JPH0394409A - Electronic component and electrode paste; formation of terminal electrode - Google Patents

Electronic component and electrode paste; formation of terminal electrode

Info

Publication number
JPH0394409A
JPH0394409A JP2157977A JP15797790A JPH0394409A JP H0394409 A JPH0394409 A JP H0394409A JP 2157977 A JP2157977 A JP 2157977A JP 15797790 A JP15797790 A JP 15797790A JP H0394409 A JPH0394409 A JP H0394409A
Authority
JP
Japan
Prior art keywords
metal
phase
zinc
tin
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2157977A
Other languages
Japanese (ja)
Other versions
JP2658509B2 (en
Inventor
Yoichiro Yokoya
横谷 洋一郎
Koichi Kugimiya
公一 釘宮
Seiichi Nakatani
誠一 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2157977A priority Critical patent/JP2658509B2/en
Publication of JPH0394409A publication Critical patent/JPH0394409A/en
Application granted granted Critical
Publication of JP2658509B2 publication Critical patent/JP2658509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Ceramic Capacitors (AREA)
  • Details Of Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

PURPOSE:To obtain a terminal electrode part whose cost is low, whose solderability is good, whose drop in a solderability due to oxidation on the surface of an element is small and whose relaxation effect of a thermal shock property to the element during a soldering operation is excellent by a method wherein a metal phase contained in the terminal electrode part is composed of a copper alloy containing at least one component out of a group composed of lead, tin and zinc. CONSTITUTION:A terminal electrode part which contains a metal phase and an inorganic glass phase is provided; the metal phase is composed of a copper alloy containing at least one component out of a group composed of lead, tin and zinc. A cross section of the terminal electrode part is constituted so as to have the following: an intermediate layer composed of a metal phase composed mainly of copper or nickel, a metal phase composed mainly of lead, zinc or tin and a mixed texture phase containing at least two kinds selected from a group composed of intermetallic compound layers of these or a solid solution alloy phase; and a surface layer whose content of lead, tin or zinc is more than the intermediate layer as an average composition. Thereby, it is possible to obtain the terminal electrode part whose cost is low, solderability is good, drop in a solderability due to oxidation on the surface of an element is small and relaxation effect of a thermal shock property to the element during a soldering operation is excellent.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は端子電極部に金属粉を焼き付けた電子部品およ
びその端子電極を形成する際に用いる電極ペーストとそ
の端子電極の形成方法に関し、特に端子電極部への半田
付け性が良好で半田付け時に素子に対する熱衝撃性の緩
和効果に優れた端子電極部の構成とその安価で簡便な形
成方法、電極ペーストに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an electronic component in which metal powder is baked onto the terminal electrode part, an electrode paste used in forming the terminal electrode, and a method for forming the terminal electrode. The present invention relates to a structure of a terminal electrode part which has good solderability to a part and has an excellent effect of alleviating thermal shock to an element during soldering, an inexpensive and simple method of forming the same, and an electrode paste.

従来の技術 近年回路の小型化、高密度化の進展に伴い、これに用い
る電子部品を回路基板上に表面実装して用いることが一
般化しており、特に回路部品などでは表面実装部品が主
流となっている。
Conventional technology In recent years, as circuits have become smaller and more dense, it has become common to surface-mount electronic components on circuit boards, and surface-mounted components have become mainstream, especially for circuit components. It has become.

このうち、固定抵抗素子や積層コンデンサ素子のような
電子部品では、端子電極部は焼結した金属粉末をガラス
質フリットで素子本体に固定した構成のメタルグレーズ
型の構成をとっている。この部分は直接回路基板の配線
金属上に半田付けされるため、半田との濡れ性がよく、
かつ半田フローの溶融半田によって端子電極部が溶かし
出されて無くなってしまう半田食われ現象が発生しない
ような対策がとられている。
Among these, in electronic components such as fixed resistance elements and multilayer capacitor elements, the terminal electrode portion has a metal glaze type structure in which sintered metal powder is fixed to the element body with a glass frit. This part is soldered directly onto the wiring metal of the circuit board, so it has good wettability with solder.
In addition, measures are taken to prevent the solder erosion phenomenon in which the terminal electrode portion is melted and lost by the molten solder of the solder flow.

通常このような素子の端子電極用の金属材料としては空
気中で焼成可能な銀電極が用いられてきたが、上述の問
題点を解決するため銀とパラジウム合金をこれに用いる
方法や、焼き付けた銀端子電極の外側にニッケル鍍金を
施しさらにその上に錫一鉛鍍金(半田鍍金)を施すなど
の手法などがとられていた。
Silver electrodes, which can be fired in air, have usually been used as the metal material for the terminal electrodes of such elements, but in order to solve the above-mentioned problems, methods using silver and palladium alloys, and methods using baked-in materials have been proposed. Techniques such as applying nickel plating to the outside of the silver terminal electrode and then applying tin-lead plating (solder plating) on top of that were used.

また素子と基板上の配線を半田付けする際、溶融した半
田に素子端子部が触れた場合、端子電極部と素子との温
度差による熱膨張の差により素子の一部に大きな引っ張
り応力が発生し素子に亀裂がはいる現象が発生すること
があった。このため必要に応じて半田付け時に予め素子
を余熱して急速な温度差の発生を防ぐなどの対策がとら
れていた。
Also, when soldering the device and the wiring on the board, if the device terminal comes into contact with molten solder, a large tensile stress will be generated in a part of the device due to the difference in thermal expansion caused by the temperature difference between the terminal electrode and the device. In some cases, cracks appeared in the element. For this reason, measures have been taken to prevent rapid temperature differences by preheating the elements before soldering, if necessary.

一方素子の低コスト化への要求から、端子金属に銅やニ
ッケル等の卑金属を用いる要望があり、内部電極に卑金
属を用いた積層コンデンサ素子のような、もともと素子
自体を低酸素分圧雰囲気下で焼成するものにおいては、
すでに例えば米国特許3,920,781公報に銅やニ
ッケルなどの卑金属を端子電極に用いることが提案され
ている。このような卑金属端子電極は比較的半田食われ
現象は少ないが、半田付け性に問題があり、特に端子電
極表面の酸化による半田濡れ性の低下が問題であった。
On the other hand, due to the demand for lower cost of elements, there is a demand for using base metals such as copper and nickel for the terminal metals. For those fired with
For example, US Pat. No. 3,920,781 has already proposed the use of base metals such as copper and nickel for terminal electrodes. Although such base metal terminal electrodes are relatively free from solder erosion, they have problems with solderability, particularly a decrease in solder wettability due to oxidation of the terminal electrode surface.

このため従来と同様に端子電極の再外層に半田鍍金を施
すなどの手法が考えられていた。また半田付け時の素子
中への亀裂発生は従来の銀糸の電極同様発生するため、
半田付け時の素子の余熱処理も必要に応じて実施が検討
されている。
For this reason, methods such as applying solder plating to the outer layer of the terminal electrode have been considered as in the past. In addition, cracks occur in the element during soldering, similar to conventional silver thread electrodes, so
Preheating the elements during soldering is also being considered as necessary.

発明が解決しようとする課題 上述のような鍍金法による端子電極最外層への半田層の
形成は、半田付け性を改善しかつ端子電極表面の酸化を
防止する方法であるが、行程が増えるための煩雑さ、コ
スト増のほかに、素子を鍍金液相中へいれる必要があり
、鍍金液による素子の変質、特性劣化をまねくおそれが
あった。
Problems to be Solved by the Invention Forming a solder layer on the outermost layer of a terminal electrode by the above-mentioned plating method is a method of improving solderability and preventing oxidation of the terminal electrode surface, but it requires an additional process. In addition to the complexity and increased cost, it is necessary to place the element into the plating liquid phase, which may lead to alteration of the element and deterioration of characteristics due to the plating liquid.

また鍍金法は半田付け時の素子中への亀裂発生を防ぐ効
果はなかった。
Furthermore, the plating method was not effective in preventing cracks from forming inside the element during soldering.

本発明はかかる課題に鑑み、メタルグレーズ型の端子電
極を有する電子部品において、低コストであり、かつ半
田付け性が良好で、素子表面の酸化による半田付け性の
低下が少なく、半田付け時に素子に対する熱衝撃性の緩
和効果に優れた端子電極部の構成とその安価で簡便な製
造プロセス、並びに電極ペーストを提供することを目的
とする。
In view of the above problems, the present invention provides an electronic component having a metal glaze type terminal electrode, which is low in cost, has good solderability, has less deterioration in solderability due to oxidation of the element surface, and has a metal glaze type terminal electrode. It is an object of the present invention to provide a structure of a terminal electrode part having an excellent effect of alleviating thermal shock properties, an inexpensive and simple manufacturing process thereof, and an electrode paste.

課題を解決するための手段 本発明は金属相と無機ガラス相からなる端子電極部を有
する電子部品において、端子電極部に含まれる金属相が
鉛、錫、亜鉛からなる群の少なくとも1成分を含む、銅
合金もしくはニッケル合金からなる構戊とする。
Means for Solving the Problems The present invention provides an electronic component having a terminal electrode portion consisting of a metal phase and an inorganic glass phase, in which the metal phase contained in the terminal electrode portion contains at least one component of the group consisting of lead, tin, and zinc. , made of copper alloy or nickel alloy.

本発明の端子電極の構成においては、端子電極部の断面
が、銅あるいはニッケルを主成分とする金属相、鉛、亜
鉛あるいは錫を主成分とする金属相、およびこれらの金
属間化合物層からなる群より選ばれた少なくとも2種を
含む混合組織相、もしくは固溶体合金相からなる中間層
を有し、さらに平均組成として中間層より鉛、錫あるい
は亜鉛の含有量の多い表面層を有する構戊とする。
In the structure of the terminal electrode of the present invention, the cross section of the terminal electrode portion is composed of a metal phase mainly composed of copper or nickel, a metal phase mainly composed of lead, zinc or tin, and an intermetallic compound layer of these. A structure having an intermediate layer consisting of a mixed texture phase or a solid solution alloy phase containing at least two types selected from the group, and further having a surface layer having a higher content of lead, tin or zinc as an average composition than the intermediate layer. do.

本発明の端子電極に用いる電極ペーストとしては、電極
ペースト中の金属成分が、焼付け処理中に単独では液相
を生成しない金属成分と、単独で溶融、分解溶融して液
相を生成するか、前者の単独では液相を生成しない金属
成分との共融反応により液相を生成する金属成分の2種
の成分を含み、かつ生成する液相成分の固化した相が鉛
、亜鉛、錫からなる群より選ばれた少なくとも1成分を
含むことを特徴とする電極ペーストとする。
The electrode paste used in the terminal electrode of the present invention may include a metal component in the electrode paste that does not generate a liquid phase by itself during the baking process, or a metal component that melts, decomposes and melts alone to generate a liquid phase; Contains two types of components: a metal component that generates a liquid phase through a eutectic reaction with a metal component that does not generate a liquid phase when alone, and the solidified phase of the liquid phase component that is generated consists of lead, zinc, and tin. The electrode paste is characterized in that it contains at least one component selected from the group consisting of:

また本発明の端子電極の形成方法は、電極ペースト中に
、焼付け処理中に単独では液相を生成しない金属成分と
、単独で溶融、分解溶融して液相を生成するか、前者の
単独では液相を生成しない金属成分との共融反応により
液相を生成する金属成分の2種の金属成分を含み、焼付
け処理時にこれらの金属粉、金属間化合物粉、合金粉の
共融現象若しくは一部の溶融により部分的に金属もしく
は金属間化合物間で液相が形成される温度以上で処理す
る形成方法をとる。
In addition, the method for forming the terminal electrode of the present invention includes adding a metal component that does not generate a liquid phase by itself during the baking process to the electrode paste, and a metal component that alone melts, decomposes and melts to generate a liquid phase, or the former alone generates a liquid phase. Contains two types of metal components: a metal component that generates a liquid phase through a eutectic reaction with a metal component that does not generate a liquid phase, and during the baking process, the eutectic phenomenon or monomerization of these metal powders, intermetallic compound powders, and alloy powders occurs. A forming method is used in which the process is carried out at a temperature higher than the temperature at which a liquid phase is partially formed between the metals or intermetallic compounds by melting the metal or intermetallic compound.

作用 端子電極部に含まれる金属相が鉛、錫あるいは亜鉛から
なる群の少なくとも1成分を含む、銅合金もしくはニッ
ケル合金からなることにより、鉛−錫合金からなる半田
溶融金属との端子電極部の濡れ性が向上し、さらに酸化
反応が抑制されることにより端子電極部の表面酸化によ
る半田付け性低下が改善される。
Since the metal phase contained in the working terminal electrode part is made of a copper alloy or a nickel alloy containing at least one component of the group consisting of lead, tin, or zinc, the terminal electrode part can be easily bonded to a solder molten metal made of a lead-tin alloy. The wettability is improved and the oxidation reaction is suppressed, thereby improving solderability caused by surface oxidation of the terminal electrode portion.

端子電極部の表面層が鉛、錫あるいは亜鉛からなる群の
少なくとも1成分を主成分として含む金属層からなるこ
とにより、鉛一錫合金からなる半田溶融金属と端子電極
部の濡れ性が向上し、さらに表面の酸化反応が抑制され
ることにより端子電極部の表面の酸化による半田付け性
低下が改善される。
Since the surface layer of the terminal electrode part is made of a metal layer containing as a main component at least one component from the group consisting of lead, tin, or zinc, the wettability of the solder molten metal made of a lead-tin alloy and the terminal electrode part is improved. Furthermore, by suppressing the oxidation reaction on the surface, the decrease in solderability due to oxidation on the surface of the terminal electrode portion is improved.

また銅あるいはニッケルを主成分とする金属相、鉛、亜
鉛あ−るいは錫を主成分とする金属相、およびこれらの
金属間化合物相からなる群より選ばれた少なくとも2種
を含む混合組織相もしくは合金相からなる中間層は、端
子′F4極部の熱伝導度を低下させるため、半田溶融金
属浸された際の素子のセラミック端子電極界面近傍の熱
衝撃を緩和する働きがある。
Also, a mixed structure phase containing at least two selected from the group consisting of a metal phase mainly composed of copper or nickel, a metal phase mainly composed of lead, zinc, or tin, and an intermetallic compound phase thereof. Alternatively, the intermediate layer made of an alloy phase lowers the thermal conductivity of the four poles of the terminal 'F, and thus has the function of mitigating the thermal shock in the vicinity of the ceramic terminal electrode interface of the element when immersed in molten solder metal.

また端子電極の形成条件として、焼付け処理時に金属粉
、金属間化合物粉、合金粉による共融現象若しくは一方
の溶融により部分的に金属もしくは金属間化合物の粉末
間で液相が形成される温度以上で処理を行うことにより
、電極の焼付け過程で一部液相となる鉛、亜鉛あるいは
錫を多く含む成分が表面へ偏析されるため、所期の電極
構成を得ることができる。
In addition, the conditions for forming the terminal electrode are above the temperature at which a liquid phase is partially formed between the metal or intermetallic compound powders due to eutectic phenomenon or melting of one of the metal powders, intermetallic compound powders, and alloy powders during the baking process. By performing this treatment, components containing a large amount of lead, zinc, or tin, which partially become a liquid phase during the baking process of the electrode, are segregated to the surface, so that the desired electrode configuration can be obtained.

また電極ペーストの出発原料として銅あるいはニッケル
を主成分とする金属粉、鉛、亜鉛あるいは錫を主成分と
する金属粉、もしくはこれらの金属間化合物からなる金
属粉より選ばれた少なくとも2種の金属粉の混合物、も
しくは合金粉を用いることにより、電極の焼付け過程で
鉛、錫あるいは亜鉛含有量の多い液相が生成され、冷却
過程で液相成分が表面へ偏析されるため所期の電極構成
を得ることが容易になる。
In addition, as a starting material for the electrode paste, at least two metals selected from metal powders containing copper or nickel as a main component, metal powders containing lead, zinc, or tin as a main component, or metal powders consisting of intermetallic compounds thereof. By using a powder mixture or alloy powder, a liquid phase with a high content of lead, tin, or zinc is generated during the baking process of the electrode, and the liquid phase components are segregated to the surface during the cooling process, making it difficult to achieve the desired electrode configuration. It becomes easier to obtain.

実施例 以下に、本発明の実施例について図面を参照しながら説
明する。
Examples Examples of the present invention will be described below with reference to the drawings.

実施例1 素子として固定抵抗器素子について検討した。Example 1 A fixed resistor element was considered as the element.

抵抗体はアルミナ基板上に酸化レニウムー亜鉛ホウ珪酸
ガラス系のグレーズ抵抗を650℃で焼き付けたものを
用いた。
The resistor used was a glazed resistor made of rhenium oxide-zinc borosilicate glass baked on an alumina substrate at 650°C.

端子電極の出発原料としては粒径が1.5μm以下0.
  5μm以上の金属鋼、金属鉛、金属錫、金属亜鉛を
所定比に混合した金属粉末に粒径が0.8μmのガラス
フリットを12wt%混合した粉末を用い、これにアク
リル系樹脂と石油系溶剤を混合してペースト状にしたも
のを用いた。
As a starting material for the terminal electrode, the particle size is 1.5 μm or less.
A powder made by mixing 12 wt% of glass frit with a particle size of 0.8 μm in a metal powder made by mixing metal steel, metal lead, metal tin, and metal zinc in a predetermined ratio of 5 μm or more is used, and this is mixed with acrylic resin and petroleum solvent. A paste made by mixing these was used.

端子電極ペーストは抵抗体の両端にディブ法により塗布
し、空気中80℃で乾燥後、窒素ガスを流し酸素濃度が
21)pm程度の電気炉中で280℃まで5時間かけて
昇温したのち550゜C〜600℃まで30分かけて昇
温し15分保持したのち室温まで降温した。
The terminal electrode paste was applied to both ends of the resistor by the dib method, dried in air at 80°C, heated to 280°C over 5 hours in an electric furnace with a nitrogen gas flow and an oxygen concentration of about 21) pm, and then heated to 280°C over 5 hours. The temperature was raised from 550°C to 600°C over 30 minutes, held for 15 minutes, and then cooled to room temperature.

素子は端子電極形成後下記の保持条件A,  Bで保持
した。
After the terminal electrodes were formed, the device was held under the following holding conditions A and B.

A:空気中で14時間保持 B:40℃湿度60%の雰囲気中60時間保持その後素
子は銅配線を施したガラスエポキシ基板に有機接着剤で
仮とめした後、230℃でリフロー半田づけを実施し、
50試料中の半田付け不良発生数を求めた。半田付け不
良はりフロー半田付後目視法で半田付け部を観察し半田
の付着していない部分が明らかに認められるものを不良
とした。
A: Hold in air for 14 hours B: Hold in an atmosphere of 40°C and humidity 60% for 60 hours After that, the device was temporarily attached to a glass epoxy board with copper wiring using an organic adhesive, and reflow soldering was performed at 230°C. death,
The number of soldering defects among the 50 samples was determined. Defective soldering The soldered area was visually observed after flow soldering, and those in which a portion to which no solder was attached were clearly observed were determined to be defective.

第1表に端子電極組成と保持条件、不良数を示す。Table 1 shows the terminal electrode composition, holding conditions, and number of defects.

(以下余白) 第  1  表 第l表続き 第1表続き Not及び22は比較例 第1表より明らかなように、端子電極に鉛、錫あるいは
亜鉛の何れかを含む銅もしくはニッケル電極を用いたも
のは、これらを含まないものに比べ、半田付け性とくに
端子電極が酸化しやすい条件下で保存した後の半田付け
性が向上する。
(Leaving space below) Table 1 Table 1 Continued Table 1 Continued As is clear from Comparative Example Table 1, Nos. and 22 used copper or nickel electrodes containing either lead, tin, or zinc as the terminal electrodes. Compared to products that do not contain these, solderability, especially after storage under conditions where terminal electrodes are easily oxidized, is improved.

各成分の含有率の範囲については、鉛と銅とを含有する
合金の鉛の含有量が0.  3〜70wt%(第1表中
No3〜8)、銅と錫とを含有する合金の錫の含有量が
0.  8〜65wt%(第1表中No9〜13)、銅
と亜鉛とを含有する合金の亜鉛の含有量が0.  5〜
80wt%(第1表中No16〜20)、ニッケルと鉛
とを含有する合金の鉛の含有量が1.5〜45wt%(
第1表中No24〜27)、ニッケルと錫とを含有する
合金の錫の含有量が1.5〜55wt%(第1表中No
30〜34)もしくはニッケルと亜鉛とを含有する合金
の亜鉛の含有量が1.5〜65wt%(第1表中No3
7〜41)が好ましい。
Regarding the content range of each component, the lead content of the alloy containing lead and copper is 0. 3 to 70 wt% (No. 3 to 8 in Table 1), and the tin content of the alloy containing copper and tin is 0. 8 to 65 wt% (Nos. 9 to 13 in Table 1), and the zinc content of the alloy containing copper and zinc is 0. 5~
80 wt% (No. 16 to 20 in Table 1), and the lead content of the alloy containing nickel and lead is 1.5 to 45 wt% (
No. 24 to 27 in Table 1), the tin content of the alloy containing nickel and tin is 1.5 to 55 wt% (No. 24 to 27 in Table 1),
30 to 34) or an alloy containing nickel and zinc with a zinc content of 1.5 to 65 wt% (No. 3 in Table 1)
7 to 41) are preferred.

含有率がこれらの範囲より少ないと(第1表中No2.
8+  15+  23y  29及び36)半田付性
の改善効果が少なく、含有率がその範囲より多いと(第
1表中No7.14,21.28.35及び42)電極
金属が部分的に溶融するため、半田づけ以前に端子電極
部と、素子本体の接着性が低下しており、半田付けによ
ってその部分からの剥離が発生し、半田付け性そのもの
は低下しないが不良数は増大する傾向にある。しかし銅
単独の従来例(第1表中No 1)と比較すると、何れ
の条件下でも半田付け不良は軽減されている。又ニッケ
ル単独の従来例(第1表中No22)と比較すると、条
件Bでは半田付け不良が軽減されているが条件Aでは若
干の増加が見受けられた。しかしニッケル単独での条件
Aでは元々不良数が少ない点と、条件Aよりも酸化され
易い雰囲気中(条件B)で不良数が軽減されている点と
を考慮すると、やはりこの範囲においても効果はあるも
のと想定される。
If the content is less than these ranges (No. 2 in Table 1).
8+ 15+ 23y 29 and 36) The effect of improving solderability is small, and if the content exceeds this range (No. 7.14, 21.28.35 and 42 in Table 1), the electrode metal will partially melt. , the adhesion between the terminal electrode part and the element body is reduced before soldering, and peeling occurs from that part during soldering, and although the solderability itself does not decrease, the number of defects tends to increase. However, compared to the conventional example using only copper (No. 1 in Table 1), the number of soldering defects is reduced under all conditions. In addition, when compared with the conventional example using nickel alone (No. 22 in Table 1), the number of soldering defects was reduced under condition B, but a slight increase was observed under condition A. However, considering that the number of defects is originally small under Condition A using nickel alone, and that the number of defects is reduced in an atmosphere that is more easily oxidized than Condition A (Condition B), it is still effective in this range. It is assumed that there is.

実施例2 素子として銅内部電極セラミック積層コンデンサについ
て検討した。
Example 2 A ceramic multilayer capacitor with copper internal electrodes was studied as an element.

銅内部電極セラξツク積層コンデンサ素子の誘電体磁器
にはPb (Mg+73Nba73) Osを主成分と
する鉛複合ベロブスカイト誘電体を用い、これをシート
化した後この上に酸化銅電極ペーストで内部電極層を形
成し、積層、空気中でのバーンアウト後、焼成温度より
低い温度の水素ガス雰囲気中で内部電極層のみを金属化
し、窒素雰囲気中で焼成して素子を作成した。
A lead composite berovskite dielectric whose main component is Pb (Mg+73Nba73)Os is used for the dielectric ceramic of the multilayer capacitor element, which is formed into a sheet, and then internal electrodes are formed on top of it using copper oxide electrode paste. After forming layers, laminating them, and burning out in air, only the internal electrode layers were metallized in a hydrogen gas atmosphere at a temperature lower than the firing temperature, and fired in a nitrogen atmosphere to create an element.

端子電極は実施例1同様の方法で形成し、又端子電極形
成後素子を下記の保持条件A,  Bで保持した。
Terminal electrodes were formed in the same manner as in Example 1, and after the terminal electrodes were formed, the device was held under the following holding conditions A and B.

A:空気中で14時間保持 B:40”C湿度60%の雰囲気中60時間保持その後
素子は銅配線を施したガラスエポキシ基板に有機接着剤
で仮どめした後、230℃でリフロー半田付けを実施し
、50試料中の半田付け不良発生数を求めた。半田付け
不良はりフロー半田付後目視法で半田付け部を観察し半
田の付着していない部分が明らかに認められるものを不
良とした。
A: Hold in air for 14 hours B: Hold for 60 hours in a 40"C atmosphere with 60% humidity. After that, the device is temporarily fixed to a glass epoxy board with copper wiring using an organic adhesive, and then reflow soldered at 230°C. The number of soldering defects among the 50 samples was calculated.The soldered parts were observed using the visual method after soldering failure beams and flow soldering, and those in which areas with no solder were clearly observed were considered defective. did.

第2表に端子電極組成と保持条件、不良数を示す。Table 2 shows the terminal electrode composition, holding conditions, and number of defects.

(以下余白) 第  2  表 No50及び5Iは比較例 第2表より明かなように、鉛、錫あるいは亜鉛を少なく
とも含む銅もしくはニッケルからなる端子電極を有する
素子は、半田付け性が著しく向上する。
(The following is a margin) Table 2 Nos. 50 and 5I are Comparative Examples As is clear from Table 2, elements having terminal electrodes made of copper or nickel containing at least lead, tin, or zinc have significantly improved solderability.

なお本実施例では内部電極として銅を用いた例を示した
が、他の卑金属を内部電極として用いても効果は同様で
あった。
In this example, an example was shown in which copper was used as the internal electrode, but the same effect could be obtained even if other base metals were used as the internal electrode.

実施例3 素子として固定抵抗器素子について検討した。Example 3 A fixed resistor element was considered as the element.

抵抗体はアルミナ基板上に酸化レニウムー亜鉛ホウ珪酸
ガラス系のグレーズ抵抗を950℃テ焼き付けたものを
用いた。
The resistor used was a glazed resistor made of rhenium oxide-zinc borosilicate glass baked at 950° C. on an alumina substrate.

端子電極の出発原料としては粒径が5.5μm以下、1
.5μm以上の金属鋼、金属鉛粉末を所定比に混合し、
平均粒径0.  8μmの亜鉛ホウ珪酸ガラスフリット
を金属重量に対し8wt%混合した粉末を用い、これに
平均分子量1800のアクリル樹脂を粉末重量に対し5
wt%、αターピネオール、トルエン混合溶媒(8: 
4)を粉末重量に対し30wt%加え、乳鉢で混合した
のち3本ロールを用い混練し、さらに溶剤量を調整して
20℃の粘度8000センチポイズの電極ペーストを作
成した。
Starting materials for terminal electrodes include particles with a particle size of 5.5 μm or less, 1
.. Mix metal steel of 5 μm or more and metal lead powder in a predetermined ratio,
Average particle size 0. A powder containing 8 μm zinc borosilicate glass frit at 8 wt% based on the metal weight was used, and an acrylic resin with an average molecular weight of 1800 was mixed at 5 wt% based on the powder weight.
wt%, α-terpineol, toluene mixed solvent (8:
4) was added in an amount of 30 wt % based on the powder weight, mixed in a mortar, and then kneaded using three rolls. Further, the amount of solvent was adjusted to prepare an electrode paste with a viscosity of 8000 centipoise at 20°C.

電極ペーストは抵抗体の両端にディップ法により塗布し
、空気中80℃で乾燥後、窒素ガスを流すことにより酸
素濃度が2ppm程度に調整した管状電気炉炉心管中で
、280″Cまで5時間かけて昇湿したのち、550〜
800℃まで30分かけて昇温し、5分保持したのち室
温まで30分かけて降温した。
The electrode paste was applied to both ends of the resistor by the dipping method, dried in air at 80°C, and heated to 280″C for 5 hours in a tubular electric furnace core tube in which the oxygen concentration was adjusted to about 2 ppm by flowing nitrogen gas. After increasing the humidity by heating, the temperature is 550~
The temperature was raised to 800° C. over 30 minutes, maintained for 5 minutes, and then lowered to room temperature over 30 minutes.

作成した素子の端子電極部断面はX線マイクロアナライ
ザ、およびX線微小回折計を用い電極金属の組成分布を
評価した。
The cross section of the terminal electrode portion of the fabricated device was examined for the composition distribution of the electrode metal using an X-ray microanalyzer and an X-ray microdiffractometer.

模式図を第1図にしめす。抵抗体はセラミック素体11
とグレーズ抵抗15で構成されている。
A schematic diagram is shown in Figure 1. The resistor is a ceramic element 11
and a glaze resistor 15.

抵抗体の電極部の最も素体に近い部分は、部分的にセラ
ミック素体11に融着した無機フリットを含む下地層1
2からなり、次に銅金属相と鉛金属相が2〜40μm程
度の混合組織相を形成した厚み700μm程度の中間層
13があり、さらに鉛金属相からなる厚み0.3μm〜
60μm程度の表面層14からなる。
The part of the electrode part of the resistor closest to the element body is a base layer 1 containing an inorganic frit partially fused to the ceramic element body 11.
Next, there is an intermediate layer 13 with a thickness of about 700 μm in which a copper metal phase and a lead metal phase form a mixed texture phase with a thickness of about 2 to 40 μm, and further a lead metal phase with a thickness of 0.3 μm to
It consists of a surface layer 14 of about 60 μm.

鉛含有量が0.1wt%程度の少ない試料では、中間相
13に鉛金属相はほとんど観測されない。
In a sample with a low lead content of about 0.1 wt%, almost no lead metal phase is observed in the intermediate phase 13.

素子は端子電極形成後下記の保持条件A.  Bで保持
した。
After the terminal electrodes are formed, the device is held under the following holding conditions A. B was retained.

A:空気中で14時間保持 B: 40℃湿度80%の雰囲気中60時間保持その後
素子は銅配線を施したガラスエポキシ基板に有機接着剤
で仮とめした後、230″Cでリフロ半田付けを実施し
、50試料中の半田付け不良発生数を求めた。半田付け
不良はりフロー半田付け後目視法で半田付け部を観察し
、端子電極表面に明らかに半田の付着していない部分が
認められるものを不良とした。
A: Hold in air for 14 hours B: Hold for 60 hours in an atmosphere of 40°C and 80% humidity After that, the device was temporarily attached to a glass epoxy board with copper wiring using an organic adhesive, and then reflow soldered at 230''C. The number of soldering defects was determined in 50 samples.Soldering defects After flow soldering, the soldered area was visually observed, and it was found that there were clearly areas on the terminal electrode surface where no solder was attached. marked something as defective.

第3表に端子電極の金属粉混合組戊率と保持条件、不良
数を示す。
Table 3 shows the failure rate of the metal powder mixture of the terminal electrode, the holding conditions, and the number of defects.

(以下余白) 第   3   表 作製した素子の初期特性を測定し、抵抗値が所期のもの
より50%以上変動があるものを不良とした。第4表に
No62の試料とNodBの試料の初期不良数(100
ケ当り)を示す。
(The following is a blank space) Table 3 The initial characteristics of the manufactured elements were measured, and those whose resistance value varied by 50% or more from the expected value were judged as defective. Table 4 shows the number of initial failures (100
(per).

第  4  表 No82は比較例 No83の試料は中間層に鉛金属相はほとんど観測され
ないため、酸化し易い条件下での不良数の低減の効果は
少なかったが、NO82よりは不良数の低減は見受けら
れる。
In Table 4, No. 82 shows that in the sample of Comparative Example No. 83, almost no lead metal phase was observed in the intermediate layer, so the effect of reducing the number of defects under easy-to-oxidize conditions was small, but the reduction in the number of defects was observed compared to No. 82. It will be done.

またこの第3表中のNo88と、端子電極表面に半田鍍
金を施す従来法との比較を行った。即ちNo62の試料
の端子電極表面に、アルカノールスルホン酸を主成分と
する半田鍍金液(pH:  1.0)中でバレル鍍金法
により半田鍍金層を形成しちなみに表面半田鍍金したN
o62の試料を上記の条件A,条件Bで保存後の半田付
け不良は、初期不良品をのぞいたものでは発生しなかっ
た。
A comparison was also made between No. 88 in Table 3 and the conventional method of applying solder plating to the surface of the terminal electrode. That is, a solder plating layer was formed on the surface of the terminal electrode of sample No. 62 by the barrel plating method in a solder plating solution (pH: 1.0) containing alkanol sulfonic acid as the main component.
No soldering defects occurred after o62 samples were stored under the above conditions A and B, except for the initially defective products.

第3表及び第4表より明らかなように、本発明の鉛、亜
鉛あるいは錫の内少なくとも1つを含有する銅あるいは
ニッケルを有した中間層よりも鉛、錫あるいは亜鉛の含
有量が多い表面層で構成された端子電極(特許請求の範
囲第10項に記載)で、焼付け処理中に生成する液相成
分の固化した相が、鉛、亜鉛あるいは錫からなる群より
選ばれた少なくともl成分を含む(特許請求の範囲第1
7項に記載)電極ペーストを用い、焼付け処理時に金属
成分の金属粉、金属間化合物あるいは金属粉の共融現象
もしくは一部の溶融により、部分的に金属もしくは金属
間化合物間で液相が形成される温度以上で焼き付け処理
する(特許請求の範囲第25項に記載)製造プロセスを
とると、銅電極単体のものに比べ、半田付け性とくに端
子電極が酸化しやすい条件下で保存した後の半田付け性
が向上し、また表面半田メッキ処理を施したものに比べ
、初期特性の劣化、変動が少ない。
As is clear from Tables 3 and 4, the surface has a higher content of lead, tin or zinc than the intermediate layer with copper or nickel containing at least one of lead, zinc or tin of the present invention. In a terminal electrode (as defined in claim 10) composed of layers, the solidified phase of the liquid phase component produced during the baking process contains at least one component selected from the group consisting of lead, zinc or tin. (Claim 1)
(described in Section 7) Using an electrode paste, a liquid phase is partially formed between the metals or intermetallic compounds due to the eutectic phenomenon or partial melting of the metal component metal powder, intermetallic compound, or metal powder during the baking process. If the manufacturing process involves baking at a temperature higher than the temperature at which the copper electrode is baked (as described in claim 25), the solderability will be improved, especially after storage under conditions where the terminal electrode is easily oxidized, compared to a single copper electrode. Solderability is improved, and there is less deterioration and fluctuation in initial characteristics compared to those with surface solder plating.

また電極ペースト中の鉛の含有量は、0.  3wt%
以上70wt%以下が好ましく、含有率がその範囲より
少ないと(第3表中No83)半田付け性の改善効果が
少ない。含有率がその範囲より多いと(第3表中No8
8)電極金属の溶融量が大きくなり端子電極部と素子本
体の接着性が低下し、半田付け時にその部分が剥離して
不良数が増大する。しかし銅単独の従来例(第3表中N
o62)と比較すると、何れの条件下でも半田付け不良
は軽減されている。
Further, the lead content in the electrode paste is 0. 3wt%
The content is preferably 70 wt% or less, and if the content is less than this range (No. 83 in Table 3), the effect of improving solderability will be small. If the content is higher than that range (No. 8 in Table 3)
8) The amount of melted electrode metal increases and the adhesion between the terminal electrode portion and the element body decreases, and this portion peels off during soldering, increasing the number of defects. However, the conventional example using copper alone (N in Table 3)
Compared to o62), the number of soldering defects is reduced under all conditions.

実施例4 素子として実施例1と同様の固定抵抗器素子について検
討した。
Example 4 A fixed resistor element similar to Example 1 was studied as an element.

抵抗体は酸化レニウムーホウ珪酸ガラス系のグレーズ抵
抗を1050℃で焼き付けたものを用いた。
The resistor used was a rhenium oxide-borosilicate glass glaze resistor baked at 1050°C.

端子電極の出発原料としては粒径が6μm以下、1.5
μm以上の金属銅、金属錫粉末、および平均粒径1.5
μmのC us S n粉末を所定比に混合し、平均粒
径1.0μmの亜鉛ホウ珪酸ガラスフリットを金属重量
に対し4wt%混合した粉末を用い、これに平均分子量
1800のアクリル樹脂を粉末重量に対し5wt%、α
タービネオール、カルイトールアセテート混合溶媒(6
: 4)を粉末重量に対し30wt%加え、乳鉢で混合
したのち3本ロールを用い混練し、さらに溶剤を調節し
て20゜Cの粘度10000センチボイズの電極ペース
トを作製した。
As starting materials for terminal electrodes, particles with a particle size of 6 μm or less and 1.5
Metallic copper, metallic tin powder of μm or more, and average particle size of 1.5
A powder is used in which CuSN powder of μm is mixed in a predetermined ratio and zinc borosilicate glass frit with an average particle size of 1.0 μm is mixed at 4 wt% based on the metal weight, and an acrylic resin with an average molecular weight of 1800 is added to the powder by weight. 5wt%, α
Turbineol, calitol acetate mixed solvent (6
: 30 wt % of 4) was added to the powder weight, mixed in a mortar and kneaded using three rolls, and the solvent was further adjusted to prepare an electrode paste with a viscosity of 10,000 centivoise at 20°C.

電極ペーストは抵抗体の両端にディップ法により塗布し
、空気中80゜Cで乾燥後、窒素ガスを流すことにより
酸素濃度が2ppm程度に調整した管状電気炉炉心管中
で、280℃まで5時間かけて昇温したのち550〜6
00℃まで30分かけて昇温し、5分保持したのち室温
まで30分かけて降温した。
The electrode paste was applied to both ends of the resistor by the dipping method, dried in air at 80°C, and heated to 280°C for 5 hours in a tubular electric furnace core tube in which the oxygen concentration was adjusted to about 2 ppm by flowing nitrogen gas. After heating up to 550~6
The temperature was raised to 00°C over 30 minutes, held for 5 minutes, and then lowered to room temperature over 30 minutes.

作成した素子の端子電極部断面をX線マイクロアナライ
ザ、X線微小回折計を用いてM極金属の分布を評価した
The distribution of M-pole metal was evaluated using an X-ray microanalyzer and an X-ray microdiffractometer on the cross section of the terminal electrode portion of the produced element.

模式図を第2図にしめす。抵抗体はセラミック素体21
とグレーズ抵抗25で構成されている。
A schematic diagram is shown in Figure 2. The resistor is a ceramic element 21
and a glaze resistor 25.

抵抗体の電極部の最も素体に近い部分は部分的にセラミ
ック素体21に融着した無機フリットを含む下地層22
からなり、次に銅金属相(一部錫が固溶)、錫金属相お
よびCuisn1 CusSns金属間化合物相が20
μm程度の混合組織相を形成した厚み700μm程度の
中間層23があり、さらに錫金属相からなる厚み2μm
〜60μm程度の表面Fl24からなる。錫含有量が0
.1wt%程度の少ない試料では中間相における錫金属
相はほとんど観察されない。
The part of the electrode portion of the resistor closest to the element body is a base layer 22 containing an inorganic frit partially fused to the ceramic element body 21.
followed by a copper metal phase (with some tin in solid solution), a tin metal phase and a Cusn1 CusSns intermetallic compound phase.
There is an intermediate layer 23 with a thickness of about 700 μm in which a mixed texture phase of about μm is formed, and an intermediate layer 23 with a thickness of about 2 μm consisting of a tin metal phase.
It consists of a surface Fl24 of about ~60 μm. Tin content is 0
.. In samples with a small content of about 1 wt%, the tin metal phase in the intermediate phase is hardly observed.

また錫含有量が0.8wt%程度の試料では、中間相2
3は銅に錫の固溶した固溶相である。
In addition, in a sample with a tin content of about 0.8 wt%, the intermediate phase 2
3 is a solid solution phase in which tin is dissolved in copper.

また出発原料にC un S Dを用いたものは、端子
電極の断面において他の試料に見られる表面層24に示
す表面の錫金属相の形成が確認されない。
In addition, in the case where Cun SD was used as the starting material, the formation of a tin metal phase on the surface shown in the surface layer 24, which was observed in other samples, was not confirmed in the cross section of the terminal electrode.

素子は端子電極形成後下記の保持条件A.  Bで保持
した。
After the terminal electrodes are formed, the device is held under the following holding conditions A. B was retained.

A:空気中で14時間保持 B: 40℃湿度θO%の雰囲気中60時間保持その後
素子は銅配線を施したガラスエポキシ基板に有機接着剤
で仮どめした後、230゜Cでリフロー半田付けを実施
し、50試料中の半田付け不良発生数を求めた。半田付
け不良はりフロー半田付け後目視法で半田付け部を観察
し、端子電極表面に明らかに半田の付着していない部分
が認められるものを不良とした。
A: Hold in air for 14 hours B: Hold in an atmosphere of 40°C and humidity θO% for 60 hours After that, the device was temporarily fixed to a glass epoxy board with copper wiring using an organic adhesive, and then reflow soldered at 230°C. The number of soldering defects among the 50 samples was determined. Soldering defects After flow soldering, the soldered portions were visually observed, and those in which a portion of the terminal electrode surface to which no solder was clearly adhered were determined to be defective.

第5表に端子電極の金属粉混合組成率と原料粉および保
持条件、不良数を示す。
Table 5 shows the metal powder mixed composition ratio of the terminal electrode, raw material powder, holding conditions, and number of defects.

第 5 表 NoG9は比較例 第5表においてのNo70の試料は、中間層における錫
金属相はほとんど観察されなく、またNo73は表面の
錫金属相の形成が確認されなかったが、第5表に示した
ように半田付け不良数は両条件とも減少している。
Table 5 NoG9 is a comparative example. In the sample No. 70 in Table 5, almost no tin metal phase was observed in the intermediate layer, and in No. 73, formation of a tin metal phase on the surface was not confirmed. As shown, the number of soldering defects decreased under both conditions.

第5表より明らかなように、本発明の鉛、亜鉛あるいは
錫の内少なくとも1つを含有する銅あるいはニッケルを
有した中間層と、中間層よりも鉛、錫あるいは亜鉛の含
有量が多い表面層で構成された端子電極(特許請求の範
囲第10項に記載)、錫を有した銅の混合組成相あるい
は固溶体金属相を含む中間層と、部分的もしくは全面が
錫を主成分とした金属相もしくは銅と錫との混合組成相
の表面1(特許請求の範囲第12項に記載)の構成をと
り、焼付け処理中に生成する液相成分の固化した相が、
鉛、亜鉛あるいは錫からなる群より選ばれた少なくとも
1成分を含む(特許請求の範囲第17項に記載)電極ペ
ーストを用い、焼付け処理時に金属成分の金属粉、金属
間化合物あるいは金属粉の共融現象もしくは一部の溶融
により、部分的に金属もしくは金属間化合物間で液相が
形成される温度以上で焼き付け処理する(特許請求の範
囲第25項に記載)製造プロセスをとるものは、銅電極
単体のものに比べ、半田付け性とくに端子電極が酸化し
やすい条件下で保存した後の半田付け性が向上する。
As is clear from Table 5, the intermediate layer having copper or nickel containing at least one of lead, zinc or tin of the present invention and the surface having a higher content of lead, tin or zinc than the intermediate layer. A terminal electrode (as described in claim 10) consisting of a layer, an intermediate layer containing a mixed composition phase or a solid solution metal phase of copper with tin, and a metal whose main component is tin partially or entirely. The surface 1 (described in claim 12) of a phase or a mixed composition phase of copper and tin is formed, and the solidified phase of the liquid phase component generated during the baking process is
An electrode paste containing at least one component selected from the group consisting of lead, zinc, or tin (as described in claim 17) is used, and during the baking process, the metal component such as metal powder, intermetallic compound, or metal powder is mixed. Copper is manufactured by baking at a temperature higher than that at which a liquid phase is partially formed between metals or intermetallic compounds due to melting phenomenon or partial melting (as described in claim 25). Compared to a single electrode, the solderability is improved, especially after storage under conditions where terminal electrodes are easily oxidized.

また電極ペースト中の鉛の含有量は、0.  3wt%
以上70wt%以下が好ましく、含有率がその範囲より
少ないと(第5表中No70)半田付け性の改善効果が
少ない。含有率がその範囲より多いと(第5表中No7
5)電極金属の溶融量が大きくなり端子電極部と素子本
体の接着性が低下し、半田付け時にその部分が剥離して
不良数が増大する。しかし銅単独の従来例(第5表中N
o89)と比較すると、何れの条件下でも半田付け不良
は軽減されている。
Further, the lead content in the electrode paste is 0. 3wt%
The content is preferably 70 wt% or less, and if the content is less than this range (No. 70 in Table 5), the effect of improving solderability will be small. If the content is higher than that range (No. 7 in Table 5)
5) The amount of melted electrode metal increases, reducing the adhesion between the terminal electrode portion and the element body, resulting in peeling of that portion during soldering, increasing the number of defects. However, the conventional example using copper alone (N in Table 5)
o89), the number of soldering defects is reduced under all conditions.

またNo73の試料のように、端子電極の断面において
他の試料のように焼付け処理温度では共融反応、もしく
は一部金属粉の溶融による液相生成は状態図より出現し
ない電極ペーストを使用したものは、表面に偏析する錫
金属相の形成が確認されず、組成的にはNo73と同一
であるが液相が形成され表面に錫金属相が偏析するNo
72の試料と比較して、端子電極が酸化しやすい条件下
で保存した時の半田付け性改善効果がやや小さい。
In addition, as in sample No. 73, electrode paste is used in which no eutectic reaction or liquid phase formation due to melting of some metal powder occurs in the cross section of the terminal electrode at the baking temperature as in other samples, as shown in the phase diagram. In No. 73, the formation of a tin metal phase that segregates on the surface was not confirmed, and although the composition is the same as No. 73, a liquid phase is formed and a tin metal phase segregates on the surface.
Compared to sample No. 72, the effect of improving solderability when stored under conditions where the terminal electrodes are easily oxidized is slightly smaller.

一方No72の試料のように、反応過程時に一次的にせ
よ錫金属が溶融する電極ペースト組成物を使用したもの
は、表面錫金属相の形成が確認される。
On the other hand, in the case of sample No. 72, which uses an electrode paste composition in which tin metal melts, even temporarily, during the reaction process, formation of a tin metal phase on the surface is confirmed.

焼成プロセスにおける焼付け処理時に金属成分の金属粉
、金属間化合物あるいは金属粉の共融現象もしくは一部
の溶融により、部分的に金属もしくは金属間化合物間で
液相が形成される温度以上で焼き付け処理(特許請求の
範囲第25項に記IrIli)の、金属間での部分的液
相形成が表面相の形成に効果があることが明らかになる
Baking treatment at a temperature higher than the temperature at which a liquid phase is partially formed between the metals or intermetallic compounds due to the eutectic phenomenon or partial melting of the metal powder, intermetallic compound, or metal powder of the metal component during the baking process. It becomes clear that partial liquid phase formation between metals (IrIli described in claim 25) is effective in forming a surface phase.

実施例5 素子としてチタン酸バリウム系誘電体とニッケル内部電
極を用いたセラミック積層コンデンサ素子について検討
した。
Example 5 A ceramic multilayer capacitor element using a barium titanate dielectric and nickel internal electrodes was studied.

第3図〜第5図に示したように、素子は厚さ20μmの
誘電性のセラミック素体31.  41.  51層が
、厚さ2.1μmのニッケル内部電極35,45,55
!!を介して積層され、上下に無効層60μmが積層さ
れた構造で、外形3 .2IIIIX 1 .6mmX
0.7+amの素子を用いた。
As shown in FIGS. 3 to 5, the device consists of a dielectric ceramic body 31 with a thickness of 20 μm. 41. 51 layers are nickel internal electrodes 35, 45, 55 with a thickness of 2.1 μm.
! ! It has a structure in which a 60 μm ineffective layer is laminated on top and bottom with an outer diameter of 3. 2IIIIX 1. 6mmX
A 0.7+am element was used.

端子電極の出発原料としては粒径が8μm以下、1.5
μm以上の金属ニッケル、金属鉛、金属錫、金属亜鉛粉
末を所定比に混合し、平均粒径0.  8μmの亜鉛ホ
ウ珪酸ガラスフリットを金属重量に対し4wt%混合し
た粉末を用い、これに平均分子量l800のアクリル樹
脂を粉末重量に対し5wt%、αタービネオール、酢酸
カルビトールアセテート混合溶媒(6: 4)を粉末重
量に対し30wt%加え、乳鉢で混合したのち3本ロー
ルを用い混練し、さらに溶剤量を調整して20℃の粘度
8000センチポイズの電極ペーストを作成した。
As a starting material for the terminal electrode, particles with a particle size of 8 μm or less and 1.5
Metal nickel, metal lead, metal tin, and metal zinc powders of μm or more are mixed in a predetermined ratio, and the average particle size is 0. A powder containing 8 μm zinc borosilicate glass frit at 4 wt% based on the metal weight was used, and an acrylic resin with an average molecular weight of 1800 was mixed at 5 wt% based on the powder weight, α-turbineol and acetic acid carbitol acetate mixed solvent (6:4). was added in an amount of 30 wt % based on the powder weight, mixed in a mortar, and then kneaded using three rolls. Further, the amount of solvent was adjusted to prepare an electrode paste with a viscosity of 8000 centipoise at 20°C.

電極ペーストは抵抗体の両端にディップ法により塗布し
、空気中80℃で乾燥後、窒素ガスを流すことで酸素濃
度がO−5ppm程度に調整した管状電気炉炉心管中で
、280℃まで5時間かけて昇温したのち650〜80
0℃まで30分かけて昇温し、5分保持したのち室温ま
で30分およびかけて降温した。
The electrode paste was applied to both ends of the resistor by the dipping method, dried in air at 80°C, and then heated to 280°C in a tubular electric furnace core tube in which the oxygen concentration was adjusted to about O-5 ppm by flowing nitrogen gas. 650-800 after heating up over time
The temperature was raised to 0°C over 30 minutes, held for 5 minutes, and then lowered to room temperature over 30 minutes.

作成した素子の端子電極部断面をX線マイクロアナライ
ザ、X線微小回折計を用いて電極金属の分布を評価した
The cross section of the terminal electrode portion of the produced element was evaluated for the distribution of electrode metal using an X-ray microanalyzer and an X-ray microdiffractometer.

鉛、錫、亜鉛粉末を出発原料に用いたものの模式図をそ
れぞれ第3図〜第5図に示す。
Schematic diagrams of products using lead, tin, and zinc powders as starting materials are shown in FIGS. 3 to 5, respectively.

電極部の最も素体に近い部分は部分的にセラミック素体
3L  41、51に融着した無機フリットを含む下地
層32、42、52からなる。
The portion of the electrode portion closest to the element body consists of base layers 32, 42, 52 containing inorganic frit partially fused to the ceramic element body 3L 41, 51.

次に第3図ではニッケル金属相、鉛金属相が30μm程
度の混合組織相を形成した中間相33が存在ナる。
Next, in FIG. 3, there is an intermediate phase 33 in which a nickel metal phase and a lead metal phase form a mixed texture phase of about 30 μm.

鉛含有量が1.5wt%以下の試料では、ニッケルに鉛
がわずかに固溶した金属相単相として中間層33は確認
される。
In a sample with a lead content of 1.5 wt % or less, the intermediate layer 33 is confirmed as a single metallic phase in which a slight amount of lead is dissolved in nickel.

また第4図では、ニッケルを主成分とする金属相(10
wt%程度以下の範囲で錫固溶)、錫金属相およびそれ
らの金属間化合物相が20μm程度の混合組織相を形成
した中間相43が存在する。
Furthermore, in Fig. 4, a metallic phase (10
There is an intermediate phase 43 in which a tin metal phase and an intermetallic compound phase form a mixed texture phase of about 20 μm.

錫含有量が5wt%以下の試料では、ニッケルに錫が固
溶した金属相単相として中間相43は確認される。
In a sample with a tin content of 5 wt % or less, the intermediate phase 43 is confirmed as a single metallic phase in which tin is dissolved in nickel.

さらに第5図では、ニッケルを主成分とする金属相(3
0wt%以下の範囲で亜鉛固溶)、亜鉛金属相およびそ
れらの金属間化合物相が2〜30μm程度の混合組織相
を形成した中間相53が存在する。
Furthermore, in Figure 5, a metallic phase (3
There is an intermediate phase 53 in which a zinc metal phase (zinc solid solution in a range of 0 wt % or less), a zinc metal phase, and an intermetallic compound phase thereof form a mixed texture phase of about 2 to 30 μm.

亜鉛含有量が5wt%以下の試料では、ニッケルに亜鉛
の固溶した金属相単相として中間相53は確認される。
In a sample with a zinc content of 5 wt % or less, the intermediate phase 53 is confirmed as a single metallic phase in which zinc is dissolved in nickel.

いずれにおいても中間相33,43.53は、厚み70
0μm程度であった。
In either case, the intermediate phase 33, 43.53 has a thickness of 70
It was about 0 μm.

つぎに第3図では鉛金属相からなる表面層34、第4図
では錫金属相からなる表面層44、第5図では亜鉛金属
相単相もしくは亜鉛金属相と亜鉛、銅の金属間化合物相
からなる表面相54がある。
Next, in FIG. 3, a surface layer 34 consisting of a lead metal phase, in FIG. 4 a surface layer 44 consisting of a tin metal phase, and in FIG. 5, a single zinc metal phase or a zinc metal phase and an intermetallic compound phase of zinc and copper There is a surface phase 54 consisting of.

いずれも表面層の厚さは0.  5〜60μm程度であ
った。
In both cases, the thickness of the surface layer is 0. It was about 5 to 60 μm.

鉛、錫、亜鉛を含まない試料および含有量がO.lwt
%程度の少ない試料では表面層が殆ど認められない。
Samples that do not contain lead, tin, or zinc and whose content is O. lwt
In samples with a small amount of about 50%, almost no surface layer is observed.

素子は端子電極形成後下記の保持条件A,  Bで保持
した。
After the terminal electrodes were formed, the device was held under the following holding conditions A and B.

A:空気中で14時間保持 B:40℃湿度60%の雰囲気中60時間保持その後素
子は銅配線を施したガラスエポキシ基板に有機接着剤で
仮とめした後、230″Cでリフロー半田付けを実施し
、50試料中の半田付け不良発生数を求めた。半田付け
不良はりフロー半田付け後目視法で半田付け部を観察し
、端子電極表面に明らかに半田の付着していない部分が
認められるものを不良とした。
A: Hold in air for 14 hours B: Hold in an atmosphere of 40°C and humidity 60% for 60 hours After that, the device was temporarily attached to a glass epoxy board with copper wiring using an organic adhesive, and then reflow soldered at 230''C. The number of soldering defects was determined in 50 samples.Soldering defects After flow soldering, the soldered area was visually observed, and it was found that there were clearly areas on the terminal electrode surface where no solder was attached. marked something as defective.

第6表に端子電極の金属粉混合組成率、保持条件による
不良数を示す。
Table 6 shows the number of defects depending on the metal powder mixture composition ratio of the terminal electrode and the holding conditions.

また従来法との比較のため、N076の試料の端子電極
表面に、アルカノールスルホン酸を主成分とする半田鍍
金液(pH:  1.0)中でバレル鍍金法により半田
鍍金層を形成した。
In addition, for comparison with the conventional method, a solder plating layer was formed on the terminal electrode surface of the N076 sample by barrel plating in a solder plating solution (pH: 1.0) containing alkanolsulfonic acid as a main component.

作成した素子とNo77〜82の素子は、350℃の半
田漕のなかに余熱処理なしでディブしたのち素子を両端
子電極を含む中心線まで研磨し、端子電極の素子側面端
部付近の亀裂の有無を調べ、各50試料中の亀裂不良発
生数を求めた。第7表に亀裂不良発生数(50ケ当り)
を示す。
The prepared devices and devices No. 77 to 82 were placed in a soldering bath at 350°C without any preheating treatment, and then the devices were polished to the center line including both terminal electrodes, and cracks near the edges of the side surfaces of the terminal electrodes were removed. The presence or absence of cracks was investigated, and the number of crack defects in each of the 50 samples was determined. Table 7 shows the number of crack defects (per 50 pieces)
shows.

第 6 表 第 6 表 続 き No7Bは比較例 第  7  表 第7表続き No9Gは比較例 第6表より明らかなように本発明の鉛、亜鉛あるいは錫
の内少なくとも1つを含有する銅あるいはニッケルを有
した中間層よりも鉛、錫あるいは亜鉛の含有量が多い表
面層で構成された端子電極(特許請求の範囲第10項に
記載)で、焼付け処理中に生成する液相成分の固化した
相が、鉛、亜鉛あるいは錫からなる群より選ばれた少な
くとも1成分を含む(特許請求の範囲第17項に記載)
電極ペーストを用い、焼付け処理時に金属成分の金属粉
、金属間化合物あるいは金属粉の共融現象もしくは一部
の溶融により、部分的に金属もしくは金属間化合物間で
液相が形成される温度以上で焼き付け処理する(特許請
求の範囲第25項に記載)製造プロセスをとると、ニッ
ケル電極単体(第6表中No78)に比べ、半田付け性
とくに端子電極が酸化しやすい条件下で保存した後の半
田付け性が向上する。
Table 6 Table 6 Continued No. 7B is Comparative Example 7 Table 7 Continued No. 9G is Comparative Example Table 6 Continuing No. 7B is Comparative Example No. 7 Continued from Table 6 Comparative Example A terminal electrode (as claimed in claim 10) comprising a surface layer having a higher content of lead, tin or zinc than an intermediate layer having a solidified phase of liquid phase components generated during the baking process. contains at least one component selected from the group consisting of lead, zinc or tin (as described in claim 17)
Using an electrode paste, the temperature is higher than the temperature at which a liquid phase is partially formed between the metals or intermetallic compounds due to eutectic phenomenon or partial melting of the metal powder, intermetallic compound, or metal powder of the metal component during the baking process. When the baking process (described in claim 25) is used, the solderability is improved compared to the nickel electrode alone (No. 78 in Table 6), especially after storage under conditions where the terminal electrode is easily oxidized. Improves solderability.

また電極ペースト中の鉛が1.5〜45wt%(特許請
求の範囲第22項に記載)、錫が1.5〜55wt%(
特許請求の範囲第23項に記載)、あるいは亜鉛が1.
5〜65wt%(特許請求の範囲第24項に記載)の範
囲の含有量が好ましく、含有率がその範囲より少ないと
(第6表中No77,83.89)半田付け性の改善効
果が少なく、含有率がその範囲より多いと(第6表中N
 o 8 2+88.94)電極金属の溶融量が大きく
なり、端子電極部と素子本体の接着性が低下し、半田付
け時にその部分が剥離して不良数が増大する。
In addition, lead in the electrode paste is 1.5 to 45 wt% (as described in claim 22), and tin is 1.5 to 55 wt% (
(as described in claim 23), or zinc is 1.
The content is preferably in the range of 5 to 65 wt% (described in claim 24), and if the content is less than that range (No. 77, 83.89 in Table 6), the effect of improving solderability will be small. , if the content is higher than that range (N in Table 6)
o 8 2+88.94) The amount of melted electrode metal increases, the adhesion between the terminal electrode part and the element body decreases, and the part peels off during soldering, increasing the number of defects.

さらに第6表中N095に示したように銅とニッケル系
でも、同様に半田付け不良は減少した。
Furthermore, as shown in No. 095 in Table 6, soldering defects were similarly reduced in copper and nickel based materials.

また第7表より明らかなように特許請求の範囲第10項
に記載した構成とくに金属ニッケルと金属鉛、金属錫、
金属亜鉛およびそれらの金属間化合物相が混合組織相を
形成した中間層の存在するN o 9 6、9 7、1
 0 3、1 0 9以外の試料は、熱衝撃による亀裂
不良が発生しにくいのに対し、N o 9 8、9 7
、1 0 3、1 0 9のように中間相がニッケル金
属単相よりなるものは亀裂不良が発生し易い。
Furthermore, as is clear from Table 7, the structure described in claim 10 is particularly suitable for metal nickel, metal lead, metal tin,
No 9 6, 9 7, 1 in which there is an intermediate layer in which metallic zinc and their intermetallic compound phases form a mixed texture phase
Samples other than 0 3 and 1 0 9 are less prone to crack defects due to thermal shock, whereas samples other than 0 9 8 and 9 7
, 1 0 3 and 1 0 9, in which the intermediate phase is made of a single nickel metal phase, are susceptible to cracking.

従って鉛、錫、亜鉛の含有量は、ここでも鉛の場合1.
5〜45wt%(特許請求の範囲第22項に記載)、錫
の場合1.5〜55wt%(特許請求の範囲第23項に
記載)、亜鉛の場合1.5〜65wt%(特許請求の範
囲第24項に記載)の範囲が好ましい。このことは、本
発明の鉛、亜鉛あるいは錫の内少なくとも1つを含有す
る銅あるいはニッケルを有した中間層よりも鉛、錫ある
いは亜鉛の含有量が多い表面層で構成された端子電極(
特許請求の範囲第10項に記載)、鉛を少なくとも含有
した中間層と鉛を主成分とした表面層を有する端子電極
(特許請求の範囲第14項に記載)、錫を少なくとも含
有した中間層と錫を主成分とした表面層を有する端子電
極(特許請求の範囲第15項に記載)、亜鉛を少なくと
も含有した中間層と亜鉛を主成分とした表面層を有する
端子電極(特許請求の範囲第16項に記載)の構成にお
いて、従来例との相違点である金属ニッケルと金属鉛、
金属錫あるいは金属亜鉛による混合組織相よりなる中間
相が、素子に対する耐熱衝撃性の向上に効果があること
を示している。
Therefore, the content of lead, tin, and zinc is 1.
5 to 45 wt% (as described in claim 22), 1.5 to 55 wt% for tin (as described in claim 23), and 1.5 to 65 wt% for zinc (as described in claim 23). Range (described in item 24) is preferred. This means that the terminal electrode (of the present invention) consisting of a surface layer having a higher content of lead, tin or zinc than the intermediate layer having copper or nickel containing at least one of lead, zinc or tin.
(as set forth in claim 10), a terminal electrode having an intermediate layer containing at least lead and a surface layer containing lead as a main component (as set forth in claim 14), an intermediate layer containing at least tin and a terminal electrode having a surface layer mainly composed of tin (as described in claim 15), a terminal electrode having an intermediate layer containing at least zinc and a surface layer mainly containing zinc (as claimed in claim 15) (described in Section 16), metallic nickel and metallic lead, which are different from the conventional example,
This shows that the intermediate phase consisting of a mixed structure phase of metallic tin or metallic zinc is effective in improving the thermal shock resistance of the device.

同様なことが第7表Noll5における銅とニッケルで
も効果があった。
A similar effect was obtained with copper and nickel in Noll 5 in Table 7.

実施例6 鉛複合ペロブスカイト誘電体と銅内部電極を用いたセラ
ミック積層コンデンサ素子について検討した。
Example 6 A ceramic multilayer capacitor element using a lead composite perovskite dielectric and copper internal electrodes was studied.

第6図及び第7図に示したように、素子は厚さ20μm
の誘電性のセラミック素体81.71層が、厚さ1.8
μmの銅内部電極65.75層を介して積層され、上下
に無効層62μmが積層された構造で、外形3.  2
mmX 1.  8mmX 0.  7mmの素子を用
いた。
As shown in Figures 6 and 7, the element has a thickness of 20 μm.
The dielectric ceramic body 81.71 layers have a thickness of 1.8
It has a structure in which copper internal electrodes with a thickness of 65.75 μm are laminated via layers, and invalid layers of 62 μm are laminated above and below. 2
mmX 1. 8mmX 0. A 7 mm element was used.

端子電極の出発原料としては粒径が8.5μm以下、1
.0μm以上の金属銅、金属鉛、金属亜鉛粉末もしくは
CulZn4の組成をもつ金属間化合物粉を所定比に混
合し、平均粒径0.  8μmの亜鉛ホウ珪酸ガラスフ
リットを金属重量に対し4wt%混合した粉末を用い、
これに平均分子量l800のアクリル樹脂を粉末重量に
対し5wt%、αターピネオール、カルビトールアセテ
ート混合溶媒(8: 4)を粉末重量に対し30wt%
加え、乳鉢で混合したのち3本ロールを用い混練し、さ
らに溶剤を加え20℃の粘度8000センチポイズの電
極ペーストを作成した。
Starting materials for terminal electrodes include particles with a particle size of 8.5 μm or less, 1
.. Metallic copper, metallic lead, metallic zinc powder or intermetallic compound powder having a composition of CulZn4 of 0 μm or more is mixed at a predetermined ratio, and the average particle size is 0. Using a powder mixed with 8 μm zinc borosilicate glass frit at 4 wt% based on the metal weight,
To this, 5 wt% of an acrylic resin with an average molecular weight of 800 based on the powder weight, and 30 wt% of an α-terpineol and carbitol acetate mixed solvent (8:4) based on the powder weight.
In addition, the mixture was mixed in a mortar, kneaded using three rolls, and a solvent was added to prepare an electrode paste having a viscosity of 8000 centipoise at 20°C.

電極ペーストは抵抗体の両端にディップ法により塗布し
、空気中80℃で乾燥後、窒素ガスを流すことで酸素濃
度が2ppm程度に調整した管状電気炉炉心管中で、2
80℃まで5時間かけて昇温したのち550〜800℃
まで30分かけて昇温し、5分保持したのち室温まで3
0分およびかけて降温した。
The electrode paste was applied to both ends of the resistor by a dipping method, and after drying in air at 80°C, it was placed in a tubular electric furnace core tube in which the oxygen concentration was adjusted to about 2 ppm by flowing nitrogen gas.
After raising the temperature to 80℃ over 5 hours, the temperature rises to 550-800℃.
Raise the temperature to room temperature over 30 minutes, hold for 5 minutes, and then raise the temperature to room temperature.
The temperature was lowered over 0 minutes.

作成した素子の端子電極部断面をX線マイクロアナライ
ザおよびX線微小回折計を用いて電極金属の分布を評価
した。
The cross section of the terminal electrode portion of the fabricated device was evaluated for the distribution of electrode metal using an X-ray microanalyzer and an X-ray microdiffractometer.

出発原料に亜鉛、C u+ Z n4を用いたものと、
鉛を用いたものの断面の模式図をそれぞれ第6図、第7
図にしめす。
One using zinc, Cu+Zn4 as a starting material,
Figures 6 and 7 are schematic diagrams of cross sections of products using lead.
Shown in the diagram.

電極部の最も素体に近い部分は部分的にセラミック素体
81、71に融着した無機フリットを含む下地層62、
72が存在する。
The part of the electrode portion closest to the element body is a base layer 62 containing an inorganic frit partially fused to the ceramic elements 81 and 71;
There are 72.

次に第6図においては銅を主成分とする金属相、亜鉛金
属相、およびその金属間化合物相が2〜30μm程度の
混合組織相もしくは固溶相を形成した中間層63が存在
する。
Next, in FIG. 6, there is an intermediate layer 63 in which a metal phase containing copper as a main component, a zinc metal phase, and an intermetallic compound phase thereof form a mixed texture phase or solid solution phase of about 2 to 30 μm.

亜鉛金属の含有量が1.5wt%以下の試料は、銅が亜
鉛に固溶した金属層単相として中間相は存在する。
In a sample with a zinc metal content of 1.5 wt% or less, an intermediate phase exists as a single metal layer in which copper is dissolved in zinc.

第7図においては銅金属相、鉛金属相が30μm程度の
混合組織相を形成した中間相73が存在する。
In FIG. 7, there is an intermediate phase 73 in which a copper metal phase and a lead metal phase form a mixed texture phase of about 30 μm.

鉛含有量が0.1wt%以下の試料については、銅金属
相単相として中間相が確認される。
For samples with a lead content of 0.1 wt% or less, an intermediate phase is confirmed as a single copper metal phase.

いずれの中間相も厚み500μm程度でたる。Each intermediate phase has a thickness of about 500 μm.

さらに第6図では亜鉛金属相もしくは鉛、亜鉛の金属間
化合物相と亜鉛金属相の混合組織相からなる表面相64
が存在する。
Furthermore, in FIG. 6, a surface phase 64 consisting of a zinc metallic phase or a mixed structure phase of a lead and zinc intermetallic compound phase and a zinc metallic phase is shown.
exists.

第7図では鉛金属相からなる表面相74が存在する。In FIG. 7, a surface phase 74 consisting of a lead metal phase is present.

いずれの表面相64.74も厚み0.3μm〜80μm
程度である。
The thickness of any surface phase 64.74 is 0.3 μm to 80 μm
That's about it.

亜鉛、鉛の含有量が0.1wt%以下の試料では、表面
相64.74は確認されない。
The surface phase 64.74 is not confirmed in samples with zinc and lead contents of 0.1 wt% or less.

素子は端子電極形成後下記の保持条件A,  Bで保持
した。
After the terminal electrodes were formed, the device was held under the following holding conditions A and B.

A:空気中で14時間保持 B: 40℃湿度60%の雰囲気中60時間保持その後
素子は銅配線を施したガラスエボキシ基板に有機接着剤
で仮どめした後、230゜Cでリフロ一半田付けを実施
し、50試料中の半田付け不良発生数を求めた。半田付
け不良はりフロー半田付け後目視法で半田付け部を観察
し、端子電極表面に明らかに半田の付着していない部分
が認められるものを不良とした。
A: Hold in air for 14 hours B: Hold in an atmosphere of 40°C and humidity 60% for 60 hours After that, the device was temporarily fixed to a glass epoxy board with copper wiring using an organic adhesive, and then reflow soldered at 230°C. The number of soldering defects among the 50 samples was determined. Soldering defects After flow soldering, the soldered portions were visually observed, and those in which a portion of the terminal electrode surface to which no solder was clearly adhered were determined to be defective.

第8表に端子電極の金属粉混合組成率と出発組成と保持
条件による不良数を示す。
Table 8 shows the number of defects depending on the metal powder mixed composition ratio of the terminal electrode, the starting composition, and the holding conditions.

また従来法との比較のためNoll6の試料を、端子電
極表面にアルカノールスルホン酸を主成分とする半田鍍
金液(pH:  2.5)中でバレル鍍金法により半田
鍍金層を形成した。
Further, for comparison with the conventional method, a solder plating layer was formed on the surface of the terminal electrode of Noll 6 sample by barrel plating method in a solder plating solution (pH: 2.5) containing alkanolsulfonic acid as a main component.

作成した素子とNo 1 1 6〜128の素子は、3
50″Cの半田漕のなかに余熱処理なしでディップした
のち、素子を両端子電極を含む中心線まで研磨し、端子
電極の素子側面端部付近の亀裂の有無を調べ、各50試
料中の亀裂不良発生数を求めた。
The created elements and elements No. 1 1 6 to 128 are 3
After dipping the device into a 50″C solder bath without preheating, the device was polished to the center line including both terminal electrodes, and the presence or absence of cracks near the edge of the device side of the terminal electrode was examined. The number of crack defects was calculated.

第9表に亀裂不良発生数(50ケ当り)を示す。Table 9 shows the number of crack defects (per 50 pieces).

第   8   表 第 9 表 Noll[iは比較例 No129は比較例 第8表より明らかなように本発明の鉛、亜鉛あるいは錫
の内少なくとも1つを含有する銅あるいはニッケルを有
した中間層よりも鉛、錫あるいは亜鉛の含有量が多い表
面層で構成された端子電極(特許請求の範囲第10に記
載)の構成をとり、焼付け処理中に生成する液相成分の
固化した相が、鉛、亜鉛あるいは錫からなる群より選ば
れた少なくともl成分を含む(特許請求の範囲第17項
に記載)電極ペーストを用い、焼付け処理時に金属成分
の金属粉、金属間化合物あるいは金属粉の共融現象もし
くは一部の溶融により、部分的に金属もしくは金属間化
合物間で液相が形成される温度以上で焼き付け処理する
(特許請求の範囲第25項に記載)製造プロセスをとる
ものは、銅電極単体(第8表中No 1 1 6)のも
のに比べ、半田付け性とくに端子電極が酸化しやすい条
件下で保存した後の半田付け性が向上する。
Table 8 Table 9 Table Noll [i is Comparative Example No. 129] As is clear from Comparative Example Table 8, it is better than the intermediate layer having copper or nickel containing at least one of lead, zinc or tin of the present invention. The terminal electrode (recited in claim 10) is composed of a surface layer with a high content of lead, tin, or zinc, and the solidified phase of the liquid phase component generated during the baking process contains lead, tin, or zinc. Using an electrode paste containing at least a component selected from the group consisting of zinc or tin (as described in claim 17), the eutectic phenomenon of metal powder, intermetallic compound, or metal powder as a metal component is performed during baking treatment. Alternatively, those using a manufacturing process in which a part is melted and baked at a temperature higher than that at which a liquid phase is partially formed between metals or intermetallic compounds (as described in claim 25) are copper electrodes alone. (Compared to Nos. 1, 1, and 6 in Table 8), solderability, especially after storage under conditions where terminal electrodes are likely to oxidize, is improved.

また電極ペースト中の亜鉛の含有量は特許請求の範囲第
21項に記載したように1.5wt%以上80wt%以
下が好ましく、鉛の含有量は特許請求の範囲第19項に
記載の0.3wt%以上70wt%以下が好ましい。
Further, the zinc content in the electrode paste is preferably 1.5 wt% or more and 80 wt% or less as described in claim 21, and the lead content is 0.5 wt% or less as described in claim 19. It is preferably 3 wt% or more and 70 wt% or less.

含有率がその範囲より少ないと(第8表中No117及
び123)半田付け性の改善効果が少なく、含有率がそ
の範囲より多いと(第8表中N0122及び128)電
極金属の溶融量が大きくなり、端子電極部と素子本体の
接着性が低下し、半田付け時にその部分が剥離して不良
数が増大する。
If the content is less than that range (Nos. 117 and 123 in Table 8), the effect of improving solderability will be small, and if the content is more than that range (Nos. 122 and 128 in Table 8), the amount of melted electrode metal will be large. As a result, the adhesiveness between the terminal electrode portion and the element body deteriorates, and this portion peels off during soldering, increasing the number of defects.

また第9表より明らかなように、特許請求の範囲第10
に記載した構成とくに銅金属相、亜鉛金属相、およびそ
の金属間化合物相が混合組織相を形成しているか、銅金
属相、鉛金属相が混合相組織相を形成している厚み70
0μm程度の中間層63もしくは73の存在するNo1
31〜135およびNo137〜141の試料は、熱衝
撃による亀裂不良が発生しにくいのに対し、Nol29
、130、138の試料のように、中間相が銅金属単相
よりなるものは亀裂不良が発生しやすい。
Furthermore, as is clear from Table 9, claim 10
In particular, the thickness 70 in which the copper metal phase, the zinc metal phase, and the intermetallic compound phase form a mixed texture phase, or the copper metal phase and the lead metal phase form a mixed texture phase.
No. 1 with intermediate layer 63 or 73 of about 0 μm
Samples Nos. 31 to 135 and Nos. 137 to 141 are less prone to crack defects due to thermal shock, whereas No. 29 samples are less prone to crack defects due to thermal shock.
, 130, and 138, in which the intermediate phase consists of a single copper metal phase, cracks are likely to occur.

含有量はここでも特許請求の範囲第19項もしくは第2
1項に記載したように、亜鉛の場合1.5wt%以上8
0wt%以下が好ましく、鉛の場合0.3wt%以上7
0wt%以下が好ましい。
The content here also refers to claim 19 or 2.
As described in Section 1, in the case of zinc, 1.5 wt% or more8
0wt% or less is preferable, and in the case of lead, 0.3wt% or more7
It is preferably 0 wt% or less.

このことは、特許請求の範囲第−1 0に記載した端子
電極部の構成において、従来例との相違点である金属鋼
と金属亜鉛およびその金属間化合物による混合組織相ま
たは金属銅と金属鉛による混合組織相よりなる中間相が
素子に対する耐熱衝撃性の向上に効果があることを示し
ている。
This means that, in the configuration of the terminal electrode section described in Claim No. 10, the mixed structure phase of metallic steel, metallic zinc, and their intermetallic compounds, or metallic copper and metallic lead, is different from the conventional example. This shows that the intermediate phase consisting of a mixed texture phase is effective in improving the thermal shock resistance of the device.

実施例7 実施例6同様の銅内部電極を用いたセラミック積層コン
デンサ素子について検討した。
Example 7 A ceramic multilayer capacitor element using copper internal electrodes similar to Example 6 was investigated.

端子電極の出発原料としては粒径が3μm以下、1. 
 0μm以上の金属銅と、粒径が5μm程度の80wt
%Pb−20wt%Znの合金粉末、80wt%Pb−
20wt%Snの合金粉末、および75wt%Pb−2
0wt%Sn−5wt%Biの合金粉末を所定比に混合
し、以下実施例4同様の素子を作成し−た。
Starting materials for terminal electrodes include particles with a particle size of 3 μm or less; 1.
Metallic copper of 0μm or more and 80wt with a particle size of about 5μm
%Pb-20wt%Zn alloy powder, 80wt%Pb-
Alloy powder of 20 wt% Sn and 75 wt% Pb-2
A device similar to Example 4 was prepared by mixing 0 wt % Sn-5 wt % Bi alloy powder in a predetermined ratio.

作成した素子の端子電極部断面をX線マイクロアナライ
ザおよびX線微小回折計を用いて電極金属の分布を評価
した。
The cross section of the terminal electrode portion of the fabricated device was evaluated for the distribution of electrode metal using an X-ray microanalyzer and an X-ray microdiffractometer.

断面の模式図はほぼ実施例4の第6図及び第7図と同様
であるが、中間相は銅を主成分とする金属相、鉛、錫、
亜鉛と銅の金属間化合物相が2〜60μm程度組織の混
合組織相を形成しており、全体で厚み500μm程度で
ある。
The schematic diagram of the cross section is almost the same as FIG. 6 and FIG. 7 of Example 4, but the intermediate phase is a metallic phase mainly composed of copper, lead, tin,
The intermetallic compound phase of zinc and copper forms a mixed texture phase with a texture of about 2 to 60 μm, and the total thickness is about 500 μm.

さらに表面層には鉛一錫、鉛一亜鉛もしくは鉛−錫一ビ
スマスを主成分とする金属相である。
Furthermore, the surface layer is a metal phase containing lead-tin, lead-zinc, or lead-tin-bismuth as a main component.

いずれの表面層も0.3μm〜80μm程度の厚さであ
る。
Each surface layer has a thickness of approximately 0.3 μm to 80 μm.

素子は端子電極形成後実施例4と同様の条件で保持し、
実施例4同様の半田付け性試験と熱衝撃試験を実施した
After forming the terminal electrodes, the device was held under the same conditions as in Example 4.
The same solderability test and thermal shock test as in Example 4 were conducted.

第10表に端子電極の金属粉混合組成率と保持条件によ
る不良数を、第1l表に亀裂不良発生数(いずれも試料
50個あたり)を示す。
Table 10 shows the number of defects depending on the metal powder mixed composition ratio and holding conditions of the terminal electrode, and Table 11 shows the number of crack defects (both per 50 samples).

(以下余白) 第 10 表 Nol42は比較例 第  1 l  表 No14Gは比較例 第10表より明らかなように、特許請求の範囲第10項
に記載した構成をとり、特許請求の範囲第17項に記載
した電極ペーストを用い、特許請求の範囲第25項に記
載した製造プロセスをとるものは、銅電極単体のものに
比べ、半田付け性とくに端子電極が酸化し易い条件下で
保存した後の半田付け性が向上する。
(The following is a margin) Table No. 14G has the structure described in Claim 10, as is clear from Comparative Example Table 10, and Comparative Example No. 14G has the structure described in Claim 10. Those using the described electrode paste and the manufacturing process described in claim 25 have better solderability than single copper electrodes, especially when the terminal electrodes are stored under conditions where they are easily oxidized. Improves ease of attachment.

また第11表より明らかなように、特許請求の範囲第1
0項に記載した構成とくに銅を主成分とする金属相、鉛
、錫、亜鉛を主成分とする金属相およびそれらの金属間
化合物相が混合組織相を形成した中間相層の存在するN
o 1 47〜149の試料は、熱衝撃による亀裂不良
が発生しにくいのに対し、No148の試料のように中
間相が銅金属単相よりなるものは亀裂不良が発生しやす
い。
Furthermore, as is clear from Table 11, the first claim
The structure described in item 0, especially N containing an intermediate phase layer in which a metal phase mainly composed of copper, a metal phase mainly composed of lead, tin, and zinc, and an intermetallic compound phase of these forms a mixed texture phase.
Samples of o 1 47 to 149 are less likely to develop cracks due to thermal shock, whereas samples whose intermediate phase consists of a single copper metal phase, such as sample No. 148, are more likely to develop cracks.

このことは、特許請求の範囲第10項に記載した端子電
極部の構成において、従来例との相違点である混合組織
相よりなる中間相が素子に対する耐熱衝撃性の向上に効
果があることを示している。
This means that in the structure of the terminal electrode section described in claim 10, the intermediate phase consisting of a mixed structure phase, which is different from the conventional example, is effective in improving the thermal shock resistance of the element. It shows.

またNo145もしくはNo 1 49のように、さら
に電極金属として・鉛、錫、亜鉛以外の新たな成分を含
むものでも、主成分として銅、ニッケル、鉛、錫、亜鉛
を含む構成のものは、同様の効果が期待できることを意
味している。
In addition, even if it contains new ingredients other than lead, tin, and zinc as an electrode metal, such as No. 145 or No. 1 49, those with a structure that contains copper, nickel, lead, tin, and zinc as the main ingredients are the same. This means that the effects can be expected.

発明の効果 本発明は、金属相と無機ガラス相とを含む端子電極を有
し、金属相が鉛、錫あるいは亜鉛からなる群の少なくと
も1成分を含有する銅もしくはニッケル合金よりなる電
子部品であるため、低コストであり、かつ半田付け性が
良好で、素子表面の酸化による半田付け性の低下の少な
く、半田付け時に素子に対する熱衝撃性の緩和効果に優
れた端子電極部の構成と、その安価で簡便な製造プロセ
ス、電極ペーストが提供される。
Effects of the Invention The present invention is an electronic component having a terminal electrode containing a metal phase and an inorganic glass phase, the metal phase being made of copper or nickel alloy containing at least one component of the group consisting of lead, tin, or zinc. Therefore, we have developed a terminal electrode structure that is low cost, has good solderability, has little deterioration in solderability due to oxidation of the element surface, and has an excellent effect of mitigating thermal shock to the element during soldering. An inexpensive and simple manufacturing process and electrode paste are provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は各々本発明の一実施形態の固定抵抗
器素子の端子電極部の断面模式図、第3図〜第7図は各
々本発明の一実施形態であるセラミック積層コンデンサ
素子の端子電極部の断面模式図である。 11.21.31,41,5L  61.71・・・セ
ラミック素体、12,  22,  32,42.  
52,62.72・・・無機フリットを含む下地層、1
3,7B・・・銅と鉛が混合組織相を形成した中間相、
23・・・銅と錫の混合組織相もしくは固溶相を形成し
た中間層、33・・・ニッケルと鉛混合組織相もしくは
固溶相を形成した中間層、43・・・ニッケルと錫金属
間化合物の混合組織相あるいは固溶相を形成した中間層
、53・・・ニッケルと亜鉛金属間化合物の混合組織相
あるいは固溶相を形成した中間層、63・・・銅と亜鉛
金属間化合物の混合組織相あるいは固溶相を形成した中
間層、14,34.74・・・鉛金属相を含む表面層、
24.44・・・錫金属相からなる表面層、54・・・
亜鉛金属単相またはニッケルとの金属間化合物相を含む
表面層、64・・・亜鉛金属相単相または銅との金属間
化合物相を含む表面層。
FIGS. 1 and 2 are schematic cross-sectional views of the terminal electrode portion of a fixed resistor element according to an embodiment of the present invention, and FIGS. 3 to 7 are respectively a ceramic multilayer capacitor element according to an embodiment of the present invention. FIG. 3 is a schematic cross-sectional view of a terminal electrode section of FIG. 11.21.31,41,5L 61.71... Ceramic element body, 12, 22, 32, 42.
52,62.72... Base layer containing inorganic frit, 1
3,7B...Intermediate phase in which copper and lead form a mixed texture phase,
23... Intermediate layer forming a mixed texture phase or solid solution phase of copper and tin, 33... Intermediate layer forming a mixed texture phase or solid solution phase of nickel and lead, 43... Between nickel and tin metal Intermediate layer forming a mixed texture phase or solid solution phase of a compound, 53... Intermediate layer forming a mixed texture phase or solid solution phase of a nickel and zinc intermetallic compound, 63... Intermediate layer forming a mixed texture phase or solid solution phase of a nickel and zinc intermetallic compound. Intermediate layer forming a mixed texture phase or solid solution phase, 14,34.74... surface layer containing a lead metal phase,
24.44...Surface layer consisting of tin metal phase, 54...
Surface layer containing a single zinc metal phase or an intermetallic compound phase with nickel, 64...Surface layer containing a single zinc metal phase or an intermetallic compound phase with copper.

Claims (1)

【特許請求の範囲】 (1)金属相と無機ガラス相とを含む端子電極部を有し
、前記金属相が鉛、錫、亜鉛からなる群の少なくとも1
成分を含有する銅合金よりなることを特徴とする電子部
品。 (2)端子電極部に含まれる金属相が、銅と鉛とを含む
合金で、鉛を0.3wt%以上70wt%以下含むこと
を特徴とする、請求項1記載の電子部品。 (3)端子電極部に含まれる金属相が、銅と錫とを含む
合金で、錫を0.8wt%以上65wt%以下含むこと
を特徴とする、請求項1記載の電子部品。 (4)端子電極部に含まれる金属相が、銅と亜鉛とを含
む合金で、亜鉛を0.5wt%以上80wt%以下含む
ことを特徴とする、請求項1記載の電子部品。 (5)金属相と無機ガラス相とを含む端子電極部を有し
、前記金属相が鉛、錫、亜鉛からなる群の少なくとも1
成分を含有するユッケル合金よりなることを特徴とする
電子部品。 (θ)端子電極部に含まれる金属相が、エッケルと鉛と
を含む合金で、鉛を1.5wt%以上45wt%以下含
むことを特徴とする、請求項5記載の電子部品。 (7)端子電極部に含まれる金属相が、ニッケルと錫と
を含む合金で、錫を1.5wt%以上55wt%以下含
むことを特徴とする、請求項5記載の電子部品。 (8)端子電極部に含まれる金属相が、ニッケルと亜鉛
とを含む合金で、亜鉛を1.5wt%以上65wt%以
下含むことを特徴とする、請求項5記載の電子部品。 (9)誘電体セラミック層、卑金属を用いた内部電極層
と、前記内部電極層に接続し金属相を含有する外部電極
とを有し、前記内部電極層の内部電極が相対する方向に
交互に引き出されるように積層した積層コンデンサであ
って、前記外部電極に含まれる前記金属相が鉛、錫、亜
鉛からなる群の少なくとも1成分を含有する銅合金また
は鉛、錫、亜鉛からなる群の少なくとも1成分を含有す
るニッケル合金であることを特徴とする電子部品。 (10)セラミック素体に直接付着した端子電極を有し
、前記端子電極の断面が、銅あるいはニッケルを主成分
とする金属相、鉛、亜鉛あるいは錫を主成分とする金属
相もしくは銅、ニッケル、鉛、亜鉛あるいは錫の金属間
化合物相からなる群より選ばれた少なくとも2種を含む
混合組織相又は固溶体合金相の内の何れかの中間層を有
し、さらに平均組成として前記中間層より鉛、錫あるい
は亜鉛の内の何れかの含有量の多い表面層を有すること
を特徴とする電子部品。 (11)端子電極部の断面が、少なくとも銅を主成分と
する金属相と鉛を主成分とする金属相との混合組織相を
含む中間層と、部分的若しくは全面が金属鉛層からなる
表面層とを有することを特徴とする、請求項10記載の
電子部品。 (12)端子電極部の断面が、銅を主成分とする金属相
、錫を主成分とする金属相もしくは銅、あるいは錫の金
属間化合物からなる群より選ばれた少なくとも2種の混
合組織相又は銅に少なくとも錫が固溶した固溶体金属相
を含む中間層と、部分的若しくは全面が錫を主成分とす
る金属相又は銅と錫の金属間化合物と錫の混合組織相の
何れかの表面層とを有することを特徴とする、請求項1
0記載の電子部品。 (13)端子電極部の断面が、銅を主成分とする金属相
、亜鉛を主成分とする金属相もしくは銅あるいは亜鉛の
金属間化合物相からなる群より選ばれた少なくとも2種
の混合組織相又は銅に少なくとも亜鉛が固溶した固溶体
金属相を含む中間層と、部分的若しくは全面が亜鉛を主
成分とする金属相又は銅と亜鉛の金属間化合物と亜鉛の
混合組織相の何れかの表面層とを有することを特徴とす
る、請求項10記載の電子部品。 (14)端子電極部の断面が、少なくともニッケルを主
成分とする金属相と鉛を主成分とする金属相との混合組
織相もしくはニッケルに鉛が固溶した固溶体金属相の何
れかを含む中間層と、部分的若しくは全面が鉛を主成分
とする金属層からなる表面層を有することを特徴とする
、請求項10記載の電子部品。 (15)端子電極部の断面が、ユッケルを主成分とする
金属相、錫を主成分とする金属相あるいはニッケルある
いは錫の金属間化合物相からなる群より選ばれた少なく
とも2種の混合組織相又はニッケルに錫が固溶した固溶
体金属相の何れかを含む中間層と、部分的若しくは全面
が錫を主成分とする金属相もしくはニッケルと錫の金属
間化合物相と金属錫との混合組織相の何れかの表面層を
有することを特徴とする、請求項10記載の電子部品。 (16)端子電極部の断面が、ニッケルを主成分とする
金属相、亜鉛を主成分とする金属相あるいはニッケルあ
るいは亜鉛の金属間化合物からなる群より選ばれた少な
くとも2種の混合組織相又はニッケルに少なくとも亜鉛
が固溶した固溶体金属相の何れかを含む中間層と、部分
的若しくは全面が亜鉛を主成分とする金属相もしくは金
属ニッケルと金属亜鉛の金属間化合物と金属亜鉛との混
合組織相の何れかの表面層とを有することを特徴とする
、請求項10記載の電子部品。 (17)セラミック素体に直接焼き付けて形成される端
子電極用ペーストにおいて、前記ペースト中の金属成分
が、焼付け処理中に単独では液相を生成しない金属成分
と、単独で溶融あるいは分解溶融して液相を生成する金
属成分もしくは前記単独では液相を生成しない金属成分
の何れかと共融反応により液相を生成する金属成分との
2種の金属成分を含み、かつ生成する液相成分の固化し
た相が、鉛、亜鉛あるいは錫からなる群より選ばれた少
なくとも1成分を含むことを特徴とする電極ぺースト。 (18)セラミック素体に直接焼き付けて形成される端
子電極用ペースト中に含まれる金属粉が、銅あるいはニ
ッケルを主成分とする金属粉、鉛、亜鉛あるいは錫を主
成分とする金属粉もしくは銅、ニッケル、鉛、亜鉛ある
いは錫の金属間化合物からなる金属粉より選ばれた少な
くとも2種の金属粉あるいは合金粉を含むことを特徴と
する、請求項17記載の電極ペースト。 (19)電極ペーストが、金属銅粉末、金属鉛粉末、無
機フリット粉末、有機バインダ及び有機溶剤を含み、金
属成分における鉛の重量比率が0.3wt%以上70w
t%以下であることを特徴とする、請求項17記載の電
極ペースト。 (20)電極ペーストが、金属銅粉末、金属錫粉末、無
機フリット粉末、有機バインダ及び有機溶剤を含み、金
属成分における錫の重量比率が0.8wt%以上65w
t%以下であることを特徴とする、請求項17記載の電
極ペースト。 (21)電極ペーストが、金属銅粉末、金属亜鉛粉末、
無機フリット粉末、有機バインダ及び有機溶剤より構成
され、金属成分における亜鉛の重量比率が0.5wt%
以上80wt%以下であることを特徴とする、請求項1
7記載の電極ペースト。 (22)電極ペーストが、金属ニッケル粉末、金属鉛粉
末、無機フリット粉末、有機バインダ及び有機溶剤を含
み、金属成分における鉛の重量比率が1.5wt%以上
45wt%以下であることを特徴とする、請求項17記
載の電極ペースト。 (23)電極ペーストが、金属ニッケル粉末、金属錫粉
末、無機フリット粉末、有機バインダ及び有機溶剤を含
み、金属成分における錫の重量比率が1.5wt%以上
55wt%以下であることを特徴とする、請求項17記
載の電極ペースト。 (24)電極ペーストが、金属ニッケル粉末、金属亜鉛
粉末、無機フリット粉末、有機バインダ及び有機溶剤を
含み、金属成分における亜鉛の重量比率が1.5wt%
以上65wt%以下であることを特徴とする、請求項1
7記載の電極ペースト。 (25)電極ペーストをセラミック素体に直接焼き付け
て形成する端子電極の形成方法において、前記電極ペー
スト中に、焼付け処理中に単独では液相を生成しない金
属成分と、単独で溶融あるいは分解溶融して液相を生成
する金属成分もしくは前記単独では液相を生成しない金
属成分の何れかと共融反応により液相を生成する金属成
分との2種の金属成分を含み、焼付け処理時に前記金属
成分の金属粉、金属間化合物粉あるいは合金粉の共融現
象若しくは一部の溶融により、部分的に金属もしくは金
属間化合物間で液相が形成される温度以上で処理するこ
とを特徴とする、電子部品端子電極の形成方法。 (26)セラミック素体に直接焼き付けて形成する端子
電極の形成方法において、電極金属の出発原料として、
銅あるいはニッケルを主成分とする金属粉、鉛、亜鉛あ
るいは錫を主成分とする金属粉もしくは銅、ニッケル、
鉛、亜鉛あるいは錫の金属間化合物粉もしくは合金粉か
らなる粉体を用い、焼付け処理時に前記金属粉、前記金
属間化合物粉もしくは前記合金粉の共融現象又は一部の
溶融により部分的に金属もしくは金属間化合物間で液相
が形成される温度以上で処理することを特徴とする、請
求項25記載の端子電極の形成方法。
[Scope of Claims] (1) It has a terminal electrode portion containing a metal phase and an inorganic glass phase, and the metal phase is at least one member of the group consisting of lead, tin, and zinc.
An electronic component characterized by being made of a copper alloy containing the following components. (2) The electronic component according to claim 1, wherein the metal phase contained in the terminal electrode portion is an alloy containing copper and lead, and contains 0.3 wt% or more and 70 wt% or less of lead. (3) The electronic component according to claim 1, wherein the metal phase contained in the terminal electrode portion is an alloy containing copper and tin, and contains 0.8 wt% or more and 65 wt% or less of tin. (4) The electronic component according to claim 1, wherein the metal phase contained in the terminal electrode portion is an alloy containing copper and zinc, and contains zinc in an amount of 0.5 wt% or more and 80 wt% or less. (5) It has a terminal electrode portion containing a metal phase and an inorganic glass phase, and the metal phase is at least one member of the group consisting of lead, tin, and zinc.
An electronic component characterized by being made of a Yuckel alloy containing the following components. 6. The electronic component according to claim 5, wherein the metal phase contained in the (θ) terminal electrode portion is an alloy containing Eckel and lead, and contains 1.5 wt% or more and 45 wt% or less of lead. (7) The electronic component according to claim 5, wherein the metal phase contained in the terminal electrode portion is an alloy containing nickel and tin, and contains 1.5 wt% or more and 55 wt% or less of tin. (8) The electronic component according to claim 5, wherein the metal phase contained in the terminal electrode portion is an alloy containing nickel and zinc, and contains zinc in an amount of 1.5 wt% or more and 65 wt% or less. (9) A dielectric ceramic layer, having an internal electrode layer using a base metal, and an external electrode connected to the internal electrode layer and containing a metal phase, the internal electrodes of the internal electrode layer being arranged alternately in opposing directions. A multilayer capacitor stacked so as to be drawn out, wherein the metal phase included in the external electrode is a copper alloy containing at least one component of the group consisting of lead, tin, and zinc, or at least one component of the group consisting of lead, tin, and zinc. An electronic component characterized by being a nickel alloy containing one component. (10) It has a terminal electrode directly attached to the ceramic body, and the cross section of the terminal electrode is a metal phase mainly composed of copper or nickel, a metal phase mainly composed of lead, zinc, or tin, or a metal phase mainly composed of copper or nickel. , has an intermediate layer of either a mixed texture phase or a solid solution alloy phase containing at least two selected from the group consisting of intermetallic compound phases of lead, zinc, or tin, and further has an average composition higher than that of the intermediate layer. An electronic component characterized by having a surface layer containing a large amount of lead, tin, or zinc. (11) A surface in which the cross section of the terminal electrode part consists of an intermediate layer containing at least a mixed texture phase of a metal phase mainly composed of copper and a metal phase mainly composed of lead, and a partially or entirely composed of a metal lead layer. The electronic component according to claim 10, characterized in that it has a layer. (12) The cross section of the terminal electrode part has a mixed structure of at least two types selected from the group consisting of a metallic phase mainly composed of copper, a metallic phase mainly composed of tin, or an intermetallic compound of copper or tin. or an intermediate layer containing a solid solution metal phase in which at least tin is solidly dissolved in copper, and a surface of either a metal phase whose main component is tin partially or entirely, or a mixed structure phase of an intermetallic compound of copper and tin and tin. Claim 1 characterized in that it has a layer.
Electronic component described in 0. (13) The cross section of the terminal electrode part has a mixed structure of at least two types selected from the group consisting of a metal phase mainly composed of copper, a metal phase mainly composed of zinc, or an intermetallic compound phase of copper or zinc. or an intermediate layer containing a solid solution metal phase in which at least zinc is solidly dissolved in copper, and a surface of either a metal phase whose main component is zinc partially or entirely, or a mixed structure phase of an intermetallic compound of copper and zinc and zinc. The electronic component according to claim 10, characterized in that it has a layer. (14) The cross section of the terminal electrode part is an intermediate structure containing at least either a mixed structure phase of a metal phase mainly composed of nickel and a metal phase mainly composed of lead, or a solid solution metal phase in which lead is dissolved in nickel. 11. The electronic component according to claim 10, further comprising a surface layer partially or entirely made of a metal layer containing lead as a main component. (15) The cross section of the terminal electrode part has a mixed structure of at least two types selected from the group consisting of a metallic phase mainly composed of Yuckel, a metallic phase mainly composed of tin, or an intermetallic compound phase of nickel or tin. Or an intermediate layer containing either a solid solution metal phase in which tin is dissolved in nickel, and a metal phase whose main component is tin partially or entirely, or a mixed structure phase of an intermetallic compound phase of nickel and tin and metallic tin. The electronic component according to claim 10, characterized in that it has any one of the surface layers. (16) The cross section of the terminal electrode part is a mixed structure phase of at least two types selected from the group consisting of a metal phase mainly composed of nickel, a metal phase mainly composed of zinc, or an intermetallic compound of nickel or zinc. An intermediate layer containing either a solid solution metal phase in which at least zinc is solidly dissolved in nickel, and a metal phase whose main component is zinc partially or entirely, or a mixed structure of an intermetallic compound of metal nickel and metal zinc and metal zinc. 11. The electronic component according to claim 10, further comprising a surface layer of any one of the phases. (17) In a terminal electrode paste formed by direct baking on a ceramic body, the metal components in the paste are melted or decomposed and melted together with metal components that do not generate a liquid phase by themselves during the baking process. Contains two types of metal components: either a metal component that generates a liquid phase or a metal component that does not generate a liquid phase alone, and a metal component that generates a liquid phase through a eutectic reaction, and solidification of the liquid phase component that generates. An electrode paste characterized in that the phase contains at least one component selected from the group consisting of lead, zinc, and tin. (18) The metal powder contained in the terminal electrode paste formed by direct baking on the ceramic body is metal powder mainly composed of copper or nickel, metal powder mainly composed of lead, zinc or tin, or copper powder. The electrode paste according to claim 17, characterized in that it contains at least two metal powders or alloy powders selected from metal powders consisting of intermetallic compounds of nickel, lead, zinc, and tin. (19) The electrode paste contains metallic copper powder, metallic lead powder, inorganic frit powder, organic binder, and organic solvent, and the weight ratio of lead in the metal component is 0.3 wt% or more 70w
The electrode paste according to claim 17, characterized in that the content of the electrode paste is t% or less. (20) The electrode paste contains metallic copper powder, metallic tin powder, inorganic frit powder, organic binder, and organic solvent, and the weight ratio of tin in the metal component is 0.8 wt% or more 65w
The electrode paste according to claim 17, characterized in that the content of the electrode paste is t% or less. (21) The electrode paste includes metallic copper powder, metallic zinc powder,
Composed of inorganic frit powder, organic binder and organic solvent, the weight ratio of zinc in the metal component is 0.5wt%
Claim 1 characterized in that the content is 80 wt% or more.
7. Electrode paste according to 7. (22) The electrode paste contains metallic nickel powder, metallic lead powder, inorganic frit powder, organic binder, and organic solvent, and the weight ratio of lead in the metal component is 1.5 wt% or more and 45 wt% or less. , the electrode paste according to claim 17. (23) The electrode paste contains metallic nickel powder, metallic tin powder, inorganic frit powder, organic binder, and organic solvent, and the weight ratio of tin in the metal component is 1.5 wt% or more and 55 wt% or less. , the electrode paste according to claim 17. (24) The electrode paste contains metallic nickel powder, metallic zinc powder, inorganic frit powder, organic binder, and organic solvent, and the weight ratio of zinc in the metal component is 1.5 wt%.
Claim 1 characterized in that the content is 65 wt% or more.
7. Electrode paste according to 7. (25) In a method for forming a terminal electrode by directly baking an electrode paste onto a ceramic body, the electrode paste contains a metal component that does not generate a liquid phase by itself during the baking process, and a metal component that melts or decomposes and melts by itself. The metal component contains two types of metal components: either a metal component that generates a liquid phase through a eutectic reaction or a metal component that does not generate a liquid phase when used alone, and a metal component that generates a liquid phase through a eutectic reaction. An electronic component characterized by being processed at a temperature higher than the temperature at which a liquid phase is partially formed between metals or intermetallic compounds due to the eutectic phenomenon or partial melting of metal powder, intermetallic compound powder, or alloy powder. How to form terminal electrodes. (26) In a method for forming a terminal electrode by directly baking it onto a ceramic body, as a starting material for the electrode metal,
Metal powder mainly composed of copper or nickel, metal powder mainly composed of lead, zinc or tin, or copper, nickel,
A powder consisting of an intermetallic compound powder or an alloy powder of lead, zinc, or tin is used, and during the baking process, the metal powder, the intermetallic compound powder, or the alloy powder partially melts due to the eutectic phenomenon or melting of a part of the powder. 26. The method for forming a terminal electrode according to claim 25, wherein the process is performed at a temperature higher than or equal to a temperature at which a liquid phase is formed between intermetallic compounds.
JP2157977A 1989-06-16 1990-06-15 Method of forming electronic component, electrode paste and terminal electrode Expired - Fee Related JP2658509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2157977A JP2658509B2 (en) 1989-06-16 1990-06-15 Method of forming electronic component, electrode paste and terminal electrode

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-155359 1989-06-16
JP15535989 1989-06-16
JP2157977A JP2658509B2 (en) 1989-06-16 1990-06-15 Method of forming electronic component, electrode paste and terminal electrode

Publications (2)

Publication Number Publication Date
JPH0394409A true JPH0394409A (en) 1991-04-19
JP2658509B2 JP2658509B2 (en) 1997-09-30

Family

ID=26483379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2157977A Expired - Fee Related JP2658509B2 (en) 1989-06-16 1990-06-15 Method of forming electronic component, electrode paste and terminal electrode

Country Status (1)

Country Link
JP (1) JP2658509B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302300A (en) * 2008-06-13 2009-12-24 Murata Mfg Co Ltd Laminated ceramic electronic component, and method for making the same
JP2013118358A (en) * 2011-10-31 2013-06-13 Murata Mfg Co Ltd Ceramic electronic component and manufacturing method of the same
JP2013118357A (en) * 2011-10-31 2013-06-13 Murata Mfg Co Ltd Ceramic electronic component and manufacturing method of the same
JP2013118356A (en) * 2011-10-31 2013-06-13 Murata Mfg Co Ltd Ceramic electronic component and manufacturing method of the same
WO2015016309A1 (en) * 2013-08-02 2015-02-05 株式会社村田製作所 Laminated ceramic capacitor and laminated ceramic capacitor production method
JP2015065331A (en) * 2013-09-25 2015-04-09 Tdk株式会社 Ceramic electronic component
JPWO2014097822A1 (en) * 2012-12-18 2017-01-12 株式会社村田製作所 Multilayer ceramic electronic components
CN112042088A (en) * 2018-03-28 2020-12-04 特耐斯株式会社 Commutator and manufacturing method thereof
CN116130184A (en) * 2023-02-25 2023-05-16 合肥工业大学 High-precision thin film chip resistor for automobile

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302300A (en) * 2008-06-13 2009-12-24 Murata Mfg Co Ltd Laminated ceramic electronic component, and method for making the same
JP2013118358A (en) * 2011-10-31 2013-06-13 Murata Mfg Co Ltd Ceramic electronic component and manufacturing method of the same
JP2013118357A (en) * 2011-10-31 2013-06-13 Murata Mfg Co Ltd Ceramic electronic component and manufacturing method of the same
JP2013118356A (en) * 2011-10-31 2013-06-13 Murata Mfg Co Ltd Ceramic electronic component and manufacturing method of the same
US8988855B2 (en) 2011-10-31 2015-03-24 Murata Manufacturing Co., Ltd. Method of manufacturing ceramic electronic component including heating an electrode layer to form a conductive layer including an alloy particle
US9202640B2 (en) 2011-10-31 2015-12-01 Murata Manufacturing Co., Ltd. Ceramic electronic component and manufacturing method thereof
US9490055B2 (en) 2011-10-31 2016-11-08 Murata Manufacturing Co., Ltd. Ceramic electronic component and manufacturing method thereof
JPWO2014097823A1 (en) * 2012-12-18 2017-01-12 株式会社村田製作所 Multilayer ceramic electronic components
US9881737B2 (en) 2012-12-18 2018-01-30 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component
US9627133B2 (en) 2012-12-18 2017-04-18 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component
JPWO2014097822A1 (en) * 2012-12-18 2017-01-12 株式会社村田製作所 Multilayer ceramic electronic components
WO2015016309A1 (en) * 2013-08-02 2015-02-05 株式会社村田製作所 Laminated ceramic capacitor and laminated ceramic capacitor production method
JP5939360B2 (en) * 2013-08-02 2016-06-22 株式会社村田製作所 Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
US9837210B2 (en) 2013-08-02 2017-12-05 Murata Manufacturing Co., Ltd. Laminated ceramic capacitor and method for manufacturing laminated ceramic capacitor
JP2015065331A (en) * 2013-09-25 2015-04-09 Tdk株式会社 Ceramic electronic component
CN112042088A (en) * 2018-03-28 2020-12-04 特耐斯株式会社 Commutator and manufacturing method thereof
CN112042088B (en) * 2018-03-28 2023-05-05 特耐斯株式会社 Commutator and manufacturing method thereof
CN116130184A (en) * 2023-02-25 2023-05-16 合肥工业大学 High-precision thin film chip resistor for automobile
CN116130184B (en) * 2023-02-25 2023-07-18 合肥工业大学 High-precision thin film chip resistor for automobile

Also Published As

Publication number Publication date
JP2658509B2 (en) 1997-09-30

Similar Documents

Publication Publication Date Title
JP3918851B2 (en) Multilayer electronic component and method of manufacturing multilayer electronic component
JPH08180731A (en) Electroconductive thick film compound, thick film electrode, ceramic electronic component, and layered ceramic capacitor
JP3497840B2 (en) Manufacturing method of chip varistor having glass coating film
US5128827A (en) Electronic devices, method for forming end terminations thereof and paste material for forming same
JPH04169002A (en) Conductive paste and manufacture of multilayer ceramic wiring substrate using it
JPH0394409A (en) Electronic component and electrode paste; formation of terminal electrode
JP2002015946A (en) Ceramic capacitor
JPH08330173A (en) Multilayer ceramic capacitor and its manufacture
JP2973558B2 (en) Conductive paste for chip-type electronic components
JP4081865B2 (en) Method for producing conductor composition
JP2001155955A (en) Electronic component equipped having external terminal electrode and mounting electronic article thereof
JP2996016B2 (en) External electrodes for chip-type electronic components
JP6260169B2 (en) Ceramic electronic components
JPH0878279A (en) Formation of outer electrode on electronic chip device
JP2825327B2 (en) Ceramic multilayer capacitor, terminal electrode paste and method of forming terminal electrode
JP3293440B2 (en) Multilayer ceramic electronic component and method of manufacturing the same
JPS63283184A (en) Circuit substrate covered with conductor composition
JPH0547209A (en) Conductor composite and ceramic base using the same
JPH0737420A (en) Conductive paste composition and circuit board using conductive paste composition
JP2000260654A (en) Ultra-small chip type electronic component
JP2996015B2 (en) External electrodes for chip-type electronic components
JPH0548225A (en) Conductive paste
JPH1083717A (en) Conductive composition
JPH06302927A (en) Ceramic wiring board, its manufacture and electrode paste
JP2003163135A (en) Laminated chip element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees