JP2002015946A - Ceramic capacitor - Google Patents

Ceramic capacitor

Info

Publication number
JP2002015946A
JP2002015946A JP2000198454A JP2000198454A JP2002015946A JP 2002015946 A JP2002015946 A JP 2002015946A JP 2000198454 A JP2000198454 A JP 2000198454A JP 2000198454 A JP2000198454 A JP 2000198454A JP 2002015946 A JP2002015946 A JP 2002015946A
Authority
JP
Japan
Prior art keywords
metal
component
ceramic capacitor
electrodes
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000198454A
Other languages
Japanese (ja)
Inventor
Hitoshi Oota
等 大小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000198454A priority Critical patent/JP2002015946A/en
Publication of JP2002015946A publication Critical patent/JP2002015946A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic capacitor which is satisfactory in plating resistance and can be structured, to improve reliability in heat shock (ΔT) resistance tests by dipping in a hot solder bath or wet load testings. SOLUTION: The ceramic capacitor has a dielectric block 1, containing internal electrodes 3 made of one or a plurality of metal materials, and outer electrodes 4, 5 formed on the end faces of the block 1. The electrodes 4, 5 contain a glass component and a metal component, which includes the same metal as the metallic material in the inner electrodes 3 or a metal capable of alloying therewith. The electrodes 4, 5 are characterized by forming inorganic glass layers 41, 51 composed of the glass component on the end faces of the block 1 and metal-containing layers 42, 52 having a metal component area utilization rate of 65-85% to the sectional area on the surfaces of the glass layers 41, 51.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、セラミックコンデ
ンサに属し、詳しくは、外部電極の構造が改良されたセ
ラミックコンデンサに属するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic capacitor, and more particularly, to a ceramic capacitor having an improved external electrode structure.

【0002】[0002]

【従来の技術】従来、代表的なセラミックコンデンサで
ある積層セラミックコンデンサは、複数の誘電体層と複
数の内部電極とが交互に積層されて成る積層体と、その
積層体の両端部に形成した一対の外部電極とから構成さ
れ、積層方向に隣接しあう各内部電極は、各々異なる外
部電極に接続されている。
2. Description of the Related Art Conventionally, a multilayer ceramic capacitor, which is a typical ceramic capacitor, is formed by alternately laminating a plurality of dielectric layers and a plurality of internal electrodes, and forming the laminated body at both ends of the laminated body. Each of the internal electrodes, which includes a pair of external electrodes and is adjacent to each other in the stacking direction, is connected to a different external electrode.

【0003】従来から内部電極の材料としてはPdまた
はAg−Pd合金等が使用されてきた。また、外部電極
の材料として、上述の内部電極との接続性からAgまた
はAg−Pd合金等が使用され、この外部電極の表面に
プリント配線基板表面への実装性を考慮して、Ni、S
n、Sn−Pb等のメッキ層を形成していた。
Conventionally, Pd or Ag-Pd alloy has been used as a material for the internal electrodes. As a material of the external electrode, Ag or an Ag-Pd alloy or the like is used from the viewpoint of connectivity with the internal electrode, and Ni, S is formed on the surface of the external electrode in consideration of the mountability on the surface of the printed wiring board.
A plating layer of n, Sn-Pb, etc. was formed.

【0004】しかしながら、最近のPdの急騰、及びコ
ストダウンのために内部電極の材料として卑金属である
Ni、Cu化が進められており、内部電極の接続性から
材料は外部電極にCu、Ni、またはCu−Ni合金を
使用した積層セラミックコンデンサの普及が拡大してい
る。
[0004] However, in order to increase Pd in recent years and to reduce costs, the use of Ni or Cu as a base metal has been promoted as a material for the internal electrode. Alternatively, multilayer ceramic capacitors using a Cu—Ni alloy have been widely used.

【0005】なお、このような外部電極を形成する導電
性ペーストは、導電性粉末、ガラスフリット、及びべー
ス樹脂と有機溶剤とで作製された有機ビヒクル等を混合
して構成されている。このように導電性ペーストに用い
られるガラスフリットは、誘電体ブロックと外部電極の
接合強度を保つ充填剤としての重要な役割を果たすもの
で、ガラスフリットが外部電極を焼き付ける最中に溶融
し、焼結を促進すると共に、誘電体ブロックと外部電極
の界面に移動することで誘電体ブロックと外部電極との
接着剤として作用する。
[0005] The conductive paste for forming such external electrodes is formed by mixing conductive powder, glass frit, an organic vehicle made of a base resin and an organic solvent, and the like. As described above, the glass frit used for the conductive paste plays an important role as a filler for maintaining the bonding strength between the dielectric block and the external electrode.The glass frit is melted during baking of the external electrode, and In addition to promoting the binding, it also acts as an adhesive between the dielectric block and the external electrode by moving to the interface between the dielectric block and the external electrode.

【0006】このような導電性ペーストの焼き付けとし
ては、卑金属である導電性粉末が酸化されて導電性を失
うことがないように中性雰囲気で行われていた。
[0006] Such baking of the conductive paste has been performed in a neutral atmosphere so that the conductive powder as a base metal is not oxidized and loses conductivity.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、導電性
ペーストの焼成の際にガラスフリットが溶融するために
は、酸素が必要であるため、中性雰囲気で導電性ペース
トの焼き付けを行うと、ガラスフリットの溶融が不十分
となり、金属の焼結性が不十分になったり、誘電体ブロ
ックと外部電極との接着剤としての機能が不十分になる
という問題点があった。
However, in order to melt the glass frit at the time of firing the conductive paste, oxygen is required, and therefore, when the conductive paste is baked in a neutral atmosphere, the glass frit is hardly melted. There is a problem that the melting of the metal becomes insufficient, the sinterability of the metal becomes insufficient, and the function as an adhesive between the dielectric block and the external electrode becomes insufficient.

【0008】このような問題点を解決するために、焼き
付け後の外部電極がポーラスになるようにし、ガラスフ
リットに十分酸素が行き渡るようにすることが考えられ
るが、外部電極がポーラスである場合、外部電極のメッ
キ工程において、メッキ液が外部電極を通ってセラミッ
ク積層体内に浸入することがある。そして、メッキ液が
セラミック積層体内に浸入したとき、得られた積層セラ
ミックコンデンサの熱衝撃試験や湿中負荷試験での劣化
の原因となるという問題点があった。
In order to solve such a problem, it is conceivable that the external electrode after baking is made porous and oxygen is sufficiently distributed to the glass frit. However, when the external electrode is porous, In the step of plating the external electrodes, the plating solution may enter the ceramic laminate through the external electrodes. When the plating solution infiltrates the ceramic laminate, there is a problem that the obtained multilayer ceramic capacitor is deteriorated in a thermal shock test or a humidity and medium load test.

【0009】一方、内部−外部電極の良好な接続を得る
ためには、Cu、Niともに融点が1000℃以上であ
ることから、焼成時の焼き付け温度は900℃以上で、
かつ、中性雰囲気での焼き付けが必要である。しかし、
このような高温かつ中性雰囲気の焼き付けでは、誘電体
層自体が酸化され、セラミックコンデンサの特性の劣化
が起こるという問題点があった。
On the other hand, in order to obtain a good connection between the internal and external electrodes, since the melting points of both Cu and Ni are 1000 ° C. or higher, the firing temperature during firing is 900 ° C. or higher.
In addition, baking in a neutral atmosphere is required. But,
Such baking in a high-temperature and neutral atmosphere has a problem that the dielectric layer itself is oxidized and the characteristics of the ceramic capacitor are deteriorated.

【0010】本発明は上述の問題点に鑑みて案出された
ものであり、その目的は、中性雰囲気で焼き付け温度を
900℃未満の低温で焼成した場合でも、熱衝撃(Δ
T)試験、湿中負荷試験における信頼性を向上させるこ
とが可能なセラミックコンデンサを提供することにあ
る。
The present invention has been devised in view of the above-mentioned problems, and has as its object the object of thermal shock (Δ) even when firing at a low baking temperature of less than 900 ° C. in a neutral atmosphere.
T) An object of the present invention is to provide a ceramic capacitor capable of improving reliability in a test and a humidity and medium load test.

【0011】[0011]

【課題を解決するための手段】本発明のセラミックコン
デンサは、金属成分を主成分とする内部電極を有する誘
電体ブロックの端面に金属成分とガラス成分とを含有し
た外部電極を形成すると共に、前記内部電極と外部電極
とを接続してなるセラミックコンデンサにおいて、前記
外部電極は、前記内部電極との接続部位を除く前記誘電
体ブロックの端面側に前記ガラス成分からなる無機ガラ
ス層が、外表面側に前記金属成分の面積占有率を65〜
85%とした金属含有層が形成されているものである。
According to the ceramic capacitor of the present invention, an external electrode containing a metal component and a glass component is formed on an end face of a dielectric block having an internal electrode containing a metal component as a main component. In a ceramic capacitor formed by connecting an internal electrode and an external electrode, the external electrode has an inorganic glass layer made of the glass component on an end surface side of the dielectric block excluding a connection portion with the internal electrode, and has an external surface side. The area occupancy of the metal component is 65 to 65
A metal-containing layer of 85% is formed.

【0012】外部電極の金属含有層において金属成分の
面積占有率が65〜85%となるような導電性ペースト
を用いることは、その導電性ペーストの焼成時に必要な
酸素が通過する空隙が存在するためにガラスフリットに
十分酸素が行き渡りながら焼成することができるととも
に、ガラスフリットの多くが外部電極と内部電極との接
続部位を除く誘電体ブロックの端面側に移動して無機ガ
ラス層を形成することになる。この無機ガラス層によっ
て金属含有層からメッキ液が入ってきた場合でも誘電体
層ブロック内に入ることを完全に防止することができ
る。このため、熱衝撃(ΔT)試験、湿中負荷試験にお
ける信頼性を向上させることが可能となる。
The use of a conductive paste in which the metal component has an area occupancy of 65 to 85% in the metal-containing layer of the external electrode involves voids through which oxygen necessary for firing the conductive paste passes. Therefore, the glass frit can be baked while oxygen is sufficiently distributed, and most of the glass frit moves to the end face side of the dielectric block excluding the connection portion between the external electrode and the internal electrode to form an inorganic glass layer. become. This inorganic glass layer can completely prevent the plating solution from entering the dielectric layer block even when the plating solution enters from the metal-containing layer. For this reason, it is possible to improve the reliability in the thermal shock (ΔT) test and the humidity and medium load test.

【0013】また、内部電極を構成する金属成分がNi
またはCuであり、かつ、外部電極を構成する金属成分
がCuであると良い。この理由は、誘電体ブロックに導
電性ペーストを焼き付けする際に、Cu・Niの合金を
主成分とする導電性ペーストより焼結性がよくなるため
である。
The metal component constituting the internal electrode is Ni
Alternatively, it is preferable that the external electrode be Cu and the metal component constituting the external electrode be Cu. The reason for this is that when the conductive paste is baked on the dielectric block, the sinterability is better than that of the conductive paste containing a Cu / Ni alloy as a main component.

【0014】また、外部電極を構成する金属成分がNi
及びCuであり、NiがCuに対して40重量%以下に
含有されているため、誘電体ブロックに導電性ペースト
を焼き付ける際に、焼成温度を900℃未満の低温にす
ることができる。このため、焼成時に誘電体層自体が酸
化され、セラミックコンデンサの特性の劣化が起こると
いう問題点がなくなる。
The metal component constituting the external electrode is Ni
, And Cu, and Ni is contained in an amount of 40% by weight or less with respect to Cu, so that the firing temperature can be lowered to less than 900 ° C. when the conductive paste is baked on the dielectric block. For this reason, the problem that the dielectric layer itself is oxidized at the time of firing and the characteristics of the ceramic capacitor are deteriorated is eliminated.

【0015】なお、無機ガラス層を、外部電極と誘電体
ブロックの界面に存在させておくためには、外部電極ペ
ースト中のガラス成分と金属成分の濡れ性が良いことが
求められる。このため、無機ガラス層は、Si,Zn,
Bの少なくとも1成分を含むことが好ましい。
In order for the inorganic glass layer to be present at the interface between the external electrode and the dielectric block, good wettability between the glass component and the metal component in the external electrode paste is required. For this reason, the inorganic glass layer is made of Si, Zn,
It is preferable to include at least one component of B.

【0016】[0016]

【発明の実施の形態】以下、本発明の導電性ペーストを
図面に基づいて説明する。図1は、本発明のセラミック
コンデンサの外観斜視図であり、図2は、その断面図で
ある。図において、1は誘電体ブロックであり、2は誘
電体ブロック1を構成する誘電体層、3は誘電体ブロッ
ク1内に形成した内部電極3であり、4、5は外部電極
であり、6,7は表面メッキ層である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The conductive paste of the present invention will be described below with reference to the drawings. FIG. 1 is an external perspective view of a ceramic capacitor according to the present invention, and FIG. 2 is a sectional view thereof. In the drawing, 1 is a dielectric block, 2 is a dielectric layer constituting the dielectric block 1, 3 is an internal electrode 3 formed in the dielectric block 1, 4 and 5 are external electrodes, 6 , 7 are surface plating layers.

【0017】誘電体層2は、チタン酸バリウムを主成分
とする非還元性誘電体材料、及びガラス成分を含む誘電
体材料からなり、その形状は、2.0mm×1.2mm
などであり、その厚みは高容量化のために1〜5μmと
している。この誘電体層2が図上、上方向に積層して誘
電体ブロック1が構成される。なお、誘電体層2の形
状、厚み、積層数は容量値によって任意に変更すること
ができる。
The dielectric layer 2 is made of a non-reducing dielectric material containing barium titanate as a main component and a dielectric material containing a glass component, and has a shape of 2.0 mm × 1.2 mm.
The thickness is set to 1 to 5 μm in order to increase the capacity. The dielectric layer 2 is stacked upward in the drawing to form the dielectric block 1. The shape, thickness, and number of layers of the dielectric layer 2 can be arbitrarily changed depending on the capacitance value.

【0018】内部電極3は、単一の金属成分であるNi
を主成分とする材料から構成されているがこれに限定さ
れず、Cu、クロム、鉄等あるいはそれらの2つ以上の
合金で構成してもよい。そして、誘電体層2の積層方向
に隣接しあう2つの内部電極3は、互いに誘電体ブロッ
ク1の異なる端面側に延出し、各々異なる外部電極4,
5に接続されている。その厚みは1〜2μmとしてい
る。
The internal electrode 3 is made of Ni, which is a single metal component.
However, the material is not limited to this, and may be Cu, chromium, iron, or an alloy of two or more thereof. The two internal electrodes 3 adjacent to each other in the stacking direction of the dielectric layers 2 extend to different end faces of the dielectric block 1 and different external electrodes 4.
5 is connected. Its thickness is 1-2 μm.

【0019】外部電極4,5は、内部電極3と外部電極
4,5の接続部位を除く誘電体ブロック1の端面側にガ
ラス成分からなる無機ガラス層41,51が、また、無
機ガラス層41,51の表面には金属含有層42,52
が形成されている。
The external electrodes 4 and 5 include inorganic glass layers 41 and 51 made of a glass component on the end face side of the dielectric block 1 excluding the connection portion between the internal electrode 3 and the external electrodes 4 and 5. , 51 on the metal-containing layers 42, 52
Are formed.

【0020】無機ガラス層41,51は用いる導電性ペ
ースト内に含有するガラス成分から主になる層であり、
その材質としてはSi、Zn、B等の通常のガラスフリ
ットが用いられるが、さらに好ましくは導電性ペースト
中の金属成分の濡れ性が良いガラス成分を用いると良
い。この理由としては金属成分中に添加したガラス成分
が外部電極と誘電体ブロックの界面にガラス成分が移動
しやすくなるからである。例えば、外部電極がCu及び
/又はNiの金属成分の場合にはSi、Zn、Bの少な
くとも1成分を含むものである。
The inorganic glass layers 41 and 51 are layers mainly composed of glass components contained in the conductive paste used.
As the material, a normal glass frit such as Si, Zn, or B is used, and more preferably, a glass component having good wettability of a metal component in the conductive paste is used. The reason is that the glass component added to the metal component easily moves to the interface between the external electrode and the dielectric block. For example, when the external electrode is Cu and
In the case of a metal component of Ni, it contains at least one component of Si, Zn, and B.

【0021】また、無機ガラス層41,51の厚みdが
3〜20μmの範囲にあることが望ましい。無機ガラス
層41,51の厚みdが3μm未満では、メッキ液が外
部電極4,5内に浸入した際に、無機ガラス層41,5
1で止めることができず、内部電極3中に入ってしま
う。このため、熱衝撃(ΔT)試験におけるクラック
や、湿中負荷試験における絶縁抵抗の低下が発生する。
一方、無機ガラス層41,51の厚みdが20μmを越
えるようにガラスフリットを添加すると、外部電極4,
5表面側にガラスが析出し、メッキがかかりにくくなっ
たり、内部電極3と外部電極4,5との導通が阻害され
たりすることがある。
It is desirable that the thickness d of the inorganic glass layers 41 and 51 be in the range of 3 to 20 μm. When the thickness d of the inorganic glass layers 41 and 51 is less than 3 μm, when the plating solution enters the external electrodes 4 and 5, the inorganic glass layers 41 and
It cannot be stopped at 1 and enters the internal electrode 3. For this reason, cracks occur in a thermal shock (ΔT) test and insulation resistance decreases in a wet and medium load test.
On the other hand, when the glass frit is added so that the thickness d of the inorganic glass layers 41 and 51 exceeds 20 μm, the external electrodes 4
Glass may be deposited on the surface of the surface 5 and plating may not be easily performed, or conduction between the internal electrode 3 and the external electrodes 4 and 5 may be hindered.

【0022】無機ガラス層41,51は、焼き付け後に
誘電体ブロック1の端面に、層状に析出されるが、外部
電極4,5と内部電極3との導通が絶たれることはな
い。
Although the inorganic glass layers 41 and 51 are deposited in a layer form on the end face of the dielectric block 1 after baking, the conduction between the external electrodes 4 and 5 and the internal electrode 3 is not interrupted.

【0023】金属含有層42,52は、導電性ペースト
内に含有する金属成分から主になる層であり、ニッケ
ル、銅、鉄、コバルト、クロムの少なくとも1つまたは
2つ以上の合金から選ばれる。
The metal-containing layers 42 and 52 are layers mainly composed of metal components contained in the conductive paste, and are selected from at least one or an alloy of two or more of nickel, copper, iron, cobalt, and chromium. .

【0024】また、金属含有層42,52の金属成分の
面積占有率が65〜85%となっているため、金属成分
が十分に且つ均一に配置して緻密化する。この面積占有
率は金属含有層の断面をとって、その一定の断面積中に
金属が現れる占有率で計測される。従って、酸素がある
程度浸入することが防止され、外部電極の金属成分が酸
化するのを防止できるばかりか、後述する外部電極の表
面に形成するメッキ層が形成しやすくなるものである。
なお、金属成分の面積占有率が65%に満たないと、ポ
アなどの空隙が多すぎるため、空隙を通ってメッキ液が
浸入しやすくなり、熱衝撃(ΔT)試験、湿中負荷試験
における不良が発生する。金属成分の面積占有率が85
%を越える場合、金属成分同士が焼結しすぎてガラス成
分が浮き出してしまい、外部電極表面のメッキ形成が難
しくなる。即ち、このような面積占有率が85%を超え
る金属成分を含有した導電性ペーストは空隙が少なすぎ
るため、空隙を通って、ガラスフリットを融解し外部電
極4,5を焼き付けるために、必要最小限の酸素が行き
渡りにくくなり、誘電体ブロックと外部電極の界面に十
分に無機ガラス層41,51が形成されにくくなり、こ
れにより、熱衝撃(ΔT)試験、湿中負荷試験における
信頼性が低下するものである。
Further, since the area occupation ratio of the metal components of the metal-containing layers 42 and 52 is 65 to 85%, the metal components are sufficiently and uniformly arranged and densified. The area occupancy is measured by taking the cross section of the metal-containing layer and occupying the metal in a fixed cross-sectional area. Therefore, intrusion of oxygen to some extent can be prevented, and not only can the metal component of the external electrode be prevented from being oxidized, but also a plating layer formed on the surface of the external electrode described later can be easily formed.
If the area occupancy of the metal component is less than 65%, there are too many voids such as pores, so that the plating solution easily penetrates through the voids, and is defective in a thermal shock (ΔT) test and a wet load test. Occurs. Metal component area occupancy is 85
%, The metal components are excessively sintered with each other, and the glass component emerges, making it difficult to form a plating on the surface of the external electrode. That is, since the conductive paste containing such a metal component having an area occupancy of more than 85% has too few voids, it is necessary to melt the glass frit and burn the external electrodes 4 and 5 through the voids. And it is difficult to sufficiently form the inorganic glass layers 41 and 51 at the interface between the dielectric block and the external electrode, thereby lowering the reliability in the thermal shock (ΔT) test and the wet load test. Is what you do.

【0025】金属含有層42,52の金属成分としては
選択される内部電極の材質により決定されるが、例え
ば、内部電極がNiの場合にはそのNiと同一若しくは
Niと合金化しやすいCu及び/又はCu・Ni合金が
選ばれる。内部電極がCuの場合にはそのCuと同一若
しくはCuと合金化しやすいNi及び/又はCu・Ni
合金が選ばれる。
The metal component of the metal-containing layers 42 and 52 is determined by the material of the selected internal electrode. For example, when the internal electrode is Ni, Cu and / or Cu and / or easily alloy with Ni are used. Alternatively, a Cu / Ni alloy is selected. When the internal electrode is made of Cu, Ni and / or Cu.Ni which is the same as Cu or easily alloyed with Cu
An alloy is chosen.

【0026】金属含有層42,52を構成する金属成分
がNi及びCuである場合には、NiがCuに対して4
0重量%以下に含有するとよい。これにより、誘電体ブ
ロック1に導電性ペーストを焼成する際に、Niを主成
分とする導電性ペーストより焼結性がよくなり、焼成温
度を800〜900℃と低くすることができる。このた
め、焼成時に誘電体層2自体が酸化され、積層セラミッ
クコンデンサの特性の劣化が起こるという問題点がなく
なる。
When the metal components constituting the metal-containing layers 42 and 52 are Ni and Cu, Ni
The content is preferably 0% by weight or less. Accordingly, when the conductive paste is fired on the dielectric block 1, the sinterability is better than that of the conductive paste containing Ni as a main component, and the firing temperature can be lowered to 800 to 900 ° C. Therefore, the problem that the dielectric layer 2 itself is oxidized at the time of firing and the characteristics of the multilayer ceramic capacitor are deteriorated is eliminated.

【0027】表面メッキ層6,7は、Niメッキ、Sn
メッキ、半田メッキなどが例示できる。なお、この表面
メッキ層6,7は、外部からの衝撃、湿気などから素子
を守り、確実に回路基板に実装するために形成されてい
る。
The surface plating layers 6 and 7 are made of Ni plating, Sn
Examples include plating and solder plating. The surface plating layers 6 and 7 are formed to protect the element from external impact, moisture, and the like, and to reliably mount the element on a circuit board.

【0028】なお、本発明の外部電極は以下のように作
製される。球状のCu及びNi粉末、フレーク状のCu
粉末に、Si,Zn,Bの少なくとも1成分を含み、粒
径が約10μmであるガラスフリットを金属粉末100
重量%に対して8〜18重量%を添加し、さらに、アク
リル系樹脂成分及び炭化水素系溶剤を適宜配合・混合し
て導電性ペースを作製する。
The external electrode of the present invention is manufactured as follows. Spherical Cu and Ni powder, flake Cu
A glass frit containing at least one component of Si, Zn, and B and having a particle size of about 10 μm
The conductive paste is prepared by adding 8 to 18% by weight based on the weight%, and further mixing and mixing an acrylic resin component and a hydrocarbon solvent as appropriate.

【0029】なお、本発明の外部電極4,5を構成する
導電ペーストにおいて、アクリル樹脂を用いているた
め、脱脂温度としては240〜320℃の空気中で行う
ことが好ましい。すなわち、脱脂温度が240℃未満に
なると、脱脂時に樹脂が外部に抜けにくくなり、ガラス
が溶け出す高温まで樹脂が残ってしまい、残留した樹脂
成分の分解または燃焼により発生した気体で外部電極
4,5表面に球状のふくらみが生じ、また熱衝撃(Δ
T)試験、湿中負荷試験で絶縁抵抗値が低下するチップ
が発生するという問題がある。一方、脱脂温度が320
℃以上になると、脱脂を空気中で行っていることから、
外部電極4,5の酸化による静電容量の低下が起こると
いう問題がある。
Since the conductive paste constituting the external electrodes 4 and 5 of the present invention uses an acrylic resin, the degreasing temperature is preferably performed in the air at 240 to 320 ° C. That is, when the degreasing temperature is lower than 240 ° C., the resin hardly escapes to the outside at the time of degreasing, the resin remains up to a high temperature at which the glass melts, and the gas generated by the decomposition or combustion of the remaining resin component causes the external electrode 4, 5 Spherical swelling occurs on the surface and thermal shock (Δ
T) There is a problem that a chip whose insulation resistance value is reduced in the test and the wet load test is generated. On the other hand, the degreasing temperature is 320
When the temperature rises above ℃, degreasing is performed in the air.
There is a problem that the capacitance is reduced due to oxidation of the external electrodes 4 and 5.

【0030】[0030]

【実施例】以下、本発明の実施例を以下に示す。Embodiments of the present invention will be described below.

【0031】平均粒径が1〜3μmの球状のCu及びN
i粉末、10〜20μmのフレーク状のCu粉末に、S
i,Zn,Bの少なくとも1成分を含み、粒径が約10
μmであるガラスフリットを金属粉末100重量%に対
して8〜18重量%を添加し、さらに、アクリル系樹脂
成分及び炭化水素系溶剤を適宜配合・混合し、導電性ペ
ーストを作製した。そして、この導電性ペーストを内部
電極にNiを用いて形成した誘電体ブロックの端面に塗
布した後、80℃で導電性ペーストを乾燥させ、300
℃で脱脂を行い、その後800〜900℃で導電性ペー
ストを誘電体ブロックに焼き付けて積層セラミックコン
デンサを作成した。具体的には、2012型(L寸法:
2.0mm、W寸法:1.2mm)の容量値1μFとな
る積層セラミックコンデンサを製造した。
Spherical Cu and N having an average particle size of 1 to 3 μm
i powder, flake-form Cu powder of 10-20 μm,
It contains at least one component of i, Zn, and B, and has a particle size of about 10
A glass frit having a thickness of μm was added in an amount of 8 to 18% by weight based on 100% by weight of the metal powder, and an acrylic resin component and a hydrocarbon solvent were appropriately mixed and mixed to prepare a conductive paste. Then, after applying this conductive paste to the end surface of the dielectric block formed using Ni for the internal electrodes, the conductive paste is dried at 80 ° C.
After degreased at a temperature of 800 ° C., a conductive paste was baked on the dielectric block at a temperature of 800 to 900 ° C. to produce a multilayer ceramic capacitor. Specifically, 2012 type (L dimension:
(2.0 mm, W dimension: 1.2 mm) to produce a multilayer ceramic capacitor having a capacitance value of 1 μF.

【0032】ここで、脱脂が行われる温度過程(100
〜500℃)で多くの空気を導入して酸素濃度を高くし
(10ppm以上200ppm以下)、他の温度域にも
空気を導入し(100ppm以下)で焼き付けを行っ
た。
Here, the temperature step (100
(500-500 ° C.), a large amount of air was introduced to increase the oxygen concentration (10 ppm or more and 200 ppm or less), and air was introduced into another temperature range (100 ppm or less) to perform baking.

【0033】金属成分の面積占有率は、積層セラミック
コンデンサの外部電極4,5の金属含有層42,52の
部分を研磨し、一定の断面を複数個所とり、各断面をS
EM像で写真撮影し、この写真により画像情報をイメー
ジスキャナーを介してパーソナルコンピューターに取り
込んで金属成分が占有する平均比率を算出した。
The area occupancy of the metal component is determined by polishing the metal-containing layers 42 and 52 of the external electrodes 4 and 5 of the multilayer ceramic capacitor, taking a plurality of fixed cross sections, and setting each cross section to S
Photographs were taken with EM images, and image information was taken into a personal computer via an image scanner from the photographs to calculate the average ratio occupied by metal components.

【0034】ここで、表1に示すように、例えば導電性
粉末粒径、ガラスフリット、樹脂、溶剤添加量、焼成条
件などを変化させることにより、金属含有層42,52
に含まれる金属成分の面積占有率を変化させた。金属含
有層42,52の金属成分の面積占有率は、焼き付け温
度800〜900℃の範囲で調節し、また昇温速度は7
00℃から800℃までを15分〜120分かかる範囲
で適宜調節した。
Here, as shown in Table 1, the metal-containing layers 42 and 52 are changed by changing, for example, the particle size of the conductive powder, the glass frit, the resin, the amount of the solvent added, and the firing conditions.
Was changed in the area occupancy of the metal component contained in the metal. The area occupancy of the metal components of the metal-containing layers 42 and 52 is adjusted in the range of the baking temperature of 800 to 900 ° C., and the heating rate is 7
The temperature from 00 ° C to 800 ° C was appropriately adjusted within a range of 15 to 120 minutes.

【0035】得られたチップについて、熱衝撃(ΔT)
試験、湿中負荷試験を行い、不良の発生の有無を確認し
た。即ち、熱衝撃(ΔT)試験は、300個のチップを
340℃の高温半田槽に2秒浸し、クラックの発生数を
調査した。また、湿中負荷試験は、300個のチップを
65℃、90〜95%RH、DC10Vの条件下にして
試験槽から取り出したチップの絶縁抵抗を測定し、抵抗
値の低下で不良か否かを判断した。これらの結果を表1
に記載する。
With respect to the obtained chip, thermal shock (ΔT)
A test and a wet load test were performed to confirm the occurrence of defects. That is, in the thermal shock (ΔT) test, 300 chips were immersed in a high-temperature solder bath at 340 ° C. for 2 seconds, and the number of cracks generated was investigated. In the wet load test, the insulation resistance of the chips taken out of the test chamber was measured under the conditions of 65 ° C., 90 to 95% RH, and DC 10 V under the condition of 300 chips. Was judged. Table 1 shows these results.
It describes in.

【0036】[0036]

【表1】 [Table 1]

【0037】なお、表1において試料No.に*を付し
たものは、比較例である。
In Table 1, the sample No. with * is a comparative example.

【0038】表1のように、外部電極4,5の断面積に
対する金属成分の面積占有率が65〜85%の場合は、
熱衝撃(ΔT)試験のクラックは全て0/300個、湿
中負荷試験の抵抗値の低下も全て0/300個となった
(試料No.2〜6)。
As shown in Table 1, when the area occupancy of the metal component with respect to the sectional area of the external electrodes 4 and 5 is 65 to 85%,
The cracks in the thermal shock (ΔT) test were all 0/300, and the resistance values in the wet and medium load test were all 0/300 (Sample Nos. 2 to 6).

【0039】これに対して、金属成分の面積占有率が8
8%,60%の場合は、熱衝撃(ΔT)試験のクラック
がそれぞれ2/300,2/300個発生し、湿中負荷
NGがそれぞれ7/300,8/300個発生した(試
料No.1、7)。
On the other hand, the area occupancy of the metal component is 8
In the case of 8% and 60%, cracks in the thermal shock (ΔT) test occurred 2/300 and 2/300, respectively, and 7/300 and 8/300 wet medium load NGs occurred (sample No. 1, 7).

【0040】[0040]

【発明の効果】以上のように本発明の構成によれば、外
部電極の金属成分の面積占有率が65〜85%となるよ
うな導電性ペーストにより焼結されるので、その導電性
ペーストの焼成時に必要な酸素が通過する空隙が存在す
るためにガラスフリットに十分酸素が行き渡って脱バイ
工程においてバインダを十分抜くことができる。従っ
て、本焼成により樹脂が炭化することがない良好なセラ
ミックコンデンサを得ることができる。
As described above, according to the structure of the present invention, the external electrode is sintered by the conductive paste so that the area occupancy of the metal component is 65 to 85%. Since there is a gap through which oxygen required for firing passes, oxygen is sufficiently distributed to the glass frit and the binder can be sufficiently removed in the de-buying step. Therefore, a good ceramic capacitor in which the resin is not carbonized by the main firing can be obtained.

【0041】また、誘電体ブロックの端面に無機ガラス
層が形成されることによって金属含有層からメッキ液が
入ってきた場合でも誘電体層ブロック内に入ることを完
全に防止することができる。このため、熱衝撃(ΔT)
試験、湿中負荷試験における信頼性を向上させることが
可能となる。
Further, by forming the inorganic glass layer on the end face of the dielectric block, even if the plating solution enters from the metal-containing layer, it can be completely prevented from entering the dielectric layer block. Therefore, thermal shock (ΔT)
It is possible to improve the reliability in the test and the wet load test.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の導電性ペーストを用いた積層セラミッ
クコンデンサの外観斜視図である。
FIG. 1 is an external perspective view of a multilayer ceramic capacitor using a conductive paste of the present invention.

【図2】本発明の導電性ペーストを用いた積層セラミッ
クコンデンサの断面図である。
FIG. 2 is a cross-sectional view of a multilayer ceramic capacitor using the conductive paste of the present invention.

【符号の説明】[Explanation of symbols]

1 誘電体ブロック 2 誘電体磁器層 3 内部電極 4、5 外部電極 41,51 無機ガラス層 42,52 金属含有層 6,7 メッキ層 d 厚み Reference Signs List 1 dielectric block 2 dielectric porcelain layer 3 internal electrode 4, 5 external electrode 41, 51 inorganic glass layer 42, 52 metal-containing layer 6, 7 plating layer d thickness

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属成分を主成分とする内部電極を有す
る誘電体ブロックの端面に金属成分とガラス成分とを含
有した外部電極を形成すると共に、前記内部電極と外部
電極とを接続してなるセラミックコンデンサにおいて、 前記外部電極は、前記内部電極との接続部位を除く前記
誘電体ブロックの端面側に前記ガラス成分からなる無機
ガラス層が、外表面側に前記金属成分の面積占有率を6
5〜85%とした金属含有層が形成されていること特徴
とするセラミックコンデンサ。
1. An external electrode containing a metal component and a glass component is formed on an end face of a dielectric block having an internal electrode containing a metal component as a main component, and the internal electrode and the external electrode are connected. In the ceramic capacitor, the external electrode has an inorganic glass layer made of the glass component on an end surface side of the dielectric block excluding a connection portion with the internal electrode, and has an area occupancy of the metal component of 6 on an outer surface side.
A ceramic capacitor characterized in that a metal-containing layer of 5 to 85% is formed.
【請求項2】 前記外部電極を構成する金属成分がNi
及びCuであり、NiがCuに対して40重量%以下含
有されている請求項1記載のセラミックコンデンサ。
2. The method according to claim 1, wherein the metal component constituting the external electrode is Ni.
2. The ceramic capacitor according to claim 1, wherein the Ni content is 40% by weight or less based on Cu. 3.
JP2000198454A 2000-06-30 2000-06-30 Ceramic capacitor Pending JP2002015946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000198454A JP2002015946A (en) 2000-06-30 2000-06-30 Ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000198454A JP2002015946A (en) 2000-06-30 2000-06-30 Ceramic capacitor

Publications (1)

Publication Number Publication Date
JP2002015946A true JP2002015946A (en) 2002-01-18

Family

ID=18696617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000198454A Pending JP2002015946A (en) 2000-06-30 2000-06-30 Ceramic capacitor

Country Status (1)

Country Link
JP (1) JP2002015946A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191317A (en) * 2003-12-25 2005-07-14 Kyocera Corp Conductive paste for external electrode formation and laminated ceramics electronic component using it
JP2005317491A (en) * 2004-04-01 2005-11-10 Hitachi Chem Co Ltd Conductive paste and electronic component mounting substrate using it
JP2005317490A (en) * 2004-04-01 2005-11-10 Hitachi Chem Co Ltd Conductive paste and electronic component mounting substrate using it
WO2006013793A1 (en) * 2004-08-03 2006-02-09 Hitachi Chemical Company, Ltd. Electroconductive paste and substrate using the same for mounting electronic parts
JP2006128608A (en) * 2004-09-29 2006-05-18 Kyocera Corp Electronic part, method for manufacturing the same, chip resistor using the same, ferrite core and inductor
JP2007266328A (en) * 2006-03-29 2007-10-11 Kyocera Corp Photoelectric conversion element, and photoelectric conversion module comprising it
JP2012028689A (en) * 2010-07-27 2012-02-09 Tdk Corp Terminal electrode and ceramic electronic component equipped with it
KR101290153B1 (en) 2011-01-21 2013-07-26 가부시키가이샤 무라타 세이사쿠쇼 Ceramic electronic component
WO2013132965A1 (en) * 2012-03-05 2013-09-12 株式会社村田製作所 Electronic component
WO2013132966A1 (en) * 2012-03-05 2013-09-12 株式会社村田製作所 Electronic component and method for forming junction structure between electronic component and object to be joined
KR20140117295A (en) * 2013-03-26 2014-10-07 가부시키가이샤 무라타 세이사쿠쇼 Ceramic electronic component and glass paste
KR101462754B1 (en) * 2013-01-24 2014-11-17 삼성전기주식회사 Multi-layered ceramic electronic parts and fabricating method thereof
JP2014222619A (en) * 2013-05-14 2014-11-27 Dowaエレクトロニクス株式会社 Conductive film
DE102019101877A1 (en) 2018-02-09 2019-08-14 Daido Metal Company Ltd. Main bearing for crankshaft of an internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0836914A (en) * 1994-07-26 1996-02-06 Taiyo Yuden Co Ltd Baking type conductive paste for ceramic electronic part, and ceramic electronic part
JPH097879A (en) * 1995-06-19 1997-01-10 Murata Mfg Co Ltd Ceramic electronic part and manufacture thereof
JP2000091106A (en) * 1998-09-14 2000-03-31 Matsushita Electric Ind Co Ltd Multilayer semiconductor ceramic electronic component and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0836914A (en) * 1994-07-26 1996-02-06 Taiyo Yuden Co Ltd Baking type conductive paste for ceramic electronic part, and ceramic electronic part
JPH097879A (en) * 1995-06-19 1997-01-10 Murata Mfg Co Ltd Ceramic electronic part and manufacture thereof
JP2000091106A (en) * 1998-09-14 2000-03-31 Matsushita Electric Ind Co Ltd Multilayer semiconductor ceramic electronic component and its manufacture

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191317A (en) * 2003-12-25 2005-07-14 Kyocera Corp Conductive paste for external electrode formation and laminated ceramics electronic component using it
JP2005317491A (en) * 2004-04-01 2005-11-10 Hitachi Chem Co Ltd Conductive paste and electronic component mounting substrate using it
JP2005317490A (en) * 2004-04-01 2005-11-10 Hitachi Chem Co Ltd Conductive paste and electronic component mounting substrate using it
WO2006013793A1 (en) * 2004-08-03 2006-02-09 Hitachi Chemical Company, Ltd. Electroconductive paste and substrate using the same for mounting electronic parts
JP2006128608A (en) * 2004-09-29 2006-05-18 Kyocera Corp Electronic part, method for manufacturing the same, chip resistor using the same, ferrite core and inductor
JP2007266328A (en) * 2006-03-29 2007-10-11 Kyocera Corp Photoelectric conversion element, and photoelectric conversion module comprising it
JP2012028689A (en) * 2010-07-27 2012-02-09 Tdk Corp Terminal electrode and ceramic electronic component equipped with it
KR101290153B1 (en) 2011-01-21 2013-07-26 가부시키가이샤 무라타 세이사쿠쇼 Ceramic electronic component
CN104145317A (en) * 2012-03-05 2014-11-12 株式会社村田制作所 Electronic component
WO2013132966A1 (en) * 2012-03-05 2013-09-12 株式会社村田製作所 Electronic component and method for forming junction structure between electronic component and object to be joined
US9691546B2 (en) 2012-03-05 2017-06-27 Murata Manufacturing Co., Ltd. Electronic part and method for forming joint structure of electronic part and joining object
TWI562179B (en) * 2012-03-05 2016-12-11 Murata Manufacturing Co
WO2013132965A1 (en) * 2012-03-05 2013-09-12 株式会社村田製作所 Electronic component
CN104160463A (en) * 2012-03-05 2014-11-19 株式会社村田制作所 Electronic component and method for forming junction structure between electronic component and object to be joined
US9412517B2 (en) 2012-03-05 2016-08-09 Murata Manufacturing Co., Ltd. Electronic part
JPWO2013132966A1 (en) * 2012-03-05 2015-07-30 株式会社村田製作所 Method for forming electronic component and bonded structure of electronic component and object to be bonded
JPWO2013132965A1 (en) * 2012-03-05 2015-07-30 株式会社村田製作所 Electronic components
KR101462754B1 (en) * 2013-01-24 2014-11-17 삼성전기주식회사 Multi-layered ceramic electronic parts and fabricating method thereof
US9328014B2 (en) 2013-03-26 2016-05-03 Murata Manufacturing Co., Ltd. Ceramic electronic component and glass paste
KR101648392B1 (en) * 2013-03-26 2016-08-16 가부시키가이샤 무라타 세이사쿠쇼 Ceramic electronic component and glass paste
JP2014209550A (en) * 2013-03-26 2014-11-06 株式会社村田製作所 Ceramic electronic component and glass paste
KR20140117295A (en) * 2013-03-26 2014-10-07 가부시키가이샤 무라타 세이사쿠쇼 Ceramic electronic component and glass paste
JP2014222619A (en) * 2013-05-14 2014-11-27 Dowaエレクトロニクス株式会社 Conductive film
DE102019101877A1 (en) 2018-02-09 2019-08-14 Daido Metal Company Ltd. Main bearing for crankshaft of an internal combustion engine

Similar Documents

Publication Publication Date Title
KR100908985B1 (en) Ceramic Electronic Components and Manufacturing Method Thereof
JP4208010B2 (en) Electronic component and manufacturing method thereof
JP5099609B2 (en) Multilayer electronic components
JP5142090B2 (en) Ceramic multilayer electronic component and manufacturing method thereof
JP2002015946A (en) Ceramic capacitor
JP2007115755A (en) Electronic component and its manufacturing method
JPH11297565A (en) Ceramic electronic component and its manufacture
JP4136113B2 (en) Chip-type laminated electronic components
JPH11243029A (en) Conducting paste for terminal and laminated ceramic capacitor
JP4380145B2 (en) Method for manufacturing conductive paste and ceramic electronic component
JP5166049B2 (en) Ceramic electronic component and method for manufacturing the same
JP2001338830A (en) Conductive paste and laminated ceramic capacitor using the same
JPH0394409A (en) Electronic component and electrode paste; formation of terminal electrode
JP4081865B2 (en) Method for producing conductor composition
JPH10154633A (en) Ceramic electronic part and its manufacturing method
JP4765321B2 (en) Conductive paste
JP3744710B2 (en) Multilayer ceramic capacitor
JP2002298643A (en) Conductive paste for outer electrode and laminated ceramic capacitor
JP2001338831A (en) Conductive paste laminated ceramic capacitor using the same
JP3391286B2 (en) Ceramic electronic components
JP4662021B2 (en) Manufacturing method of multilayer ceramic capacitor
JPH07201637A (en) Multilayer ceramic electronic device
JPH1187167A (en) Paste for terminal electrode and ceramic electronic component using the same and its manufacture
JP2006216781A (en) Electronic component
JP2001052950A (en) Laminated ceramic electronic part and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720