JP2002000119A - Method for culturing fish and shellfish - Google Patents

Method for culturing fish and shellfish

Info

Publication number
JP2002000119A
JP2002000119A JP2000185013A JP2000185013A JP2002000119A JP 2002000119 A JP2002000119 A JP 2002000119A JP 2000185013 A JP2000185013 A JP 2000185013A JP 2000185013 A JP2000185013 A JP 2000185013A JP 2002000119 A JP2002000119 A JP 2002000119A
Authority
JP
Japan
Prior art keywords
fish
shellfish
bubbles
supplied
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000185013A
Other languages
Japanese (ja)
Inventor
Yoshitaka Nagasawa
義孝 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Engineering Co Ltd
Original Assignee
Kyowa Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Engineering Co Ltd filed Critical Kyowa Engineering Co Ltd
Priority to JP2000185013A priority Critical patent/JP2002000119A/en
Publication of JP2002000119A publication Critical patent/JP2002000119A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for culturing fishes and shellfishes in which a sufficient amount of dissolved oxygen can be supplied for the fishes and shellfishes at low cost, excellent in feeding efficiency, and by which the fishes and shellfishes can grow as rapidly as possible. SOLUTION: Fishes and shellfishes are cultured in an environment where air of bubbles having diameters of <=20 μm is supplied. Further, the culturing is carried out in an environment where ultrasonic waves are charged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は魚介類を直径20μ
m以下の気泡(以下本明細書においてマイクロバブルと
もいう)の空気が供給される環境下で養殖することを特
徴とする魚介類の養殖方法に関する。さらに加えて超音
波が供給される環境下で養殖することを特徴とする魚介
類の養殖方法に関する。
TECHNICAL FIELD The present invention relates to a fish and shellfish having a diameter of 20 μm.
The present invention relates to a method for cultivating fish and shellfish, wherein the cultivation is performed in an environment in which air of m or less bubbles (hereinafter also referred to as microbubbles in the present specification) is supplied. In addition, the present invention relates to a method for cultivating fish and shellfish, wherein the cultivation is performed in an environment where ultrasonic waves are supplied.

【0002】[0002]

【従来の技術】従来、魚介類の養殖は養殖槽あるいは養
殖池に天然あるいは人口の海水あるいは淡水を満たして
適当な方法で空気を供給し、必要に応じて換水を繰り返
して行われている。養殖において問題となる点は、養殖
水中の十分な溶存酸素の維持、残餌および糞の処理、魚
同士の喧嘩による共食い、細菌や寄生虫による魚介類の
活性低下等であって、これらの問題について未だに決定
的な解決がみられない。
2. Description of the Related Art Conventionally, the cultivation of fish and shellfish is carried out by filling a culture tank or a pond with natural or artificial seawater or freshwater and supplying air by an appropriate method, and repeatedly changing water as necessary. Problems encountered in aquaculture include maintenance of sufficient dissolved oxygen in the aquaculture water, treatment of residual food and feces, cannibalism due to fish fighting, and reduced activity of fish and shellfish due to bacteria and parasites. There is no definitive solution yet.

【0003】[0003]

【発明が解決しようとする課題】魚介類の養殖におい
て、魚介類の要求を満たす溶存酸素量を安価に供給で
き、摂餌効率が優れ、成長率が優れていて、かつできる
だけ短い期間で成魚となる養殖方法の開発が求められて
いる。
In the cultivation of fish and shellfish, the amount of dissolved oxygen that satisfies the requirements of fish and shellfish can be supplied at low cost, the feeding efficiency is excellent, the growth rate is excellent, and the adult fish can be cultured in a short period of time. There is a need to develop new aquaculture methods.

【0004】[0004]

【課題を解決するための手段】上記課題を解決すべく鋭
意検討したところ、旋回式気泡発生装置によって発生す
る直径20μm以下の気泡を用いることによって、溶存
酸素の問題が解消するのみならず、換水の頻度が大幅に
減り、残餌と糞の処理が容易になることが判明した。さ
らに加えて超音波を使用することにより、魚の共食い問
題も解消し、従来法と比較して漁獲量の増大、設備費の
削減、管理の簡素化という効果が得られることが判明し
た。本発明によれば、魚介類を直径20μm以下、好ま
しくは15μm以下、さらに好ましくは10μm以下の
空気の気泡が供給される環境下で養殖することを特徴と
する魚介類の養殖方法が提供される。さらに加えて魚介
類を超音波が供給される環境下で養殖することを特徴と
する魚介類の養殖方法が提供される。さらに気泡の供給
装置として旋回式気泡発生装置を用いる場合には、マイ
クロバブルの発生と同時に超音波が発生するので、改め
て超音波発生装置を用意する必要がなく、極めて効果的
に養殖することができる。
The inventors of the present invention have made intensive studies to solve the above-mentioned problems. As a result, the use of bubbles having a diameter of 20 μm or less generated by a swirling bubble generator not only solves the problem of dissolved oxygen but also replaces water. It was found that the frequency of slaughter was greatly reduced, and the treatment of residual food and feces became easier. In addition, it was found that the use of ultrasonic waves solved the problem of cannibalism of fish, and increased the catch, reduced equipment costs, and simplified management compared to the conventional method. According to the present invention, there is provided a method for cultivating fish and shellfish, which comprises culturing fish and shellfish in an environment in which air bubbles having a diameter of 20 μm or less, preferably 15 μm or less, more preferably 10 μm or less are supplied. . In addition, there is provided a method of culturing fish and shellfish, wherein the fish and shellfish are cultivated in an environment where ultrasonic waves are supplied. Furthermore, when a swirling type bubble generator is used as a bubble supply device, since ultrasonic waves are generated simultaneously with the generation of microbubbles, it is not necessary to prepare an ultrasonic generator again, and it is possible to culture the fish very effectively. it can.

【0005】本発明の態様が以下に示される。 (1)魚介類を直径20μm以下の気泡の空気が供給さ
れる環境下において養殖することを特徴とする魚介類の
養殖方法。 (2)該養殖がさらに加えて超音波の供給される環境下
で行われることを特徴とする(1)項記載の方法。 (3)超音波の波長が10MHz〜30MHzの間にあ
る(2)項記載の方法。 (4)該養殖が養殖槽内で行われる(1)〜(3)のい
ずれか1項に記載の方法。 (5)気泡が旋回式気泡発生装置によって発生された気
泡である(1)〜(4)のいずれか1項に記載の方法。 (6)該旋回式気泡発生装置が養殖槽内に設けられる
(5)項に記載の方法。 (7)該旋回式気泡発生装置が養殖槽外に設けられる
(5)項に記載の方法。 (8)魚介類がハマチ、マグロ、カンパチ、ヒラマサ、
鯛、フグ、ヒラメ、スズキ、鯵、牡蠣、アクヤ貝、海
老、アワビ、鱒および鮎から選ばれる1種である(1)
〜(7)のいずれか1項に記載の方法。
[0005] Aspects of the present invention are set forth below. (1) A method of cultivating fish and shellfish, wherein the fish and shellfish are cultivated in an environment where air having a bubble diameter of 20 μm or less is supplied. (2) The method according to (1), wherein the culturing is further performed in an environment supplied with ultrasonic waves. (3) The method according to (2), wherein the wavelength of the ultrasonic wave is between 10 MHz and 30 MHz. (4) The method according to any one of (1) to (3), wherein the culturing is performed in a culturing tank. (5) The method according to any one of (1) to (4), wherein the bubble is a bubble generated by a swirling bubble generator. (6) The method according to (5), wherein the swirling bubble generator is provided in a culture tank. (7) The method according to (5), wherein the swirling bubble generator is provided outside the culture tank. (8) Fish and shellfish are tuna, tuna, amberjack, gibberfish,
One species selected from sea bream, puffer fish, flounder, sea bass, horse mackerel, oysters, oyster shellfish, shrimp, abalone, trout and sweetfish (1)
The method according to any one of (1) to (7).

【0006】[0006]

【発明の実施の形態】本発明で用いられる空気の気泡
は、直径20μm以下、好ましくは15μm以下、さら
に好ましくは10μm以下の微細気泡である。本発明方
法によれば、従来法、例えばセラミックエアーストーン
による気泡と比較して気泡が小さいので、気泡の液中の
滞留時間が長くなり、気液接触効率が高くなって、養殖
槽内において高い溶存酸素濃度を維持できる。気泡の発
生装置としては、微細気泡を発生できる装置であればい
ずれも用い得るが、具体例として国際公開特許公報(W
O9933553)に記載の旋回式微細気泡発生装置が
あげられる。この装置によって発生する気泡は直径20
μm以下の大きさであって、本発明の気泡発生装置とし
て好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The air bubbles used in the present invention are fine bubbles having a diameter of 20 μm or less, preferably 15 μm or less, more preferably 10 μm or less. According to the method of the present invention, since the bubbles are small compared to the conventional method, for example, bubbles due to ceramic air stone, the residence time of the bubbles in the liquid is long, the gas-liquid contact efficiency is high, and the high Dissolved oxygen concentration can be maintained. As a device for generating bubbles, any device can be used as long as it can generate fine bubbles.
O9933353). The bubbles generated by this device have a diameter of 20
It has a size of μm or less, and is preferable as the bubble generator of the present invention.

【0007】本発明方法における超音波としては、10
MHz〜30MHzの間にある波長の超音波が好ましく
用いられ、超音波発生装置としては公知の装置がいずれ
も適用できる。該装置として好ましくは、マイクロバブ
ルと同時に超音波を発生する前記旋回式微細気泡発生装
置があげられる。該装置を用いることによって、改めて
超音波発生装置を用意する必要がないので、極めて好都
合である。
[0007] The ultrasonic wave in the method of the present invention is 10
Ultrasonic waves having a wavelength between MHz and 30 MHz are preferably used, and any known ultrasonic wave generator can be used. As the device, preferably, the above-mentioned revolving microbubble generator which generates ultrasonic waves simultaneously with microbubbles is used. By using such a device, there is no need to prepare an ultrasonic generator again, which is extremely advantageous.

【0008】本発明方法を適用できる魚介類としては、
養殖できる魚介類であればいずれでもよく、例えば、ハ
マチ、マグロ、カンパチ、ヒラマサ、鯛、フグ、ヒラ
メ、スズキ、鯵、牡蠣、アクヤ貝、海老、アワビ、鱒、
鮎等が示される。
[0008] Fish and shellfish to which the method of the present invention can be applied include:
Any fish and shellfish that can be cultivated may be used, for example, yellowtail, tuna, amberjack, leek, sea bream, puffer fish, flounder, sea bass, horse mackerel, oyster, oyster shellfish, shrimp, abalone, trout,
Ayu etc. are shown.

【0009】本発明方法に用いられる水としては、養殖
する魚介類に適する水であれば何ら制限されるものでな
い。例えば、海水魚については天然あるいは人工の海水
が、淡水魚については天然あるいは人工の淡水が用いら
れる。養殖水は必要に応じて換水を行うことによって魚
介類に刺激が与えられ活性化される。従来換水は通常1
日に5〜10回行われるが、本発明方法においては1日
2〜3回に減らすことができる。換水の頻度は残餌ある
いは糞の量とも関係し、後述の浮上物回収装置を設ける
ことによってさらに減らすことができる。
The water used in the method of the present invention is not particularly limited as long as it is suitable for the fish and shellfish to be cultured. For example, natural or artificial seawater is used for saltwater fish, and natural or artificial freshwater is used for freshwater fish. The aquaculture water is stimulated and activated by changing the water as needed. Conventional replacement is usually 1
It is performed 5 to 10 times a day, but can be reduced to 2 to 3 times a day in the method of the present invention. The frequency of water change is also related to the amount of residual food or feces, and can be further reduced by providing a floating material recovery device described later.

【0010】養殖槽を用いて養殖する場合には、旋回式
微細気泡発生装置を槽内に設けてもよいが、設備の管理
等の観点から槽外に設けた方が好都合である。この旋回
式微細気泡発生装置の槽外設置方式において、該循環ポ
ンプの手前の配管に空気を供給し、循環ポンプの出口に
旋回式微細気泡発生装置を設けて空気を微細気泡として
養殖槽に供給する方法がさらに好ましい。
[0010] When aquaculture is carried out using a culture tank, a revolving microbubble generator may be provided inside the tank, but it is more convenient to provide it outside the tank from the viewpoint of equipment management and the like. In this method, the air is supplied to the piping in front of the circulation pump, and a revolving microbubble generator is provided at the outlet of the circulation pump to supply the air as fine bubbles to the culture tank. Is more preferable.

【0011】養殖槽内において空気の気泡はゆっくり上
昇すると共に気液接触が行われ、酸素が溶解されるた
め、セラミックエアーストーンを用いる方法より少ない
空気供給量で十分な溶存酸素量を得ることができる。同
時に槽内の残餌や糞にマイクロバブルが付着して同伴
し、浮上する。気泡が小さいため細かな固体にも付着し
浮上するので、養殖槽の上部に浮上物回収装置を設け、
この浮上物を回収すれば養殖水の浄化が図られるので好
都合である。
In the aquaculture tank, air bubbles rise slowly and gas-liquid contact takes place, so that oxygen is dissolved. Therefore, it is possible to obtain a sufficient amount of dissolved oxygen with a smaller air supply than in the method using a ceramic airstone. it can. At the same time, microbubbles adhere to the bait or feces remaining in the tank and accompany them, and float. Because the air bubbles are small, they adhere to fine solids and float, so a floating material recovery device is installed at the top of the culture tank,
It is convenient to collect the floating material because the culture water can be purified.

【0012】[0012]

【実施例】本発明の態様を実施例によって説明する。 実施例1 養殖槽として2つのおよそ10klの養殖槽を用い、そ
れぞれ8klの海水をいれた養殖槽の一方に、従来法で
あるプロセスエアー(コンプレッサーにより空気を送風
しセラミックエアーストーンにより気泡を発生させる方
法により生じる空気。気泡はおよそ直径200μm以上
である)を供給し、他方には旋回式微細気泡発生装置
(気泡の大きさは直径20μm以下である)を用いてマ
イクロバブルを供給して真鯛の養殖試験を行った。養殖
槽の海水中の溶存酸素を6〜7mg/l維持するように
空気を供給し、換水量を2.5回転/日とし、給餌方法
は3回/日で飽食給餌とした。養殖開始後35日後の測
定によって表1に示される結果を得た。
The embodiments of the present invention will be described by way of examples. Example 1 Two approximately 10 kl culture tanks are used as culture tanks, and air is generated by a conventional process air (air is blown by a compressor and ceramic air stone is blown into one of the culture tanks containing 8 kl of seawater). Air generated by the method, the air bubbles are supplied with a diameter of about 200 μm or more, while the microbubbles are supplied using a swirling microbubble generator (the size of the air bubbles is 20 μm or less) to supply the red sea bream. An aquaculture test was performed. Air was supplied so that the dissolved oxygen in the seawater in the aquaculture tank was maintained at 6 to 7 mg / l, the rate of water exchange was set at 2.5 revolutions / day, and the feeding method was satiety feeding at 3 times / day. The results shown in Table 1 were obtained by measurement 35 days after the start of aquaculture.

【0013】[0013]

【表1】 摂餌率および成長率は平均日間の値を示す。 観察による特徴的事項 本発明区においては、魚の遊泳が緩慢で、隊列を形成し
て集団となって遊泳し、全般におとなしい印象が観察さ
れた、摂餌行動も活発ではなく、プロセスエアーに切り
替えると瞬時に本来の遊泳に戻って、ランダムに遊泳し
た。
[Table 1] Feeding rate and growth rate show the values for the average day. Characteristic matter by observation In the present invention zone, fish swim slowly, form a row and swim as a group, and a generally mild impression was observed.The feeding behavior was not active and switched to process air. He instantly returned to his original swim and swam randomly.

【0014】実施例2 40日齢のトラフグ(平均体長16.5mm、平均体重
180mg)600匹ずつを1klの養殖槽に0.8k
lの海水を入れた養殖槽を用い、一方(従来法)はプロ
セスエアーを用い、他方(本発明法)はマイクロバブル
を用い、養殖槽の海水中の溶存酸素を6〜7mg/l維
持するように空気を供給し、換水量を2.5回転/日と
し、給餌方法は3回/日で飽食給餌の養殖条件で養殖し
た。養殖開始14日目(54日齢)に各養殖槽の50匹
をランダムに取り出して測定した結果、本発明区は平均
体長31.8、平均体重1346mgに対し、対照区で
は平均体長29.6mm、平均体重1062mgであっ
た。尾びれの欠損程度を目視で観察し、その結果が表2
に示される.
Example 2 600 tiger pufferfish (average body length: 16.5 mm, average body weight: 180 mg), 40 days old, were placed in a 1 kl culture tank at 0.8 k
One (conventional method) uses process air, and the other (the method of the present invention) uses microbubbles to maintain the dissolved oxygen in the seawater in the culture tank at 6 to 7 mg / l. Air was supplied as described above, the water exchange rate was set at 2.5 revolutions / day, and the feeding method was 3 times / day under the culture conditions of satiety feeding. On the 14th day (54 days of age) of the aquaculture, 50 animals in each aquaculture tank were randomly taken out and measured. As a result, the average length of the present group was 31.8 and the average weight was 1346 mg, whereas the average length of the control group was 29.6 mm. The average body weight was 1062 mg. The degree of tail fin loss was visually observed, and the results are shown in Table 2.
Shown in

【0015】[0015]

【表2】 本発明区は尾びれの残存割合が対照区に比較して高いの
みならず、開始時の残存割合よりも優れていることが観
察された。
[Table 2] It was observed that the group of the present invention not only had a higher tail fin residual ratio than the control group, but also was superior to the residual ratio at the start.

【0016】[0016]

【発明の効果】マイクロバブルは水中における滞留時間
が長いので供給空気量に対する酸素の溶解量が増大し、
結果として、より少ない量の空気量で必要な溶存酸素を
維持できる。マイクロバブルによって養殖水中の余剰餌
や糞が同伴浮上するため、簡単な浮遊物回収装置を設け
ることによって、養殖水の浄化が図られる。従って、大
規模な浄化装置が不要となり、換水の回数を減少させ、
労務費の削減等の効果が期待できる。 マイクロバブルが魚類の皮膚に付着し、それがはじける
時に皮膚の表面の汚れを洗い落とすという効果と共に、
超音波によって、魚体の血流の改善と皮膚の強化、水中
の細菌の繁殖抑制、および寄生虫の付着防止という効果
が得られる。超音波の供給される環境下では、魚類の泳
ぎが穏やかであって、魚が隊列を形成して集団遊泳する
ので、魚同士の喧嘩がなくなり、魚にとって快適な環境
であることが理解できる。総合的効果として、成長率お
よび飼料効率が向上するので漁獲量も向上する。
As described above, the microbubbles have a long residence time in water, so that the amount of oxygen dissolved in the supplied air increases.
As a result, the required dissolved oxygen can be maintained with a smaller amount of air. Since surplus food and feces in the culture water float with the microbubbles, purification of the culture water can be achieved by providing a simple suspended matter recovery device. Therefore, a large-scale purification device becomes unnecessary, and the number of times of water replacement is reduced,
An effect such as reduction of labor costs can be expected. With the effect that microbubbles adhere to the skin of fish and wash off dirt on the surface of the skin when it pops,
Ultrasound provides the effects of improving blood flow and strengthening the skin of the fish, suppressing the growth of bacteria in water, and preventing the attachment of parasites. Under the environment where the ultrasonic waves are supplied, the swimming of the fish is gentle, and the fish form a row and swim in a group. Therefore, it can be understood that there is no fight between the fish and the environment is comfortable for the fish. The overall effect is to increase catches by improving growth rates and feed efficiency.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 魚介類を直径20μm以下の気泡の空気
が供給される環境下において養殖することを特徴とする
魚介類の養殖方法。
1. A method for cultivating fish and shellfish, wherein the fish and shellfish are cultivated in an environment in which air of bubbles having a diameter of 20 μm or less is supplied.
【請求項2】 該養殖が超音波の供給される環境下にお
いて行われる請求項1記載の方法。
2. The method according to claim 1, wherein the culturing is performed in an environment supplied with ultrasonic waves.
【請求項3】 超音波の波長が10MHz〜30MHz
の間にある請求項2記載の方法。
3. The ultrasonic wave has a wavelength of 10 MHz to 30 MHz.
3. The method of claim 2, wherein
【請求項4】 該養殖が養殖槽内で行われる請求項1〜
3のいずれか1項に記載の方法。
4. The method according to claim 1, wherein the culturing is performed in a culturing tank.
4. The method according to any one of the above items 3.
【請求項5】 気泡が旋回式気泡発生装置によって発生
された気泡である請求項1〜4のいずれか1項に記載の
方法。
5. The method according to claim 1, wherein the bubbles are bubbles generated by a swirling bubble generator.
【請求項6】 該旋回式気泡発生装置が該養殖槽内に設
けられる請求項5記載の方法。
6. The method of claim 5, wherein said swirling bubble generator is provided in said culture tank.
【請求項7】 該旋回式気泡発生装置が養殖槽外に設け
られる請求項5記載の方法。
7. The method according to claim 5, wherein the swirling bubble generator is provided outside the culture tank.
【請求項8】 魚介類がハマチ、マグロ、カンパチ、ヒ
ラマサ、鯛、フグ、ヒラメ、スズキ、鯵、牡蠣、アクヤ
貝、海老、アワビ、鱒および鮎から選ばれる1種である
請求項1〜7のいずれか1項に記載の方法。
8. The fish and shellfish is one selected from hamachi, tuna, amberjack, gibberfish, snapper, puffer fish, flounder, sea bass, horse mackerel, oyster, oyster shellfish, shrimp, abalone, trout and sweetfish. The method according to any one of claims 1 to 4.
JP2000185013A 2000-06-20 2000-06-20 Method for culturing fish and shellfish Pending JP2002000119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000185013A JP2002000119A (en) 2000-06-20 2000-06-20 Method for culturing fish and shellfish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000185013A JP2002000119A (en) 2000-06-20 2000-06-20 Method for culturing fish and shellfish

Publications (1)

Publication Number Publication Date
JP2002000119A true JP2002000119A (en) 2002-01-08

Family

ID=18685389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000185013A Pending JP2002000119A (en) 2000-06-20 2000-06-20 Method for culturing fish and shellfish

Country Status (1)

Country Link
JP (1) JP2002000119A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004030837A1 (en) * 2002-10-01 2004-04-15 National Institute Of Advanced Industrial Science And Technology Nanobubble utilization method and device
JP2007054655A (en) * 2006-11-24 2007-03-08 National Institute Of Advanced Industrial & Technology Method and device for utilizing nano-bubbles
JP2007215475A (en) * 2006-02-16 2007-08-30 Hokoku Kogyo Co Ltd Method for preventing the disease or infection of cultured fish by ultrasonic wave treatment
JP2011244795A (en) * 2010-05-21 2011-12-08 Minamikyushu City Method for producing on land of sand-submerged bivalves, such as littleneck clam
WO2013051725A1 (en) * 2011-10-04 2013-04-11 株式会社Ihi Sanitation management method of farmed fish and device thereof
WO2018088332A1 (en) * 2016-11-14 2018-05-17 公立大学法人富山県立大学 Aquaculture device, aquaculture system and aquaculture method
WO2019107963A1 (en) * 2017-11-29 2019-06-06 선문대학교 산학협력단 Fish farm parasite removal system including ultrasonic-microbubble system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004030837A1 (en) * 2002-10-01 2004-04-15 National Institute Of Advanced Industrial Science And Technology Nanobubble utilization method and device
JP2007215475A (en) * 2006-02-16 2007-08-30 Hokoku Kogyo Co Ltd Method for preventing the disease or infection of cultured fish by ultrasonic wave treatment
JP2007054655A (en) * 2006-11-24 2007-03-08 National Institute Of Advanced Industrial & Technology Method and device for utilizing nano-bubbles
JP4538612B2 (en) * 2006-11-24 2010-09-08 独立行政法人産業技術総合研究所 Cleaning device
JP2011244795A (en) * 2010-05-21 2011-12-08 Minamikyushu City Method for producing on land of sand-submerged bivalves, such as littleneck clam
WO2013051725A1 (en) * 2011-10-04 2013-04-11 株式会社Ihi Sanitation management method of farmed fish and device thereof
JPWO2013051725A1 (en) * 2011-10-04 2015-03-30 株式会社Ihi Hygiene management method and apparatus for cultured fish
WO2018088332A1 (en) * 2016-11-14 2018-05-17 公立大学法人富山県立大学 Aquaculture device, aquaculture system and aquaculture method
JP2018078807A (en) * 2016-11-14 2018-05-24 公立大学法人 富山県立大学 Device, system and method for aquaculture of marine product
WO2019107963A1 (en) * 2017-11-29 2019-06-06 선문대학교 산학협력단 Fish farm parasite removal system including ultrasonic-microbubble system
KR20190062839A (en) * 2017-11-29 2019-06-07 선문대학교 산학협력단 Parasite removal system for fish farm including ultrasonic-microbubble system
KR102063269B1 (en) * 2017-11-29 2020-02-11 선문대학교 산학협력단 Parasite removal system for fish farm including ultrasonic-microbubble system

Similar Documents

Publication Publication Date Title
JP6354021B2 (en) Aquaculture equipment and aquaculture method
US6584935B2 (en) Process for culturing crabs in recirculating marine aquaculture systems
JP4748906B2 (en) Crustacean larva culture method and apparatus
JP4635172B2 (en) Shrimp breeding and health management system for indoor shrimp production
CN106172121B (en) The thick method of litopenaeus vannamei batch production shrimp seedling salinization mark
CN106900608A (en) A kind of breeding method of big squama Barb fishes
CN107114283B (en) A kind of artificial breeding method of Collichthys lucidus
JP2018093852A (en) Sea eel aquaculture preserve and sea aquaculture method
CN108040955A (en) A kind of simple circulating water cultivation method and device of C. guichenoti seedling
CA1319574C (en) Scallop aquaculture
CN106818573A (en) Catch wild swimming crab sand basin fattening cultivation method in a kind of sea
Harboe et al. A tank design for first feeding of Atlantic halibut, Hippoglossus hippoglossus L., larvae
Liu et al. Sea urchin aquaculture in China
CN104872013B (en) Grouper cultivating method and system
CN101790967B (en) Culture method of early-breeding seedlings of Charybdis japonica
JP2002000119A (en) Method for culturing fish and shellfish
JP2024007558A (en) Artemia nurturing method and nurturing device, and artemia
JPH10191830A (en) Production of fish and shellfish by using spring water
JP2022166329A (en) Feeding method to cephalopod, and feeding implement to cephalopod
CN108633802A (en) A kind of method of biological breeding Penaeus Vannmei parent shrimp
JPH02308741A (en) Method for controlling water-quality for breeding and culture of aquatic animal and vegetable
CN106982762A (en) A kind of nuisanceless colored perch freshwater aquaculture method
WO2003015503A2 (en) Process for culturing crabs in recirculating marine aquaculture systems
JP2020150821A (en) Decapod larva breeding method
JP2004016234A (en) Method for cultivating globefish and method for detoxifying globefish using the method