film.

【0020】SiCは優れた耐圧性を有し、キャリアの
移動度はSiなみに高く、かつキャリアの高い飽和ドリ
フト速度を得ることができる。このため、上記のJFE
Tを大電力用高速スイッチング素子に用いることが可能
となる。
SiC has excellent pressure resistance, the mobility of carriers is as high as that of Si, and a high saturation drift velocity of carriers can be obtained. Therefore, the above JFE
T can be used for a high-power high-speed switching element.

【0021】[0021]

【発明の実施の形態】次に、図面を用いて本発明の実施
の形態について説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0022】(実施の形態1)図1は、実施の形態1に
おけるJFETを示す断面図である。同図において、S
iC基板1の上にp型SiC膜2が成膜され、その上に
減厚されたチャネル領域4の部分を有するn型SiC膜
3が形成されている。チャネル領域4の両側の当該n型
SiC膜3の上には、ソース、ドレイン領域となるn+
型SiC膜5,6が形成され、さらにそれぞれの領域上
にソース、ドレイン電極11,12が形成されている。
また、p型SiC膜の上であって、平面的に見てソー
ス、ドレイン領域をはさんで2つのゲート電極13が形
成されている。本実施の形態における最大の特徴は、チ
ャネル領域の上にアルミニウム膜7が形成されている点
にある。このアルミニウム膜の断面長さは、チャネル長
さLより小さく、平面的に見て、アルミニウム膜はチャ
ネル領域のなかに含まれる。すなわち、アルミニウム膜
7はチャネル領域4の両側の壁には接していない。
(First Embodiment) FIG. 1 is a sectional view showing a JFET according to a first embodiment. In FIG.
A p-type SiC film 2 is formed on an iC substrate 1, and an n-type SiC film 3 having a reduced channel region 4 is formed thereon. On the n-type SiC film 3 on both sides of the channel region 4, n @ +
Type SiC films 5 and 6 are formed, and source and drain electrodes 11 and 12 are formed on the respective regions.
Further, two gate electrodes 13 are formed on the p-type SiC film and sandwich the source and drain regions in plan view. The greatest feature of the present embodiment is that aluminum film 7 is formed on the channel region. The cross-sectional length of the aluminum film is smaller than the channel length L, and when viewed in plan, the aluminum film is included in the channel region. That is, the aluminum film 7 is not in contact with the walls on both sides of the channel region 4.

【0023】次に、このJFETの動作について説明す
る。まず、オン状態においては、チャネル領域4を基板
面に沿ってキャリアが流れる。このとき、アルミニウム
層7がチャネル領域の上に配置されていると、電流は、
チャネル領域4とアルミニウム膜7とで構成される並列
回路を流れる。アルミニウム膜の電気抵抗がチャネル領
域の電気抵抗に比較して、例えば1オーダー低い場合に
は、アルミニウム膜7を流れる電流は、チャネル領域を
流れる電流よりも、ほぼ1オーダー高くなる。この結
果、半導体中を流れる電流は、ほとんど無視してもよ
く、トランジスタ特性はチャネル領域の不純物濃度やチ
ャネル領域の厚さaにほとんど依らなくなる。この結
果、チャネル領域の電気抵抗を低下させるために、高濃
度の不純物をドープする必要がなくなり、高い耐圧性能
を保ったまま、ばらつきのないその他のトランジスタ特
性を確保することができる。
Next, the operation of the JFET will be described. First, in the ON state, carriers flow through the channel region 4 along the substrate surface. At this time, if the aluminum layer 7 is arranged on the channel region, the current becomes
It flows through a parallel circuit composed of the channel region 4 and the aluminum film 7. When the electric resistance of the aluminum film is lower than the electric resistance of the channel region by, for example, one order, the current flowing through the aluminum film 7 becomes higher by approximately one order than the current flowing through the channel region. As a result, the current flowing in the semiconductor can be almost ignored, and the transistor characteristics hardly depend on the impurity concentration of the channel region or the thickness a of the channel region. As a result, it is not necessary to dope high-concentration impurities in order to reduce the electric resistance of the channel region, and other transistor characteristics without variation can be secured while maintaining high withstand voltage performance.

【0024】一方、オフ状態においては、図2に示すゲ
ート電極13に負の電位が印加される。このため、p型
SiC膜2とn型SiC膜3との接合部には、空乏層8
が形成され、負電位の絶対値が大きくなるほど不純物濃
度の低い側に不純物濃度にほぼ逆比例して空乏層幅が広
がって行く。空乏層幅の先端部8aがチャネル領域4の
厚さaを超えると、チャネル領域は空乏層に遮断され、
キャリアの通過が妨げられる。上記したように、アルミ
ニウム膜7はチャネル領域4の両側の壁には接していな
いので、上記空乏層幅の先端部8aがチャネル領域厚さ
aを越えた時点でオフ状態が実現する。
On the other hand, in the off state, a negative potential is applied to the gate electrode 13 shown in FIG. Therefore, the depletion layer 8 is formed at the junction between the p-type SiC film 2 and the n-type SiC film 3.
Are formed, and as the absolute value of the negative potential increases, the width of the depletion layer increases toward the side where the impurity concentration is lower, almost in inverse proportion to the impurity concentration. When the tip 8a of the depletion layer width exceeds the thickness a of the channel region 4, the channel region is cut off by the depletion layer,
Carrier passage is impeded. As described above, since the aluminum film 7 is not in contact with the walls on both sides of the channel region 4, the off state is realized when the leading end 8a of the depletion layer width exceeds the channel region thickness a.

【0025】(実施の形態2)図1および図2に示した
上記実施の形態1におけるJFETは、ゲート電圧ゼロ
の状態では、チャネル領域4に電流が流れるノーマリー
オンの状態が実現されている。ノーマリーオンのJFE
Tは、回転機器等の制御に用いられた場合、ゲート回路
に故障が生じると回転が制止されないおそれがあるた
め、ゲート回路の故障に対処した機構を備える必要があ
る。このような機構を備えることは面倒なので、ノーマ
リーオフのJFETが望ましい。実施の形態2では、そ
のノーマリーオフのJFETを説明する。図3に示すよ
うに、本実施の形態における最大の特徴は、次の点にあ
る。pn2接合部の拡散電位によって生じる空乏層、す
なわちゲート電位ゼロの状態で生じる空乏層の幅が、チ
ャネル領域の厚さaよりも大きくなるようにする。例え
ば、(a)濃度n2を1×1016cm-3とし、(b)チ
ャネル領域の厚さaを500nm以下程度とすることに
より、拡散電位による空乏層幅がチャネル領域の厚さa
を越えて、ノーマリーオフとすることができる。
(Embodiment 2) The JFET in Embodiment 1 shown in FIGS. 1 and 2 has a normally-on state in which a current flows through the channel region 4 when the gate voltage is zero. . Normally-on JFE
When T is used for controlling a rotating device or the like, rotation may not be stopped if a failure occurs in the gate circuit. Therefore, it is necessary to provide a mechanism for coping with the failure of the gate circuit. Since it is troublesome to provide such a mechanism, a normally-off JFET is desirable. In the second embodiment, a normally-off JFET will be described. As shown in FIG. 3, the greatest feature of the present embodiment is as follows. The width of the depletion layer generated by the diffusion potential at the pn 2 junction, that is, the width of the depletion layer generated when the gate potential is zero, is set to be larger than the thickness a of the channel region. For example, by setting (a) the concentration n 2 to 1 × 10 16 cm −3 and (b) the thickness a of the channel region to about 500 nm or less, the width of the depletion layer due to the diffusion potential is reduced by the thickness a of the channel region.
Can be normally off.

【0026】上記の構造の採用により、耐圧性能を低下
させず、チャネル濃度等の変動によって特性をばらつか
せることのないJFETであって、なおかつ、ノーマリ
ーオフのJFETを実現することができる。この結果、
大型回転機器等の制御装置にゲート回路の故障対策機構
を設けることなく用いることが可能となる。
By employing the above structure, it is possible to realize a normally-off JFET which does not decrease the withstand voltage performance and does not vary its characteristics due to variations in channel concentration and the like. As a result,
It is possible to use a control device such as a large rotating device without providing a gate circuit failure countermeasure mechanism.

【0027】(実施の形態3)図4は、実施の形態3に
おけるJFETを示す断面図である。同図において、n
型SiC基板のn型不純物濃度は、素子耐圧により決定
される不純物濃度を有しており、第1の第1導電型(n
型)半導体層をも兼ねている。このn型SiC基板9の
表(おもて)面にアルミニウム膜7が溝を埋めて所定高
さまで成膜されている。このアルミニウム膜7の両側
に、チャネル領域4a,4bを形成するn型SiC膜が
成膜されている。このチャネル領域4a,4bの高さ
は、上記アルミニウム膜7の高さより少し高く設定す
る。この2つのチャネル領域4a,4bに接して、外側
にp型SiC膜2a,2bを形成し、この上にゲート電
極13を配置する。2つのチャネル領域4a,4bの上
にそれぞれソース領域5a,5bを形成し、その上にソ
ース電極11a,11bを配置する。また、n型SiC
基板9の裏面にはn+型SiC膜を成膜し、その上にド
レイン電極12を配置する。各電極と半導体層との間に
はオーミック接触が形成されていることは言うまでもな
い。
(Embodiment 3) FIG. 4 is a sectional view showing a JFET in Embodiment 3. In FIG.
The n-type impurity concentration of the type SiC substrate has an impurity concentration determined by the withstand voltage of the element, and has a first first conductivity type (n
(Type) Also serves as a semiconductor layer. An aluminum film 7 is formed to a predetermined height on the front surface of the n-type SiC substrate 9 so as to fill the groove. On both sides of the aluminum film 7, n-type SiC films for forming the channel regions 4a and 4b are formed. The heights of the channel regions 4a and 4b are set slightly higher than the height of the aluminum film 7. P-type SiC films 2a and 2b are formed outside in contact with the two channel regions 4a and 4b, and a gate electrode 13 is disposed thereon. Source regions 5a and 5b are formed on the two channel regions 4a and 4b, respectively, and source electrodes 11a and 11b are disposed thereon. Also, n-type SiC
An n + -type SiC film is formed on the back surface of the substrate 9, and the drain electrode 12 is disposed thereon. It goes without saying that an ohmic contact is formed between each electrode and the semiconductor layer.

【0028】オン状態では、キャリアはソース領域5
a,5bから基板を厚さ方向に横切ってドレイン領域6
に流れる。すなわち、ノーマリーオンのJFETが実現
している。このとき、電流はアルミニウム膜7と、チャ
ネル領域およびn型SiC基板と、の経路に分流される
が、アルミニウム膜の電気抵抗が非常に低いので、電流
は主にアルミニウム膜側を流れる。このため、チャネル
領域における不純物濃度や寸法変動の影響を受けること
がなく、素子間のばらつきを大きく減らすことができ
る。
In the ON state, carriers are in the source region 5
a, 5b across the substrate in the thickness direction,
Flows to That is, a normally-on JFET is realized. At this time, the current is diverted to the path between the aluminum film 7 and the channel region and the n-type SiC substrate, but the current mainly flows on the aluminum film side because the electric resistance of the aluminum film is very low. For this reason, there is no influence from the impurity concentration or the dimensional change in the channel region, and the variation between elements can be greatly reduced.

【0029】オフ状態では、ゲートには絶対値の大きな
負電圧(−15〜−25V)が印加され、このため、チ
ャネル領域4a,4bとその外側のp型領域との接合部
に逆バイアス電圧が印加される。このため、主として不
純物濃度の薄い側に空乏層幅が広がってゆく。この空乏
層がチャネル領域全域に行き渡ると、ソース領域から基
板9を経てドレイン領域6にいたる経路は遮断される。
アルミニウム膜7はチャネル領域4a,4bよりも低い
高さとされているので、アルミニウム膜を経由する経路
も遮断され、オフ状態が実現する。
In the off state, a negative voltage (-15 to -25 V) having a large absolute value is applied to the gate. Therefore, a reverse bias voltage is applied to the junction between the channel regions 4a and 4b and the p-type region outside the gate region. Is applied. For this reason, the width of the depletion layer increases mainly on the side with the lower impurity concentration. When the depletion layer spreads over the entire channel region, the path from the source region to the drain region 6 via the substrate 9 is cut off.
Since the aluminum film 7 has a lower height than the channel regions 4a and 4b, a path passing through the aluminum film is also cut off, and an off state is realized.

【0030】図4に示す縦型JFETは、高耐圧性を有
するので、本実施の形態のJFETを用いることによ
り、素子間の特性変動の小さい高圧電力用の素子を提供
することが可能となる。
Since the vertical JFET shown in FIG. 4 has high withstand voltage, the use of the JFET of this embodiment makes it possible to provide an element for high-voltage power with a small characteristic fluctuation between elements. .

【0031】なお、図4において、チャネル領域の断面
長さlを、上記pn-接合部の拡散電位による空乏層幅
よりも短くすることにより、ゲート電圧ゼロにおいてチ
ャネル領域は遮断されオフ状態が実現する。すなわち、
ノーマリーオフのJFETを得ることができる。
In FIG. 4, the channel region is cut off at a gate voltage of zero and an off state is realized by setting the cross-sectional length l of the channel region to be shorter than the depletion layer width due to the diffusion potential of the pn-junction. I do. That is,
A normally-off JFET can be obtained.

【0032】[0032]

【実施例】図1の実施の形態1おいて示したJFETを
試作して、1V印加時のチャネル抵抗を測定した。本J
FETは、100V耐圧素子とした。チャネル領域を含
むn型SiC膜3,4の不純物濃度は4.0×1017
-3とし、チャネル長さLは1000nm(10μ
m)、チャネル領域厚さaは230nmと設定した。
EXAMPLE A prototype of the JFET shown in Embodiment 1 of FIG. 1 was manufactured, and the channel resistance when 1 V was applied was measured. Book J
The FET was a 100V withstand voltage element. The impurity concentration of the n-type SiC films 3 and 4 including the channel region is 4.0 × 10 17 c
m −3 , and the channel length L is 1000 nm (10 μm).
m), and the thickness a of the channel region was set to 230 nm.

【0033】[0033]

【表1】 [Table 1]

【0034】表1に示す結果によれば、従来例のチャネ
ル領域に金属膜を有しないJFET(図1のJFETか
らアルミニウム膜を除いたJFET)のチャネル抵抗は
7.8mΩcm2であった。これに対して、アルミニウ
ム膜を備えた実施の形態1のJFET(本発明例)のチ
ャネル抵抗は1.6mΩcm2と大幅に抵抗値が低下し
た。したがって、本発明例によりチャネル抵抗が大きく
低下することが分かった。このため、チャネル領域の不
純物濃度やチャネル領域の厚さの変動の影響を受けず、
素子間のばらつきの小さいJFETを得ることができ
た。
According to the results shown in Table 1, the channel resistance of the conventional JFET having no metal film in the channel region (JFET obtained by removing the aluminum film from the JFET of FIG. 1) was 7.8 mΩcm 2 . On the other hand, the channel resistance of the JFET of the first embodiment (example of the present invention) including the aluminum film was significantly reduced to 1.6 mΩcm 2 . Therefore, it was found that the channel resistance was significantly reduced by the example of the present invention. Therefore, it is not affected by the fluctuation of the impurity concentration of the channel region or the thickness of the channel region,
A JFET with small variation between elements was obtained.

【0035】上記において、本発明の実施の形態につい
て説明を行なったが、上記に開示された本発明の実施の
形態は、あくまで例示であって、本発明の範囲はこれら
発明の実施の形態に限定されない。本発明の範囲は、特
許請求の範囲の記載によって示され、さらに特許請求の
範囲の記載と均等の意味および範囲内でのすべての変更
を含む。
Although the embodiments of the present invention have been described above, the embodiments of the present invention disclosed above are merely examples, and the scope of the present invention is not limited to these embodiments. Not limited. The scope of the present invention is shown by the description of the claims, and further includes all modifications within the meaning and scope equivalent to the description of the claims.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施の形態1におけるJFETの断面図であ
る。
FIG. 1 is a cross-sectional view of a JFET according to a first embodiment.

【図2】 図1のJFETにおいてオフ状態を説明する
模式図である。
FIG. 2 is a schematic diagram illustrating an off state of the JFET of FIG. 1;

【図3】 実施の形態2におけるJFETの断面図であ
る。
FIG. 3 is a cross-sectional view of a JFET according to a second embodiment.

【図4】 実施の形態3におけるJFETの断面図であ
る。
FIG. 4 is a cross-sectional view of a JFET according to a third embodiment.

【符号の説明】[Explanation of symbols]

1 SiC基板、2,2a,2b p型SiC膜、3
n型SiC膜、4,4a,4b チャネル領域、5,5
a,5b ソース領域、6 ドレイン領域、7アルミニ
ウム膜、8 空乏層、8a 空乏層幅の先端、9 n型
SiC基板、11,11a,11b ソース電極、12
ドレイン電極、13 ゲート電極、L チャネル長
さ、a チャネル領域厚さ、l チャネル領域断面長
さ。
1 SiC substrate, 2, 2a, 2bp p-type SiC film, 3
n-type SiC film, 4, 4a, 4b channel region, 5, 5
a, 5b source region, 6 drain region, 7 aluminum film, 8 depletion layer, 8a tip of depletion layer width, 9 n-type SiC substrate, 11, 11a, 11b source electrode, 12
Drain electrode, 13 gate electrode, L channel length, a channel region thickness, l channel region cross-sectional length.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の上に形成された第2導電型
半導体膜と、 前記第2導電型半導体膜の上に形成された、チャネル領
域を含む第1導電型半導体膜と、 前記第1導電型半導体膜の上に形成された第1導電型半
導体からなる膜であって、前記チャネル領域の両側にそ
れぞれ分かれて形成されているソース領域およびドレイ
ン領域と、 前記第2導電型半導体膜に接して設けられたゲート電極
と、 前記チャネル領域の表面に接して配置された導電膜を有
する、接合型電界効果トランジスタ。
A second conductive type semiconductor film formed on a semiconductor substrate; a first conductive type semiconductor film including a channel region formed on the second conductive type semiconductor film; A film made of a first conductivity type semiconductor formed on the conductivity type semiconductor film, wherein the source region and the drain region are formed separately on both sides of the channel region; A junction field effect transistor including a gate electrode provided in contact with the conductive film and a conductive film provided in contact with the surface of the channel region.
【請求項2】 前記導電膜のチャネル長さ方向に沿う長
さが、チャネル長さよりも短い、請求項1に記載の接合
型電界効果トランジスタ。
2. The junction field effect transistor according to claim 1, wherein a length of the conductive film along a channel length direction is shorter than a channel length.
【請求項3】 前記チャネル領域の厚みが、前記第2導
電型半導体膜と、当該第2導電型半導体膜の上に形成さ
れた前記第1導電型半導体膜との接合部における拡散電
位による当該第1導電型半導体膜内での空乏層幅より小
さい、請求項1または2に記載の接合型電界効果トラン
ジスタ。
3. The semiconductor device according to claim 1, wherein a thickness of the channel region is determined by a diffusion potential at a junction between the second conductivity type semiconductor film and the first conductivity type semiconductor film formed on the second conductivity type semiconductor film. 3. The junction field effect transistor according to claim 1, wherein the width of the junction field effect transistor is smaller than a width of a depletion layer in the first conductivity type semiconductor film.
【請求項4】 表(おもて)面において、当該表面上に
成膜された素子耐圧により決定される不純物濃度を有す
る第1の第1導電型半導体層および当該第1の第1導電
型半導体層の表面より高い位置にまで堆積された導電
膜、を有する基板と、 前記基板の上であって、前記導電膜の両側に当該導電膜
の表面より高い位置にまで設けられた第2の第1導電型
半導体層の領域と、 前記第2の第1導電型半導体層の2つの領域のそれぞれ
の上に配置された第1導電型半導体層のソース領域と、 前記基板の上であって、前記第2の第1導電型半導体層
のそれぞれの外側に成膜された、当該第2の第1導電型
不純物層の第1導電型不純物の濃度の値よりも高い値の
第2導電型不純物濃度を有する、ゲート電極が設けられ
た第2導電型半導体層と、 前記基板の裏面に設けられた第1導電型半導体層のドレ
イン領域とを備える、接合型電界効果トランジスタ。
4. A first first conductivity type semiconductor layer having an impurity concentration determined by an element withstand voltage formed on the front surface thereof, and the first first conductivity type semiconductor layer. A substrate having a conductive film deposited to a position higher than the surface of the semiconductor layer; and a second provided on the substrate and on both sides of the conductive film up to a position higher than the surface of the conductive film. A region of the first conductivity type semiconductor layer; a source region of the first conductivity type semiconductor layer disposed on each of the two regions of the second first conductivity type semiconductor layer; A second conductivity type film formed outside each of the second first conductivity type semiconductor layers and having a higher value than the concentration of the first conductivity type impurity of the second first conductivity type impurity layer. A second conductivity type semiconductor layer having an impurity concentration and provided with a gate electrode; And a drain region of a first conductivity type semiconductor layer provided on the back surface of the plate, the junction field effect transistor.
【請求項5】 前記半導体基板の表(おもて)面には溝
が設けられ、前記導電膜は当該溝を埋めて堆積してい
る、請求項4に記載の接合型電界効果トランジスタ。
5. The junction field effect transistor according to claim 4, wherein a groove is provided on a front surface of the semiconductor substrate, and the conductive film is deposited so as to fill the groove.
【請求項6】 前記低濃度の第1導電型半導体層の、第
2導電型半導体膜から導電膜にいたる長さである断面長
さが、前記第2導電型半導体膜と、当該第2導電型半導
体膜の内側の前記低濃度の第1導電型半導体膜との接合
部における拡散電位による当該低濃度の第1導電型半導
体膜内での空乏層幅より小さい、請求項4または5に記
載の接合型電界効果トランジスタ。
6. A second conductive type semiconductor film, wherein the low-concentration first conductive type semiconductor layer has a cross-sectional length from the second conductive type semiconductor film to the conductive film. 6. The width of a depletion layer in the low-concentration first conductivity type semiconductor film due to a diffusion potential at a junction with the low-concentration first conductivity type semiconductor film inside the type semiconductor film. Junction field effect transistor.
【請求項7】 前記導電膜が、金属膜および高濃度の不
純物を含む半導体膜のうちのいずれかである、請求項1
〜6のいずれかに記載の接合型電界効果トランジスタ。
7. The semiconductor device according to claim 1, wherein the conductive film is one of a metal film and a semiconductor film containing a high concentration of impurities.
7. The junction field-effect transistor according to any one of items 6 to 6.
【請求項8】 前記半導体基板がSiC基板であり、前
記第1導電型半導体膜が第1導電型SiC膜であり、前
記第2導電型半導体膜が第2導電型SiC膜である、請
求項1〜7のいずれかに記載の接合型電界効果トランジ
スタ。
8. The semiconductor device according to claim 1, wherein the semiconductor substrate is a SiC substrate, the first conductivity type semiconductor film is a first conductivity type SiC film, and the second conductivity type semiconductor film is a second conductivity type SiC film. 8. The junction field-effect transistor according to any one of 1 to 7.
JP2000194464A 1999-12-21 2000-06-28 Junction field effect transistor Expired - Fee Related JP4830179B2 (en)

Priority Applications (22)

Application Number Priority Date Filing Date Title
JP2000194464A JP4830179B2 (en) 2000-06-28 2000-06-28 Junction field effect transistor
DE60045497T DE60045497D1 (en) 1999-12-24 2000-09-11 Field effect transistor with PN junction
TW089118554A TW456042B (en) 1999-12-24 2000-09-11 Junction field effect transistor and the manufacturing method thereof
EP09006349A EP2081218B1 (en) 1999-12-24 2000-09-11 Junction field effect transistor
DE60045260T DE60045260D1 (en) 1999-12-24 2000-09-11 TRANSITION FIELD EFFECT TRANSISTOR AND ITS MANUFACTURING METHOD
CNB008183619A CN1243373C (en) 1999-12-24 2000-09-11 Junction field-effect transistor and method of manufacture thereof
EP09006462A EP2081219B1 (en) 1999-12-24 2000-09-11 Junction field effect transistor
CA2395608A CA2395608C (en) 1999-12-24 2000-09-11 Junction field effect transistor and method of manufacturing the same
US10/168,265 US6870189B1 (en) 1999-12-24 2000-09-11 Pinch-off type vertical junction field effect transistor and method of manufacturing the same
PCT/JP2000/006211 WO2001048809A1 (en) 1999-12-24 2000-09-11 Junction field-effect transistor and method of manufacture thereof
KR1020027008192A KR100661691B1 (en) 1999-12-24 2000-09-11 Junction field-effect transistor and method of manufacture thereof
EP00957106A EP1284496B1 (en) 1999-12-24 2000-09-11 Junction field-effect transistor and method of manufacture thereof
EP00979959A EP1248302B1 (en) 1999-12-21 2000-12-06 Horizontal junction field-effect transistor
US10/168,263 US6822275B2 (en) 1999-12-21 2000-12-06 Transverse junction field effect transistor
CA2783659A CA2783659A1 (en) 1999-12-21 2000-12-06 Horizontal junction field-effect transistor
CA002395264A CA2395264A1 (en) 1999-12-21 2000-12-06 Horizontal junction field-effect transistor
CNB008176000A CN1194416C (en) 1999-12-21 2000-12-06 Horizontal junction field-effect transistor
PCT/JP2000/008645 WO2001047029A1 (en) 1999-12-21 2000-12-06 Horizontal junction field-effect transistor
CA2689613A CA2689613A1 (en) 1999-12-21 2000-12-06 Horizontal junction field-effect transistor
CNB2004100752442A CN100370626C (en) 1999-12-21 2000-12-06 Horizontal junction field-effect transistor
KR1020027007939A KR100613042B1 (en) 1999-12-21 2000-12-06 Horizontal junction field-effect transistor
US10/973,976 US20050056872A1 (en) 1999-12-21 2004-10-25 Transverse junction field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000194464A JP4830179B2 (en) 2000-06-28 2000-06-28 Junction field effect transistor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011091242A Division JP5348171B2 (en) 2011-04-15 2011-04-15 Junction field effect transistor

Publications (2)

Publication Number Publication Date
JP2002016085A true JP2002016085A (en) 2002-01-18
JP4830179B2 JP4830179B2 (en) 2011-12-07

Family

ID=18693286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000194464A Expired - Fee Related JP4830179B2 (en) 1999-12-21 2000-06-28 Junction field effect transistor

Country Status (1)

Country Link
JP (1) JP4830179B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538572A (en) * 1976-07-12 1978-01-26 Sony Corp Field effect type transistor
JPS61179580A (en) * 1985-01-04 1986-08-12 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPS62281371A (en) * 1986-05-29 1987-12-07 Seiko Instr & Electronics Ltd Thin film transistor and manufacture thereof
JPS6453476A (en) * 1987-08-24 1989-03-01 Nippon Telegraph & Telephone Superconducting three-terminal element and manufacture thereof
JPH01103878A (en) * 1987-10-16 1989-04-20 Nec Corp Manufacture of semiconductor device
US5264713A (en) * 1991-06-14 1993-11-23 Cree Research, Inc. Junction field-effect transistor formed in silicon carbide
JPH0637120A (en) * 1992-07-20 1994-02-10 Sony Corp Semiconductor device
US5925895A (en) * 1993-10-18 1999-07-20 Northrop Grumman Corporation Silicon carbide power MESFET with surface effect supressive layer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538572A (en) * 1976-07-12 1978-01-26 Sony Corp Field effect type transistor
JPS61179580A (en) * 1985-01-04 1986-08-12 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPS62281371A (en) * 1986-05-29 1987-12-07 Seiko Instr & Electronics Ltd Thin film transistor and manufacture thereof
JPS6453476A (en) * 1987-08-24 1989-03-01 Nippon Telegraph & Telephone Superconducting three-terminal element and manufacture thereof
JPH01103878A (en) * 1987-10-16 1989-04-20 Nec Corp Manufacture of semiconductor device
US5264713A (en) * 1991-06-14 1993-11-23 Cree Research, Inc. Junction field-effect transistor formed in silicon carbide
JPH0637120A (en) * 1992-07-20 1994-02-10 Sony Corp Semiconductor device
US5925895A (en) * 1993-10-18 1999-07-20 Northrop Grumman Corporation Silicon carbide power MESFET with surface effect supressive layer

Also Published As

Publication number Publication date
JP4830179B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP5992094B2 (en) Semiconductor device
JP4623956B2 (en) IGBT
JP4900662B2 (en) Silicon carbide MOS field effect transistor with built-in Schottky diode and manufacturing method thereof
US8049223B2 (en) Semiconductor device with large blocking voltage
US4404575A (en) Semiconductor device
JP5900698B2 (en) Semiconductor device
US8217419B2 (en) Semiconductor device
JP2004134547A (en) Semiconductor device
JP2005183563A (en) Semiconductor device
JP4039376B2 (en) Semiconductor device
WO2001048809A1 (en) Junction field-effect transistor and method of manufacture thereof
SE513284C3 (en) Semiconductor component with linear current-to-voltage characteristics
US20070200150A1 (en) Voltage-controlled semiconductor device
JP4742539B2 (en) Semiconductor device
JP2007214355A (en) Semiconductor device
JP4830179B2 (en) Junction field effect transistor
JP3376294B2 (en) Semiconductor device
CN111477680A (en) Double-channel uniform electric field modulation transverse double-diffusion metal oxide wide-band-gap semiconductor field effect transistor and manufacturing method thereof
JP5348171B2 (en) Junction field effect transistor
JPH09246545A (en) Semiconductor element for power
JP7487692B2 (en) Field-effect transistor
JP4876297B2 (en) Power semiconductor device
JP7110821B2 (en) switching element
JP2008306095A (en) Semiconductor device
JP4797232B2 (en) Horizontal junction field effect transistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees