WO2018088332A1 - Aquaculture device, aquaculture system and aquaculture method - Google Patents

Aquaculture device, aquaculture system and aquaculture method Download PDF

Info

Publication number
WO2018088332A1
WO2018088332A1 PCT/JP2017/039781 JP2017039781W WO2018088332A1 WO 2018088332 A1 WO2018088332 A1 WO 2018088332A1 JP 2017039781 W JP2017039781 W JP 2017039781W WO 2018088332 A1 WO2018088332 A1 WO 2018088332A1
Authority
WO
WIPO (PCT)
Prior art keywords
aquaculture
acoustic wave
ultrasonic
acoustic
water
Prior art date
Application number
PCT/JP2017/039781
Other languages
French (fr)
Japanese (ja)
Inventor
智明 唐木
山下 洋八
Original Assignee
公立大学法人富山県立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人富山県立大学 filed Critical 公立大学法人富山県立大学
Publication of WO2018088332A1 publication Critical patent/WO2018088332A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/10Culture of aquatic animals of fish
    • A01K61/13Prevention or treatment of fish diseases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Definitions

  • the present invention relates to an aquaculture device, an aquaculture system, and an aquaculture method for imparting sonic and ultrasonic stimulation to aquatic products in order to improve the survival rate and increase the yield of the marine products.
  • Patent Document 1 a solar battery is provided on the upper surface of a buoy that floats in the sea, and the output of the solar battery is supplied to the storage battery, and the output of the storage battery is connected to an ultrasonic oscillator that contacts water.
  • An ultrasonic transmitter for cultivating fish and shellfish is disclosed.
  • This storage battery accumulates electric power from a solar battery, and the electric power oscillates weak ultrasonic waves in the water regardless of day or night from the ultrasonic oscillator to promote the growth of fish and shellfish.
  • the ultrasonic oscillation surface in contact with water is covered with copper so that algae and the like do not adhere to the ultrasonic oscillation surface of the ultrasonic oscillator by the sterilization action of copper ions.
  • Patent Document 2 discloses a method of administering a compound drug to aquatic animals such as goldfish via ultrasound.
  • the disease of fish being cultured is prevented and infection is prevented by sonication for a short time.
  • an ultrasonic wave having an intensity of 1 MHz, 1.7 W / cm 2 is emitted for 10 to 15 minutes in a beaker containing the vaccine.
  • the gonadotropin releasing hormone analog is administered via water, the absorption of the gonadotropin releasing hormone analog that has passed through the skin of the fish can be greatly improved.
  • the method for cultivating seafood disclosed in Patent Document 3 irradiates the seafood with ultrasonic waves of 10 to 30 MHz, and generates microbubbles of 20 ⁇ m or less using a swirl type bubble generator to perform the culture. Thereby, it is disclosed that the growth rate and feed efficiency of fish and shellfish to be cultivated are improved.
  • Patent Document 4 discloses a disease treatment apparatus and method for preventing disease and preventing infection by cultivating fish by short-time ultrasonic treatment, and in particular, radiating ultrasonic waves to cultured fish in high-concentration dissolved oxygen water.
  • vaccine treatment is performed.
  • the submerged vaccine for preventing viral diseases is efficiently absorbed into the cultured fish and the mortality rate is improved.
  • Patent Document 5 uses a plurality of piezoelectric vibrators as ultrasonic vibrators, a water surface for culturing marine products or a container that is movably located in water, and a plurality of ultrasonic vibrations attached to the container.
  • an aquaculture device that has a child, each ultrasonic vibrator has a different direction of ultrasonic irradiation, and the container emits ultrasonic waves without being biased toward the seafood while moving on the water surface or in water.
  • the present invention is an aquaculture method for culturing aquatic products using an aquarium having a side surface made of a material having an acoustic impedance of 3 MRayls or more and 50 MRayls or less, wherein the aquaculture has an ultrasonic vibrator in the poured water tank.
  • An aquaculture method is disclosed in which a device is inserted, ultrasonic waves are generated from an ultrasonic transducer, and ultrasonic waves are emitted to the aquatic marine products.
  • the ultrasonic generator to be used is not controlled by appropriately changing the direction of ultrasonic radiation, but ultrasonic waves are generated in a large aquaculture tank. There is a problem that it is not possible to irradiate widely and uniformly. Furthermore, in the case of the method disclosed in Patent Document 3, microbubbles of 20 ⁇ m or less are generated using a swirling bubble generator, but it is difficult to stably generate ultrasonic waves of 10 to 30 MHz. is there. In addition, the direction of ultrasonic radiation cannot be controlled. Furthermore, ultrasonic waves of 10 MHz or higher are easily attenuated in oxygen-rich water, and there is a problem that it is difficult to maintain the acoustic intensity.
  • the aquaculture apparatus and the disease prevention apparatus that have been known so far by sonication and ultrasonic irradiation are used for an aquarium of 0.5 m 3 or less for experiments, a large aquarium for mass production of 1 to 100 m 3 ,
  • the ultrasonic vibrator 20 irradiates from the outer surface of the outer case 12 via the acoustic matching layer 22.
  • the irradiation direction and range of ultrasonic waves are constant.
  • the acoustic intensity is strong only in the direction in which the ultrasonic transducer 20 faces, and the high-intensity acoustic wave 19 that is oscillated from the ultrasonic transducer 20 is directly irradiated, so that the acoustic intensity is made uniform in the water tank. It is something that cannot be done.
  • ultrasonic waves cannot be effectively and uniformly emitted to the cultured fish 29 accumulated at the corners and bottom of the aquarium, and the ultrasonic waves may not reach the shadow of other accumulated cultured fish. .
  • the ultrasonic wave used in the aquaculture fishery reported so far has a frequency of 20 KHz to 100 KHz, the wavelength in water is long from 8 cm to 1.5 cm, and the average diameter of the fish trunk is 10 cm or less. It is not suitable for efficient production of cultured fish, small fish of crustaceans, eggs and fry using acoustic wave stimulation.
  • Patent Document 5 discloses a floating-type ultrasonic aquaculture device in which two or more ultrasonic transducers are arranged at different angles in a container. Although this device can irradiate ultrasonic waves all over the water tank, it is difficult to irradiate the ultrasonic waves widely and uniformly distributed in the water tank, resulting in variations in the ultrasonic intensity in the water tank. The problem remains.
  • the present invention has been made in view of the problems of the above-described background art, and with a device having a simple structure, the resistance of fish, shellfish, and shellfish being cultivated by irradiating an acoustic wave over a wide area in an aquarium.
  • An object of the present invention is to provide an aquaculture device, an aquaculture system, and an aquaculture method that can improve the power, improve the survival rate, increase the yield, and perform this with high reproducibility.
  • the sound wave is usually defined as 20 kHz or less, and the ultrasonic wave is defined as 20 kHz or more.
  • the fundamental wave is an ultrasonic wave of 1 MHz, for example, the fundamental wavelength is 1 ⁇ s and the underwater wavelength is about 1.5 mm.
  • pulse drive it is possible to create a sound of 20 kHz or less that is close to a sound wave.
  • an ultrasonic wave having a duty factor of 20% and a pulse repetition frequency (PRF) of 1 kHz (1 ms) exhibits a response equivalent to that of receiving a 1 kHz sonic stimulus to a living cell having a slow reaction speed. .
  • PRF pulse repetition frequency
  • the reaction speed of the living cell is several ms close to the transmission speed of the nervous system. For example, it is considered that the living cell cannot follow at a speed of 1 ⁇ s of the wavelength of 1 MHz ultrasonic wave.
  • the ultrasonic waves are referred to as acoustic waves.
  • LIPUS low intensity pulse ultrasounds
  • the present invention relates to an aquaculture device that irradiates an aquaculture product with an acoustic wave that is at least one of a sound wave and an ultrasonic wave, an ultrasonic transducer capable of generating the acoustic wave, and the ultrasonic vibration
  • a drive unit that drives a child; and an outer case that holds the ultrasonic transducer and the drive unit, and the high-intensity acoustic wave is disposed on a front side from which a high-intensity acoustic wave emitted from the ultrasonic transducer is radiated.
  • An aquaculture device comprising an acoustic wave diffusion layer made of an acoustic wave scattering material that diffuses waves and converts them into low-intensity acoustic waves whose intensity per unit area is weaker than the high-intensity acoustic waves and irradiates a wide range.
  • the ultrasonic vibrator is a piezoelectric vibrator, and the acoustic wave diffusion layer is composed of a layer containing a gas and a foamed resin containing 90% by volume or more of the gas.
  • the foamed resin is, for example, foamed polystyrene, foamed polyurethane, or foamed rubber.
  • the acoustic wave scattering material of the acoustic wave diffusion layer may be composed of a porous metal material.
  • the acoustic wave scattering material of the acoustic wave diffusion layer is composed of a metal material having a large number of holes or a metal mesh, and the mesh size is ⁇ ⁇ ⁇ / 10.
  • the acoustic wave diffusing layer is disposed in the outer case, inside the acoustic matching layer outside the outer case, or outside the outer case.
  • the outer case is provided with the piezoelectric vibrator of a disc, ring shape, or rectangular plate that generates at least two types of frequencies inside, and the fundamental frequency of the ultrasonic vibrator is 0.1 MHz. It is in the range of ⁇ 10 MHz.
  • the ultrasonic wave is a pulse wave, the repetition frequency thereof is 1000 Hz to 0.5 Hz, and the Duty factor is 10 to 60%. Further, at least one of the ultrasonic transducers may be disposed on the side surface of the hollow pyramid container.
  • it may have a detachable portable electronic device or a sound generator that generates audible music, feeding sound, or swimming sound. It is further preferable that a rechargeable battery is provided as the power source, and the driving unit is operable by the battery and has a waterproof function.
  • the present invention includes the aquaculture device, can contain aquatic products, and is provided with the aquaculture device in a water tank containing seawater or fresh water, and at least one of the water surface and the water of the water tank, It is a marine product culture system provided so that the said acoustic wave can be irradiated in water.
  • the inner surface of the water tank is provided with an acoustic wave reflection layer of an acoustic wave reflection material having an acoustic wave reflectivity of 90% or more for reflecting and scattering the acoustic wave at least 80% of the surface area. Furthermore, the water tank inner surface or outer surface material is good to be comprised with the foaming material which is an organic material containing a gas layer and gas.
  • the acoustic wave reflecting material is made of a sheet, and at least the front surface or the back surface thereof is coated with an organic film, the thickness thereof is 0.05 to 1.0 mm, and the inner surface includes an organic material containing 90% by volume or more of gas.
  • the organic film on the surface of the acoustic wave reflecting material is made of fluororesin, PET, or nylon, and contains a gas layer or foamed polystyrene, foamed polyurethane, or foamed rubber inside.
  • the aquaculture system may be used while releasing air bubbles having a diameter of 0.01 to 10 mm into the water.
  • the temperature control apparatus which can set the temperature of the seawater or fresh water in the said water tank from 2 degreeC to 30 degreeC is provided.
  • the present invention is an aquaculture method using the aquaculture device, wherein the aquaculture device is floated in water in an aquarium containing seafood and containing seawater or fresh water, and freely oscillated, It is an aquaculture method for generating acoustic waves from an aquaculture device and reflecting the acoustic waves on the wall surface of the aquarium so as to acoustically stimulate the product in the water.
  • the marine product is cultivated by applying ultrasonic waves to the marine product by applying ultrasonic waves (Isata) with an ultrasonic intensity (Isata) of 20 mW / kg to 1 W / kg with respect to the total weight of the marine product in water. It is. Further, the aquatic product is irradiated with the acoustic wave continuously or intermittently for 10 to 60 minutes / day, 1 to 7 days / week, and 1 to 50 weeks.
  • the cultivating may be performed by emitting the acoustic wave having a frequency and intensity that activates the activity of the seafood from an audible speaker of the seafood aquaculture device or a mobile phone.
  • the marine products are fish, crustacean eggs, fry and adult fish.
  • the aquaculture device, the aquaculture system and the aquaculture method of the present invention are lightweight and small-sized devices that are simple and inexpensive and safe, effectively use low-intensity acoustic wave energy in the aquarium, and are evenly wide.
  • the area can be irradiated.
  • blood flow promotion, bone component enhancement, growth rate improvement, survival rate improvement, yield increase, etc. can be efficiently and widely realized as an ultrasonic stimulation effect.
  • blood and lymph that are important for the treatment and prevention of diseases are considered to be produced mainly by bone marrow in fish as well as in the human body.
  • An acoustic wave can be effectively applied to the spine having an action.
  • the modification of the acoustic matching layer of this invention and an acoustic wave diffusion layer is shown,
  • the acoustic wave diffusion part is provided in the acoustic matching layer.
  • acoustic matching layer and the acoustic wave diffusion layer according to the present invention are shown, and a partial cross-sectional view (a) of an aquaculture device provided with an acoustic wave diffusion part in the outer case, acoustic wave diffusion in the acoustic matching layer It is a fragmentary sectional view (b) of an aquaculture device provided with a section, and a fragmentary sectional view (c) of an aquaculture device provided with another acoustic wave diffusion part in an acoustic matching layer.
  • FIG. 1 Another modification of the acoustic matching layer and the acoustic wave diffusion layer of the present invention is shown, and is a partial cross-sectional view (a) of an aquaculture device provided with an acoustic wave diffusion part in the acoustic wave diffusion layer outside the outer case, Partial cross-sectional view (b) of the aquaculture device provided with another acoustic wave diffusion part in the acoustic wave diffusion layer outside the outer case, and another acoustic wave diffusion part provided in the acoustic wave diffusion layer outside the outer case It is a fragmentary sectional view (c) of the aquaculture apparatus. It is the schematic which shows the aquaculture system of 4th embodiment of this invention.
  • FIG. 1 shows a first embodiment of the present invention.
  • An aquaculture apparatus 10 according to this embodiment shows a basic configuration, includes a watertight outer case 12, and has a substrate 14 therein.
  • a power source 16 such as a battery and a control circuit 17 constituting the driving unit 15 are provided thereon.
  • a lead wire 18 is connected to a terminal (not shown) of the substrate 14 and connected to a terminal (not shown) of the ultrasonic transducer 20.
  • the ultrasonic transducer 20 is attached to the outer case 12 via a protective film (not shown) together with an acoustic matching layer 22 for achieving acoustic matching with the medium, and a high-intensity acoustic wave 19 is emitted from the surface of the outer case 12. It is provided as possible.
  • An acoustic wave diffusion layer 24 formed of an acoustic wave scattering material is provided outside the portion of the outer case 12 where the ultrasonic transducer 20 is attached.
  • the acoustic wave diffusion layer 24 has a large difference from the acoustic impedance of water, and is preferably a metal member having a large number of holes, a metal mesh, or a resin containing air.
  • the acoustic wave diffusion layer 24 controls the high-intensity acoustic wave 19 to a low-intensity acoustic wave 21 whose intensity per unit area is relatively weaker than that of the high-intensity acoustic wave 19, and diffuses widely and is irradiated over a wide area.
  • the acoustic wave scattering material is composed of, for example, a metallic porous material or a metal mesh, and the average value of the voids of the porous material and the mesh size of the mesh of the metal mesh are determined by the underwater wavelength ⁇ of the ultrasonic wave to be used. In contrast, ⁇ to ⁇ / 10. Also, a low acoustic impedance foamed resin can be used. Further, a fixed support base 28 for detachably holding the acoustic device 26 may be provided on the upper portion of the outer case 12.
  • the ultrasonic vibrator 20 is a piezoelectric element that vibrates when a voltage is applied to oscillate ultrasonic waves, and uses thickness vibration or spread vibration.
  • the resonance frequency of the oscillating ultrasonic wave is 0.1 MHz or more and 10 MHz or less.
  • the ultrasonic transducer 20 generates not only the frequency component of the fundamental wave but also its harmonics, which are also effectively used.
  • As the piezoelectric element of the ultrasonic vibrator 20 a PZT ceramic vibrator which has a large electromechanical coupling coefficient and can be obtained at low cost is selected.
  • a high-performance relaxor-type piezoelectric single crystal can also be used.
  • a lead-free piezoelectric material such as a ceramic material mainly composed of alkali niobate, quartz, lithium tantalate single crystal, or lithium niobate single crystal.
  • the ultrasonic transducer 20 may be provided on the surface opposite to the irradiation direction with an acoustic backing layer (not shown) that is normally used in a probe of a medical diagnostic imaging apparatus, a heat radiation lead, or the like.
  • the method for using the aquaculture apparatus 10 of this embodiment is as follows.
  • a low-intensity acoustic wave 21 is uniformly distributed over a wide area as much as possible in a tank (not shown) containing aquaculture fish 29 as a marine product.
  • the acoustic wave diffusion layer 24 is used to disperse its intensity, and further, a low-intensity acoustic wave stimulation is performed on the fishery product using reflected waves from the water tank and the water surface.
  • the acoustic wave intensity at the time of using the aquaculture apparatus 10 can be appropriately set.
  • the intensity may be gradually increased with time and then gradually decreased.
  • the irradiation may be performed so that the oscillation is performed in a pulse shape, the intensity of the acoustic wave is gradually increased, and the intensity is gradually decreased similarly.
  • the change of the acoustic wave intensity may change the repetition frequency (PRF) of the ultrasonic pulse to be used or change the amplitude with time.
  • PRF repetition frequency
  • an acoustic lens or the like may be used by utilizing the principle used in an ultrasonic probe of a medical ultrasonic diagnostic apparatus. .
  • the ultrasonic wave is preferably a pulse wave that is irradiated intermittently.
  • the pulse wave for example, an acoustic wave having a cycle of 0.001 to 2 seconds (frequency is 0.1 KHz to 0.5 Hz) and a Duty factor of 10 to 60% is used.
  • the waveform of the ultrasonic wave ultrasonic waves having various waveforms such as a sine wave, a rectangular wave, and a triangular wave can be used.
  • the PRF has a period close to the heart pulse of 0.5 to 2 seconds (2 Hz to 0.5 Hz), and the Duty factor is 10 to 50%.
  • a particularly preferred PRF is to use a combination of audible sounds such as music from a period of about 1 second (1 Hz) close to the heart rate to a period of about 1 ms (1000 Hz) with a proven track record in promoting fracture treatment.
  • the ultrasonic intensity (Isata) of the low-intensity acoustic wave 21 may be 20 mW / kg to 1 W / kg per total weight of the marine product. Below 20 mW / kg, the effect on growth, repair, activation and survival related to bone, skin and muscle is very small even after 30 weeks or more. Further, at 1 W / kg or more, not only is there a possibility that it will be harmful to marine products when exposed for a long time, but also the size of the apparatus increases.
  • the acoustic intensity of the aquaculture device 10 is 50 to 300 mW / kg per total weight of the aquatic product.
  • the seafood aquaculture apparatus 10 may be further provided with a sound device such as a speaker that generates an audible sound of 20 to 2000 Hz. As this audible sound, music, feeding sound and swimming sound are suitable. Further, the aquaculture device 10 may be provided with functions such as an integrated time meter, operation blinking display, alarm sound, communication function and video, a fish abnormality confirmation camera, and a sound wave generation speaker.
  • a sound device such as a speaker that generates an audible sound of 20 to 2000 Hz.
  • music, feeding sound and swimming sound are suitable.
  • the aquaculture device 10 may be provided with functions such as an integrated time meter, operation blinking display, alarm sound, communication function and video, a fish abnormality confirmation camera, and a sound wave generation speaker.
  • the acoustic waves radiated from these devices pass through the soft tissues, skin, fat, and muscles inside the seafood, and most of them reach the bones, which are hard tissues, transmitted to the bones, attenuated, and converted into thermal energy.
  • the This stimulates the bone and contributes to the expansion of osteoblasts. It is possible to increase the required amount of exercise and improve the meat quality by using foraging sounds, swimming sounds, etc. emitted from a speaker that produces audible music, etc., and various uses are possible.
  • FIG. 4 is a schematic diagram showing a state in which an acoustic wave of the aquaculture device 30 of this embodiment is irradiated to the cultured fish 29 that is a marine product.
  • the ultrasonic transducer 20 is fixed to the inner surface of the outer case 12 via a first acoustic matching layer 31 and a second acoustic matching layer 32.
  • the second acoustic matching layer 32 is made of an acoustic wave scattering material so as to face the ultrasonic transducer 20 and diffuses a high-intensity acoustic wave and has a low intensity per unit area.
  • An acoustic wave diffusing unit 34 is provided for converting to a uniform area and irradiating a large area uniformly.
  • the second acoustic matching layer 32 provided with the acoustic wave diffusion unit 34 constitutes the acoustic wave diffusion layer 36.
  • the acoustic wave diffusion layer 36 is provided on the front surface from which the high-intensity acoustic wave emitted from the ultrasonic transducer 20 is radiated, other than directly below the ultrasonic transducer 20 Necessary and sufficient acoustic wave stimulation can be performed for seafood. Furthermore, since the acoustic wave diffusion layer 36 is inside the outer case 12, the outer surface of the aquaculture device 30 can be cleaned.
  • the aquaculture apparatus 40 according to a third embodiment of the present invention will be described with reference to FIG.
  • the aquaculture apparatus 40 according to the embodiment shown in FIG. 5 has two pairs of ultrasonic transducers 41 and 42 each having two different frequencies, and is further provided with a speaker 44 that outputs audible music and the like. It is.
  • An acoustic wave diffusion layer 48 is provided on the outer surface of the outer case 46 of this apparatus.
  • the acoustic wave diffusing part layer 48 is made of a resin material or a wire mesh of an acoustic wave scattering material, and an acoustic wave diffusing part made of two pairs of acoustic wave scattering materials respectively corresponding to the ultrasonic transducers 41 and 42 therein. 49 is provided.
  • the two pairs of acoustic wave diffusion portions 49 are set in different predetermined directions.
  • the acoustic wave diffusing layer 48 changes its material and shape to control and scatter and diffuse high-directivity high-intensity acoustic waves and irradiate fishery products such as cultured fish with low-intensity acoustic waves weakened over a wide area. can do. Furthermore, by changing the shape, position, and quantity of the acoustic wave diffusing unit 49, it is possible to diffuse high-intensity acoustic waves with strong directivity and perform low-intensity acoustic wave stimulation on fishery products in a wide range.
  • the aquaculture apparatus 50 shown in FIG. 6 (a) uses a ring-shaped piezoelectric vibrator 20, and includes a first acoustic matching layer 31 and a second acoustic matching layer 32 whose outer shape is larger than that of the piezoelectric vibrator 20.
  • the piezoelectric vibrator 20 is attached to the inside of the outer case 12.
  • the first acoustic matching layer 31 or the second acoustic matching layer 32 also serves as an acoustic wave diffusion layer.
  • the fish culture device 52 shown in FIG. 6B uses a disk-shaped piezoelectric vibrator 20, and the piezoelectric vibrator 20 is placed in an outer case via an acoustic matching layer 22 whose outer shape is equal to the piezoelectric vibrator 20. 12 is attached inside.
  • This aquaculture device 52 includes a cavity of an acoustic wave diffusion portion 49 inside the acoustic matching layer 22. The cavity may be provided with foamed resin or metal.
  • the piezoelectric vibrator 20 is placed inside the outer case 12 via the first acoustic matching layer 31 and the second acoustic matching layer 32 whose outer shape is larger than that of the piezoelectric vibrator 20. It is what is attached.
  • the aquaculture device 54 is configured such that a concave portion that is an acoustic wave diffusion portion 49 is formed in the outer case 12 in advance, and a plurality of cavities are formed in a state where the second acoustic matching layer 32 is joined.
  • the cavity that is the acoustic wave diffusion portion 49 may be filled with foamed resin.
  • the aquaculture apparatus 56 shown in FIG. 7B also has the piezoelectric vibrator 20 inside the outer case 12 via the first acoustic matching layer 31 and the second acoustic matching layer 32 whose outer shape is larger than that of the piezoelectric vibrator 20.
  • a plurality of differently shaped cavities that are acoustic wave diffusion portions 49 are provided inside the second acoustic matching layer 32.
  • the cavity may be filled with foamed resin.
  • the piezoelectric vibrator 20 is also provided inside the outer case 12 via the first acoustic matching layer 31 and the second acoustic matching layer 32 whose outer shape is larger than that of the piezoelectric vibrator 20.
  • the wire net 59 which is the acoustic wave diffusion part 49 is arrange
  • the aquaculture apparatus 54 shown in FIG. 8A has the piezoelectric vibrator 20 inside the outer case 12 via the first acoustic matching layer 31 and the second acoustic matching layer 32 whose outer shape is larger than that of the piezoelectric vibrator 20. Is attached.
  • the acoustic wave diffusion layer 24 is provided outside the outer case 12, and the wire mesh 59 as the acoustic wave diffusion part 49 is provided therein.
  • the aquaculture apparatus 62 shown in FIG. 8B also has the piezoelectric vibrator 20 inside the outer case 12 via the first acoustic matching layer 31 and the second acoustic matching layer 32 whose outer shape is larger than that of the piezoelectric vibrator 20.
  • the acoustic wave diffusion layer 24 is provided outside the outer case 12, and the resin member 61 that is the acoustic wave diffusion part 49 is provided therein.
  • the aquaculture apparatus 64 shown in FIG. 8C is provided with a ring-shaped piezoelectric vibrator 20 and has a piezoelectric vibration inside the outer case 12 via an acoustic matching layer 22 whose outer shape is larger than that of the piezoelectric vibrator 20.
  • a child 20 is attached, and an acoustic wave diffusion layer 24 is provided outside the outer case 12.
  • the acoustic wave diffusion layer 24 is formed with a protrusion 24a in which a resin protrudes into the Fresnel structure.
  • the high-intensity acoustic wave emitted from the ultrasonic transducer 20 is easily converted into the low-intensity acoustic wave, It becomes possible to radiate ultrasonic waves uniformly over a wide area. For this reason, the quantity of the ultrasonic transducer
  • the acoustic wave scattering material in the acoustic wave diffusion layer 24 is a metal, it can be easily produced using not only ordinary MC processing and press molding but also a three-dimensional molding apparatus. In order to further reduce costs, the acoustic wave diffusion layer 24 and a part of the acoustic wave diffusion portion 49 made of the acoustic wave scattering material can be produced using the same material at the same time when the outer case is molded.
  • FIG. 9 shows a structure similar to that of the aquaculture device 10 of the first embodiment, and floats or fixes an aquaculture device 74 including a plurality of ultrasonic transducers 20 having different irradiation directions in the aquarium 72.
  • acoustic wave stimulation is performed on the cultured fish 29 that is a marine product.
  • the floating aquaculture device 74 is adjusted so that the center of gravity of the aquaculture device 74 is off-balanced so that the acoustic wave radiation surface of the ultrasonic transducer 20 has an inclination of 3 to 30 ° with respect to the water surface. Is preferred.
  • the aquaculture system 70 of this embodiment is used by floating an aquaculture device 74 on the water in a water tank 72 and irradiating it with high-intensity acoustic waves from the ultrasonic transducer 20 toward the water.
  • the acoustic wave diffusion layer 24 converts it to a low intensity acoustic wave 21.
  • the low intensity acoustic wave 21 is irradiated as uniformly as possible to the cultured fish 29 which is a marine product, while effectively utilizing the irregular reflection of the acoustic wave on the bottom and side surfaces of the water tank 72 and the water surface.
  • An acoustic wave reflection layer 76 containing a gas is attached to an area of 80% or more of the side surface and the bottom surface that are the inner surface of the water tank 72.
  • the acoustic wave reflection layer 76 is an acoustic wave reflection material made of a foamed resin containing 90 to 99% by volume of gas. By using such an acoustic wave reflecting material, 90% or more of the low-intensity acoustic wave 21 can be effectively reflected and irradiated to the cultured fish 29 effectively.
  • the material for the acoustic wave reflection layer 76 is preferably a vinyl chloride resin, PET, EVA, or rubber that includes a gas layer inside.
  • the thickness thereof is 0.05 to 1.0 mm, and an organic material containing 90% by volume or more of gas is used on the inner surface. I can do it.
  • low-intensity acoustic wave stimulation is given to marine products such as the cultured fish 29 in the water tank 72 whose height from the bottom surface of the water tank 72 to the water surface of the water 78 is 0.1 to 10 m. If the height to the water surface is 0.1 m or less, it is not possible to obtain a sufficient depth to contain the device, and even a small fish cannot have a sufficient depth to contain the whole body. Moreover, it is because the effect of an acoustic wave becomes weak by acoustic attenuation above 10 m. The optimum depth is 0.2 to 1.0 m, which is easy to use by levitating the device.
  • the ultrasonic wave to be used can be selected at a frequency of 0.1 to 10 MHz, but 0.1 to 2 MHz is suitable for sending acoustic wave power to bone located at a depth of 10 cm or more from the surface of the seafood. 2 to 10 MHz is suitable for stimulating bones and muscles of 3 cm or less, fish eggs, and the like. More preferably, these frequencies are combined and used in the series. In addition, when the frequency of the ultrasonic transducer to be used is 10 MHz or more, attenuation in a lot of air or in aquatic products becomes large, and it becomes difficult to obtain a necessary acoustic wave intensity.
  • the water tank 72 only needs to have a bottom surface and a side surface made of a foamed resin whose acoustic impedance is sufficiently lower than that of seawater or fresh water, and a lightweight material such as foamed polystyrene or a material provided with an air layer between the resins is used. I can do it.
  • the interval for generating the acoustic wave of the aquaculture device 74 is, for example, 10 to 60 minutes / day, 1 to 7 times / week, for 1 to 50 weeks continuously. In a short time of 10 minutes or less, the effect of aquaculture is small, and even if one water tank 72 is irradiated for 60 minutes or more, the effect does not change greatly.
  • the irradiation frequency is 1 to 7 times / week, more preferably 3 to 5 times / week.
  • the irradiation period is effective for several days in the case of small fish or eggs, but is preferably a long period of 30 weeks or longer.
  • the water tank 72 is provided so that the water temperature can be appropriately set by a temperature control device in the range of 2 to 30 ° C. This is because the activity of marine products decreases at 2 ° C. or lower, and the survival rate of many marine products decreases at 30 ° C. or higher.
  • the aquaculture device 74 floating on the water moves back and forth and left and right due to the swing of the liquid level of the aquarium 72, or swings and changes its inclination, so that the position of the ultrasonic transducer 20 and the acoustic wave diffusion layer 24 is changed.
  • the angle changes constantly, and the low-intensity acoustic wave 21 is irradiated evenly to the marine products such as the cultured fish 29 by the effect of the acoustic wave diffusion layer 24.
  • This aquaculture system may be used while releasing air bubbles having a diameter of 0.01 to 10 mm into the water.
  • an acoustic wave is generated on aquatic products such as the cultured fish 29 while freely changing the radiation direction of the low-intensity acoustic wave 21 by the aquaculture apparatus 74 having a simple structure. Stimulation can be applied uniformly, and low-intensity acoustic wave stimulation can be applied to the marine products in the aquarium widely and substantially uniformly using the irregular reflection of acoustic waves from the bottom surface, side surface, and water surface of the aquarium 72. Furthermore, it is possible to use a large sushi other than the aquarium 72. The number of the aquaculture device 74 can be increased, the aquaculture device 74 can be temporarily fixed and attached to the aquarium 72, or fixed in water.
  • the aquaculture device 74 can be manufactured in a small shape with a weight of 0.2 to 10 kg and can be easily transported by women and elderly people. When not in use, it can be taken out of the water tank and stored and inspected easily. Can be charged and cleaned. For this reason, not only is mass production easy, but the maintenance cost for repair and recovery is small, so that the production cost can be greatly reduced. Further, the aquaculture system 70 and the aquaculture method of this embodiment can be used for most aquatic products, and particularly contribute greatly to improving the survival rate of small fish, crustaceans and their fry and fish eggs.
  • the acoustic wave aquaculture system 70 and the aquaculture method of this embodiment may use the aquaculture apparatus 40 provided with two or more ultrasonic transducers 41 and 42 shown in FIG.
  • the aquaculture device 40 By using the aquaculture device 40, it is possible to irradiate the low-intensity acoustic waves 21 widely in two or more different directions with one aquaculture device 40, and uniformly irradiate the low-intensity acoustic waves 21 in the water tank 72.
  • the number of necessary aquaculture equipment 40 can be reduced.
  • the plurality of acoustic wave oscillators 41 and 42 may change the frequency, PRF, duty factor, and acoustic intensity, and can be set as appropriate.
  • the aquaculture apparatus shown in FIGS. 6 to 8 may be used.
  • the aquaculture device 80 includes a square pyramid-shaped hollow outer case 12 and an upper lid 82, and the upper lid 82 has an O-ring 84 for making it a watertight structure. Is provided.
  • the ultrasonic transducer 20 four types of 0.5 MHz, 1.5 MHz, 3.0 MHz, and 8 MHz are attached to each inner side surface of the outer case 12 of a quadrangular pyramid.
  • the ultrasonic transducer 20 for example, a non-lead piezoelectric alkali niobate material is used at 8 MHz, and the remaining three types are ordinary PZT transducers.
  • the shape of the ultrasonic transducer 20 is a disk having a diameter of 2 cm.
  • the ultrasonic transducer 20 is attached with a glass plate having a thickness of ⁇ / 4 as the acoustic matching layer 22 and is attached to each of the four inner surfaces of the outer case 12 as shown in FIG.
  • the driving power source 16 for example, a rechargeable lithium battery is used.
  • an acoustic wave diffusion layer 24 having a plurality of cavities having a diameter of 3 cm and a thickness of 4 mm is provided using ABS resin. In the acoustic wave diffusion layer 24, a plurality of cavities that are the acoustic wave diffusion portions 49 are formed.
  • the aquaculture apparatus 80 of this embodiment is used by being put in the aquarium 72 of the aquaculture system shown in FIG. 9, and effectively changes the radiation direction of the low-intensity acoustic wave 21 freely as in the above embodiment.
  • acoustic wave stimulation is uniformly applied to marine products such as cultured fish 29.
  • strength acoustic wave stimulus is uniformly given to the fishery product in a water tank using the irregular reflection of the acoustic wave from the bottom face, side surface, and water surface of a water tank.
  • the aquaculture apparatus, system, and culture method of the present invention are not limited to the above embodiment, and can be changed as appropriate.
  • the aquaculture device may generate an acoustic wave while temporarily moving or fixing while sinking to an arbitrary depth in water.
  • the container of the aquaculture device can be freely selected in terms of structure, material, and shape, and may be any container that reliably moves and holds the ultrasonic transducer.
  • the size and shape of the aquarium to be used can also be changed, and the number of ultrasonic vibrators in the aquaculture device and the number to be put in the aquarium are adjusted appropriately according to the size and shape of the aquarium. Set to sound intensity.
  • a floating ring can also be used to increase the buoyancy or prevent the device from falling.
  • the acoustic wave diffusing part of the present invention has not only a structure or net having a hole in a void, a foamed resin plate or a metal plate, but also a shape such as a propeller or a windmill, an umbrella shape, or a slit in a metal. Even in the case of different shapes, the effect of diffusing and scattering the ultrasonic beam can be obtained. Further, the ultrasonic transducer may be disposed not only on the bottom surface of the container but also on a side surface portion in water.
  • the present invention is one of the aquaculture methods using acoustic waves, and may be used in combination with known devices and methods using microbubbles, bubbles, and virus vaccine administration.
  • the intensity and time of the acoustic wave can be adjusted according to the growth and quantity of marine products in the aquarium.
  • Seven circular water tanks are used, each of which has a sound wave and music generator with different frequencies, an ultrasonic generator, an apparatus with an acoustic wave diffusion layer, and a water tank with or without an acoustic wave reflection layer (inner wall of the water tank).
  • Ultrasonic waves were irradiated while levitating. Seawater in the tank was supplied 24 tons / day by a pump, and excess seawater was overflowed. Further, 25 m 3 / day of air was supplied to the center of the water tank using compressed air.
  • As a food 1 to 3 g / animal of a normal fish formula feed was given daily in the morning. No agitation of seawater, recovery of undigested food, and removal of fish droppings were performed.
  • a hole having a diameter of about 5 cm which is the size of the acoustic matching layer 22 is formed in the outer case 12 which is an aluminum container having a diameter of 33 cm and a depth of 14 cm.
  • the apparatus of the first embodiment has a basic structure as shown in FIG. 1 in which eight ultrasonic transducers 20 having a diameter of 3 cm are arranged in the outer case 12.
  • the ultrasonic transducer 20 the thickness vibration of a PZT piezoelectric ceramics (204 material manufactured by Fuji Ceramics) ultrasonic transducer was used.
  • the ultrasonic radiation surface of the ultrasonic transducer 20 has an inclination of 3 to 5 ° with respect to the water surface.
  • the resonance frequency of the ultrasonic transducer 20 was 0.5 MHz.
  • this aquaculture device 10 generates 50% duty pulsed ultrasonic waves for 9 minutes, and then continues the acoustic wave stimulation for about 60 minutes a day, 3 times / week for 16 weeks in a cycle that stops for 1 minute. did.
  • Ultrasonic wave intensity (Isata) is the case of not using the acoustic wave diffusion layer 24 directly below the ultrasonic vibrator at a depth of 30cm was 800 mW / cm 2, in the case of using an acoustic wave diffusion layer 24 was 80 mW / cm 2 .
  • the acoustic wave diffusion layer 24 As the acoustic wave diffusion layer 24, four stainless steel meshes having an aperture of 0.5 mm (17% of the underwater wavelength ⁇ ), stacked in different directions and attached to the outside of the container were used. By using this acoustic wave diffusion layer 24, the maximum value of the acoustic wave intensity radiated from the ultrasonic transducer 20 is reduced to 80 mW / cm 2 , which is about 10%, compared with the case where the acoustic wave diffusion layer 24 is not attached. It was able to diffuse over a wide area.
  • the acoustic wave reflection layer 76 is a foamed polystyrene sheet having a density of 25 kg / m 3 (about 98% is air). A PET film having a thickness of 2 mm and a PET film having a thickness of 0.05 mm is pasted on the inner wall of the water tank. Was used.
  • the device 2 of Reference Example 1 has the same structure as that of the device 1, but does not use an acoustic wave diffusion layer and an acoustic wave reflection layer.
  • the device 3 of the reference example 2 is only the outer case 12 having the same size and weight as the device 1, and uses neither an ultrasonic transducer nor an acoustic wave diffusion layer. Table 1 shows the basic specifications of these devices and the survival rate, average weight, and total weight of the cherry blossoms after 16 weeks.
  • Example 1 using the aquaculture device to which the acoustic wave diffusion layer and the acoustic wave reflection layer are attached, the survival rate is as high as 85%, and the average weight is also 0.231 kg larger. For this reason, the total weight of 3.93 kg was 125% compared to the total weight of 3.15 kg of Reference Example 2 in which the apparatus of the present invention was not used. Moreover, even if compared with 3.30 kg of the reference example 1 when there is no acoustic wave diffusion layer, it showed a significant increase in total weight of 119%.
  • the apparatus 4 of the second embodiment has a structure as shown in FIG. 5 in which four ultrasonic transducers 20 having a diameter of 3 cm are arranged in the outer case 12 that is the same container, and other conditions are the same as in the first embodiment. Is the same. Further, as a low frequency sound source, 350 Hz was transmitted for 10 seconds, and the operation was performed for 60 minutes in a mode of stopping 30 seconds. Furthermore, as music, a canpel bell was radiated from a speaker attached to the container for 60 minutes continuously.
  • the first acoustic matching layer 31 is a glass plate having an acoustic impedance of 13 MRayls attached to the PZT vibrator with a thickness of ⁇ / 4
  • the second acoustic matching layer 32 is an acrylic plate having an acoustic impedance of 3.3 MRayls having a wavelength of ⁇ / 4. Attached with thickness.
  • the acoustic wave diffusion layer 24 was made of an epoxy resin, and the acoustic wave scattering material was a disc-shaped cavity having an R30 mm thickness of 2.0 mm at the center and a diameter of 10 mm.
  • the maximum value of the acoustic wave intensity radiated from the ultrasonic transducer 20 is reduced to about 10% of 120 mW / cm 2 as compared with the case where the acoustic wave diffusion layer 24 is not attached, and the acoustic wave beam is reduced. It was able to diffuse over a wide area.
  • the acoustic wave reflection layer is the same as that of the first embodiment.
  • the device 5 of Example 3 has a structure similar to that of the device 4, but does not use an acoustic wave reflection layer.
  • the device 3 of the reference example 2 is only an outer case having the same size and weight as the device 1, and uses neither an ultrasonic transducer nor an acoustic wave reflection layer. These structures and the survival rate, average weight, and total weight of the cherry blossoms after 16 weeks are shown in Table 2.
  • Example 2 the survival rate is as high as 85%, and the average weight is also 0.217 kg larger. Therefore, the total weight was 3.69 kg and 117% compared to 3.15 kg of the total weight of Reference Example 2 in which the apparatus of the present invention was not used.
  • Example 3 without the acoustic wave reflection layer showed an increase in yield of 110% even when compared with 3.45 kg and 3.15 kg of the weight of Reference Example 2.
  • the apparatus 6 of the reference example 3 shown in Table 3 shows the result when it is performed for 60 minutes in a mode in which only 350 Hz of audible sound is transmitted as a sound source to the same water tank for 10 seconds and stopped for 30 seconds.
  • the device 7 of Reference Example 4 is a case where a music happel bell canon is radiated from a speaker attached to a container for 60 minutes as a sound source in the same water tank. These are shown together with Reference Example 2.
  • the device 3 of the reference example 2 is only an outer case having the same size and weight as the device 1, and uses neither the ultrasonic transducer 20 nor the acoustic wave reflection layer. Table 3 shows these structures and the survival rate, average weight, and total weight of cherry blossoms after 16 weeks.
  • the survival rate of Reference Example 3 is as low as 65%, and the average weight is 0.243 kg. Therefore, the total weight is 3 of the total weight of Reference Example 2 without using the apparatus of the present invention. A value of 3.16 kg equivalent to 15 kg was shown.
  • the survival rate is as low as 65%, and the average weight is 0.235 kg. Therefore, the total weight is 3% compared to 3.15 kg of the total weight of Reference Example 2 in which the apparatus of the present invention is not used. The value was as low as 97% of 0.06 kg.
  • Example 4 the aquaculture apparatus 80 shown in FIGS. 10A and 10B is used, and as the outer case 12, aquaculture is performed using a quadrangular pyramid ABS resin with a side wall thickness of 1.0 mm. Went.
  • the outer case 12 is provided with an upper lid 82 and an O-ring 84 for making it a watertight structure.
  • the ultrasonic transducer 20 four types of 0.5 MHz, 1.5 MHz, 3.0 MHz, and 8 MHz were used. Among these, 8 MHz used a lead-free piezoelectric alkali niobate material, and the remaining three types used ordinary PZT vibrators.
  • the shape of the vibrator is a disk having a diameter of 2 cm.
  • a glass plate having a thickness of ⁇ / 4 was attached to the ultrasonic transducer 20 as the acoustic matching layer 22. These were attached inside each of the four side surfaces of the outer case 12 of the aquaculture apparatus 80 as shown in FIG. A rechargeable lithium battery was used as the driving battery 16.
  • a convex acoustic wave diffusion layer 24 having a diameter of 3 cm and a thickness of 4 mm having a plurality of cavities as acoustic wave diffusion portions 49 was attached to the vibrator on the side surface of the apparatus using ABS resin.
  • the pulse repetition period (PRF) was 1 msec (1000 Hz) and 1 s (1 Hz), and these were driven with a duty factor of 20%.
  • PRF pulse repetition period
  • the acoustic intensity (Isata) of this aquaculture device 80 was adjusted so that 800 mW / kg of acoustic waves could be applied to 1 kg of marine product in a 20 liter aquarium.
  • the aquarium container is a square container having a size of 20 liters with a PET film of 0.05 mm attached to the surface of polystyrene foam.
  • For temperature control circulating water whose temperature was adjusted externally was sent into the water tank with a stainless steel pipe to control the water temperature.
  • a cherry salmon roe collected from the same parent fish having a diameter of about 4 mm was used. The water temperature was adjusted to 4 ° C + -1 ° C.
  • Example 4 As is clear from Example 4 and Reference Example 5, when the aquaculture apparatus, the aquaculture system and the aquaculture method of the present invention were used, high survival rates of eggs and fry were confirmed.
  • the ultrasonic resonance frequency is 0.1 MHz to 10 MHz
  • the ultrasonic intensity (Isata) It is clear that by selecting conditions that range from 20 mW / kg to 1000 mW / kg per unit weight and irradiating fishery products in a tank with low acoustic impedance, the survival rate can be greatly improved and the yield can be increased. It became.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Zoology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

Provided are: an aquaculture device having a simple structure which uniformly irradiates ultrasonic waves, among acoustic waves, within a water tank so that the resistance of aquatic animals being cultured can be improved and the survival rate thereof can be elevated, thereby increasing the yield; an aquaculture system; and an aquaculture method. An aquatic animal 29 being cultured is irradiated with acoustic waves comprising sonic waves and/or ultrasonic waves. The aquaculture device comprises: an ultrasonic oscillator 20 capable of generating acoustic waves; a driving section 15 driving the ultrasonic oscillator 20; and an outer case 12 holding the ultrasonic oscillator 20 and the driving section 15. On the side of the front face toward which high-strength acoustic waves 19 are radiated from the ultrasonic oscillator 20, an acoustic wave-scattering layer 24, which is formed of an acoustic wave-scattering material and capable of scattering the high-strength acoustic waves 19 while converting the high-strength acoustic waves 19 into low-strength acoustic waves 21 having a lower strength per unit area and then irradiating the same, is provided.

Description

水産物養殖装置と水産物養殖システム及び水産物養殖方法Aquaculture system, aquaculture system, and aquaculture method
 この発明は、水産物の生存率向上や収量増加を達成するために、水産物に対して音波及び超音波の刺激を与える水産物養殖装置と水産物養殖システム及び水産物養殖方法に関する。 The present invention relates to an aquaculture device, an aquaculture system, and an aquaculture method for imparting sonic and ultrasonic stimulation to aquatic products in order to improve the survival rate and increase the yield of the marine products.
 従来、魚類、甲殻類、貝類等の水産物の養殖による生産が種々行われている。一方、2100年には世界人口が110億人になると予想され、22世紀の大きな課題の一つは食糧不足である。従って、養殖漁業から得られる魚類タンパク質の安定的な生産は重要な課題であり、大幅な食糧増産が期待されている。アジアでは過去30年間で特に水産物消費量が増えており、特に日本は、人口が5000万人を超える国の中では一人当たりの水産物消費量は世界一である。しかし、これまでの養殖漁業における水産物の増産方法の改善は、餌の開発と、水温・水流の改善、遺伝子組み換え、ウイルス対策が主体であり、大幅な生産性の向上を期待できるものではなかった。 Conventionally, a variety of fishery products such as fish, shellfish and shellfish have been produced by aquaculture. On the other hand, the world population is expected to reach 11 billion in 2100, and one of the major challenges of the 22nd century is food shortage. Therefore, stable production of fish proteins obtained from aquaculture is an important issue, and a significant increase in food production is expected. In Asia, the consumption of fishery products has increased especially in the past 30 years, and Japan has the highest consumption of fishery products per capita in a country with a population of over 50 million. However, the improvement of the production method of fishery products in the aquaculture fishery so far has mainly been the development of feed, improvement of water temperature and water flow, genetic recombination, and virus countermeasures, and could not be expected to significantly improve productivity. .
 そこで、養殖漁業の生産性をより向上させる増産方法として、これまでとは異なるものもいくつか提案されている。例えば、特許文献1には、海中の生け簀で浮遊するブイの上面に太陽電池を設け、太陽電池の出力が蓄電池に供給され、水と接する超音波発振子に、その蓄電池の出力が接続されている魚貝類育成用超音波発信器が開示されている。この蓄電池には太陽電池による電力が蓄積され、その電力により超音波発振子から昼夜を問わず水中に微弱な超音波を発振し、魚貝類の成長を促進させるものである。また、水と接する超音波発振面が銅で覆われ、銅イオンの殺菌作用により、超音波発振子の超音波発振面に藻等が付着しないようにしたものである。 Therefore, several different methods have been proposed as methods for increasing production to further improve the productivity of aquaculture. For example, in Patent Document 1, a solar battery is provided on the upper surface of a buoy that floats in the sea, and the output of the solar battery is supplied to the storage battery, and the output of the storage battery is connected to an ultrasonic oscillator that contacts water. An ultrasonic transmitter for cultivating fish and shellfish is disclosed. This storage battery accumulates electric power from a solar battery, and the electric power oscillates weak ultrasonic waves in the water regardless of day or night from the ultrasonic oscillator to promote the growth of fish and shellfish. Also, the ultrasonic oscillation surface in contact with water is covered with copper so that algae and the like do not adhere to the ultrasonic oscillation surface of the ultrasonic oscillator by the sterilization action of copper ions.
 特許文献2には、金魚等の水生動物に対して化合物の薬剤を、超音波を媒介して投与する方法が開示されている。この方法は、短時間の超音波処理により、養殖している魚類の病気を予防し、感染を防止するものである。例えば、ウイルス性疾病を、浸漬ワクチンを用いて治療する際に、ワクチンを入れたビーカ中で1MHz、1.7W/cmの強度の超音波を10~15分間放射するものである。その結果、ゴナドトロピン放出ホルモン類似体を、水を介して投与した場合に、魚の皮膚を通過したゴナドトロピン放出ホルモン類似体の吸収を大幅に改善することができる。 Patent Document 2 discloses a method of administering a compound drug to aquatic animals such as goldfish via ultrasound. In this method, the disease of fish being cultured is prevented and infection is prevented by sonication for a short time. For example, when treating a viral disease using an immersion vaccine, an ultrasonic wave having an intensity of 1 MHz, 1.7 W / cm 2 is emitted for 10 to 15 minutes in a beaker containing the vaccine. As a result, when the gonadotropin releasing hormone analog is administered via water, the absorption of the gonadotropin releasing hormone analog that has passed through the skin of the fish can be greatly improved.
 また、特許文献3の魚介類の養殖方法は、10~30MHzの超音波を魚介類に照射し、旋回式気泡発生装置を用いて20μm以下のマイクロバブルを発生させて養殖を行うものである。これにより、養殖する魚介類の成長率及び飼料効率が改善することが開示されている。 In addition, the method for cultivating seafood disclosed in Patent Document 3 irradiates the seafood with ultrasonic waves of 10 to 30 MHz, and generates microbubbles of 20 μm or less using a swirl type bubble generator to perform the culture. Thereby, it is disclosed that the growth rate and feed efficiency of fish and shellfish to be cultivated are improved.
 特許文献4は、短時間の超音波処理により、養殖している魚類の病気を予防し感染を防止する疾病治療装置及び方法を開示し、特に高濃度溶存酸素水中で超音波を養殖魚に放射するとともに、ワクチン処理を施すものである。これにより、養殖魚に対して、ウイルス病予防の浸漬ワクチンを効率よく吸収させ、死亡率を改善するものである。 Patent Document 4 discloses a disease treatment apparatus and method for preventing disease and preventing infection by cultivating fish by short-time ultrasonic treatment, and in particular, radiating ultrasonic waves to cultured fish in high-concentration dissolved oxygen water. In addition, vaccine treatment is performed. As a result, the submerged vaccine for preventing viral diseases is efficiently absorbed into the cultured fish and the mortality rate is improved.
 さらに、特許文献5は超音波振動子として複数の圧電振動子を用いたもので、水産物を養殖している水面または水中に移動可能に位置する容器と、容器に取り付けられた複数の超音波振動子を有し、各超音波振動子は超音照射方向が互いに異なり、容器は、水面または水中で移動しながら、水産物に偏りなく超音波を放射する水産物養殖装置を開示している。さらに、音響インピーダンスが3MRayls以上、50MRayls以下の材質からなる材質の側面を持つ水槽を用いて、水産物を養殖する水産物養殖方法であって、注水された水槽中に、超音波振動子を有する水産物養殖装置を入れ、超音波振動子から超音波を発生させ、水中の水産物に超音波を放射する水産物養殖方法を開示している。 Further, Patent Document 5 uses a plurality of piezoelectric vibrators as ultrasonic vibrators, a water surface for culturing marine products or a container that is movably located in water, and a plurality of ultrasonic vibrations attached to the container. There is disclosed an aquaculture device that has a child, each ultrasonic vibrator has a different direction of ultrasonic irradiation, and the container emits ultrasonic waves without being biased toward the seafood while moving on the water surface or in water. Further, the present invention is an aquaculture method for culturing aquatic products using an aquarium having a side surface made of a material having an acoustic impedance of 3 MRayls or more and 50 MRayls or less, wherein the aquaculture has an ultrasonic vibrator in the poured water tank. An aquaculture method is disclosed in which a device is inserted, ultrasonic waves are generated from an ultrasonic transducer, and ultrasonic waves are emitted to the aquatic marine products.
特開平6-113694号公報Japanese Patent Laid-Open No. 6-113694 特表平6-503951号公報JP-T 6-503951 特開2002-119号公報JP 2002-119 A 特開2007-215475号公報JP 2007-215475 A WO2015/159757号公報WO2015 / 159757
 上記背景技術の特許文献1~4に開示された方法の場合、使用する超音波発生器は、超音波の放射方向を適宜変えて制御するものではなく、大形の養殖水槽中で超音波を幅広く均一に照射することができないという問題がある。さらに、特許文献3に開示された方法の場合、旋回式気泡発生装置を用いて20μm以下のマイクロバブルを発生させるものであるが、10~30MHzの超音波を安定して発生させることは困難である。また、超音波の放射方向を制御することが出来ない。さらに10MHz以上の超音波は、酸素の多い水中では容易に減衰し、その音響強度を保持することが難しいという問題もある。 In the case of the methods disclosed in Patent Documents 1 to 4 of the above background art, the ultrasonic generator to be used is not controlled by appropriately changing the direction of ultrasonic radiation, but ultrasonic waves are generated in a large aquaculture tank. There is a problem that it is not possible to irradiate widely and uniformly. Furthermore, in the case of the method disclosed in Patent Document 3, microbubbles of 20 μm or less are generated using a swirling bubble generator, but it is difficult to stably generate ultrasonic waves of 10 to 30 MHz. is there. In addition, the direction of ultrasonic radiation cannot be controlled. Furthermore, ultrasonic waves of 10 MHz or higher are easily attenuated in oxygen-rich water, and there is a problem that it is difficult to maintain the acoustic intensity.
 その他、低周波のスピーカを用いて水産物に音波を照射する方法もあるが、この場合、水中に支持棒に固定して浸漬させ音波を発生させるもので、その音波の方向を容易に変えることは出来ない。このために水槽内の魚に均一に幅広く音波を照射することは困難であり、水槽に音波照射装置を複数台設置する必要性があり、経済性が劣る。さらに、池や水槽の底部に集積する傾向の水産物であるヒラメ、エビ、貝類ではその効果が小さいという問題点がある。また、重要な音波振動回路部品が水中にあるために浸水の恐れがあり、装置の点検及び維持管理が困難である。 In addition, there is a method of irradiating seafood with sound waves using a low frequency speaker, but in this case, it is fixed to a support rod in water and immersed to generate sound waves, and the direction of the sound waves can be easily changed. I can't. For this reason, it is difficult to uniformly and widely irradiate the fish in the water tank with sound waves, and it is necessary to install a plurality of sound wave irradiation devices in the water tank, resulting in poor economic efficiency. Furthermore, flounder, shrimp, and shellfish, which are marine products that tend to accumulate at the bottom of ponds and aquariums, have a problem that their effects are small. In addition, since important acoustic vibration circuit components are in water, there is a risk of flooding, and it is difficult to check and maintain the apparatus.
 以上述べたように、これまで知られている音波や超音波照射による養殖装置や疾病予防装置は、実験用の0.5m以下の水槽や、1~100mの量産用の大形水槽や池、網で仕切られた海中に適応する際のいずれに適用した場合にも、種々の問題がある。例えば水槽の側面や底面に振動子や装置を固定して使用する場合は、図11に示すように、超音波振動子20から音響整合層22を介して外ケース12の外表面から照射される超音波は、その照射方向及び範囲が一定である。さらに、音響強度が、超音波振動子20が対面した方向にのみ強く、超音波振動子20から発振されたままの高強度音響波19が直接照射されてしまい、水槽内で音響強度を均一にすることが出来ないものである。また、水槽の隅や底部に集積した養殖魚29に対して、有効に且つ均一に超音波を放射することが出来ず、集積した他の養殖魚の影になって超音波が届かないこともある。 As described above, the aquaculture apparatus and the disease prevention apparatus that have been known so far by sonication and ultrasonic irradiation are used for an aquarium of 0.5 m 3 or less for experiments, a large aquarium for mass production of 1 to 100 m 3 , There are various problems when applied to either the pond or the sea divided by the net. For example, in the case of using a vibrator or device fixed to the side or bottom of the water tank, as shown in FIG. 11, the ultrasonic vibrator 20 irradiates from the outer surface of the outer case 12 via the acoustic matching layer 22. The irradiation direction and range of ultrasonic waves are constant. Furthermore, the acoustic intensity is strong only in the direction in which the ultrasonic transducer 20 faces, and the high-intensity acoustic wave 19 that is oscillated from the ultrasonic transducer 20 is directly irradiated, so that the acoustic intensity is made uniform in the water tank. It is something that cannot be done. In addition, ultrasonic waves cannot be effectively and uniformly emitted to the cultured fish 29 accumulated at the corners and bottom of the aquarium, and the ultrasonic waves may not reach the shadow of other accumulated cultured fish. .
 その他、これまでに報告されている養殖漁業に用いられている超音波は、その周波数が20KHz~100KHzであり、水中における波長は8cmから1.5cmと長く、魚の胴体部の平均直径が10cm以下の養殖魚や甲殻類の小形水産物、魚卵や稚魚を、音響波刺激を用いて効率よく増産するには適していない。 In addition, the ultrasonic wave used in the aquaculture fishery reported so far has a frequency of 20 KHz to 100 KHz, the wavelength in water is long from 8 cm to 1.5 cm, and the average diameter of the fish trunk is 10 cm or less. It is not suitable for efficient production of cultured fish, small fish of crustaceans, eggs and fry using acoustic wave stimulation.
 一方、特許文献5は、容器内での超音波振動子の配置角度を異なるものにして2枚以上配置した浮揚式の超音波水産物養殖装置を開示している。この装置は、水槽内にくまなく超音波を照射することができるが、超音波を水槽内で幅広くほぼ均一に分布させて照射することは困難であり、水槽内の超音波強度にバラツキが生じる問題が残る。 On the other hand, Patent Document 5 discloses a floating-type ultrasonic aquaculture device in which two or more ultrasonic transducers are arranged at different angles in a container. Although this device can irradiate ultrasonic waves all over the water tank, it is difficult to irradiate the ultrasonic waves widely and uniformly distributed in the water tank, resulting in variations in the ultrasonic intensity in the water tank. The problem remains.
 この発明は、上記背景技術の問題点に鑑みてなされたものであり、簡単な構造の装置により、音響波を水槽内で広範囲に照射して、養殖している魚類、甲殻類、貝類の抵抗力を向上させて生存率を向上させ収穫量を上げ、さらに再現性良くこれを行うことができる水産物養殖装置と水産物養殖システム及び水産物養殖方法を提供することを目的とする。 The present invention has been made in view of the problems of the above-described background art, and with a device having a simple structure, the resistance of fish, shellfish, and shellfish being cultivated by irradiating an acoustic wave over a wide area in an aquarium. An object of the present invention is to provide an aquaculture device, an aquaculture system, and an aquaculture method that can improve the power, improve the survival rate, increase the yield, and perform this with high reproducibility.
 はじめに、音波とは通常は20kHz以下、超音波とは20kHz以上と定義されている。一例として、基本波が例えば1MHzの超音波では基本の波長は1μsでその水中波長は約1.5mmである。しかしながら、パルス駆動を用いることで音波に近い、20kHz以下の音を作り出すことが出来る。例えばduty factorが20%でパルス繰り返し周波数(PRF)が1kHz(1ms)の超音波は、反応速度が遅い生体細胞に対しては1kHzの音波刺激を受けたのと同等な反応を示すと考えられる。生体細胞の反応速度は神経系統の伝達速度に近い数msであり、例えば1MHz超音波の波長の1μsの速さでは、生体細胞は追随出来ないと考えられる。本発明では、パルス駆動の超音波を用いた場合は、超音波を音響波という。 First, the sound wave is usually defined as 20 kHz or less, and the ultrasonic wave is defined as 20 kHz or more. As an example, when the fundamental wave is an ultrasonic wave of 1 MHz, for example, the fundamental wavelength is 1 μs and the underwater wavelength is about 1.5 mm. However, by using pulse drive, it is possible to create a sound of 20 kHz or less that is close to a sound wave. For example, it is considered that an ultrasonic wave having a duty factor of 20% and a pulse repetition frequency (PRF) of 1 kHz (1 ms) exhibits a response equivalent to that of receiving a 1 kHz sonic stimulus to a living cell having a slow reaction speed. . The reaction speed of the living cell is several ms close to the transmission speed of the nervous system. For example, it is considered that the living cell cannot follow at a speed of 1 μs of the wavelength of 1 MHz ultrasonic wave. In the present invention, when pulse-driven ultrasonic waves are used, the ultrasonic waves are referred to as acoustic waves.
 このような低強度パルス超音波(Low intensity pulse ultrasounds, LIPUS)の刺激により、特に動物の骨の生体細胞である骨芽細胞の増殖が活性化され、骨折治療が促進されることは医学界では良く知られている。本発明はこの原理を水産物の養殖に利用したものである。 In the medical community, the stimulation of such low-intensity pulsed ultrasound (Low intensity pulse ultrasounds, LIPUS) activates the proliferation of osteoblasts, especially living cells of animal bones, and promotes fracture treatment. Well known. The present invention utilizes this principle for aquaculture.
 本発明は、養殖している水産物に、音波及び超音波の少なくともいずれかである音響波を照射する水産物養殖装置であって、前記音響波を発生可能な超音波振動子と、この超音波振動子を駆動する駆動部と、前記超音波振動子及び前記駆動部を保持した外ケースとを備え、前記超音波振動子から発せられる高強度音響波が放射される前面側に、前記高強度音響波を拡散させるとともに、単位面積当たりの強度が前記高強度音響波よりも弱い低強度音響波に変換し広範囲に照射させる音響波散乱材料から成る音響波拡散層を備えた水産物養殖装置である。 The present invention relates to an aquaculture device that irradiates an aquaculture product with an acoustic wave that is at least one of a sound wave and an ultrasonic wave, an ultrasonic transducer capable of generating the acoustic wave, and the ultrasonic vibration A drive unit that drives a child; and an outer case that holds the ultrasonic transducer and the drive unit, and the high-intensity acoustic wave is disposed on a front side from which a high-intensity acoustic wave emitted from the ultrasonic transducer is radiated. An aquaculture device comprising an acoustic wave diffusion layer made of an acoustic wave scattering material that diffuses waves and converts them into low-intensity acoustic waves whose intensity per unit area is weaker than the high-intensity acoustic waves and irradiates a wide range.
 前記超音波振動子は圧電振動子であり、前記音響波拡散層は、気体及び気体を90体積%以上含む発泡樹脂を含む層により構成されるものである。前記発泡樹脂は、例えば発泡ポリスチレン、発泡ポリウレタン、または発泡ゴムである。 The ultrasonic vibrator is a piezoelectric vibrator, and the acoustic wave diffusion layer is composed of a layer containing a gas and a foamed resin containing 90% by volume or more of the gas. The foamed resin is, for example, foamed polystyrene, foamed polyurethane, or foamed rubber.
 前記音響波拡散層の前記音響波散乱材料は、多孔性の金属材料で構成されるものでも良い。例えば、前記音響波拡散層の前記音響波散乱材料は、多数の孔を有する金属材料や、金属製の網により構成され、その網目の大きさが、使用する超音波の水中波長λのλ~λ/10である。 The acoustic wave scattering material of the acoustic wave diffusion layer may be composed of a porous metal material. For example, the acoustic wave scattering material of the acoustic wave diffusion layer is composed of a metal material having a large number of holes or a metal mesh, and the mesh size is λ˜ λ / 10.
 前記音響波拡散層は、前記外ケース中または前記外ケース外の音響整合層の内部、または前記外ケースの外側に配置されたものである。 The acoustic wave diffusing layer is disposed in the outer case, inside the acoustic matching layer outside the outer case, or outside the outer case.
 さらに、前記圧電振動子と、媒体である淡水または海水との音響整合を取るための少なくとも2層の前記音響整合層が配置され、前記音響整合層の形状が、前記圧電振動子よりも大きいものでも良い。また、前記外ケースには、内部に少なくとも2種類の周波数を発生する円板、リング状、または矩形板の前記圧電振動子が配置され、前記超音波振動子の基本波周波数は、0.1MHz~10MHzの範囲である。 Further, at least two acoustic matching layers for achieving acoustic matching between the piezoelectric vibrator and a medium such as fresh water or seawater are arranged, and the shape of the acoustic matching layer is larger than that of the piezoelectric vibrator. But it ’s okay. Further, the outer case is provided with the piezoelectric vibrator of a disc, ring shape, or rectangular plate that generates at least two types of frequencies inside, and the fundamental frequency of the ultrasonic vibrator is 0.1 MHz. It is in the range of ~ 10 MHz.
 前記水産物養殖装置の超音波振動子は、鉛を用いない圧電材料を使用することが好ましい。前記超音波はパルス波であり、その繰り返し周波数は1000Hz~0.5Hz、Duty factorは10~60%である。さらに、これらの少なくとも1つの前記超音波振動子を、中空角錐容器の側面部に配置したものでも良い。 It is preferable that a piezoelectric material not using lead is used for the ultrasonic vibrator of the aquaculture apparatus. The ultrasonic wave is a pulse wave, the repetition frequency thereof is 1000 Hz to 0.5 Hz, and the Duty factor is 10 to 60%. Further, at least one of the ultrasonic transducers may be disposed on the side surface of the hollow pyramid container.
 また、着脱可能な携帯型電子機器、または可聴音の音楽、摂餌音、或いは遊泳音を発生させる音響発生装置を有するものでも良い。前記電源として充電式の電池を備え、前記駆動部は前記電池により動作可能であり、防水機能を有するとさらに良い。 Also, it may have a detachable portable electronic device or a sound generator that generates audible music, feeding sound, or swimming sound. It is further preferable that a rechargeable battery is provided as the power source, and the driving unit is operable by the battery and has a waterproof function.
 またこの発明は、前記水産物養殖装置を備え、水産物を収容可能で、海水または淡水を入れた水槽と、前記水槽の水面または水中の少なくともいずれかに、前記水産物養殖装置が設けられ、前記水槽中の水中に前記音響波を照射可能に設けられた水産物養殖システムである。 Further, the present invention includes the aquaculture device, can contain aquatic products, and is provided with the aquaculture device in a water tank containing seawater or fresh water, and at least one of the water surface and the water of the water tank, It is a marine product culture system provided so that the said acoustic wave can be irradiated in water.
 前記水槽内面は、表面積の少なくも80%以上に、前記音響波を反射及び散乱させるための音響波反射率が90%以上の音響波反射材料の音響波反射層が設けられている。さらに水槽内面または外面材料は、気体層及び気体を含む有機材料である発泡材料で構成されていると良い。 The inner surface of the water tank is provided with an acoustic wave reflection layer of an acoustic wave reflection material having an acoustic wave reflectivity of 90% or more for reflecting and scattering the acoustic wave at least 80% of the surface area. Furthermore, the water tank inner surface or outer surface material is good to be comprised with the foaming material which is an organic material containing a gas layer and gas.
 前記音響波反射材料はシートからなり、その少なくとも表面または裏面が有機フィルムで被覆され、その厚みが0.05~1.0mmであり、内面には90体積%以上の気体を含む有機材料を備えるものである。前記の音響波反射材料の表面の有機フィルムが、フッ素樹脂、PET、またはナイロンであり、内部に気体層または発泡ポリスチレン、発泡ポリウレタン、または発泡ゴムを含むものである。 The acoustic wave reflecting material is made of a sheet, and at least the front surface or the back surface thereof is coated with an organic film, the thickness thereof is 0.05 to 1.0 mm, and the inner surface includes an organic material containing 90% by volume or more of gas. Is. The organic film on the surface of the acoustic wave reflecting material is made of fluororesin, PET, or nylon, and contains a gas layer or foamed polystyrene, foamed polyurethane, or foamed rubber inside.
 さらに、前記水産物養殖システムは、直径0.01~10mmの空気バブルを水中に放出しながら使用すると良い。また、前記水槽中の海水または淡水の温度を2℃から30℃に設定可能な温度制御装置を備えるものである。 Furthermore, the aquaculture system may be used while releasing air bubbles having a diameter of 0.01 to 10 mm into the water. Moreover, the temperature control apparatus which can set the temperature of the seawater or fresh water in the said water tank from 2 degreeC to 30 degreeC is provided.
 またこの発明は、前記水産物養殖装置を用いる水産物養殖方法であって、前記水産物養殖装置を、水産物を収容可能で海水または淡水を入れた水槽中の水に浮かせて自由に揺動させ、前記水産物養殖装置から前記音響波を発生させて前記水槽の壁面で反射させ、水中の水前記産物に音響刺激を施す水産物養殖方法である。 Further, the present invention is an aquaculture method using the aquaculture device, wherein the aquaculture device is floated in water in an aquarium containing seafood and containing seawater or fresh water, and freely oscillated, It is an aquaculture method for generating acoustic waves from an aquaculture device and reflecting the acoustic waves on the wall surface of the aquarium so as to acoustically stimulate the product in the water.
 前記水産物養殖装置により、水中の前記水産物の総重量に対して20mW/kg~1W/kgの超音波強度(Isata)の超音波を与えて、前記水産物に音響波刺激を施して養殖を行うものである。さらに前記水産物養殖装置により、10~60分/日、1~7日/週、且つ1~50週間、連続または間欠的に、前記音響波を前記水中の水産物に照射するものである。 The marine product is cultivated by applying ultrasonic waves to the marine product by applying ultrasonic waves (Isata) with an ultrasonic intensity (Isata) of 20 mW / kg to 1 W / kg with respect to the total weight of the marine product in water. It is. Further, the aquatic product is irradiated with the acoustic wave continuously or intermittently for 10 to 60 minutes / day, 1 to 7 days / week, and 1 to 50 weeks.
 また、前記水産物養殖装置の可聴音のスピーカ、または携帯電話から水産物の活動を活発にする周波数と強度の前記音響波を出して養殖を行うものでも良い。前記水産物は、魚類、甲殻類の卵、稚魚及び成魚である。 Further, the cultivating may be performed by emitting the acoustic wave having a frequency and intensity that activates the activity of the seafood from an audible speaker of the seafood aquaculture device or a mobile phone. The marine products are fish, crustacean eggs, fry and adult fish.
 本発明の水産物養殖装置と水産物養殖システム及び水産物養殖方法は、軽量で小型の装置であって、簡単な構造で安価且つ安全に、水槽内で低強度音響波エネルギーを有効に、より均一に広い面積に照射することが出来る。これにより、超音波刺激の効果としての血流促進、骨成分の増強、成長率向上、生存率の向上、収穫量増加などを、効率的に広範囲に実現することが出来る。特に、疾病の治療と予防に重要な血液やリンパ液は、人体と同様に魚類でも主に骨の骨髄で製造されていると考えられているので、この発明の水産物養殖装置によれば、特に造血作用を有する背骨に有効に音響波を照射することができる。 The aquaculture device, the aquaculture system and the aquaculture method of the present invention are lightweight and small-sized devices that are simple and inexpensive and safe, effectively use low-intensity acoustic wave energy in the aquarium, and are evenly wide. The area can be irradiated. Thereby, blood flow promotion, bone component enhancement, growth rate improvement, survival rate improvement, yield increase, etc. can be efficiently and widely realized as an ultrasonic stimulation effect. In particular, blood and lymph that are important for the treatment and prevention of diseases are considered to be produced mainly by bone marrow in fish as well as in the human body. An acoustic wave can be effectively applied to the spine having an action.
 また本発明の水産物養殖装置と水産物養殖システム及び水産物養殖方法により、骨等に低強度音響波刺激を施し、水産物の生体の活性化と生命力の向上、ウイルス耐性向上、生存率向上等を実現して、養殖している水産物の収穫量増加を図ることができる。 In addition, with the aquaculture device, aquaculture system and aquaculture method of the present invention, low-intensity acoustic wave stimulation is applied to bones, etc., and the vitality and vitality of the aquatic products are improved, the virus resistance is improved, the survival rate is improved, etc. Therefore, it is possible to increase the yield of farmed marine products.
この発明の第一実施形態の水産物養殖装置の概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic of the aquaculture apparatus of 1st embodiment of this invention. 音響波強度を時間とともに変化させたグラフの概略図である。It is the schematic of the graph which changed the acoustic wave intensity with time. 音響波強度を時間とともに変化させ、パルス状に発振させたグラフで、周波数は一定で出力レベルを変化させたグラフである。It is a graph in which the acoustic wave intensity is changed with time and oscillated in a pulse shape, and the frequency is constant and the output level is changed. この発明の第二実施形態の水産物養殖装置と超音波ビーム及び水産物を示す概略図である。It is the schematic which shows the aquaculture apparatus, ultrasonic beam, and fishery product of 2nd embodiment of this invention. この発明の第三実施形態であって、2種類の異なる周波数を有する各2個の超音波振動子を取り付けた水産物養殖装置の外ケースを除いた状態の平面図(a)と、縦断面図(b)概略図である。The top view (a) of the state which remove | excluding the outer case of the marine product culture apparatus which was 2nd embodiment of this invention, and attached each two ultrasonic transducer | vibrators which have two different frequencies, and a longitudinal cross-sectional view (B) It is a schematic diagram. この発明の音響整合層と音響波拡散層の変形例を示すもので、2層の音響整合層を備えた水産物養殖装置の部分断面図(a)、音響整合層内に音響波拡散部を備えた水産物養殖装置の部分断面図(b)である。The modification of the acoustic matching layer of this invention and an acoustic wave diffusion layer is shown, The fragmentary sectional view (a) of the aquaculture apparatus provided with the two acoustic matching layers, The acoustic wave diffusion part is provided in the acoustic matching layer. It is a fragmentary sectional view (b) of the aquaculture apparatus. この発明の音響整合層と音響波拡散層の他の変形例を示すもので、外ケースに音響波拡散部を備えた水産物養殖装置の部分断面図(a)、音響整合層内に音響波拡散部を備えた水産物養殖装置の部分断面図(b)、音響整合層内に他の音響波拡散部を備えた水産物養殖装置の部分断面図(c)である。The other examples of the acoustic matching layer and the acoustic wave diffusion layer according to the present invention are shown, and a partial cross-sectional view (a) of an aquaculture device provided with an acoustic wave diffusion part in the outer case, acoustic wave diffusion in the acoustic matching layer It is a fragmentary sectional view (b) of an aquaculture device provided with a section, and a fragmentary sectional view (c) of an aquaculture device provided with another acoustic wave diffusion part in an acoustic matching layer. この発明の音響整合層と音響波拡散層の他の変形例を示すもので、外ケースの外側の音響波拡散層内に音響波拡散部を備えた水産物養殖装置の部分断面図(a)、外ケースの外側の音響波拡散層内に他の音響波拡散部を備えた水産物養殖装置の部分断面図(b)、外ケースの外側の音響波拡散層内に他の音響波拡散部を備えた水産物養殖装置の部分断面図(c)である。Another modification of the acoustic matching layer and the acoustic wave diffusion layer of the present invention is shown, and is a partial cross-sectional view (a) of an aquaculture device provided with an acoustic wave diffusion part in the acoustic wave diffusion layer outside the outer case, Partial cross-sectional view (b) of the aquaculture device provided with another acoustic wave diffusion part in the acoustic wave diffusion layer outside the outer case, and another acoustic wave diffusion part provided in the acoustic wave diffusion layer outside the outer case It is a fragmentary sectional view (c) of the aquaculture apparatus. この発明の第四実施形態の水産物養殖システムを示す概略図である。It is the schematic which shows the aquaculture system of 4th embodiment of this invention. この発明の第五実施形態であって、4角錐容器の側面に超音波振動子を設けた構造の水産物養殖装置を示す概略横断面図(a)と概略縦断面図(b)である。It is a 5th embodiment of this invention, and is a schematic cross-sectional view (a) and a schematic vertical cross-sectional view (b) showing an aquaculture apparatus having a structure in which an ultrasonic transducer is provided on the side surface of a quadrangular pyramid container. 従来の水産物装置において超音波照射ビームと水産物である養殖魚を示す模式図である。It is a schematic diagram which shows the cultured fish which is an ultrasonic irradiation beam and a marine product in the conventional marine product apparatus.
 以下、この発明の実施形態について図面に基づいて説明する。図1はこの発明の第一実施形態を示すもので、この実施形態の水産物養殖装置10は、基本的な構成を示し、水密構造の外ケース12を備え、その内部に基板14を有し、その上には駆動部15を構成する電池等の電源16及び制御回路17を有する。基板14の図示しない端子には、リード線18が接続され、超音波振動子20の図示しない端子に接続されている。超音波振動子20は、媒体との音響整合を取るための音響整合層22ととともに、図示しない保護フィルムを介して外ケース12に取り付けられ、外ケース12の表面から高強度音響波19が放射可能に設けられている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a first embodiment of the present invention. An aquaculture apparatus 10 according to this embodiment shows a basic configuration, includes a watertight outer case 12, and has a substrate 14 therein. A power source 16 such as a battery and a control circuit 17 constituting the driving unit 15 are provided thereon. A lead wire 18 is connected to a terminal (not shown) of the substrate 14 and connected to a terminal (not shown) of the ultrasonic transducer 20. The ultrasonic transducer 20 is attached to the outer case 12 via a protective film (not shown) together with an acoustic matching layer 22 for achieving acoustic matching with the medium, and a high-intensity acoustic wave 19 is emitted from the surface of the outer case 12. It is provided as possible.
 外ケース12の超音波振動子20が取り付けられた部分の外側には、音響波散乱材料により形成された音響波拡散層24が設けられている。音響波拡散層24は、水の音響インピーダンスとの差が大きいもので、多数の孔を有する金属部材や金網、空気を含む樹脂が好ましい。音響波拡散層24により、高強度音響波19が、相対的に単位面積当たりの強度が、高強度音響波19よりも弱い強度の低強度音響波21に制御され、広く拡散し広範囲に照射される。音響波散乱材料は、例えば金属製の多孔質材料や金網から構成され、多孔質材料の空隙の平均値や、金網の網目の大きさである目開きは、使用する超音波の水中波長λに対してλ~λ/10である。また、低音響インピーダンスの発泡樹脂を用いることも出来る。また、外ケース12の上部には、音響機器26を着脱自在に保持する固定可能な支持台28を備えていても良い。 An acoustic wave diffusion layer 24 formed of an acoustic wave scattering material is provided outside the portion of the outer case 12 where the ultrasonic transducer 20 is attached. The acoustic wave diffusion layer 24 has a large difference from the acoustic impedance of water, and is preferably a metal member having a large number of holes, a metal mesh, or a resin containing air. The acoustic wave diffusion layer 24 controls the high-intensity acoustic wave 19 to a low-intensity acoustic wave 21 whose intensity per unit area is relatively weaker than that of the high-intensity acoustic wave 19, and diffuses widely and is irradiated over a wide area. The The acoustic wave scattering material is composed of, for example, a metallic porous material or a metal mesh, and the average value of the voids of the porous material and the mesh size of the mesh of the metal mesh are determined by the underwater wavelength λ of the ultrasonic wave to be used. In contrast, λ to λ / 10. Also, a low acoustic impedance foamed resin can be used. Further, a fixed support base 28 for detachably holding the acoustic device 26 may be provided on the upper portion of the outer case 12.
 超音波振動子20は、電圧を加えると振動して超音波を発振する圧電素子であり、厚み振動や広がり振動を用いる。発振する超音波の共振周波数は、0.1MHz以上、10MHz以下である。しかしながら、超音波振動子20は基本波の周波数成分のみならず、その高調波も発生しており、これらも有効に利用される。超音波振動子20の圧電素子は、主に電気機械結合係数が大きく、安価に入手出来るPZT系セラミックス振動子が選択される。また、高性能のリラクサ系の圧電単結晶を用いることも出来る。しかしながら、これらの鉛系圧電振動子は環境に影響を与える酸化鉛を50%以上含むため、装置が壊れた場合には回収して適当な処理を行う必要性がある。従って、ニオブ酸アルカリ塩を主体とするセラミックス材料や水晶、リチウムタンタレート単結晶、リチウムナイオベート単結晶などの非鉛系圧電材料を用いると良い。超音波振動子20は、照射方向とは反対側の面に、医用画像診断装置のプローブで通常に用いられている図示しない音響バッキング層や、放熱用のリードなどが設けられていても良い。 The ultrasonic vibrator 20 is a piezoelectric element that vibrates when a voltage is applied to oscillate ultrasonic waves, and uses thickness vibration or spread vibration. The resonance frequency of the oscillating ultrasonic wave is 0.1 MHz or more and 10 MHz or less. However, the ultrasonic transducer 20 generates not only the frequency component of the fundamental wave but also its harmonics, which are also effectively used. As the piezoelectric element of the ultrasonic vibrator 20, a PZT ceramic vibrator which has a large electromechanical coupling coefficient and can be obtained at low cost is selected. A high-performance relaxor-type piezoelectric single crystal can also be used. However, since these lead-based piezoelectric vibrators contain 50% or more of lead oxide that affects the environment, it is necessary to recover and perform appropriate processing when the device is broken. Therefore, it is preferable to use a lead-free piezoelectric material such as a ceramic material mainly composed of alkali niobate, quartz, lithium tantalate single crystal, or lithium niobate single crystal. The ultrasonic transducer 20 may be provided on the surface opposite to the irradiation direction with an acoustic backing layer (not shown) that is normally used in a probe of a medical diagnostic imaging apparatus, a heat radiation lead, or the like.
 この実施形態の水産物養殖装置10の使用方法は、図1に示すように、水産物である養殖魚29の入った水槽内(図示せず)に、出来るだけ広範囲に均一に低強度音響波21が照射されるように、音響波拡散層24を用いてその強度を分散し、更に水槽及び水面からの反射波を利用して水産物に低強度音響波刺激を行う。 As shown in FIG. 1, the method for using the aquaculture apparatus 10 of this embodiment is as follows. A low-intensity acoustic wave 21 is uniformly distributed over a wide area as much as possible in a tank (not shown) containing aquaculture fish 29 as a marine product. In order to irradiate, the acoustic wave diffusion layer 24 is used to disperse its intensity, and further, a low-intensity acoustic wave stimulation is performed on the fishery product using reflected waves from the water tank and the water surface.
 水産物養殖装置10の使用時の音響波強度は適宜設定することができ、例えば図2に示すように、時間とともに徐々に強度を上げた後、緩やかに強度を落とすようにしても良く、図3に示すように、パルス状に発振を行い、緩やかに音響波の強度を上げて、同様に緩やかに強度を落とすように照射しても良い。さらに、音響波強度の変化は、使用する超音波パルスの繰り返し周波数(PRF)を変化させたり、振幅を時間とともに変更しても良い。特に、発振する超音波を図3に示すように変化させ、周波数が一定で出力レベルを変化させることにより、結晶成長の原理を利用して骨や筋肉の成長を高める効果を有する。 The acoustic wave intensity at the time of using the aquaculture apparatus 10 can be appropriately set. For example, as shown in FIG. 2, the intensity may be gradually increased with time and then gradually decreased. As shown in FIG. 4, the irradiation may be performed so that the oscillation is performed in a pulse shape, the intensity of the acoustic wave is gradually increased, and the intensity is gradually decreased similarly. Furthermore, the change of the acoustic wave intensity may change the repetition frequency (PRF) of the ultrasonic pulse to be used or change the amplitude with time. In particular, by changing the oscillating ultrasonic wave as shown in FIG. 3 and changing the output level with a constant frequency, there is an effect of enhancing the growth of bones and muscles using the principle of crystal growth.
 なお、この水産物養殖装置10による低強度音響波21の照射範囲を制御するために、医療用超音波診断装置の超音波プローブに用いられるような原理を利用して音響レンズ等を用いてもよい。この場合は水よりも音速が大きなアクリル樹脂などを用いて凸面形状とすることが望ましい。超音波は、照射を間欠的に行うパルス波を用いることが好ましい。パルス波は、例えば周期0.001~2秒(周波数が0.1KHzから0.5Hz)でDuty factorが10~60%の音響波を使用する。超音波の波形は、サイン波や矩形波、三角波など各種の波形の超音波を用いることができる。しかしながら好ましくは、そのPRFが心臓パルスに近い周期0.5~2秒(2Hzから0.5Hz)、Duty factorは10~50%が良い。特に好ましいPRFは、心拍数に近い周期1秒(1Hz)前後から、骨折治療促進で利用実績のある周期1ms(1000Hz)前後で、音楽などの可聴音を組み合わせて使用することである。この範囲のPRF、及びDuty factorを用いることで水産物の生体細胞を短期間でより活性化させることが出来る。 In order to control the irradiation range of the low-intensity acoustic wave 21 by the aquaculture apparatus 10, an acoustic lens or the like may be used by utilizing the principle used in an ultrasonic probe of a medical ultrasonic diagnostic apparatus. . In this case, it is desirable to use a convex shape using an acrylic resin having a sound speed higher than that of water. The ultrasonic wave is preferably a pulse wave that is irradiated intermittently. As the pulse wave, for example, an acoustic wave having a cycle of 0.001 to 2 seconds (frequency is 0.1 KHz to 0.5 Hz) and a Duty factor of 10 to 60% is used. As the waveform of the ultrasonic wave, ultrasonic waves having various waveforms such as a sine wave, a rectangular wave, and a triangular wave can be used. However, it is preferable that the PRF has a period close to the heart pulse of 0.5 to 2 seconds (2 Hz to 0.5 Hz), and the Duty factor is 10 to 50%. A particularly preferred PRF is to use a combination of audible sounds such as music from a period of about 1 second (1 Hz) close to the heart rate to a period of about 1 ms (1000 Hz) with a proven track record in promoting fracture treatment. By using PRF and Duty factor in this range, it is possible to activate biological cells of fishery products in a short period of time.
 低強度音響波21の超音波強度(Isata)は、その水産物の総重量あたり20mW/kgから1W/kgで良い。20mW/kg以下では、骨や皮膚、筋肉に関連した成長や修復、活性化、生存率に与える効果が30週間以上経過後でも極めて小さい。また1W/kg以上では、長時間の暴露では水産物に有害である恐れがあるばかりでなく、装置が大型化するためである。好ましくは、この水産物養殖装置10の音響強度は、水産物の総重量あたり50~300mW/kgである。 The ultrasonic intensity (Isata) of the low-intensity acoustic wave 21 may be 20 mW / kg to 1 W / kg per total weight of the marine product. Below 20 mW / kg, the effect on growth, repair, activation and survival related to bone, skin and muscle is very small even after 30 weeks or more. Further, at 1 W / kg or more, not only is there a possibility that it will be harmful to marine products when exposed for a long time, but also the size of the apparatus increases. Preferably, the acoustic intensity of the aquaculture device 10 is 50 to 300 mW / kg per total weight of the aquatic product.
 水産物養殖装置10に、更に20~2000Hzの可聴音を発生するスピーカ等の音波装置が設けられてもよい。この可聴音は音楽や摂餌音、遊泳音が適当である。また、水産物養殖装置10に、積算時間計、稼働点滅表示、警報音、通信機能及びビデオ、水産物の異常確認用カメラ、音波発生用スピーカなどの機能をつけておいても良い。 The seafood aquaculture apparatus 10 may be further provided with a sound device such as a speaker that generates an audible sound of 20 to 2000 Hz. As this audible sound, music, feeding sound and swimming sound are suitable. Further, the aquaculture device 10 may be provided with functions such as an integrated time meter, operation blinking display, alarm sound, communication function and video, a fish abnormality confirmation camera, and a sound wave generation speaker.
 これらの装置から放射された音響波は水産物内部の軟組織である皮膚、脂肪、筋肉を通過し、大部分は硬組織である骨に到達し、骨に伝達されて減衰し、熱エネルギーに変換される。これにより、骨に刺激を与え、骨芽細胞等の増植に貢献する。可聴音の音楽等を出すスピーカから出される摂餌音、遊泳音などにより、必要な運動量を増加させ肉質改善を行うことも可能であり、種々の使い方が可能である。 The acoustic waves radiated from these devices pass through the soft tissues, skin, fat, and muscles inside the seafood, and most of them reach the bones, which are hard tissues, transmitted to the bones, attenuated, and converted into thermal energy. The This stimulates the bone and contributes to the expansion of osteoblasts. It is possible to increase the required amount of exercise and improve the meat quality by using foraging sounds, swimming sounds, etc. emitted from a speaker that produces audible music, etc., and various uses are possible.
 次に、この発明の第二実施形態の水産物養殖装置30について。図4を基にして説明するここで、上記実施形態と同様の構成は、同一の符号を付して説明を省略する。図4はこの実施形態の水産物養殖装置30の音響波を水産物である養殖魚29に照射した状態の模式図を示す。この実施形態の水産物養殖装置30の構造は、外ケース12の内面に、超音波振動子20が、第一音響整合層31、第二音響整合層32を介して固定されている。第2音響整合層32の内部には、超音波振動子20と対面するように、音響波散乱材料により構成され、高強度音響波を拡散させるとともに単位面積当たりの強度が弱い低強度音響波21に変換し、均一に大面積に照射させる音響波拡散部34が設けられている。この実施形態では、音響波拡散部34を備えた第二音響整合層32が、音響波拡散層36を構成している。 Next, the aquaculture apparatus 30 according to the second embodiment of the present invention. The description will be made based on FIG. 4. The same components as those in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted. FIG. 4 is a schematic diagram showing a state in which an acoustic wave of the aquaculture device 30 of this embodiment is irradiated to the cultured fish 29 that is a marine product. In the structure of the aquaculture device 30 of this embodiment, the ultrasonic transducer 20 is fixed to the inner surface of the outer case 12 via a first acoustic matching layer 31 and a second acoustic matching layer 32. The second acoustic matching layer 32 is made of an acoustic wave scattering material so as to face the ultrasonic transducer 20 and diffuses a high-intensity acoustic wave and has a low intensity per unit area. An acoustic wave diffusing unit 34 is provided for converting to a uniform area and irradiating a large area uniformly. In this embodiment, the second acoustic matching layer 32 provided with the acoustic wave diffusion unit 34 constitutes the acoustic wave diffusion layer 36.
 この実施形態の水産物養殖装置30によっても、超音波振動子20から発せられる高強度音響波が放射される前面に、音響波拡散層36を備えているため、超音波振動子20の直下以外の水産物に対しても必要十分な音響波刺激を行うことが出来る。さらに、音響波拡散層36が外ケース12の内側にあるので、水産物養殖装置30の外表面をすっきりさせることができる。 Also in the aquaculture apparatus 30 of this embodiment, since the acoustic wave diffusion layer 36 is provided on the front surface from which the high-intensity acoustic wave emitted from the ultrasonic transducer 20 is radiated, other than directly below the ultrasonic transducer 20 Necessary and sufficient acoustic wave stimulation can be performed for seafood. Furthermore, since the acoustic wave diffusion layer 36 is inside the outer case 12, the outer surface of the aquaculture device 30 can be cleaned.
 次に、この発明の第三実施形態の水産物養殖装置40について図5を基にして説明する。ここで、上記実施形態と同様の構成は、同一の符号を付して説明を省略する。図5に示す実施形態の水産物養殖装置40は、2種類の異なる周波数を有する各2対の超音波振動子41,42を有し、さらに可聴音の音楽等を出すスピーカ44が取り付けられたものである。この装置の外ケース46の外側の面には、音響波拡散層48が設けられている。音響波拡散部層48は、音響波散乱材料の樹脂材料や金網から成るもので、その内部に、超音波振動子41,42に各々対応した二対の音響波散乱材料からなる音響波拡散部49が設けられている。二対の音響波拡散部49は、互いに異なる所定の向きに設定されている。 Next, an aquaculture apparatus 40 according to a third embodiment of the present invention will be described with reference to FIG. Here, the same components as those in the above embodiment are denoted by the same reference numerals and description thereof is omitted. The aquaculture apparatus 40 according to the embodiment shown in FIG. 5 has two pairs of ultrasonic transducers 41 and 42 each having two different frequencies, and is further provided with a speaker 44 that outputs audible music and the like. It is. An acoustic wave diffusion layer 48 is provided on the outer surface of the outer case 46 of this apparatus. The acoustic wave diffusing part layer 48 is made of a resin material or a wire mesh of an acoustic wave scattering material, and an acoustic wave diffusing part made of two pairs of acoustic wave scattering materials respectively corresponding to the ultrasonic transducers 41 and 42 therein. 49 is provided. The two pairs of acoustic wave diffusion portions 49 are set in different predetermined directions.
 音響波拡散層48は、その材質、形状を変えることで、指向性の強い高強度音響波を制御して散乱・拡散させ、広い範囲に弱くした低強度音響波を養殖魚等の水産物に照射することができる。さらに、音響波拡散部49の形状、位置及び、数量を各々変えることによっても、指向性の強い高強度音響波を拡散させて、広い範囲で水産物に低強度音響波刺激を行うことができる。 The acoustic wave diffusing layer 48 changes its material and shape to control and scatter and diffuse high-directivity high-intensity acoustic waves and irradiate fishery products such as cultured fish with low-intensity acoustic waves weakened over a wide area. can do. Furthermore, by changing the shape, position, and quantity of the acoustic wave diffusing unit 49, it is possible to diffuse high-intensity acoustic waves with strong directivity and perform low-intensity acoustic wave stimulation on fishery products in a wide range.
 次に、この発明の水産物養殖装置に用いられる超音波振動子と音響整合層、外ケース、及び音響波拡散層の組み合わせ例について、図6~図8を基にして説明する。ここで、上記実施形態と同様の構成は、同一の符号を付して説明を省略する。 Next, an example of a combination of an ultrasonic transducer, an acoustic matching layer, an outer case, and an acoustic wave diffusion layer used in the aquaculture apparatus of the present invention will be described with reference to FIGS. Here, the same components as those in the above embodiment are denoted by the same reference numerals and description thereof is omitted.
 図6(a)に示す水産物養殖装置50は、リング状の圧電振動子20を用いたもので、外形状が圧電振動子20よりも大きな第一音響整合層31、第二音響整合層32を介して外ケース12の内部に圧電振動子20が取り付けられているものである。この水産物養殖装置50は、第一音響整合層31または第二音響整合層32が音響波拡散層を兼ねているものである。 The aquaculture apparatus 50 shown in FIG. 6 (a) uses a ring-shaped piezoelectric vibrator 20, and includes a first acoustic matching layer 31 and a second acoustic matching layer 32 whose outer shape is larger than that of the piezoelectric vibrator 20. The piezoelectric vibrator 20 is attached to the inside of the outer case 12. In this aquaculture device 50, the first acoustic matching layer 31 or the second acoustic matching layer 32 also serves as an acoustic wave diffusion layer.
 図6(b)に示す水産物養殖装置52は、円板状の圧電振動子20を用いたもので、外形状が圧電振動子20と等しい音響整合層22を介して圧電振動子20が外ケース12の内部に取り付けられているものである。この水産物養殖装置52は、音響整合層22の内部に音響波拡散部49の空洞を備えている。空洞には発泡樹脂や金属が設けられていても良い。 The fish culture device 52 shown in FIG. 6B uses a disk-shaped piezoelectric vibrator 20, and the piezoelectric vibrator 20 is placed in an outer case via an acoustic matching layer 22 whose outer shape is equal to the piezoelectric vibrator 20. 12 is attached inside. This aquaculture device 52 includes a cavity of an acoustic wave diffusion portion 49 inside the acoustic matching layer 22. The cavity may be provided with foamed resin or metal.
 図7(a)に示す水産物養殖装置54は、外形状が圧電振動子20よりも大きな第一音響整合層31、第二音響整合層32を介して外ケース12の内部に圧電振動子20が取り付けられているものである。水産物養殖装置54は、外ケース12に予め音響波拡散部49である凹部を形成し、第二音響整合層32が接合された状態で、空洞が複数個形成されるようにしたものである。音響波拡散部49である空洞には、発泡樹脂が充填されていても良い。 In the aquaculture device 54 shown in FIG. 7A, the piezoelectric vibrator 20 is placed inside the outer case 12 via the first acoustic matching layer 31 and the second acoustic matching layer 32 whose outer shape is larger than that of the piezoelectric vibrator 20. It is what is attached. The aquaculture device 54 is configured such that a concave portion that is an acoustic wave diffusion portion 49 is formed in the outer case 12 in advance, and a plurality of cavities are formed in a state where the second acoustic matching layer 32 is joined. The cavity that is the acoustic wave diffusion portion 49 may be filled with foamed resin.
 図7(b)に示す水産物養殖装置56も、外形状が圧電振動子20よりも大きな第一音響整合層31、第二音響整合層32を介して外ケース12の内部に圧電振動子20が取り付けられているもので、第二音響整合層32の内部に音響波拡散部49である複数の異なる形状の空洞が設けられているものである。空洞には、発泡樹脂が充填されていても良い。 The aquaculture apparatus 56 shown in FIG. 7B also has the piezoelectric vibrator 20 inside the outer case 12 via the first acoustic matching layer 31 and the second acoustic matching layer 32 whose outer shape is larger than that of the piezoelectric vibrator 20. A plurality of differently shaped cavities that are acoustic wave diffusion portions 49 are provided inside the second acoustic matching layer 32. The cavity may be filled with foamed resin.
 図7(c)に示す水産物養殖装置58も、外形状が圧電振動子20よりも大きな第一音響整合層31、第二音響整合層32を介して外ケース12の内部に圧電振動子20が取り付けられているもので、第二音響整合層32の内部に音響波拡散部49である金網59が配置されたものである。 In the aquaculture device 58 shown in FIG. 7C, the piezoelectric vibrator 20 is also provided inside the outer case 12 via the first acoustic matching layer 31 and the second acoustic matching layer 32 whose outer shape is larger than that of the piezoelectric vibrator 20. The wire net 59 which is the acoustic wave diffusion part 49 is arrange | positioned inside the 2nd acoustic matching layer 32 by being attached.
 図8(a)に示す水産物養殖装置54は、外形状が圧電振動子20よりも大きな第一音響整合層31、第二音響整合層32を介して、外ケース12の内部に圧電振動子20が取り付けられているものである。水産物養殖装置60は、外ケース12の外部に音響波拡散層24が設けられ、その内部に音響波拡散部49である金網59が設けられたものである。 The aquaculture apparatus 54 shown in FIG. 8A has the piezoelectric vibrator 20 inside the outer case 12 via the first acoustic matching layer 31 and the second acoustic matching layer 32 whose outer shape is larger than that of the piezoelectric vibrator 20. Is attached. In the aquaculture apparatus 60, the acoustic wave diffusion layer 24 is provided outside the outer case 12, and the wire mesh 59 as the acoustic wave diffusion part 49 is provided therein.
 図8(b)に示す水産物養殖装置62も、外形状が圧電振動子20よりも大きな第一音響整合層31、第二音響整合層32を介して、外ケース12の内部に圧電振動子20が取り付けられ、外ケース12の外部に音響波拡散層24が設けられ、その内部に音響波拡散部49である樹脂部材61が設けられたものである。 The aquaculture apparatus 62 shown in FIG. 8B also has the piezoelectric vibrator 20 inside the outer case 12 via the first acoustic matching layer 31 and the second acoustic matching layer 32 whose outer shape is larger than that of the piezoelectric vibrator 20. The acoustic wave diffusion layer 24 is provided outside the outer case 12, and the resin member 61 that is the acoustic wave diffusion part 49 is provided therein.
 図8(c)に示す水産物養殖装置64は、リング状の圧電振動子20が設けられ、外形状が圧電振動子20よりも大きな音響整合層22を介して、外ケース12の内部に圧電振動子20が取り付けられ、外ケース12の外部には、音響波拡散層24が設けられている。音響波拡散層24には、フレネル構造に樹脂が突出した突部24aが形成されている。 The aquaculture apparatus 64 shown in FIG. 8C is provided with a ring-shaped piezoelectric vibrator 20 and has a piezoelectric vibration inside the outer case 12 via an acoustic matching layer 22 whose outer shape is larger than that of the piezoelectric vibrator 20. A child 20 is attached, and an acoustic wave diffusion layer 24 is provided outside the outer case 12. The acoustic wave diffusion layer 24 is formed with a protrusion 24a in which a resin protrudes into the Fresnel structure.
 これらの音響波拡散層24中の音響波散乱材料の材質、形状、数量、配置を変化させることで超音波振動子20から発せられた高強度音響波を容易に低強度音響波に変換し、広い面積に超音波を均一に放射させることが可能となる。このために養殖魚等の水産物に過度の音響強度の音響波を照射することなく、更に必要な超音波振動子20の数量を減少させることが出来る。これらの音響波拡散層24中の音響波散乱材料は、金属の場合、通常のMC加工やプレス成型のみならず、3次元成型装置を用いて容易に作製することが出来る。また、更なる低コスト化のために外ケースを成型する際に同時に同一材料を用いて音響波拡散層24、音響波散乱材料による音響波拡散部49の一部を作製することも出来る。 By changing the material, shape, quantity, and arrangement of the acoustic wave scattering material in these acoustic wave diffusion layers 24, the high-intensity acoustic wave emitted from the ultrasonic transducer 20 is easily converted into the low-intensity acoustic wave, It becomes possible to radiate ultrasonic waves uniformly over a wide area. For this reason, the quantity of the ultrasonic transducer | vibrator 20 required further can be reduced, without irradiating the acoustic wave of excessive acoustic intensity to fishery products, such as cultured fish. In the case where the acoustic wave scattering material in the acoustic wave diffusion layer 24 is a metal, it can be easily produced using not only ordinary MC processing and press molding but also a three-dimensional molding apparatus. In order to further reduce costs, the acoustic wave diffusion layer 24 and a part of the acoustic wave diffusion portion 49 made of the acoustic wave scattering material can be produced using the same material at the same time when the outer case is molded.
 次に、この発明の第四実施形態の水産物養殖システム70及び水産物養殖方法について。図9を基にして説明する。ここで、上記実施形態と同様の部材は同一の符号を付して説明を省略する。図9は、水槽72中で、上記第一実施形態の水産物養殖装置10と同様の構造であって、照射方向が異なる複数の超音波振動子20を備えた水産物養殖装置74を浮揚または固定して、水産物である養殖魚29に対して音響波刺激を行うものである。浮揚する水産物養殖装置74は、超音波振動子20の音響波放射面が水面に対して3~30°の傾きをもつように、水産物養殖装置74の重心がオフバランスされて調節されていることが好ましい。 Next, an aquaculture system 70 and an aquaculture method according to the fourth embodiment of the present invention. A description will be given with reference to FIG. Here, the same members as those in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted. FIG. 9 shows a structure similar to that of the aquaculture device 10 of the first embodiment, and floats or fixes an aquaculture device 74 including a plurality of ultrasonic transducers 20 having different irradiation directions in the aquarium 72. Thus, acoustic wave stimulation is performed on the cultured fish 29 that is a marine product. The floating aquaculture device 74 is adjusted so that the center of gravity of the aquaculture device 74 is off-balanced so that the acoustic wave radiation surface of the ultrasonic transducer 20 has an inclination of 3 to 30 ° with respect to the water surface. Is preferred.
 この実施形態の水産物養殖システム70の使用方法は、図9に示すよう、水産物養殖装置74を水槽72の水に浮かべ、超音波振動子20から水中に向けて高強度音響波を照射しこれを音響波拡散層24で低強度音響波21に変換される。水槽72の底面や側面、水面での音響波の乱反射を有効に利用しながら水産物である養殖魚29に出来るだけ均一に低強度音響波21を照射するものである。 As shown in FIG. 9, the aquaculture system 70 of this embodiment is used by floating an aquaculture device 74 on the water in a water tank 72 and irradiating it with high-intensity acoustic waves from the ultrasonic transducer 20 toward the water. The acoustic wave diffusion layer 24 converts it to a low intensity acoustic wave 21. The low intensity acoustic wave 21 is irradiated as uniformly as possible to the cultured fish 29 which is a marine product, while effectively utilizing the irregular reflection of the acoustic wave on the bottom and side surfaces of the water tank 72 and the water surface.
 水槽72の内面である側面及び底面の80%以上の面積には、気体を含む音響波反射層76を取り付けられている。音響波反射層76は、気体を90~99体積%含む発泡樹脂から成る音響波反射材料である。このような音響波反射材料を用いることで、低強度音響波21の90%以上を有効に反射させ、効果的に養殖魚29に照射することが出来る。また、音響波反射層76の材料としては、塩化ビニル樹脂、PET、EVA、またはゴムであって内部に気体層を含むものが好ましい。また薄いシートやフィルムからなり、その少なくとも表面または裏面が有機フィルムで被覆され、その厚みが0.05~1.0mmであり、内面には90体積%以上の気体を含む有機材料を用いることも出来る。 An acoustic wave reflection layer 76 containing a gas is attached to an area of 80% or more of the side surface and the bottom surface that are the inner surface of the water tank 72. The acoustic wave reflection layer 76 is an acoustic wave reflection material made of a foamed resin containing 90 to 99% by volume of gas. By using such an acoustic wave reflecting material, 90% or more of the low-intensity acoustic wave 21 can be effectively reflected and irradiated to the cultured fish 29 effectively. The material for the acoustic wave reflection layer 76 is preferably a vinyl chloride resin, PET, EVA, or rubber that includes a gas layer inside. Further, it is made of a thin sheet or film, and at least the front or back surface thereof is covered with an organic film, the thickness thereof is 0.05 to 1.0 mm, and an organic material containing 90% by volume or more of gas is used on the inner surface. I can do it.
 この実施形態では、水槽72の底面から水78の水面までの高さが0.1~10mである水槽72中にある養殖魚29等の水産物に、低強度音響波刺激を与えるものである。水面までの高さが0.1m以下では、装置を入れるための十分な深さが取れず、更に小型の魚類でもその全身を入れるには十分な深さがとれない。またまた、10m以上では音響波の効果が音響減衰により弱くなるためである。最適な深さは装置を浮揚させて使用しやすい0.2~1.0mである。 In this embodiment, low-intensity acoustic wave stimulation is given to marine products such as the cultured fish 29 in the water tank 72 whose height from the bottom surface of the water tank 72 to the water surface of the water 78 is 0.1 to 10 m. If the height to the water surface is 0.1 m or less, it is not possible to obtain a sufficient depth to contain the device, and even a small fish cannot have a sufficient depth to contain the whole body. Moreover, it is because the effect of an acoustic wave becomes weak by acoustic attenuation above 10 m. The optimum depth is 0.2 to 1.0 m, which is easy to use by levitating the device.
 使用する超音波はその周波数が0.1~10MHzで選択できるが、水産物表面から10cm以上の深部に位置する骨に音響波パワーを送るためには0.1~2MHzが適しており、表面から3cm以下の骨や筋肉、魚卵などを刺激するのであれば2~10MHzが適している。より好ましくはこれらの周波数を組み合わせて、シリーズに使用する。また、使用する超音波振動子の周波数が10MHz以上では空気の多い水中や水産物中での減衰が大きくなり、必要な音響波強度を得ることが困難となる。水槽72は、音響インピーダンスが海水または淡水の音響インピーダンスよりも十分に低い発泡樹脂からなる底面及び側面であれば良く、発泡ポリスチレンや樹脂の間に空気層を設けた材料などが軽量であり、使用出来る。 The ultrasonic wave to be used can be selected at a frequency of 0.1 to 10 MHz, but 0.1 to 2 MHz is suitable for sending acoustic wave power to bone located at a depth of 10 cm or more from the surface of the seafood. 2 to 10 MHz is suitable for stimulating bones and muscles of 3 cm or less, fish eggs, and the like. More preferably, these frequencies are combined and used in the series. In addition, when the frequency of the ultrasonic transducer to be used is 10 MHz or more, attenuation in a lot of air or in aquatic products becomes large, and it becomes difficult to obtain a necessary acoustic wave intensity. The water tank 72 only needs to have a bottom surface and a side surface made of a foamed resin whose acoustic impedance is sufficiently lower than that of seawater or fresh water, and a lightweight material such as foamed polystyrene or a material provided with an air layer between the resins is used. I can do it.
 水産物養殖装置74の音響波を発生する間隔は、例えば、10~60分/日、1~7回/週、1~50週間連続して行う。10分以下の短時間では水産物養殖の効果が小さく、一つの水槽72に60分以上照射しても効果は大きく変わらない。照射頻度は1~7回/週、更に好ましくは3~5回/週である。また照射期間は小型の魚や魚卵の場合などは数日程度でも有効であるが、好ましくは30週以上の長期間である。また、水槽72は、水温が2~30℃の範囲で温度制御装置により適宜設定可能に設けられている。2℃以下では水産物の活動が低下し、30℃以上では多くの水産物の生存率が低下するためである。 The interval for generating the acoustic wave of the aquaculture device 74 is, for example, 10 to 60 minutes / day, 1 to 7 times / week, for 1 to 50 weeks continuously. In a short time of 10 minutes or less, the effect of aquaculture is small, and even if one water tank 72 is irradiated for 60 minutes or more, the effect does not change greatly. The irradiation frequency is 1 to 7 times / week, more preferably 3 to 5 times / week. The irradiation period is effective for several days in the case of small fish or eggs, but is preferably a long period of 30 weeks or longer. The water tank 72 is provided so that the water temperature can be appropriately set by a temperature control device in the range of 2 to 30 ° C. This is because the activity of marine products decreases at 2 ° C. or lower, and the survival rate of many marine products decreases at 30 ° C. or higher.
 水に浮かべる水産物養殖装置74は、水槽72の液面の揺動により前後左右に移動したり、揺動して傾きが変わったりして、超音波振動子20と音響波拡散層24の位置と角度が絶えず変化し、更に音響波拡散層24の効果により養殖魚29等の水産物に対して偏りなく低強度音響波21を照射する。この水産物養殖システムは、直径0.01~10mmの空気バブルを水中に放出しながら使用しても良い。 The aquaculture device 74 floating on the water moves back and forth and left and right due to the swing of the liquid level of the aquarium 72, or swings and changes its inclination, so that the position of the ultrasonic transducer 20 and the acoustic wave diffusion layer 24 is changed. The angle changes constantly, and the low-intensity acoustic wave 21 is irradiated evenly to the marine products such as the cultured fish 29 by the effect of the acoustic wave diffusion layer 24. This aquaculture system may be used while releasing air bubbles having a diameter of 0.01 to 10 mm into the water.
 この実施形態の水産物養殖システム70及び水産物養殖方法によれば、簡単な構造の水産物養殖装置74により、低強度音響波21の放射方向を自由に変化させながら、養殖魚29等の水産物に音響波刺激を均一に与え、更に水槽72の底面、側面及び水面からの音響波の乱反射を利用して水槽中の水産物に幅広くほぼ均一に低強度音響波刺激を与えることが可能となる。更に水槽72以外の大形のいけすでも使用することが出来、水産物養殖装置74の数量を増加したり、水産物養殖装置74を一時的に固定式にして水槽72に取り付けたり、水中に固定しても同様な効果が得られる。さらに、これらの装置を用いることで大型いけす内の魚類に対しても同時に、且つ均一に低強度音響波刺激を行うことが可能となる。また、水産物養殖装置74は、重量を0.2~10kgの小型の形状に製造することが出来、女性や高齢者でも容易に運搬可能であり、不使用時には水槽から取り出して容易に保管、点検、充電及び清掃することができる。このために量産しやすいばかりでなく、その修理や回収の維持管理コストが小さいために生産コストを大幅に低減させることができる。さらに、この実施形態の水産物養殖システム70及水産物養殖方法は、ほとんどの水産物で使用でき、特に小型の魚類、甲殻類やその稚魚、魚卵の生存率向上に大きく寄与するものである。 According to the aquaculture system 70 and the aquaculture method of this embodiment, an acoustic wave is generated on aquatic products such as the cultured fish 29 while freely changing the radiation direction of the low-intensity acoustic wave 21 by the aquaculture apparatus 74 having a simple structure. Stimulation can be applied uniformly, and low-intensity acoustic wave stimulation can be applied to the marine products in the aquarium widely and substantially uniformly using the irregular reflection of acoustic waves from the bottom surface, side surface, and water surface of the aquarium 72. Furthermore, it is possible to use a large sushi other than the aquarium 72. The number of the aquaculture device 74 can be increased, the aquaculture device 74 can be temporarily fixed and attached to the aquarium 72, or fixed in water. The same effect can be obtained. Furthermore, by using these devices, it is possible to perform low-intensity acoustic wave stimulation at the same time and uniformly for fish in a large cage. The aquaculture device 74 can be manufactured in a small shape with a weight of 0.2 to 10 kg and can be easily transported by women and elderly people. When not in use, it can be taken out of the water tank and stored and inspected easily. Can be charged and cleaned. For this reason, not only is mass production easy, but the maintenance cost for repair and recovery is small, so that the production cost can be greatly reduced. Further, the aquaculture system 70 and the aquaculture method of this embodiment can be used for most aquatic products, and particularly contribute greatly to improving the survival rate of small fish, crustaceans and their fry and fish eggs.
 また、この実施形態の音響波水産物養殖システム70及び水産物養殖方法は、図5に示した2個以上の超音波振動子41,42を設けた水産物養殖装置40を用いると良い。水産物養殖装置40を用いることにより、1台の水産物養殖装置40で異なる2方向以上に広く低強度音響波21を照射することが可能であり、水槽72内で均一に低強度音響波21を照射し、必要な水産物養殖装置40の台数を低減させることが出来る。また、複数個の音響波振動子41,42は周波数やPRF、Duty factor、音響強度を互いに変えても良く、適宜設定することができる。さらに、図6~図8に示す水産物養殖装置を用いても良い。 Also, the acoustic wave aquaculture system 70 and the aquaculture method of this embodiment may use the aquaculture apparatus 40 provided with two or more ultrasonic transducers 41 and 42 shown in FIG. By using the aquaculture device 40, it is possible to irradiate the low-intensity acoustic waves 21 widely in two or more different directions with one aquaculture device 40, and uniformly irradiate the low-intensity acoustic waves 21 in the water tank 72. In addition, the number of necessary aquaculture equipment 40 can be reduced. In addition, the plurality of acoustic wave oscillators 41 and 42 may change the frequency, PRF, duty factor, and acoustic intensity, and can be set as appropriate. Further, the aquaculture apparatus shown in FIGS. 6 to 8 may be used.
 次に、この発明の第五実施形態の水産物養殖装置80と水産物養殖システム及び水産物養殖方法について。図10を基にして説明する。ここで、上記実施形態と同様の部材は同一の符号を付して説明を省略する。水産物養殖装置80は、図10(a),(b)に示すように、四角錐状の中空の外ケース12と上蓋82を備え、上蓋82にはこれを水密構造にするためのOリング84を備える。超音波振動子20としては、0.5MHz、1.5MHz、3.0MHz、8MHzの4種類が、四角錐の外ケース12の各内側面に取り付けられている。超音波振動子20は、例えば8MHzは非鉛系圧電材料のニオブ酸アルカリ材料を用い、残りの3種類は通常のPZT振動子を用いた。超音波振動子20の形状は直径が2cmの円板である。 Next, an aquaculture apparatus 80, an aquaculture system, and an aquaculture method according to the fifth embodiment of the present invention. This will be described with reference to FIG. Here, the same members as those in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted. As shown in FIGS. 10A and 10B, the aquaculture device 80 includes a square pyramid-shaped hollow outer case 12 and an upper lid 82, and the upper lid 82 has an O-ring 84 for making it a watertight structure. Is provided. As the ultrasonic transducer 20, four types of 0.5 MHz, 1.5 MHz, 3.0 MHz, and 8 MHz are attached to each inner side surface of the outer case 12 of a quadrangular pyramid. As the ultrasonic transducer 20, for example, a non-lead piezoelectric alkali niobate material is used at 8 MHz, and the remaining three types are ordinary PZT transducers. The shape of the ultrasonic transducer 20 is a disk having a diameter of 2 cm.
 超音波振動子20には、音響整合層22としてλ/4の厚みのガラス板が取り付けられ、図10に示すように、外ケース12の4方の内側面に各々取り付けられている。駆動用の電源16としては、例えば充電式のリチウム電池を用いる。水産物養殖装置80の側面部の振動子上には、ABS樹脂を用いて、複数の空洞を有する直径が3cmで厚みが4mmの凸部形状の音響波拡散層24が設けられている。音響波拡散層24には、音響波拡散部49である空洞が複数形成されている。 The ultrasonic transducer 20 is attached with a glass plate having a thickness of λ / 4 as the acoustic matching layer 22 and is attached to each of the four inner surfaces of the outer case 12 as shown in FIG. As the driving power source 16, for example, a rechargeable lithium battery is used. On the vibrator on the side surface of the aquaculture device 80, an acoustic wave diffusion layer 24 having a plurality of cavities having a diameter of 3 cm and a thickness of 4 mm is provided using ABS resin. In the acoustic wave diffusion layer 24, a plurality of cavities that are the acoustic wave diffusion portions 49 are formed.
 この実施形態の水産物養殖装置80は、図9に示す水産物養殖システムの水槽72に入れて用いるもので、上記実施形態と同様に、効果的に低強度音響波21の放射方向を自由に変化させながら、養殖魚29等の水産物に音響波刺激を均一に与えルものである。更に、水槽の底面、側面及び水面からの音響波の乱反射を利用して水槽中の水産物に均一に低強度音響波刺激を与えるものである。 The aquaculture apparatus 80 of this embodiment is used by being put in the aquarium 72 of the aquaculture system shown in FIG. 9, and effectively changes the radiation direction of the low-intensity acoustic wave 21 freely as in the above embodiment. However, acoustic wave stimulation is uniformly applied to marine products such as cultured fish 29. Furthermore, the low intensity | strength acoustic wave stimulus is uniformly given to the fishery product in a water tank using the irregular reflection of the acoustic wave from the bottom face, side surface, and water surface of a water tank.
 なお、この発明の水産物養殖装置、システムと養殖方法は、上記実施形態に限定されず、適宜変更可能である。水産物養殖装置は、水面に浮かぶもの以外に、水中の任意の深さに沈んだ状態で一時的に移動または固定しながら音響波を発生するものでも良い。水産物養殖装置の容器は、構造と材料、形状は自由に選択可能であり、確実に超音波振動子を保持して移動するものであればよい。使用する水槽の大きさや形状も変更可能であり、水槽の大きさや形状に合わせて、水産物養殖装置の超音波振動子の数や、水槽に入れる個数を適宜調整して、その水産物に好適な超音波強度に設定する。また、浮力を増加したり、装置の転倒防止をする場合には浮輪を使用することも出来る。 It should be noted that the aquaculture apparatus, system, and culture method of the present invention are not limited to the above embodiment, and can be changed as appropriate. In addition to those floating on the water surface, the aquaculture device may generate an acoustic wave while temporarily moving or fixing while sinking to an arbitrary depth in water. The container of the aquaculture device can be freely selected in terms of structure, material, and shape, and may be any container that reliably moves and holds the ultrasonic transducer. The size and shape of the aquarium to be used can also be changed, and the number of ultrasonic vibrators in the aquaculture device and the number to be put in the aquarium are adjusted appropriately according to the size and shape of the aquarium. Set to sound intensity. A floating ring can also be used to increase the buoyancy or prevent the device from falling.
 その他、この発明の音響波拡散部は、空隙、発泡樹脂板や金属板に穴を空けた構造や網のみならず、プロペラや風車などの形状や、傘状の形状、金属にスリット穴を空けた形状でも同様に超音波ビームを広く拡散・散乱出来る効果が得られる。また、超音波振動子の配置も容器の底面のみならず、水中にある側面部に取り付けても良い。 In addition, the acoustic wave diffusing part of the present invention has not only a structure or net having a hole in a void, a foamed resin plate or a metal plate, but also a shape such as a propeller or a windmill, an umbrella shape, or a slit in a metal. Even in the case of different shapes, the effect of diffusing and scattering the ultrasonic beam can be obtained. Further, the ultrasonic transducer may be disposed not only on the bottom surface of the container but also on a side surface portion in water.
 本発明は音響波を用いた養殖方法の一つであり、これまで知られているマイクロバブルや泡、ウイルスワクチン投与を用いた装置や方法と併用したりしても良い。また、水槽中の水産物の成長と数量に合わせて、その音響波の強度と時間を調整することも出来る。 The present invention is one of the aquaculture methods using acoustic waves, and may be used in combination with known devices and methods using microbubbles, bubbles, and virus vaccine administration. In addition, the intensity and time of the acoustic wave can be adjusted according to the growth and quantity of marine products in the aquarium.
 次に、この発明の水産物養殖装置と水産物養殖方法の実施例について、以下に説明する。まず、第1実施例として、この発明の水産物養殖装置と水産物養殖システム及び水産物養殖方法を、図9に示すように、桜鱒の小形水槽による養殖に利用する実験を行った。桜鱒は、魚年齢が65週で平均体重73gの人工養殖桜鱒を用いた。まず、同一の親魚から生まれた桜鱒の140匹を用いて各20匹ずつ7組に分けた。これらを試験前の体重を測定し、更に16週間後の体重を測定した。更に生存率は給餌の際にほぼ毎日観察し、死亡した魚は直ちに水槽から取り出した。水槽は、直径が130cmで深さが90cmの繊維強化プラスチック(FRP)製の円形水槽であり、海水を70cmの深さまで入れた。 Next, an embodiment of the aquaculture apparatus and the aquaculture method of the present invention will be described below. First, as a first example, an experiment was conducted in which the aquaculture apparatus, the aquaculture system, and the aquaculture method of the present invention were used for aquaculture in a small cherry tank as shown in FIG. For the cherry blossoms, artificially cultured cherry blossoms with a fish age of 65 weeks and an average weight of 73 g were used. First, 140 cherry blossoms born from the same parent fish were used and divided into 7 groups of 20 each. These were weighed before the test and further weighed after 16 weeks. Furthermore, the survival rate was observed almost daily during feeding, and dead fish were immediately removed from the aquarium. The water tank was a circular water tank made of fiber reinforced plastic (FRP) having a diameter of 130 cm and a depth of 90 cm, and seawater was introduced to a depth of 70 cm.
 円形水槽は7個を使用し、それぞれ、異なる周波数を持つ音波や音楽の発生装置、超音波発生装置、音響波拡散層を持つ装置を、音響波反射層(水槽内壁)を取り付け又は無しの水槽に浮揚させながら超音波を照射した。水槽内の海水は、ポンプにより24トン/日を供給し、余分な海水はオーバーフローさせた。更に、圧縮空気を用いて25m/日の空気を水槽の中央部に供給した。餌は通常の魚用配合飼料を1~3g/匹を毎日、朝に与えた。海水の撹拌や未消化餌の回収、魚糞の除去は行わなかった。 Seven circular water tanks are used, each of which has a sound wave and music generator with different frequencies, an ultrasonic generator, an apparatus with an acoustic wave diffusion layer, and a water tank with or without an acoustic wave reflection layer (inner wall of the water tank). Ultrasonic waves were irradiated while levitating. Seawater in the tank was supplied 24 tons / day by a pump, and excess seawater was overflowed. Further, 25 m 3 / day of air was supplied to the center of the water tank using compressed air. As a food, 1 to 3 g / animal of a normal fish formula feed was given daily in the morning. No agitation of seawater, recovery of undigested food, and removal of fish droppings were performed.
 実施例1で用いた水産物養殖装置は、直径が33cm、深さが14cmのアルミ製の容器である外ケース12に音響整合層22の大きさである約5cm直径の穴を空けたものである。実施例1の装置はこの外ケース12に直径が3cmの8個の超音波振動子20を配置した図1に示すような基本構造のものである。超音波振動子20は、PZT系圧電セラミックス(富士セラミックス社製204材料)超音波振動子の厚み振動を用いた。超音波振動子20の超音波放射面は、水面に対して3~5°の傾きをもつものである。超音波振動子20の共振周波数は0.5MHzのものを用いた。また、この水産物養殖装置10は、50%dutyのパルス超音波を9分発生した後、1分停止するサイクルで1日約60分間、3回/週、で16週間を継続して音響波刺激した。超音波強度(Isata)は水深30cmの超音波振動子直下で音響波拡散層24を用いない場合は800mW/cmであり、音響波拡散層24を用いた場合は80mW/cmであった。 In the aquaculture apparatus used in Example 1, a hole having a diameter of about 5 cm which is the size of the acoustic matching layer 22 is formed in the outer case 12 which is an aluminum container having a diameter of 33 cm and a depth of 14 cm. . The apparatus of the first embodiment has a basic structure as shown in FIG. 1 in which eight ultrasonic transducers 20 having a diameter of 3 cm are arranged in the outer case 12. As the ultrasonic transducer 20, the thickness vibration of a PZT piezoelectric ceramics (204 material manufactured by Fuji Ceramics) ultrasonic transducer was used. The ultrasonic radiation surface of the ultrasonic transducer 20 has an inclination of 3 to 5 ° with respect to the water surface. The resonance frequency of the ultrasonic transducer 20 was 0.5 MHz. In addition, this aquaculture device 10 generates 50% duty pulsed ultrasonic waves for 9 minutes, and then continues the acoustic wave stimulation for about 60 minutes a day, 3 times / week for 16 weeks in a cycle that stops for 1 minute. did. Ultrasonic wave intensity (Isata) is the case of not using the acoustic wave diffusion layer 24 directly below the ultrasonic vibrator at a depth of 30cm was 800 mW / cm 2, in the case of using an acoustic wave diffusion layer 24 was 80 mW / cm 2 .
 音響波拡散層24は目開きが0.5mm(水中波長λの17%)のステンレス網を4枚、方向を変えて積層し容器の外側に取り付けたものを用いた。この音響波拡散層24を用いることで、取り付けない場合と比較して超音波振動子20から放射された音響波強度の最大値を約10%の80mW/cmに低下させ、音響波ビームを広い面積に拡散することが出来た。音響波反射層76は密度が25kg/m(約98%が空気)の発泡ポリスチレンシートで、厚みが2mmのものの両面に0.05mmのPETフィルムを張り、これを水槽の内壁に張り付けたものを用いた。 As the acoustic wave diffusion layer 24, four stainless steel meshes having an aperture of 0.5 mm (17% of the underwater wavelength λ), stacked in different directions and attached to the outside of the container were used. By using this acoustic wave diffusion layer 24, the maximum value of the acoustic wave intensity radiated from the ultrasonic transducer 20 is reduced to 80 mW / cm 2 , which is about 10%, compared with the case where the acoustic wave diffusion layer 24 is not attached. It was able to diffuse over a wide area. The acoustic wave reflection layer 76 is a foamed polystyrene sheet having a density of 25 kg / m 3 (about 98% is air). A PET film having a thickness of 2 mm and a PET film having a thickness of 0.05 mm is pasted on the inner wall of the water tank. Was used.
 魚の総体重(73g×20匹=1.4kg)と水槽の海水量(800kg)から実際に魚に照射された割合をPZT振動子の総出力(7cm×800mW/cm×8枚=45W)から計算した概算値は45W×(1.4kg/800kg)=79mW/kgである。しかし、一度、側面と底面に反射された超音波が再び魚に数回に渡り照射された場合にはこの約3倍の約240mW/kgである。桜鱒はその体重が16週間後には平均で0.23kgとなり、総重量は3.9kgとなった。このために体重当たりの平均強度は28mW/kgから84mW/kgと見積もられる。 The proportion of fish actually irradiated from the total weight of the fish (73 g × 20 animals = 1.4 kg) and the amount of seawater in the aquarium (800 kg) is the total output of the PZT vibrator (7 cm 2 × 800 mW / cm 2 × 8 pieces = 45 W). ) Is approximately 45 W × (1.4 kg / 800 kg) = 79 mW / kg. However, once the ultrasonic waves reflected on the side and bottom surfaces are again irradiated to the fish several times, this is about 240 mW / kg, about three times this. Sakuraba weighed an average of 0.23 kg after 16 weeks, and the total weight was 3.9 kg. For this reason, the average intensity per body weight is estimated from 28 mW / kg to 84 mW / kg.
 参考例1の装置2は、装置1と同様な構造であるが音響波拡散層と音響波反射層を用いないものである。参考例2の装置3は、装置1と同様な大きさと重量の外ケース12のみであり、超音波振動子も音響波拡散層も用いていないものである。これらの装置の基本仕様と16週間後の桜鱒の生存率、平均重量、総重量を表1に示した。
Figure JPOXMLDOC01-appb-T000001
The device 2 of Reference Example 1 has the same structure as that of the device 1, but does not use an acoustic wave diffusion layer and an acoustic wave reflection layer. The device 3 of the reference example 2 is only the outer case 12 having the same size and weight as the device 1, and uses neither an ultrasonic transducer nor an acoustic wave diffusion layer. Table 1 shows the basic specifications of these devices and the survival rate, average weight, and total weight of the cherry blossoms after 16 weeks.
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、音響波拡散層及び音響波反射層を取り付けた養殖装置を用いた実施例1では、その生存率が85%と高く、更に平均重量も0.231kg大きい。このため、総重量の3.93kgは、本発明の装置を用いない参考例2の総重量の3.15kgと比べて125%であることを示した。また、音響波拡散層のない場合の参考例1の3.30kgと比較しても、119%と大幅な総重量の増加を示した。 As is clear from Table 1, in Example 1 using the aquaculture device to which the acoustic wave diffusion layer and the acoustic wave reflection layer are attached, the survival rate is as high as 85%, and the average weight is also 0.231 kg larger. For this reason, the total weight of 3.93 kg was 125% compared to the total weight of 3.15 kg of Reference Example 2 in which the apparatus of the present invention was not used. Moreover, even if compared with 3.30 kg of the reference example 1 when there is no acoustic wave diffusion layer, it showed a significant increase in total weight of 119%.
 実施例2の装置4は、同一容器である外ケース12に直径が3cmの4個の超音波振動子20を配置した図5に示すような構造のものであり、その他の条件は実施例1と同じである。また、低周波の音源としては350Hzを10秒発信し、30秒を停止するモードで60分間行った。更に音楽としてはハッペルベルのカノンを60分間連続で容器に取り付けたスピーカから放射して使用した。 The apparatus 4 of the second embodiment has a structure as shown in FIG. 5 in which four ultrasonic transducers 20 having a diameter of 3 cm are arranged in the outer case 12 that is the same container, and other conditions are the same as in the first embodiment. Is the same. Further, as a low frequency sound source, 350 Hz was transmitted for 10 seconds, and the operation was performed for 60 minutes in a mode of stopping 30 seconds. Furthermore, as music, a canpel bell was radiated from a speaker attached to the container for 60 minutes continuously.
 超音波強度(Isata)は、水深30cmの超音波振動子直下で音響波拡散層24を用いない場合は1200mW/cmであり、音響波拡散層24を用いた場合は120mW/cmであった。音響波拡散層は、図8(a)に示した構造のものを用いた。第一音響整合層31は音響インピーダンスが13MRaylsのガラス板をλ/4の厚みでPZT振動子に取り付け、更に第二音響整合層32としては音響インピーダンスが3.3MRaylsのアクリル板をλ/4の厚みで取り付けた。音響波拡散層24はエポキシ樹脂を用い、音響波散乱材料は中央部の厚みが2.0mmで直径が10mmのR30mmの円板状の空洞を用いた。この音響波拡散層24を用いることで、取り付けない場合と比較して超音波振動子20から放射された音響波強度の最大値を約10%の120mW/cmに低下させ、音響波ビームを広い面積に拡散することが出来た。 Ultrasonic wave intensity (Isata), when just below the ultrasonic vibrator at a depth of 30cm without using the acoustic wave diffusion layer 24 is 1200 mW / cm 2, in the case of using an acoustic wave diffusion layer 24 120 mW / cm 2 met It was. The acoustic wave diffusion layer having the structure shown in FIG. The first acoustic matching layer 31 is a glass plate having an acoustic impedance of 13 MRayls attached to the PZT vibrator with a thickness of λ / 4, and the second acoustic matching layer 32 is an acrylic plate having an acoustic impedance of 3.3 MRayls having a wavelength of λ / 4. Attached with thickness. The acoustic wave diffusion layer 24 was made of an epoxy resin, and the acoustic wave scattering material was a disc-shaped cavity having an R30 mm thickness of 2.0 mm at the center and a diameter of 10 mm. By using this acoustic wave diffusion layer 24, the maximum value of the acoustic wave intensity radiated from the ultrasonic transducer 20 is reduced to about 10% of 120 mW / cm 2 as compared with the case where the acoustic wave diffusion layer 24 is not attached, and the acoustic wave beam is reduced. It was able to diffuse over a wide area.
 音響波反射層は実施例1と同一である。魚の総体重(73g×20匹=1.4kg)と水槽の海水量(800kg)から実際に魚に照射された割合を、PZT振動子の総出力(7cm×1200mW/cm×4枚=34W)から計算した概算値は、34W×(1.4kg/800kg)=60mW/kgである。しかし、一度、側面と底面に反射された超音波が再び魚に数回に渡り照射された場合には、この約3倍の約180mW/kgと推定される。桜鱒はその体重が16週間には平均で0.22kgとなり、総重量は3.7kgとなった。このために体重当たりの平均強度は、23mW/kgから66mW/kgと見積もられる。実施例3の装置5は、装置4と同様な構造であるが音響波反射層を用いない場合である。 The acoustic wave reflection layer is the same as that of the first embodiment. The proportion of fish actually irradiated from the total weight of the fish (73 g × 20 animals = 1.4 kg) and the amount of seawater in the aquarium (800 kg) is calculated as the total output of the PZT vibrator (7 cm × 1200 mW / cm 2 × 4 = 34 W). The approximate value calculated from) is 34 W × (1.4 kg / 800 kg) = 60 mW / kg. However, once the ultrasonic waves reflected on the side surface and the bottom surface are again irradiated to the fish several times, it is estimated to be about 180 mW / kg, which is about three times this. Sakuraba weighed an average of 0.22 kg in 16 weeks and the total weight was 3.7 kg. For this reason, the average intensity per body weight is estimated from 23 mW / kg to 66 mW / kg. The device 5 of Example 3 has a structure similar to that of the device 4, but does not use an acoustic wave reflection layer.
 参考例2の装置3は、装置1と同様な大きさと重量の外ケースのみであり、超音波振動子も音響波反射層も用いていないものである。これらの構造と16週間後の桜鱒の生存率、平均重量、総重量を表2に示した。
Figure JPOXMLDOC01-appb-T000002
The device 3 of the reference example 2 is only an outer case having the same size and weight as the device 1, and uses neither an ultrasonic transducer nor an acoustic wave reflection layer. These structures and the survival rate, average weight, and total weight of the cherry blossoms after 16 weeks are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、実施例2ではその生存率が85%と高く、更に平均重量も0.217kg大きい。このために総重量は本発明の装置を用いない参考例2の総重量の3.15kgと比べて3.69kgと117%を示した。また、音響波反射層のない場合の実施例3は、3.45kgと参考例2の重量の3.15kgと比較しても110%と収穫量の増加を示した。 As is clear from Table 2, in Example 2, the survival rate is as high as 85%, and the average weight is also 0.217 kg larger. Therefore, the total weight was 3.69 kg and 117% compared to 3.15 kg of the total weight of Reference Example 2 in which the apparatus of the present invention was not used. In addition, Example 3 without the acoustic wave reflection layer showed an increase in yield of 110% even when compared with 3.45 kg and 3.15 kg of the weight of Reference Example 2.
 表3に示した参考例3の装置6は、同一の水槽に音源としては可聴音の350Hzのみを10秒発信し、30秒を停止するモードで60分間行った場合の結果を示す。参考例4の装置7は、同一水槽に音源としては音楽のハッペルベルのカノンを60分間連続で容器に取り付けたスピーカから放射した場合である。これらを参考例2と合わせて示した。 The apparatus 6 of the reference example 3 shown in Table 3 shows the result when it is performed for 60 minutes in a mode in which only 350 Hz of audible sound is transmitted as a sound source to the same water tank for 10 seconds and stopped for 30 seconds. The device 7 of Reference Example 4 is a case where a music happel bell canon is radiated from a speaker attached to a container for 60 minutes as a sound source in the same water tank. These are shown together with Reference Example 2.
 参考例2の装置3は、装置1と同様な大きさと重量の外ケースのみであり、超音波振動子20も音響波反射層も用いていないものである。これらの構造と16週間後の桜鱒の生存率、平均重量、総重量を表3に示した。
Figure JPOXMLDOC01-appb-T000003
The device 3 of the reference example 2 is only an outer case having the same size and weight as the device 1, and uses neither the ultrasonic transducer 20 nor the acoustic wave reflection layer. Table 3 shows these structures and the survival rate, average weight, and total weight of cherry blossoms after 16 weeks.
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、参考例3ではその生存率が65%と低く、平均重量は0.243kgのために、総重量は本発明の装置を用いない参考例2の総重量の3.15kgと同等の3.16kgの値を示した。また、参考例4ではその生存率が65%と低く、平均重量は0.235kgのために、総重量は本発明の装置を用いない参考例2の総重量の3.15kgと比べて、3.06kgの97%とさらに低い値を示した。 As is clear from Table 3, the survival rate of Reference Example 3 is as low as 65%, and the average weight is 0.243 kg. Therefore, the total weight is 3 of the total weight of Reference Example 2 without using the apparatus of the present invention. A value of 3.16 kg equivalent to 15 kg was shown. In Reference Example 4, the survival rate is as low as 65%, and the average weight is 0.235 kg. Therefore, the total weight is 3% compared to 3.15 kg of the total weight of Reference Example 2 in which the apparatus of the present invention is not used. The value was as low as 97% of 0.06 kg.
 次に、実施例4では、図10(a),(b)に示す水産物養殖装置80を用い、外ケース12として、側壁の厚みが1.0mmの4角錐のABS樹脂を用いて水産物の養殖を行った。外ケース12には、上蓋82とこれを水密構造にするためのOリング84を設けた。超音波振動子20としては0.5MHz、1.5MHz、3.0MHz、8MHzの4種類を用いた。この中で8MHzは非鉛系圧電材料のニオブ酸アルカリ材料を用い、残りの3種類は通常のPZT振動子を用いた。振動子の形状は直径が2cmの円板である。 Next, in Example 4, the aquaculture apparatus 80 shown in FIGS. 10A and 10B is used, and as the outer case 12, aquaculture is performed using a quadrangular pyramid ABS resin with a side wall thickness of 1.0 mm. Went. The outer case 12 is provided with an upper lid 82 and an O-ring 84 for making it a watertight structure. As the ultrasonic transducer 20, four types of 0.5 MHz, 1.5 MHz, 3.0 MHz, and 8 MHz were used. Among these, 8 MHz used a lead-free piezoelectric alkali niobate material, and the remaining three types used ordinary PZT vibrators. The shape of the vibrator is a disk having a diameter of 2 cm.
 超音波振動子20に、音響整合層22としてλ/4の厚みのガラス板を取り付けた。これらを図10に示したように、水産物養殖装置80の外ケース12の4側面の各々内側に取り付けた。駆動用の電池16には、充電式のリチウム電池を用いた。装置の側面部の振動子上にはABS樹脂を用いて音響波拡散部49である複数の空洞を有する直径が3cmで厚みが4mmの凸部形状の音響波拡散層24を取り付けた。 A glass plate having a thickness of λ / 4 was attached to the ultrasonic transducer 20 as the acoustic matching layer 22. These were attached inside each of the four side surfaces of the outer case 12 of the aquaculture apparatus 80 as shown in FIG. A rechargeable lithium battery was used as the driving battery 16. A convex acoustic wave diffusion layer 24 having a diameter of 3 cm and a thickness of 4 mm having a plurality of cavities as acoustic wave diffusion portions 49 was attached to the vibrator on the side surface of the apparatus using ABS resin.
 パルス繰り返し周期(PRF)は1msec(1000Hz)と1s(1Hz)であり、これらはDuty factorが20%で駆動した。合計で周波数が4種類でPRFが2種類の合計で8種類の異なる音源をシリーズに各8秒間、放射した。 The pulse repetition period (PRF) was 1 msec (1000 Hz) and 1 s (1 Hz), and these were driven with a duty factor of 20%. A total of 8 different sound sources with a total of 4 frequencies and 2 PRFs were radiated to the series for 8 seconds each.
 この水産物養殖装置80の音響強度(Isata)は、20リットルの水槽中の水産物1kgに対して800mW/kgの音響波を照射することが出来るように調整した。水槽容器は、発泡スチロールの表面に0.05mmのPETフィルムを張り付け、大きさが20リットルの角型容器である。温度制御は外部で温度を調整した循環水をステンレスパイプで水槽内に送り、水温を制御した。水産物として直径が約4mmの同一の親魚から採取した桜鱒の魚卵を用いた。水温は4℃+-1℃に調整した。受精後の魚卵0.5kgを水槽の水面から10cmに張ったナイロンネットに移した。水産物養殖装置80を水槽の中央部の水面に浮かべ、音響波刺激を20分間/日、5回/週を1週間継続した。同様な装置を、スイッチを入れることなく同一時間、同一魚卵を有する水槽Bの中央部の水面に浮かべて比較した。生存率は毎日、死亡して変色した魚卵と稚魚をピンセットで取り出し、生存率を確認した。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
The acoustic intensity (Isata) of this aquaculture device 80 was adjusted so that 800 mW / kg of acoustic waves could be applied to 1 kg of marine product in a 20 liter aquarium. The aquarium container is a square container having a size of 20 liters with a PET film of 0.05 mm attached to the surface of polystyrene foam. For temperature control, circulating water whose temperature was adjusted externally was sent into the water tank with a stainless steel pipe to control the water temperature. As a marine product, a cherry salmon roe collected from the same parent fish having a diameter of about 4 mm was used. The water temperature was adjusted to 4 ° C + -1 ° C. 0.5 kg of fertilized fish eggs were transferred to a nylon net stretched 10 cm from the surface of the water tank. The aquaculture device 80 was floated on the water surface in the center of the water tank, and acoustic wave stimulation was continued for 20 minutes / day, 5 times / week for one week. A similar device was compared by floating on the water surface at the center of aquarium B having the same fish eggs for the same time without switching on. Survival rate was confirmed every day by picking fish eggs and fry that died and discolored with tweezers. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
 実施例4と参考例5から明らかなように、本発明の水産物養殖装置と水産物養殖システム及び水産物養殖方法を用いた場合は、魚卵と稚魚の高い生存率が確認出来た。 As is clear from Example 4 and Reference Example 5, when the aquaculture apparatus, the aquaculture system and the aquaculture method of the present invention were used, high survival rates of eggs and fry were confirmed.
 実施例1から4に示した結果から、本発明の水産物養殖装置と養殖システム及び水産物養殖方法は、超音波の共振周波数が0.1MHz以上10MHz以下で、更に超音波強度(Isata)が、水産物の重量当たりで20mW/kgから1000mW/kgの範囲である条件を選び、これを音響インピーダンスが低い水槽中で水産物に照射することでその生存率を大幅に向上させ収穫量を増加出来ることが明らかとなった。 From the results shown in Examples 1 to 4, in the aquaculture apparatus, the aquaculture system, and the aquaculture method of the present invention, the ultrasonic resonance frequency is 0.1 MHz to 10 MHz, and the ultrasonic intensity (Isata) It is clear that by selecting conditions that range from 20 mW / kg to 1000 mW / kg per unit weight and irradiating fishery products in a tank with low acoustic impedance, the survival rate can be greatly improved and the yield can be increased. It became.
10,30,40,50,52,54,56,58,60,62,64,74、80 水産物養殖装置
12 外ケース
14 基板
15 駆動部
16 電源
17 制御回路
18 リード線
19 高強度音響波
20,41,42 超音波振動子
21 低強度音響波
22,31,32 音響整合層
24,36,48 音響波拡散層
26 携帯型機器
28 支持台
29 養殖魚
44 音響スピーカ
46 外ケース
49 音響波拡散部
70 水産物養殖システム
72 水槽
76 音響波反射層
10, 30, 40, 50, 52, 54, 56, 58, 60, 62, 64, 74, 80 Aquaculture device 12 Outer case 14 Substrate 15 Drive unit 16 Power supply 17 Control circuit 18 Lead wire 19 High-intensity acoustic wave 20 , 41, 42 Ultrasonic vibrator 21 Low-intensity acoustic waves 22, 31, 32 Acoustic matching layers 24, 36, 48 Acoustic wave diffusion layer 26 Portable device 28 Support base 29 Cultured fish 44 Acoustic speaker 46 Outer case 49 Acoustic wave diffusion Department 70 Aquaculture system 72 Water tank 76 Acoustic wave reflection layer

Claims (24)

  1.  養殖している水産物に、音波及び超音波の少なくともいずれかである音響波を照射する水産物養殖装置であって、
     前記音響波を発生可能な超音波振動子と、この超音波振動子を駆動する駆動部と、前記超音波振動子及び前記駆動部を保持した外ケースとを備え、
     前記超音波振動子から発せられる高強度音響波が放射される前面側に、前記高強度音響波を拡散させるとともに、単位面積当たりの強度が前記高強度音響波よりも弱い低強度音響波に変換し照射させる音響波散乱材料から成る音響波拡散層を備えたことを特徴とする水産物養殖装置。
    An aquaculture device that irradiates an aquaculture product with an acoustic wave that is at least one of a sonic wave and an ultrasonic wave,
    An ultrasonic transducer capable of generating the acoustic wave, a drive unit that drives the ultrasonic transducer, and an outer case that holds the ultrasonic transducer and the drive unit,
    The high-intensity acoustic wave is diffused to the front side where the high-intensity acoustic wave emitted from the ultrasonic transducer is radiated, and converted into a low-intensity acoustic wave whose intensity per unit area is weaker than the high-intensity acoustic wave. An aquaculture device comprising an acoustic wave diffusion layer made of an acoustic wave scattering material to be irradiated.
  2.  前記超音波振動子は圧電振動子であり、前記音響波拡散層は、気体、及び気体を90体積%以上含む発泡樹脂を含む層により構成される請求項1記載の水産物養殖装置。 The aquaculture apparatus according to claim 1, wherein the ultrasonic vibrator is a piezoelectric vibrator, and the acoustic wave diffusion layer is composed of a gas and a layer containing a foamed resin containing 90% by volume or more of the gas.
  3.  前記発泡樹脂は、発泡ポリスチレン、発泡ポリウレタン、または発泡ゴムである請求項2記載の水産物養殖装置。 The aquaculture apparatus according to claim 2, wherein the foamed resin is foamed polystyrene, foamed polyurethane, or foamed rubber.
  4.  前記音響波拡散層の前記音響波散乱材料は、多数の孔を有する金属材料で構成される請求項1記載の水産物養殖装置。 The aquaculture device according to claim 1, wherein the acoustic wave scattering material of the acoustic wave diffusion layer is made of a metal material having a large number of holes.
  5.  前記音響波拡散層の前記音響波散乱材料は、金属製の網により構成され、その網目の大きさが、使用する超音波の水中波長λのλ~λ/10である請求項1記載の水産物養殖装置。 2. The fishery product according to claim 1, wherein the acoustic wave scattering material of the acoustic wave diffusion layer is made of a metal mesh, and the mesh size is λ to λ / 10 of the underwater wavelength λ of the ultrasonic wave used. Aquaculture equipment.
  6.  前記音響波拡散層は、前記外ケース中または前記外ケース外の音響整合層の内部、または前記外ケースの外側に配置されている請求項1記載の水産物養殖装置。 The aquaculture device according to claim 1, wherein the acoustic wave diffusing layer is disposed in the outer case, inside the acoustic matching layer outside the outer case, or outside the outer case.
  7.  前記圧電振動子と、媒体である淡水または海水との音響整合を取るための少なくとも2層の前記音響整合層が配置され、前記音響整合層の形状が、前記圧電振動子よりも大きい請求項6記載の水産物養殖装置。 7. The acoustic matching layer is arranged for acoustic matching between the piezoelectric vibrator and fresh water or seawater as a medium, and the shape of the acoustic matching layer is larger than that of the piezoelectric vibrator. The aquaculture equipment described.
  8.  前記外ケースには、内部に少なくとも2種類の周波数を発生する円板、リング状、または矩形板の前記圧電振動子が配置され、前記超音波振動子の基本波周波数は、0.1MHz~10MHzの範囲である請求項1記載の水産物養殖装置。 In the outer case, the disk, ring-shaped, or rectangular plate-shaped piezoelectric vibrator that generates at least two types of frequencies is disposed, and the fundamental frequency of the ultrasonic vibrator is 0.1 MHz to 10 MHz. 2. The aquaculture apparatus according to claim 1, wherein
  9.  前記水産物養殖装置の超音波振動子は、鉛を用いない圧電材料を使用した請求項8記載の水産物養殖装置。 The aquaculture device according to claim 8, wherein the ultrasonic vibrator of the aquaculture device uses a piezoelectric material that does not use lead.
  10.  前記超音波はパルス波であり、その繰り返し周波数は1000Hz~0.5Hz、Duty factorは10~60%である請求項1記載の水産物養殖装置。 The aquaculture device according to claim 1, wherein the ultrasonic wave is a pulse wave, the repetition frequency thereof is 1000 Hz to 0.5 Hz, and the Duty factor is 10 to 60%.
  11.  前記超音波振動子を、中空角錐容器の側面部に配置した請求項1記載の水産物養殖装置。 The aquaculture device according to claim 1, wherein the ultrasonic vibrator is disposed on a side surface of a hollow pyramid container.
  12.  着脱可能な携帯型電子機器、または可聴音の音楽、摂餌音、或いは遊泳音を発生させる音響発生装置を有する請求項1記載の水産物養殖装置。 The aquaculture device according to claim 1, further comprising a removable portable electronic device or a sound generating device that generates audible music, feeding sound, or swimming sound.
  13.  前記電源として充電式の電池を備え、前記駆動部は前記電池により動作可能であり、防水機能を有する請求項1記載の水産物養殖装置 The aquaculture device according to claim 1, comprising a rechargeable battery as the power source, wherein the driving unit is operable by the battery and has a waterproof function.
  14.  前記請求項1乃至13のいずれかに記載の水産物養殖装置を備え、水産物を収容可能で、海水または淡水を入れた水槽と、前記水槽の水面または水中の少なくともいずれかに、前記水産物養殖装置が設けられ、前記水槽中の水中に前記音響波を照射可能に設けられたことを特徴とする水産物養殖システム。 The seafood aquaculture apparatus according to any one of claims 1 to 13, wherein the seafood aquaculture apparatus is capable of accommodating seafood and containing seawater or fresh water, and at least one of the water surface and the water of the aquarium, An aquaculture system, wherein the aquaculture system is provided so as to be able to irradiate the acoustic wave into the water in the aquarium.
  15.  前記水槽表面は、表面積の少なくも80%以上に、前記音響波を反射及び散乱させるための音響波反射率が90%以上の音響波反射材料の音響波反射層が設けられている請求項14記載の水産物養殖システム。 The acoustic surface of the water tank is provided with an acoustic wave reflection layer of an acoustic wave reflection material having an acoustic wave reflectance of 90% or more for reflecting and scattering the acoustic wave on at least 80% or more of the surface area. The aquaculture system described.
  16.  前記音響波反射層はシートからなり、その少なくとも表面または裏面が有機フィルムで被覆され、その厚みが0.05~1.0mmであり、内面には90体積%以上の気体を含む有機材料を備えた請求項15記載の水産物養殖システム。 The acoustic wave reflection layer is made of a sheet, and at least the front surface or the back surface thereof is covered with an organic film, the thickness thereof is 0.05 to 1.0 mm, and the inner surface includes an organic material containing 90% by volume or more of gas. The aquaculture system according to claim 15.
  17.  前記音響波反射材料の表面の有機フィルムが、フッ素樹脂、PET、またはナイロンであり、内部に気体層または発泡ポリスチレン、発泡ポリウレタン、または発泡ゴムを含む請求項15記載の水産物養殖システム。 The aquaculture system according to claim 15, wherein the organic film on the surface of the acoustic wave reflecting material is a fluororesin, PET, or nylon, and includes a gas layer or foamed polystyrene, foamed polyurethane, or foamed rubber inside.
  18.  前記水産物養殖システムは、直径0.01~10mmの空気バブルを水中に放出しながら使用する請求項14乃至17のいずれか記載の水産物養殖システム。 The aquaculture system according to any one of claims 14 to 17, wherein the aquaculture system is used while releasing air bubbles having a diameter of 0.01 to 10 mm into water.
  19.  前記水槽中の海水または淡水の温度を2℃から30℃に設定可能な温度制御装置を備えた請求項14乃至17記載のいずれか記載の水産物養殖システム。 The aquaculture system according to any one of claims 14 to 17, further comprising a temperature control device capable of setting a temperature of seawater or fresh water in the aquarium from 2 ° C to 30 ° C.
  20.  前記請求項1乃至13のいずれかに記載の水産物養殖装置を用いる水産物養殖方法であって、
     前記水産物養殖装置を、水産物を収容可能で海水または淡水を入れた水槽中の水に浮かせて自由に揺動させ、前記水産物養殖装置から前記音響波を発生させて前記水槽の壁面で反射させ、水中の水前記産物に音響刺激を施すことを特徴とする水産物養殖方法。
    An aquaculture method using the aquaculture device according to any one of claims 1 to 13,
    The aquaculture device is capable of containing aquatic products and floating freely in water in a water tank containing seawater or fresh water, generating the acoustic wave from the aquaculture device and reflecting it on the wall of the water tank, An aquaculture method, comprising applying acoustic stimulation to the product in water.
  21.  前記水産物養殖装置により、水中の前記水産物の総重量に対して20mW/kg~1W/kgの超音波強度(Isata)の超音波を与えて、前記水産物に音響波刺激を施して養殖を行う請求項20記載の水産物養殖方法。 Claiming that the aquaculture device applies an ultrasonic wave with an ultrasonic intensity (Isata) of 20 mW / kg to 1 W / kg with respect to the total weight of the aquatic product in water, and aquaculture is performed by applying acoustic wave stimulation to the fishery product. Item 20. Aquaculture method according to item 20.
  22.  前記水産物養殖装置により、10~60分/日、1~7日/週、且つ1~50週間、連続または間欠的に、前記音響波を前記水中の水産物に照射する請求項20または21記載の水産物養殖方法。 22. The fishery product according to claim 20 or 21, wherein the acoustic wave is irradiated to the marine product in the water continuously or intermittently for 10 to 60 minutes / day, 1 to 7 days / week, and 1 to 50 weeks by the aquaculture device. Aquaculture method.
  23.  前記水産物養殖装置の可聴音のスピーカ、または携帯電話から水産物の活動を活発にする周波数と強度の前記音響波を出して養殖を行う請求項20または21記載の水産物養殖方法。 The aquaculture method according to claim 20 or 21, wherein the aquaculture is performed by emitting the acoustic wave having a frequency and intensity that activates the activity of the aquatic product from an audible speaker of the aquaculture device or a mobile phone.
  24.  前記水産物は、魚類、甲殻類の卵、稚魚及び成魚である請求項20または21記載の水産物養殖方法。 The method for cultivating aquatic products according to claim 20 or 21, wherein the marine products are fish, crustacean eggs, fry and adult fish.
PCT/JP2017/039781 2016-11-14 2017-11-02 Aquaculture device, aquaculture system and aquaculture method WO2018088332A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-221466 2016-11-14
JP2016221466A JP6749691B2 (en) 2016-11-14 2016-11-14 Aquaculture device, aquaculture system and aquaculture method

Publications (1)

Publication Number Publication Date
WO2018088332A1 true WO2018088332A1 (en) 2018-05-17

Family

ID=62110245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039781 WO2018088332A1 (en) 2016-11-14 2017-11-02 Aquaculture device, aquaculture system and aquaculture method

Country Status (2)

Country Link
JP (1) JP6749691B2 (en)
WO (1) WO2018088332A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110091453A (en) * 2019-04-24 2019-08-06 日照港达船舶重工有限公司 A kind of cultivation work ship heat preservation fish hold construction technology
CN110946104A (en) * 2019-11-01 2020-04-03 广西壮族自治区水利科学研究院 Automatic feeding device for aquatic products
CN112425534A (en) * 2020-11-23 2021-03-02 德清瓜山水产养殖有限公司 Device is put in with seedling to aquaculture
CN113826577A (en) * 2021-10-13 2021-12-24 路明 Constant-temperature aquatic product storage device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019181049A (en) 2018-04-17 2019-10-24 ソニー株式会社 Biometric information evaluating device and biometric information evaluating method
CN115474563B (en) * 2022-09-02 2023-06-06 中国水产科学研究院东海水产研究所 Cultivation method for improving anti-current capability of fry of large yellow croaker

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06113694A (en) * 1992-10-08 1994-04-26 Makomo:Kk Ultrasonic oscillator for growing fish and shellfish
JPH1156193A (en) * 1997-08-25 1999-03-02 Matsushita Electric Ind Co Ltd Device for exterminating insect pest
JP2002000119A (en) * 2000-06-20 2002-01-08 Kyowa Eng Kk Method for culturing fish and shellfish
WO2015159757A1 (en) * 2014-04-14 2015-10-22 富山県 Marine product aquaculture device and marine product aquaculture method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06113694A (en) * 1992-10-08 1994-04-26 Makomo:Kk Ultrasonic oscillator for growing fish and shellfish
JPH1156193A (en) * 1997-08-25 1999-03-02 Matsushita Electric Ind Co Ltd Device for exterminating insect pest
JP2002000119A (en) * 2000-06-20 2002-01-08 Kyowa Eng Kk Method for culturing fish and shellfish
WO2015159757A1 (en) * 2014-04-14 2015-10-22 富山県 Marine product aquaculture device and marine product aquaculture method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110091453A (en) * 2019-04-24 2019-08-06 日照港达船舶重工有限公司 A kind of cultivation work ship heat preservation fish hold construction technology
CN110946104A (en) * 2019-11-01 2020-04-03 广西壮族自治区水利科学研究院 Automatic feeding device for aquatic products
CN112425534A (en) * 2020-11-23 2021-03-02 德清瓜山水产养殖有限公司 Device is put in with seedling to aquaculture
CN112425534B (en) * 2020-11-23 2022-04-29 德清瓜山水产养殖有限公司 Device is put in with seedling to aquaculture
CN113826577A (en) * 2021-10-13 2021-12-24 路明 Constant-temperature aquatic product storage device

Also Published As

Publication number Publication date
JP6749691B2 (en) 2020-09-02
JP2018078807A (en) 2018-05-24

Similar Documents

Publication Publication Date Title
WO2018088332A1 (en) Aquaculture device, aquaculture system and aquaculture method
JP6354021B2 (en) Aquaculture equipment and aquaculture method
JP6931877B2 (en) Ultrasonic irradiation device and system and ultrasonic irradiation method
Xu et al. Controlled ultrasound tissue erosion
US3550586A (en) Ultrasonic treatment method and device for fertilized ova and live embryos
US20080045882A1 (en) Biological Cell Acoustic Enhancement and Stimulation
US3499436A (en) Method and apparatus for treatment of organic structures with coherent elastic energy waves
CN100342929C (en) Apparatus and method for altrasonically and electromagnetically treating tissue
WO2017118984A1 (en) Device and method for damaging parasites using ultrasonic reflection
CN110090364B (en) Wall-attached charging type ultrasonic positive inotropic treatment device
JP2010004868A (en) Culturing system for aquatic photosynthesizing organism
JPH06113694A (en) Ultrasonic oscillator for growing fish and shellfish
JP2002000119A (en) Method for culturing fish and shellfish
JP2008193928A (en) Method for culturing infaunal bivalve
JPH02308741A (en) Method for controlling water-quality for breeding and culture of aquatic animal and vegetable
RU2203529C2 (en) Water activating apparatus
JP2000041526A (en) Alga-preventing device of aquarium
WO2021049947A1 (en) Combating free swimming lice and other ectoparasites in the water of a fish farm
CN112352745A (en) Squid fishing device
CN108834959B (en) Method for separating eggs of dragging-egg type copepods
JP4637922B2 (en) Aquatic organism breeding method and apparatus
EP3756473A1 (en) System and process of modulating nutritional supplementation in fish for improving growth rate by using low-frequency ultrasounds
JP7142844B2 (en) Space forming device
JP2023004782A (en) Land-based aquaculture apparatus
Saad Some biological effects of ultrasound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17868533

Country of ref document: EP

Kind code of ref document: A1