JP6749691B2 - Aquaculture device, aquaculture system and aquaculture method - Google Patents

Aquaculture device, aquaculture system and aquaculture method Download PDF

Info

Publication number
JP6749691B2
JP6749691B2 JP2016221466A JP2016221466A JP6749691B2 JP 6749691 B2 JP6749691 B2 JP 6749691B2 JP 2016221466 A JP2016221466 A JP 2016221466A JP 2016221466 A JP2016221466 A JP 2016221466A JP 6749691 B2 JP6749691 B2 JP 6749691B2
Authority
JP
Japan
Prior art keywords
aquaculture
acoustic wave
acoustic
ultrasonic
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016221466A
Other languages
Japanese (ja)
Other versions
JP2018078807A (en
Inventor
智明 唐木
智明 唐木
山下 洋八
洋八 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama Prefectural University
Original Assignee
Toyama Prefectural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama Prefectural University filed Critical Toyama Prefectural University
Priority to JP2016221466A priority Critical patent/JP6749691B2/en
Priority to PCT/JP2017/039781 priority patent/WO2018088332A1/en
Publication of JP2018078807A publication Critical patent/JP2018078807A/en
Application granted granted Critical
Publication of JP6749691B2 publication Critical patent/JP6749691B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/10Culture of aquatic animals of fish
    • A01K61/13Prevention or treatment of fish diseases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Description

この発明は、水産物の生存率向上や収量増加を達成するために、水産物に対して音波及び超音波の刺激を与える水産物養殖装置と水産物養殖システム及び水産物養殖方法に関する。 The present invention relates to an aquaculture device, aquaculture system, and aquaculture method for stimulating aquatic products with ultrasonic waves and ultrasonic waves in order to improve survival rate and yield of aquatic products.

従来、魚類、甲殻類、貝類等の水産物の養殖による生産が種々行われている。一方、2100年には世界人口が110億人になると予想され、22世紀の大きな課題の一つは食糧不足である。従って、養殖漁業から得られる魚類タンパク質の安定的な生産は重要な課題であり、大幅な食糧増産が期待されている。アジアでは過去30年間で特に水産物消費量が増えており、特に日本は、人口が5000万人を超える国の中では一人当たりの水産物消費量は世界一である。しかし、これまでの養殖漁業における水産物の増産方法の改善は、餌の開発と、水温・水流の改善、遺伝子組み換え、ウイルス対策が主体であり、大幅な生産性の向上を期待できるものではなかった。 BACKGROUND ART Conventionally, various kinds of aquatic products such as fish, shellfish and shellfish have been produced by aquaculture. On the other hand, the world population is expected to reach 11 billion by 2100, and one of the major challenges of the 22nd century is food shortage. Therefore, stable production of fish proteins obtained from aquaculture is an important issue, and a large increase in food production is expected. In Asia, consumption of marine products has increased in the last 30 years, and Japan has the highest per capita consumption of marine products in a country with a population of over 50 million. However, up to now, the improvement of the method of increasing the production of marine products in aquaculture was mainly due to the development of bait, improvement of water temperature and flow, gene recombination, and virus countermeasures, and it was not possible to expect a significant improvement in productivity. ..

そこで、養殖漁業の生産性をより向上させる増産方法として、これまでとは異なるものもいくつか提案されている。例えば、特許文献1には、海中の生け簀で浮遊するブイの上面に太陽電池を設け、太陽電池の出力が蓄電池に供給され、水と接する超音波発振子にその蓄電池の出力が接続されている魚貝類育成用超音波発信器が開示されている。この蓄電池には太陽電池による電力が蓄積され、その電力により超音波発振子から昼夜を問わず水中に微弱な超音波を発振し、魚貝類の成長を促進させるものである。また、水と接する超音波発振面が銅で覆われ、銅イオンの殺菌作用により、超音波発振子の超音波発振面に藻等が付着しないようにしたものである。 Therefore, several different methods have been proposed as methods of increasing production to further improve the productivity of aquaculture. For example, in Patent Document 1, a solar cell is provided on the upper surface of a buoy floating in a cage in the sea, the output of the solar cell is supplied to the storage battery, and the output of the storage battery is connected to an ultrasonic oscillator in contact with water. An ultrasonic transmitter for growing fish and shellfish is disclosed. Electric power generated by a solar cell is accumulated in this storage battery, and the electric power oscillates a weak ultrasonic wave from the ultrasonic oscillator into water regardless of day or night, thereby promoting the growth of fish and shellfish. Further, the ultrasonic wave oscillating surface in contact with water is covered with copper so that algae and the like are prevented from adhering to the ultrasonic wave oscillating surface of the ultrasonic oscillator by the sterilizing action of copper ions.

特許文献2には、金魚等の水生動物に対して化合物の薬剤を、超音波を媒介して投与する方法が開示されている。この方法は、短時間の超音波処理により、養殖している魚類の病気を予防し、感染を防止するもので、例えば、ウイルス性疾病を、浸漬ワクチンを用いて治療する際に、ワクチンを入れたビーカ中で1MHz、1.7W/cmの強度の超音波を10〜15分間放射するものである。その結果、ゴナドトロピン放出ホルモン類似体を、水を介して投与した場合に、魚の皮膚を通過したゴナドトロピン放出ホルモン類似体の吸収を大幅に改善することができる。 Patent Document 2 discloses a method of administering an agent of a compound to an aquatic animal such as a goldfish through ultrasonic waves. This method is intended to prevent diseases of farmed fish and prevent infection by sonication for a short time.For example, when a viral disease is treated with an immersion vaccine, a vaccine is added. In a beaker, ultrasonic waves having an intensity of 1 MHz and 1.7 W/cm 2 are emitted for 10 to 15 minutes. As a result, when the gonadotropin-releasing hormone analog is administered via water, the absorption of the gonadotropin-releasing hormone analog through the skin of fish can be significantly improved.

また、特許文献3の魚介類の養殖方法は、10〜30MHzの超音波を魚介類に照射し、旋回式気泡発生装置を用いて20μm以下のマイクロバブルを発生させて養殖を行うものである。これにより、養殖する魚介類の成長率及び飼料効率が改善することが開示されている。 In the method for cultivating fish and shellfish of Patent Document 3, ultrasonic waves of 10 to 30 MHz are applied to the fish and shellfish to cultivate the fish by generating micro bubbles of 20 μm or less using a swirl type bubble generator. It is disclosed that this improves the growth rate and feed efficiency of cultured seafood.

特許文献4は、短時間の超音波処理により、養殖している魚類の病気を予防し感染を防止する疾病治療装置及び方法を開示し、特に高濃度溶存酸素水中で超音波を養殖魚に放射するとともに、ワクチン処理を施すものである。これにより、養殖魚に対して、ウイルス病予防の浸漬ワクチンを効率よく吸収させ、死亡率を改善するものである。 Patent Document 4 discloses a disease treatment apparatus and method for preventing illness and preventing infection of cultured fish by ultrasonic treatment for a short time, and particularly radiates ultrasonic waves to cultured fish in highly concentrated dissolved oxygen water. In addition, the vaccine treatment is performed. This allows the cultured fish to efficiently absorb the immersion vaccine for preventing viral diseases and improve the mortality rate.

さらに、特許文献5は超音波振動子として複数の圧電振動子を用いたもので、水産物を養殖している水面または水中に移動可能に位置する容器と、容器に取り付けられた複数の超音波振動子を有し、各超音波振動子は超音照射方向が互いに異なり、容器は、水面または水中で移動しながら、水産物に偏りなく超音波を放射する水産物養殖装置を開示している。さらに、音響インピーダンスが3MRayls以上、50MRayls以下の材質からなる材質の側面を持つ水槽を用いて、水産物を養殖する水産物養殖方法であって、注水された水槽中に、超音波振動子を有する水産物養殖装置を入れ、超音波振動子から超音波を発生させ、水中の水産物に超音波を放射する水産物養殖方法を開示している。 Further, Patent Document 5 uses a plurality of piezoelectric vibrators as ultrasonic vibrators, and includes a container movably positioned on the surface of water on which aquatic products are cultivated or underwater, and a plurality of ultrasonic vibrations attached to the container. Disclosed is an aquaculture device having a child, each ultrasonic transducer having a different ultrasonic irradiation direction, and a container radiating ultrasonic waves to a marine product while being moved while moving on the water surface or in water. Furthermore, a method of aquaculture for cultivating aquatic products using an aquarium having a side surface made of a material having an acoustic impedance of 3 MRayls or more and 50 MRayls or less, the aquatic aquaculture having an ultrasonic transducer in a water tank in which water is injected. Disclosed is a method for aquaculture, in which a device is inserted, ultrasonic waves are generated from an ultrasonic transducer, and ultrasonic waves are radiated to marine products in water.

特開平6−113694号公報Japanese Patent Laid-Open No. 6-113694 特表平6−503951号公報Japanese Patent Publication No. 6-503951 特開2002−119号公報JP-A-2002-119 特開2007−215475号公報JP, 2007-215475, A WO2015/159757号公報WO2015/159757

上記背景技術の特許文献1〜4に開示された方法の場合、使用する超音波発生器は、超音波の放射方向を適宜変えて制御するものではなく、大形の養殖水槽中で超音波を幅広く均一に照射することができないという問題がある。さらに、特許文献3に開示された方法の場合、旋回式気泡発生装置を用いて20μm以下のマイクロバブルを発生させるものであるが、10〜30MHzの超音波を安定して発生させることは困難である。また、超音波の放射方向を制御することが出来ず、さらに10MHz以上の超音波は、酸素の多い水中では容易に減衰し、その音響強度を保持することが難しいという問題もある。 In the case of the methods disclosed in Patent Documents 1 to 4 of the background art described above, the ultrasonic generator used does not control by appropriately changing the radiation direction of the ultrasonic wave, and the ultrasonic wave is generated in a large-sized aquarium. There is a problem that irradiation cannot be performed widely and uniformly. Further, in the case of the method disclosed in Patent Document 3, a swirl-type bubble generator is used to generate microbubbles of 20 μm or less, but it is difficult to stably generate an ultrasonic wave of 10 to 30 MHz. is there. There is also a problem that the emission direction of ultrasonic waves cannot be controlled, and ultrasonic waves of 10 MHz or higher are easily attenuated in water containing much oxygen, and it is difficult to maintain the acoustic intensity.

その他、低周波のスピーカを用いて水産物に音波を照射する方法もあるが、この場合、水中に支持棒に固定して浸漬させ音波を発生させるもので、その音波の方向を容易に変えることは出来ない。このために水槽内の魚に均一に幅広く音波を照射することは困難であり、水槽に音波照射装置を複数台設置する必要性があり、経済性が劣る。さらに、池や水槽の底部に集積する傾向の水産物であるヒラメ、エビ、貝類ではその効果が小さいという問題点がある。また、重要な音波振動回路部品が水中にあるために浸水の恐れがあり、装置の点検及び維持管理が困難である。 In addition, there is also a method of irradiating sound waves to aquatic products using a low frequency speaker, but in this case, it is fixed in a support rod and immersed in water to generate sound waves, and it is not easy to change the direction of the sound waves. Can not. For this reason, it is difficult to uniformly and widely irradiate the fish in the water tank with sound waves, and it is necessary to install a plurality of sound wave irradiation devices in the water tank, which is inferior in economic efficiency. Furthermore, there is a problem that the effect is small for flounder, shrimp, and shellfish, which are marine products that tend to accumulate at the bottom of ponds and tanks. In addition, since important sonic vibration circuit components are underwater, there is a risk of water infiltration, making inspection and maintenance of the device difficult.

以上述べたように、これまで知られている音波や超音波照射による養殖装置や疾病予防装置は、実験用の0.5m以下の水槽や、1〜100mの量産用の大形水槽や池、網で仕切られた海中に適応する際のいずれに適用した場合にも、種々の問題がある。例えば水槽の側面や底面に振動子や装置を固定して使用する場合は、図11に示すように、超音波振動子20から音響整合層22を介して外ケース12の外表面から照射される超音波は、その照射方向及び範囲が一定である。さらに、音響強度が超音波振動子20が対面した方向にのみ強く、超音波振動子20から発振されたままの高強度音響波19が直接照射されてしまい、水槽内で音響強度を均一にすることが出来ないものである。また、水槽の隅や底部に集積した養殖魚29に対して、有効に且つ均一に超音波を放射することが出来ず、集積した他の養殖魚の影になって超音波が届かないこともある。 As mentioned above, aquaculture equipment or disease prevention apparatus according to hitherto known sonic or ultrasonic irradiation, and 0.5 m 3 or less of the water tank for the experiment, Ya large aquarium for mass production of 1 to 100 m 3 There are various problems whether it is applied to a sea divided by a pond or a net. For example, when used in fixing the vibrator and equipment on the side surface or the bottom surface of the tank, as shown in FIG. 11, is radiated from the outer surface of the outer case 12 through the acoustic matching layer 22 from the ultrasonic transducer 20 The irradiation direction and range of ultrasonic waves are constant. Further, the acoustic intensity is strong only in the direction in which the ultrasonic transducer 20 faces, and the high-intensity acoustic wave 19 that is still oscillated from the ultrasonic transducer 20 is directly irradiated, and the acoustic intensity is made uniform in the water tank. It is something that cannot be done. In addition, it may not be possible to effectively and uniformly radiate ultrasonic waves to the cultured fish 29 accumulated at the corners and bottom of the aquarium, and the ultrasonic waves may not reach because of the shadow of other accumulated cultured fish. ..

その他、これまでに報告されている養殖漁業に用いられている超音波は、その周波数が20KHz〜100KHzであり、水中における波長は8cmから1.5cmと長く、魚の胴体部の平均直径が10cm以下の養殖魚や甲殻類の小形水産物、魚卵や稚魚を、音響波刺激を用いて効率よく増産するには適していない。 In addition, the ultrasonic waves used in the aquaculture industry that have been reported so far have a frequency of 20 KHz to 100 KHz, a wavelength in water as long as 8 cm to 1.5 cm, and an average diameter of the body of the fish of 10 cm or less. It is not suitable to efficiently increase the production of cultured fish, small-scale seafood of crustaceans, fish eggs and fry by using acoustic wave stimulation.

一方、特許文献5は、容器内での超音波振動子の配置角度を異なるものにして2枚以上配置した浮揚式の超音波水産物養殖装置を開示している。この装置は、水槽内にくまなく超音波を照射することができるが、超音波を水槽内で幅広くほぼ均一に分布させて照射することは困難であり、水槽内の超音波強度にバラツキが生じる問題が残る。 On the other hand, Patent Document 5 discloses a levitation-type ultrasonic aquaculture apparatus in which two or more ultrasonic transducers are arranged in the container with different arrangement angles. This device can irradiate ultrasonic waves all over the water tank, but it is difficult to irradiate ultrasonic waves with a wide and almost even distribution in the water tank, and the ultrasonic intensity in the water tank varies. The problem remains.

この発明は、上記背景技術の問題点に鑑みてなされたものであり、簡単な構造の装置により、音響波を水槽内で広範囲に照射して、養殖している魚類、甲殻類、貝類の抵抗力を向上させて生存率を向上させ収穫量を上げ、さらに再現性良くこれを行うことができる水産物養殖装置と水産物養殖システム及び水産物養殖方法を提供することを目的とする。 The present invention has been made in view of the problems of the background art described above, and irradiates acoustic waves over a wide range in an aquarium with a device having a simple structure to resist fish, shellfish, and shellfish that are cultivated. It is an object of the present invention to provide an aquaculture apparatus, aquaculture system, and aquaculture method that can improve the power, improve the survival rate, increase the yield, and perform the operation with good reproducibility.

はじめに、音波とは通常は20kHz以下、超音波とは20kHz以上と定義されている。一例として、基本波が例えば1MHzの超音波では基本の波長は1μsでその水中波長は約1.5mmである。しかしながら、パルス駆動を用いることで音波に近い、20kHz以下の音を作り出すことが出来る。例えばduty factorが20%でパルス繰り返し周波数(PRF)が1kHz(1ms)の超音波は反応速度が遅い生体細胞に対しては1kHzの音波刺激を受けたのと同等な反応を示すと考えられる。生体細胞の反応速度は神経系統の伝達速度に近い数msであり、例えば1MHz超音波の波長の1μsの速さでは、生体細胞は追随出来ないと考えられる。本発明では、パルス駆動の超音波音響波という。 First, the sound wave is usually defined as 20 kHz or less, and the ultrasonic wave is defined as 20 kHz or more. As an example, an ultrasonic wave having a fundamental wave of 1 MHz has a fundamental wavelength of 1 μs and an underwater wavelength of about 1.5 mm. However, by using pulse driving, it is possible to create a sound of 20 kHz or less, which is close to a sound wave. For example, it is considered that an ultrasonic wave having a duty factor of 20% and a pulse repetition frequency (PRF) of 1 kHz (1 ms) shows a reaction equivalent to that of a 1 kHz ultrasonic stimulation for living cells having a slow reaction rate. The reaction speed of living cells is several ms, which is close to the transmission speed of the nervous system, and it is considered that living cells cannot follow at a speed of 1 μs, which is the wavelength of 1 MHz ultrasonic waves, for example. In the present invention, an ultrasonic pulse driving of the acoustic wave.

このような低強度パルス超音波(Low intensity pulse ultrasounds, LIPUS)の刺激により、特に動物の骨の生体細胞である骨芽細胞の増殖が活性化され、骨折治療が促進されることは医学界では良く知られている。本発明はこの原理を水産物の養殖に利用したものである。 It is known in the medical community that such stimulation of low intensity pulse ultrasounds (LIPUS) activates proliferation of osteoblasts, which are living cells of bones of animals, and promotes treatment of fractures. Well known. The present invention utilizes this principle for aquaculture of aquatic products.

本発明は、養殖している水産物に、音波及び超音波の少なくともいずれかである音響波を照射する水産物養殖装置であって、前記音響波を発生可能な超音波振動子と、この超音波振動子を駆動する駆動部と、前記超音波振動子及び前記駆動部を保持した外ケースとを備え、前記超音波振動子から発せられる高強度音響波が放射される前面側に、前記高強度音響波を拡散させるとともに、単位面積当たりの強度が前記高強度音響波よりも弱い低強度音響波に変換し広範囲に照射させる音響波散乱材料から成る音響波拡散層を備えた水産物養殖装置である。 The present invention is a marine product culture apparatus that irradiates aquaculture that is being cultivated with an acoustic wave that is at least one of a sound wave and an ultrasonic wave. The high-strength acoustic wave is provided on the front surface side, which includes a drive unit that drives the child and an outer case that holds the ultrasonic oscillator and the drive unit, and emits a high-intensity acoustic wave emitted from the ultrasonic oscillator. The aquaculture device is provided with an acoustic wave diffusing layer made of an acoustic wave scattering material for diffusing waves and converting the intensity per unit area into a low intensity acoustic wave weaker than the high intensity acoustic wave to irradiate a wide range.

前記超音波振動子は圧電振動子であり、前記音響波拡散層は、気体及び気体を90体積%以上含む発泡樹脂を含む層により構成されるものでもよい。前記発泡樹脂は、例えば発泡ポリスチレン、発泡ポリウレタン、または発泡ゴムである。 The ultrasonic oscillator may be a piezoelectric oscillator, and the acoustic wave diffusion layer may be formed of a layer containing gas and foamed resin containing 90% by volume or more of gas. The foam resin is, for example, expanded polystyrene, expanded polyurethane, or expanded rubber.

本発明の前記音響波拡散層の前記音響波散乱材料は、金属製の網により構成され、その網目の大きさが、使用する超音波の水中波長λのλ〜λ/10である。 The acoustic wave scattering material of the acoustic wave diffusion layer of the present invention is composed of a metal net, and the size of the net is λ to λ/10 of the underwater wavelength λ of the ultrasonic wave used.

前記音響波拡散層は、前記外ケース中または前記外ケース外の音響整合層の内部、または前記外ケースの外側に配置されたものである。 The acoustic wave diffusion layer is arranged inside the outer case, inside the acoustic matching layer outside the outer case, or outside the outer case.

さらに、前記圧電振動子と、媒体である淡水または海水との音響整合を取るための少なくとも2層の前記音響整合層が配置され、前記音響整合層の形状が、前記圧電振動子よりも大きいものでも良い。また、前記外ケースには、内部に少なくとも2種類の周波数を発生する円板、リング状、または矩形板の前記圧電振動子が配置され、前記超音波振動子の基本波周波数は、0.1MHz〜10MHzの範囲である。 Furthermore, at least two acoustic matching layers for acoustic matching between the piezoelectric vibrator and fresh water or seawater as a medium are arranged, and the shape of the acoustic matching layer is larger than that of the piezoelectric vibrator. But good. Further, the outer case is provided with the piezoelectric vibrator which is a disc, a ring or a rectangular plate that generates at least two kinds of frequencies, and the fundamental wave frequency of the ultrasonic vibrator is 0.1 MHz. It is in the range of -10 MHz.

前記水産物養殖装置の超音波振動子は、鉛を用いない圧電材料を使用することが好ましい。前記超音波はパルス波であり、その繰り返し周波数は1000Hz〜0.5Hz、Duty factorは10〜60%であり、これらの少なくとも1つの前記超音波振動子を、中空角錐容器の側面部に配置したものでも良い。 It is preferable that the ultrasonic transducer of the aquaculture apparatus uses a piezoelectric material that does not use lead. The ultrasonic wave is a pulse wave, the repetition frequency thereof is 1000 Hz to 0.5 Hz, and the duty factor is 10 to 60%. At least one of these ultrasonic vibrators is arranged on the side surface of the hollow pyramid container. Anything is fine.

また、着脱可能な携帯型電子機器、または可聴音の音楽、摂餌音、或いは遊泳音を発生させる音響発生装置を有するものでも良い。電源として充電式の電池を備え、前記駆動部は前記電池により動作可能であり、防水機能を有するとさらに良い。 Further, it may be a portable electronic device that is detachable or has a sound generation device that generates an audible sound, a feeding sound, or a swimming sound. It is further preferable that a rechargeable battery is provided as a power source , and the drive unit is operable by the battery, and has a waterproof function.

またこの発明は、前記水産物養殖装置を備え、水産物を収容可能で、海水または淡水を入れた水槽と、前記水槽の水面または水中の少なくともいずれかに、前記水産物養殖装置が設けられ、前記水槽中の水中に前記音響波を照射可能に設けられた水産物養殖システムである。 Further, the present invention is provided with the aquaculture device, is capable of accommodating marine products, the aquarium containing seawater or fresh water, and at least one of the water surface and the water of the aquarium, the aquaculture device is provided, Is an aquaculture system provided so that the acoustic wave can be irradiated into the water.

前記水槽内面は、表面積の少なくも80%以上に、音響波を反射及び散乱させるための音響波反射率が90%以上の音響波反射材料の音響波反射層が設けられている。さらに水槽内面または外面材料は、気体層及び気体を含む有機材料である発泡材料で構成されていると良い。 An acoustic wave reflection layer of an acoustic wave reflection material having an acoustic wave reflectance of 90% or more for reflecting and scattering acoustic waves is provided on at least 80% or more of the inner surface of the water tank. Furthermore, the inner or outer surface material of the water tank is preferably made of a foam material which is an organic material containing a gas layer and a gas.

前記音響波反射材料はシートからなり、その少なくとも表面または裏面が有機フィルムで被覆され、その厚みが0.05〜1.0mmであり、内面には90体積%以上の気体を含む有機材料を備えるものである。前記の音響反射材料の表面の有機フィルムが、フッ素樹脂、PET、またはナイロンであり、内部に気体層または発泡ポリスチレン、発泡ポリウレタン、または発泡ゴムを含むものである。 The acoustic wave reflection material is formed of a sheet, at least the front surface or the back surface thereof is covered with an organic film, the thickness is 0.05 to 1.0 mm, and the inner surface is provided with an organic material containing 90% by volume or more of gas. It is a thing. The organic film on the surface of the acoustic wave reflection material is fluororesin, PET, or nylon, and contains a gas layer or expanded polystyrene, expanded polyurethane, or expanded rubber inside.

さらに、前記水産物養殖システムは、直径0.01〜10mmの空気バブルを水中に放出しながら使用すると良い。また、前記水槽中の海水または淡水の温度を2℃から30℃に設定可能な温度制御装置を備えるものである。 Further, the aquaculture system may be used while releasing air bubbles having a diameter of 0.01 to 10 mm into the water. Further, the temperature control device capable of setting the temperature of seawater or fresh water in the water tank at 2°C to 30°C is provided.

またこの発明は、前記水産物養殖装置を用いる水産物養殖方法であって、前記水産物養殖装置を、水産物を収容可能で海水または淡水を入れた水槽中の水に浮かせて自由に揺動させ、前記水産物養殖装置から前記音響波を発生させて前記水槽の壁面で反射させ、水中の水前記産物に音響刺激を施す水産物養殖方法である。 Further, the present invention is a method for aquaculture using the aquaculture device, wherein the aquaculture device is floated in water in a water tank that can store marine products and contains seawater or freshwater, and the aquaculture device is freely swung to obtain the aquaculture product. In the aquaculture method, the acoustic wave is generated from the aquaculture device and reflected on the wall surface of the aquarium to apply acoustic stimulation to the water in water.

前記水産物養殖装置により、水中の前記水産物の総重量に対して20mW/kg〜1W/kgの超音波強度(Isata)の超音波を与えて、前記水産物に音響波刺激を施して養殖を行うものである。さらに前記水産物養殖装置により、10〜60分/日、1〜7日/週、且つ1〜50週間、連続または間欠的に、前記音響波を前記水中の水産物に照射するものである。 With the aquaculture apparatus, ultrasonic waves having an ultrasonic intensity (Isata) of 20 mW/kg to 1 W/kg are applied to the total weight of the aquatic products in water, and the aquatic products are subjected to acoustic wave stimulation for aquaculture. Is. Further, the aquaculture device irradiates the aquatic product in the water with the acoustic wave continuously or intermittently for 10 to 60 minutes/day, 1 to 7 days/week, and 1 to 50 weeks.

また、前記水産物養殖装置の可聴音のスピーカ、または携帯電話から水産物の活動を活発にする周波数と強度の音響波を出して養殖を行うものでも良い。前記水産物は、魚類、甲殻類の卵、稚魚及び成魚である。 In addition, an audible speaker of the aquaculture device or a mobile phone may be used to generate an acoustic wave of a frequency and intensity that activates the activity of the aquatic product for cultivation. The marine products are fish, eggs of crustaceans, fry and adult fish.

本発明の水産物養殖装置と水産物養殖システム及び水産物養殖方法は、軽量で小型の装置であって、簡単な構造で安価且つ安全に、水槽内で低強度音響波エネルギーを有効に、より均一に広い面積に照射することが出来る。これにより、超音波刺激の効果としての血流促進、骨成分の増強、成長率向上、生存率の向上、収穫量増加などを、効率的に広範囲に実現することが出来る。特に、疾病の治療と予防に重要な血液やリンパ液は、人体と同様に魚類でも主に骨の骨髄で製造されていると考えられているので、この発明の水産物養殖装置によれば、特に造血作用を有する背骨に有効に音響波を照射することができる。 INDUSTRIAL APPLICABILITY The aquaculture apparatus, the aquaculture system and the aquaculture method of the present invention are lightweight and small-sized apparatus, have a simple structure, are inexpensive and safe, and can effectively and effectively spread low-intensity acoustic wave energy in a water tank. The area can be illuminated. As a result, it is possible to efficiently realize a wide range of promotion of blood flow as an effect of ultrasonic stimulation, enhancement of bone components, improvement of growth rate, improvement of survival rate, increase of yield and the like. Particularly, it is considered that blood and lymph, which are important for treatment and prevention of diseases, are mainly produced in bone marrow of fish as well as human body. Therefore, according to the aquaculture device of the present invention, hematopoiesis is particularly high. It is possible to effectively radiate the acoustic wave to the spine having an action.

また本発明の水産物養殖装置と水産物養殖システム及び水産物養殖方法により、骨等に低強度音響波刺激を施し、水産物の生体の活性化と生命力の向上、ウイルス耐性向上、生存率向上等を実現して、養殖している水産物の収穫量増加を図ることができる。 Further, by using the aquaculture apparatus, aquaculture system and aquaculture method of the present invention, low-intensity acoustic wave stimulation is applied to bones, etc., thereby activating the living body of aquatic products and improving their vitality, improving virus resistance, improving survival rate, etc. Therefore, it is possible to increase the yield of aquaculture that is being cultivated.

この発明の第一実施形態の水産物養殖装置の概略図である。It is a schematic diagram of an aquaculture device of a first embodiment of the present invention. 音響波強度を時間とともに変化させたグラフの概略図である。It is the schematic of the graph which changed the acoustic wave intensity with time. 音響波強度を時間とともに変化させ、パルス状に発振させたグラフで、周波数は一定で出力レベルを変化させたグラフである。It is a graph in which the acoustic wave intensity is changed with time and oscillated in a pulse shape, and the output level is changed while the frequency is constant. この発明の第二実施形態の水産物養殖装置と超音波ビーム及び水産物を示す概略図である。It is the schematic which shows the aquaculture apparatus of 2nd embodiment of this invention, an ultrasonic beam, and a marine product. この発明の第三実施形態であって、2種類の異なる周波数を有する各2個の超音波振動子を取り付けた水産物養殖装置の外ケースを除いた状態の平面図(a)と、縦断面図(b)概略図である。It is a third embodiment of this invention, The top view (a) of the state which removed the outer case of the aquaculture apparatus which attached two ultrasonic transducers each having two kinds of different frequencies, and a longitudinal sectional view. (B) It is a schematic diagram. この発明の音響整合層と音響波拡散層の変形例を示すもので、2層の音響整合層を備えた水産物養殖装置の部分断面図(a)、音響整合層内に音響波拡散部を備えた水産物養殖装置の部分断面図(b)である。The modification of the acoustic matching layer and the acoustic wave diffusion layer of this invention is shown, The partial cross section figure (a) of the aquaculture apparatus provided with two acoustic matching layers, The acoustic wave diffusion part is provided in the acoustic matching layer. It is a partial cross-sectional view (b) of the aquaculture device. この発明の音響整合層と音響波拡散層の他の変形例を示すもので、外ケースに音響波拡散部を備えた水産物養殖装置の部分断面図(a)、音響整合層内に音響波拡散部を備えた水産物養殖装置の部分断面図(b)、音響整合層内に他の音響波拡散部を備えた水産物養殖装置の部分断面図(c)である。Fig. 6 shows another modified example of the acoustic matching layer and the acoustic wave diffusion layer of the present invention, and is a partial cross-sectional view (a) of an aquaculture device having an acoustic wave diffusion portion in an outer case. FIG. 3 is a partial cross-sectional view (b) of an aquaculture device including a portion, and a partial cross-sectional view (c) of the aquaculture device including another acoustic wave diffusion portion in the acoustic matching layer. この発明の音響整合層と音響波拡散層の他の変形例を示すもので、外ケースの外側の音響波拡散層内に音響波拡散部を備えた水産物養殖装置の部分断面図(a)、外ケースの外側の音響波拡散層内に他の音響波拡散部を備えた水産物養殖装置の部分断面図(b)、外ケースの外側の音響波拡散層内に他の音響波拡散部を備えた水産物養殖装置の部分断面図(c)である。Fig. 6 shows another modified example of the acoustic matching layer and the acoustic wave diffusion layer of the present invention, and is a partial cross-sectional view (a) of the aquaculture device having the acoustic wave diffusion portion inside the acoustic wave diffusion layer outside the outer case, Partial cross-sectional view (b) of the aquaculture device provided with another acoustic wave diffusion portion inside the acoustic wave diffusion layer outside the outer case, another acoustic wave diffusion portion inside the acoustic wave diffusion layer outside the outer case It is a partial cross-sectional view (c) of the aquaculture device. この発明の第四実施形態の水産物養殖システムを示す概略図である。It is the schematic which shows the aquaculture system of 4th embodiment of this invention. この発明の第五実施形態であって、4角錐容器の側面に超音波振動子を設けた構造の水産物養殖装置を示す概略横断面図(a)と概略縦断面図(b)である。It is a 5th embodiment of this invention, and is a schematic transverse sectional view (a) and a schematic vertical sectional view (b) which show the aquaculture apparatus of the structure which provided the ultrasonic transducer on the side of a quadrangular pyramid container. 従来の水産物装置において超音波照射ビームと水産物である養殖魚を示す模式図である。It is a schematic diagram which shows the ultrasonic irradiation beam and the cultured fish which are marine products in the conventional marine product apparatus.

以下、この発明の実施形態について図面に基づいて説明する。図1はこの発明の第一実施形態を示すもので、この実施形態の水産物養殖装置10は、基本的な構成を示し、水密構造の外ケース12を備え、その内部に基板14を有し、その上には駆動部15を構成する電池等の電源16及び制御回路17を有する。基板14の図示しない端子には、リード線18が接続され、超音波振動子20の図示しない端子に接続されている。超音波振動子20は、音響整合層22と図示しない保護フィルムを介して外ケース12に取り付けられ、外ケース12の表面から高強度音響波19が放射可能に設けられている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a first embodiment of the present invention. An aquaculture apparatus 10 of this embodiment has a basic configuration, includes an outer case 12 having a watertight structure, and a substrate 14 inside thereof. A power source 16 such as a battery and a control circuit 17 which constitute the driving unit 15 are provided on the upper portion. The lead wire 18 is connected to a terminal (not shown) of the substrate 14 and is connected to a terminal (not shown) of the ultrasonic transducer 20. The ultrasonic transducer 20 is attached to the outer case 12 via an acoustic matching layer 22 and a protective film (not shown), and is provided so that high-intensity acoustic waves 19 can be radiated from the surface of the outer case 12.

外ケース12の超音波振動子20が取り付けられた部分の外側には、音響波散乱材料により形成された音響波拡散層24が設けられている。音響波拡散層24は、水の音響インピーダンスとの差が大きいもので、金属部材の金網や空気を含む樹脂が好ましい。音響波拡散層24により、高強度音響波19が、相対的に単位面積当たりの強度が高強度音響波19よりも弱い強度の低強度音響波21に制御され、広く拡散し広範囲に照射される。音響波散乱材料は、例えば金属製の多孔質材料や金網から構成され、多孔質材料の空隙の平均値や、金網の網目の大きさである目開きは、使用する超音波の水中波長λに対してλ〜λ/10である。また、低音響インピーダンスの発泡樹脂を用いることも出来る。また、外ケース12の上部には、音響機器26を着脱自在に保持する固定可能な支持台28を備えていても良い。 An acoustic wave diffusion layer 24 made of an acoustic wave scattering material is provided outside the portion of the outer case 12 to which the ultrasonic transducer 20 is attached. The acoustic wave diffusion layer 24 has a large difference from the acoustic impedance of water, and is preferably made of metal wire mesh or resin containing air. The acoustic wave diffusion layer 24, a high intensity acoustic wave 19, the strength per a relatively unit area is controlled to a low intensity acoustic wave 21 of weaker strength than the high intensity acoustic waves 19 are widely diffused irradiation extensively .. The acoustic wave scattering material is composed of, for example, a metal porous material or a metal mesh, and the average value of the voids of the porous material and the mesh size of the mesh of the metal mesh are equal to the underwater wavelength λ of the ultrasonic wave used. On the other hand, λ to λ/10. Further, a foamed resin having low acoustic impedance can also be used. Further, a fixable support base 28 that detachably holds the audio device 26 may be provided on the upper portion of the outer case 12.

超音波振動子20は、電圧を加えると振動して超音波を発振する圧電素子であり、厚み振動や広がり振動を用いる。発振する超音波の共振周波数は、0.1MHz以上、10MHz以下である。しかしながら、超音波振動子20は基本波の周波数成分のみならず、その高調波も発生しており、これらも有効に利用される。超音波振動子20の圧電素子は、主に電気機械結合係数が大きく、安価に入手出来るPZT系セラミックス振動子が選択される。また、高性能のリラクサ系の圧電単結晶を用いることも出来る。しかしながら、これらの鉛系圧電振動子は環境に影響を与える酸化鉛を50%以上含むため、装置が壊れた場合には回収して適当な処理を行う必要性がある。従って、ニオブ酸アルカリ塩を主体とするセラミックス材料や水晶、リチウムタンタレート単結晶、リチウムナイオベート単結晶などの非鉛系圧電材料を用いると良いものである。超音波振動子20は、照射方向とは反対側の面に、医用画像診断装置のプローブで通常に用いられている図示しない音響バッキング層や、放熱用のリードなどが設けられていても良い。 The ultrasonic vibrator 20 is a piezoelectric element that vibrates when a voltage is applied and oscillates ultrasonic waves, and uses thickness vibration or spreading vibration. The resonance frequency of the oscillating ultrasonic wave is 0.1 MHz or more and 10 MHz or less. However, the ultrasonic transducer 20 generates not only the frequency component of the fundamental wave but also its harmonics, and these are effectively used. For the piezoelectric element of the ultrasonic oscillator 20, a PZT ceramic oscillator that has a large electromechanical coupling coefficient and is inexpensive and available is selected. Alternatively, a high-performance relaxor piezoelectric single crystal can be used. However, since these lead-based piezoelectric vibrators contain 50% or more of lead oxide, which affects the environment, it is necessary to collect and appropriately process the device if it breaks. Therefore, it is preferable to use a lead-free piezoelectric material such as a ceramic material mainly containing an alkali niobate salt, a crystal, a lithium tantalate single crystal, or a lithium niobate single crystal. The ultrasonic transducer 20 may be provided with an acoustic backing layer (not shown), which is commonly used in a probe of a medical image diagnostic apparatus, and a heat radiation lead, on the surface opposite to the irradiation direction.

この実施形態の水産物養殖装置10の使用方法は、図1に示すように、水産物である養殖魚29の入った水槽内(図示せず)に、出来るだけ広範囲に均一に低強度音響波21が照射されるように、音響波拡散層24を用いてその強度を分散し、更に水槽及び水面からの反射波を利用して水産物に低強度音響波刺激を行う。 As shown in FIG. 1, the method for using the aquaculture apparatus 10 of this embodiment is such that the low-intensity acoustic wave 21 is evenly distributed in a water tank (not shown) containing the cultured fish 29, which is a marine product, as widely as possible. As the irradiation is performed, the intensity is dispersed using the acoustic wave diffusion layer 24, and the reflected waves from the water tank and the water surface are used to perform low-intensity acoustic wave stimulation on the marine product.

水産物養殖装置10の使用時の音響波強度は適宜設定することができ、例えば図2に示すように、時間とともに徐々に強度を上げた後、緩やかに強度を落とすようにしても良く、図3に示すように、パルス状に発振を行い、緩やかに音響波の強度を上げて、同様に緩やかに強度を落とすように照射しても良い。さらに、音響波強度の変化は、使用する超音波パルスの繰り返し周波数(PRF)を変化させたり、振幅を時間とともに変更しても良い。特に、発振する超音波を図3に示すように変化させ、周波数が一定で出力レベルを変化させることにより、結晶成長の原理を利用して骨や筋肉の成長を高める効果を有する。 The acoustic wave intensity when the aquaculture device 10 is used can be set as appropriate, and for example, as shown in FIG. 2, the intensity may be gradually increased with time, and then gradually decreased. As shown in FIG. 5, irradiation may be performed by oscillating in a pulse shape, gradually increasing the intensity of the acoustic wave, and similarly gradually lowering the intensity. Further, the change in the acoustic wave intensity may be changed by changing the repetition frequency (PRF) of the ultrasonic pulse used or the amplitude may be changed with time. In particular, by changing the oscillating ultrasonic wave as shown in FIG. 3 and changing the output level at a constant frequency, the principle of crystal growth is utilized to have the effect of enhancing the growth of bone or muscle.

なお、この水産物養殖装置10による低強度音響波21の照射範囲を制御するために、医療用超音波診断装置の超音波プローブに用いられるような原理を利用して音響レンズ等を用いてもよい。この場合は水よりも音速が大きなアクリル樹脂などを用いて凸面形状とすることが望ましい。超音波は、照射を間欠的に行うパルス波を用いることが好ましい。パルス波は、例えば周期0.001〜2秒(周波数が0.1KHzから0.5Hz)でDuty factorが10〜60%の音響波を使用する。超音波の波形は、サイン波や矩形波、三角波など各種の波形の超音波を用いることができる。しかしながら好ましくは、そのPRFが心臓パルスに近い周期0.5〜2秒(2Hzから0.5Hz)、Duty factorは10〜50%が良い。特に好ましいPRFは、心拍数に近い周期1秒(1Hz)前後から、骨折治療促進で利用実績のある周期1ms(1000Hz)前後で、音楽などの可聴音を組み合わせて使用することである。この範囲のPRF、及びDuty factorを用いることで水産物の生体細胞を短期間でより活性化させることが出来る。 In order to control the irradiation range of the low-intensity acoustic wave 21 by the aquaculture apparatus 10, an acoustic lens or the like may be used by utilizing the principle used for the ultrasonic probe of the medical ultrasonic diagnostic apparatus. .. In this case, it is desirable to use acrylic resin or the like having a higher sound velocity than water to form the convex shape. As the ultrasonic wave, it is preferable to use a pulse wave for intermittent irradiation. As the pulse wave, for example, an acoustic wave having a cycle of 0.001 to 2 seconds (a frequency of 0.1 KHz to 0.5 Hz) and a duty factor of 10 to 60% is used. As the waveform of ultrasonic waves, ultrasonic waves of various waveforms such as sine wave, rectangular wave, and triangular wave can be used. However, it is preferable that the PRF has a period close to a cardiac pulse of 0.5 to 2 seconds (2 Hz to 0.5 Hz), and the duty factor of 10 to 50%. A particularly preferable PRF is to use a combination of audible sounds such as music from a cycle of about 1 second (1 Hz) close to the heart rate to a cycle of about 1 ms (1000 Hz) that has been used in promoting fracture treatment. By using the PRF and Duty factor in this range, it is possible to further activate living cells of marine products in a short period of time.

低強度音響波21の超音波強度(Isata)は、その水産物の総重量あたり20mW/kgから1W/kgで良い。20mW/kg以下では、骨や皮膚、筋肉に関連した成長や修復、活性化、生存率に与える効果が30週間以上経過後でも極めて小さい。また1W/kg以上では長時間の暴露では水産物に有害である恐れがあるばかりでなく、装置が大型化するためである。好ましくは、この水産物養殖装置10の音響強度は、水産物の総重量あたり50〜300mW/kgである。 The ultrasonic intensity (Isata) of the low intensity acoustic wave 21 may be 20 mW/kg to 1 W/kg per total weight of the marine product. Below 20 mW/kg, the effects on growth, repair, activation and survival rate related to bone, skin and muscle are extremely small even after 30 weeks or more. Further, if it is 1 W/kg or more, not only may it be harmful to marine products if it is exposed for a long time, but also the size of the device becomes large. Preferably, the acoustic intensity of the aquaculture device 10 is 50 to 300 mW/kg per total weight of the aquatic product.

水産物養殖装置10に、更に20〜2000Hzの可聴音を発生するスピーカ等の音波装置が設けられてもよい。この可聴音は音楽や摂餌音、遊泳音が適当である。また、水産物養殖装置10に、積算時間計、稼働点滅表示、警報音、通信機能及びビデオ、水産物の異常確認用カメラ、音波発生用スピーカなどの機能をつけておいても良い。 The aquaculture device 10 may be further provided with a sound wave device such as a speaker that generates an audible sound of 20 to 2000 Hz. Suitable audible sounds are music, feeding sounds, and swimming sounds. Further, the aquaculture apparatus 10 may be provided with functions such as an integrated time meter, a blinking operation display, an alarm sound, a communication function and a video, a camera for confirming an abnormality of a marine product, and a speaker for generating a sound wave.

これらの装置から放射された音響波は水産物内部の軟組織である皮膚、脂肪、筋肉を通過し、大部分は硬組織である骨に到達し、骨に伝達されて減衰し、熱エネルギーに変換される。これにより、骨に刺激を与え、骨芽細胞等の増植に貢献する。可聴音の音楽等を出すスピーカから出される摂餌音、遊泳音などにより、必要な運動量を増加させ肉質改善を行うことも可能であり、種々の使い方が可能である。 The acoustic waves emitted from these devices pass through the soft tissues, skin, fat, and muscle inside the marine product, and reach the bone, which is mostly hard tissue, where they are transmitted to the bone, attenuated, and converted into heat energy. It This stimulates the bone and contributes to the expansion of osteoblasts and the like. It is also possible to increase the required amount of exercise and improve the meat quality by feeding sound, swimming sound, etc. emitted from a speaker that emits audible sound, etc., and various uses are possible.

次に、この発明の第二実施形態の水産物養殖装置30について。図4を基にして説明するここで、上記実施形態と同様の構成は、同一の符号を付して説明を省略する。図4はこの実施形態の水産物養殖装置30の音響波を水産物である養殖魚29に照射した状態の模式図を示す。この実施形態の水産物養殖装置30の構造は、外ケース12の内面には超音波振動子20が、第一音響整合層31、第二音響整合層32を介して固定されている。第2音響整合層32の内部には、超音波振動子20と対面するように、音響波散乱材料により構成され、高強度音響波を拡散させるとともに単位面積当たりの強度が弱い低強度音響波21に変換し、均一に大面積に照射させる音響波拡散部34が設けられている。この実施形態では、音響波拡散部34を備えた第二音響整合層32が、音響波拡散層36を構成している。 Next, the aquaculture apparatus 30 according to the second embodiment of the present invention. Description will be given based on FIG. 4. Here, the same configurations as those in the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted. FIG. 4 is a schematic diagram showing a state where the aquaculture fish 29, which is a marine product, is irradiated with acoustic waves from the aquaculture device 30 of this embodiment. In the structure of the aquaculture device 30 of this embodiment, the ultrasonic transducer 20 is fixed to the inner surface of the outer case 12 via the first acoustic matching layer 31 and the second acoustic matching layer 32. Inside the second acoustic matching layer 32, which is made of an acoustic wave scattering material so as to face the ultrasonic transducer 20, the high intensity acoustic wave is diffused and the low intensity acoustic wave 21 having a weak intensity per unit area is formed. The acoustic wave diffusing unit 34 is provided to convert the light into a large area for uniform irradiation. In this embodiment, the second acoustic matching layer 32 including the acoustic wave diffusing unit 34 constitutes the acoustic wave diffusing layer 36.

この実施形態の水産物養殖装置30によっても、超音波振動子20から発せられる高強度音響波が放射される前面に、音響波拡散層36を備えているため、超音波振動子20の直下以外の水産物に対しても必要十分な音響波刺激を行うことが出来る。さらに、音響波拡散層36が外ケース12の内側にあるので、水産物養殖装置30の外表面をすっきりさせることができる。 Also with the aquaculture device 30 of this embodiment, since the acoustic wave diffusion layer 36 is provided on the front surface from which the high-intensity acoustic wave emitted from the ultrasonic transducer 20 is radiated, other than directly under the ultrasonic transducer 20. It is possible to perform necessary and sufficient acoustic wave stimulation on marine products. Furthermore, because the acoustic wave diffusion layer 36 is inside the outer case 12, the outer surface of the aquaculture device 30 can be made clean.

次に、この発明の第三実施形態の水産物養殖装置40について図5を基にして説明する。ここで、上記実施形態と同様の構成は、同一の符号を付して説明を省略する。図5に示す実施形態の水産物養殖装置40は、2種類の異なる周波数を有する各2対の超音波振動子41,42を有し、さらに可聴音の音楽等を出すスピーカ44が取り付けられたものである。この装置の外ケース46の外側の面には、音響波拡散層48が設けられている。音響波拡散部層48は、音響波散乱材料の樹脂材料や金網から成るもので、その内部に、超音波振動子41,42に各々対応した二対の音響波散乱材料からなる音響波拡散部49が設けられている。二対の音響波拡散部49は、互いに異なる所定の向きに設定されている。 Next, an aquaculture device 40 according to a third embodiment of the present invention will be described with reference to FIG. Here, the same configurations as those of the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted. The aquaculture device 40 of the embodiment shown in FIG. 5 has two pairs of ultrasonic transducers 41 and 42 each having two different frequencies, and is further equipped with a speaker 44 for outputting audible sound or the like. Is. An acoustic wave diffusion layer 48 is provided on the outer surface of the outer case 46 of this device. The acoustic wave diffusion layer 48 is made of a resin material such as an acoustic wave scattering material or a metal mesh, and has therein an acoustic wave diffusion portion made of two pairs of acoustic wave scattering materials corresponding to the ultrasonic transducers 41 and 42, respectively. 49 are provided. The two pairs of acoustic wave diffusion units 49 are set in different predetermined directions.

音響波拡散層48は、その材質、形状を変えることで、指向性の強い高強度音響波を制御して散乱・拡散させ、広い範囲に弱くした低強度音響波を養殖魚等の水産物に照射することができる。さらに、音響波拡散部49の形状、位置及び、数量を各々変えることによっても、指向性の強い高強度音響波を拡散させて、広い範囲で水産物に低強度音響波刺激を行うことができる。 The acoustic wave diffusion layer 48 controls the high-intensity acoustic wave having strong directivity to scatter/diffuse by changing the material and shape of the acoustic wave diffusion layer 48, and irradiates aquatic products such as cultured fish with the low-intensity acoustic wave weakened in a wide range. can do. Furthermore, by changing the shape, position, and quantity of the acoustic wave diffusing section 49, the high-intensity acoustic wave having a strong directivity can be diffused, and the low-intensity acoustic wave stimulation can be performed on a marine product in a wide range.

次に、この発明の水産物養殖装置に用いられる超音波振動子と音響整合層、外ケース、及び音響波拡散層の組み合わせ例について、図6〜図8を基にして説明する。ここで、上記実施形態と同様の構成は、同一の符号を付して説明を省略する。 Next, a combination example of the ultrasonic transducer, the acoustic matching layer, the outer case, and the acoustic wave diffusion layer used in the aquaculture apparatus of the present invention will be described based on FIGS. 6 to 8. Here, the same configurations as those of the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted.

図6(a)に示す水産物養殖装置50は、リング状の圧電振動子20を用いたもので、外形状が圧電振動子20よりも大きな第一音響整合層31、第二音響整合層32を介して外ケース12の内部に圧電振動子20が取り付けられているものである。この水産物養殖装置50は、第一音響整合層31または第二音響整合層32が音響波拡散層を兼ねているものである。 The aquaculture apparatus 50 shown in FIG. 6(a) uses a ring-shaped piezoelectric vibrator 20, and has a first acoustic matching layer 31 and a second acoustic matching layer 32 whose outer shapes are larger than those of the piezoelectric vibrator 20. The piezoelectric vibrator 20 is attached to the inside of the outer case 12 via the above. In this aquaculture device 50, the first acoustic matching layer 31 or the second acoustic matching layer 32 also serves as an acoustic wave diffusion layer.

図6(b)に示す水産物養殖装置52は、円板状の圧電振動子20を用いたもので、外形状が圧電振動子20と等しい音響整合層22を介して圧電振動子20が外ケース12の内部に取り付けられているものである。この水産物養殖装置52は、音響整合層22の内部に音響波拡散部49の空洞を備えている。空洞には発泡樹脂や金属が設けられていても良い。 The aquaculture device 52 shown in FIG. 6B uses a disk-shaped piezoelectric vibrator 20, and the piezoelectric vibrator 20 has an outer case with an acoustic matching layer 22 having an outer shape equal to that of the piezoelectric vibrator 20. It is attached inside 12. The aquaculture device 52 includes a cavity for the acoustic wave diffusion portion 49 inside the acoustic matching layer 22. Foamed resin or metal may be provided in the cavity.

図7(a)に示す水産物養殖装置54は、外形状が圧電振動子20よりも大きな第一音響整合層31、第二音響整合層32を介して外ケース12の内部に圧電振動子20が取り付けられているものである。水産物養殖装置54は、外ケース12に予め音響波拡散部49である凹部を形成し、第二音響整合層32が接合された状態で、空洞が複数個形成されるようにしたものである。音響波拡散部49である空洞には、発泡樹脂が充填されていても良い。 In the aquaculture device 54 shown in FIG. 7A, the piezoelectric vibrator 20 is placed inside the outer case 12 via the first acoustic matching layer 31 and the second acoustic matching layer 32 having an outer shape larger than that of the piezoelectric vibrator 20. It is installed. The aquaculture device 54 is configured such that a recess, which is the acoustic wave diffusion portion 49, is formed in the outer case 12 in advance, and a plurality of cavities are formed in a state where the second acoustic matching layer 32 is joined. The cavity that is the acoustic wave diffusion portion 49 may be filled with a foamed resin.

図7(b)に示す水産物養殖装置56も、外形状が圧電振動子20よりも大きな第一音響整合層31、第二音響整合層32を介して外ケース12の内部に圧電振動子20が取り付けられているもので、第二音響整合層32の内部に音響波拡散部49である複数の異なる形状の空洞が設けられているものである。空洞には、発泡樹脂が充填されていても良い。 Also in the aquaculture device 56 shown in FIG. 7B, the piezoelectric vibrator 20 is placed inside the outer case 12 via the first acoustic matching layer 31 and the second acoustic matching layer 32 whose outer shape is larger than that of the piezoelectric vibrator 20. The acoustic wave diffusing portion 49 is provided with a plurality of cavities of different shapes inside the second acoustic matching layer 32. The cavity may be filled with foamed resin.

図7(c)に示す水産物養殖装置58も、外形状が圧電振動子20よりも大きな第一音響整合層31、第二音響整合層32を介して外ケース12の内部に圧電振動子20が取り付けられているもので、第二音響整合層32の内部に音響波拡散部49である金網59が配置されたものである。 In the aquaculture device 58 shown in FIG. 7C as well, the piezoelectric vibrator 20 is placed inside the outer case 12 via the first acoustic matching layer 31 and the second acoustic matching layer 32 whose outer shape is larger than that of the piezoelectric vibrator 20. It is attached, and the wire net 59 which is the acoustic wave diffusion portion 49 is arranged inside the second acoustic matching layer 32.

図8(a)に示す水産物養殖装置54は、外形状が圧電振動子20よりも大きな第一音響整合層31、第二音響整合層32を介して、外ケース12の内部に圧電振動子20が取り付けられているものである。水産物養殖装置60は、外ケース12の外部に音響波拡散層24が設けられ、その内部に音響波拡散部49である金網59が設けられたものである。 The aquaculture apparatus 54 shown in FIG. 8A has a piezoelectric vibrator 20 inside the outer case 12 via a first acoustic matching layer 31 and a second acoustic matching layer 32 each having an outer shape larger than that of the piezoelectric vibrator 20. Is attached. The aquatic product aquaculture apparatus 60 is provided with the acoustic wave diffusion layer 24 outside the outer case 12 and a wire net 59 which is the acoustic wave diffusion portion 49 inside thereof.

図8(b)に示す水産物養殖装置62も、外形状が圧電振動子20よりも大きな第一音響整合層31、第二音響整合層32を介して、外ケース12の内部に圧電振動子20が取り付けられ、外ケース12の外部に音響波拡散層24が設けられ、その内部に音響波拡散部49である樹脂部材61が設けられたものである。 The aquaculture device 62 shown in FIG. 8B also has the piezoelectric vibrator 20 inside the outer case 12 via the first acoustic matching layer 31 and the second acoustic matching layer 32 having an outer shape larger than that of the piezoelectric vibrator 20. Is attached, the acoustic wave diffusion layer 24 is provided outside the outer case 12, and the resin member 61 that is the acoustic wave diffusion portion 49 is provided inside thereof.

図8(c)に示す水産物養殖装置64は、リング状の圧電振動子20が設けられ、外形状が圧電振動子20よりも大きな音響整合層22を介して、外ケース12の内部に圧電振動子20が取り付けられ、外ケース12の外部には、音響波拡散層24が設けられている。音響波拡散層24には、フレネル構造に樹脂が突出した突部24aが形成されている。 The aquaculture device 64 shown in FIG. 8C is provided with a ring-shaped piezoelectric vibrator 20, and piezoelectric vibration is generated inside the outer case 12 via an acoustic matching layer 22 having an outer shape larger than that of the piezoelectric vibrator 20. The child 20 is attached, and an acoustic wave diffusion layer 24 is provided outside the outer case 12. The acoustic wave diffusing layer 24 is formed with a protrusion 24 a having a Fresnel structure in which resin is projected.

これらの音響波拡散層24中の音響波散乱材料の材質、形状、数量、配置を変化させることで超音波振動子20から発せられた高強度音響波を容易に低強度音響波に変換し、広い面積に超音波を均一に放射させることが可能となる。このために養殖魚等の水産物に過度の音響強度の音響波を照射することなく、更に必要な超音波振動子20の数量を減少させることが出来る。これらの音響波拡散層24中の音響波散乱材料は、金属の場合、通常のMC加工やプレス成型のみならず、3次元成型装置を用いて容易に作製することが出来る。また、更なる低コスト化のために外ケースを成型する際に同時に同一材料を用いて音響波拡散層24、音響波散乱材料による音響波拡散部49の一部を作製することも出来る。 By changing the material, shape, number and arrangement of the acoustic wave scattering material in the acoustic wave diffusion layer 24, the high intensity acoustic wave emitted from the ultrasonic transducer 20 can be easily converted into the low intensity acoustic wave, It becomes possible to radiate ultrasonic waves uniformly over a wide area. For this reason, it is possible to further reduce the number of required ultrasonic transducers 20 without irradiating aquatic products such as cultured fish with acoustic waves of excessive acoustic intensity. When the acoustic wave scattering material in the acoustic wave diffusion layer 24 is a metal, it can be easily produced by using not only ordinary MC processing and press molding but also a three-dimensional molding apparatus. Further, in order to further reduce the cost, the acoustic wave diffusing layer 24 and a part of the acoustic wave diffusing portion 49 made of the acoustic wave scattering material can be manufactured at the same time when the outer case is molded.

次に、この発明の第四実施形態の水産物養殖システム70及び水産物養殖方法について。図9を基にして説明する。ここで、上記実施形態と同様の部材は同一の符号を付して説明を省略する。図9は、水槽72中で、上記第一実施形態の水産物養殖装置10と同様の構造であって、照射方向が異なる複数の超音波振動子20を備えた水産物養殖装置74を浮揚または固定して、水産物である養殖魚29に対して音響波刺激を行うものである。浮揚する水産物養殖装置74は、超音波振動子20の音響波放射面が水面に対して3〜30°の傾きをもつように、水産物養殖装置74の重心がオフバランスされて調節されていることが好ましい。 Next, the aquaculture system 70 and the aquaculture method according to the fourth embodiment of the present invention. It will be described with reference to FIG. Here, the same members as those in the above-described embodiment are designated by the same reference numerals and the description thereof will be omitted. FIG. 9 illustrates a structure similar to the aquaculture apparatus 10 of the first embodiment in the aquarium 72, in which the aquaculture apparatus 74 including a plurality of ultrasonic transducers 20 having different irradiation directions is levitated or fixed. Then, acoustic wave stimulation is performed on the cultured fish 29 which is a marine product. In the floating aquaculture device 74, the center of gravity of the aquaculture device 74 is adjusted so as to be off-balanced so that the acoustic wave emission surface of the ultrasonic transducer 20 has an inclination of 3 to 30° with respect to the water surface. Is preferred.

この実施形態の水産物養殖システム70の使用方法は、図9に示すよう、水産物養殖装置74を水槽72の水に浮かべ、超音波振動子20から水中に向けて高強度音響波を照射しこれを音響波拡散層24で低強度音響波21に変換される。水槽72の底面や側面、水面での音響波の乱反射を有効に利用しながら水産物である養殖魚29に出来るだけ均一に低強度音響波21を照射するものである。 As shown in FIG. 9, the method for using the aquaculture system 70 of this embodiment is such that the aquaculture device 74 is floated on the water in the aquarium 72, and high-intensity acoustic waves are radiated from the ultrasonic transducer 20 into the water. The acoustic wave diffusion layer 24 converts the low-intensity acoustic wave 21. The low intensity acoustic wave 21 is applied to the cultured fish 29 which is a marine product as uniformly as possible while effectively utilizing the irregular reflection of the acoustic wave on the bottom surface, the side surface of the aquarium 72 and the water surface.

水槽72の内面である側面及び底面の80%以上の面積には、気体を含む音響波反射層76を取り付けられている。音響波反射層76は、気体を90〜99体積%含む発泡樹脂から成る音響波反射材料である。このような音響波反射材料を用いることで、低強度音響波21の90%以上を有効に反射させ、効果的に養殖魚29に照射することが出来る。また、音響波反射層76の材料としては、塩化ビニル樹脂、PET、EVA、またはゴムであって内部に気体層を含むものが好ましい。また薄いシートやフィルムからなり、その少なくとも表面または裏面が有機フィルムで被覆され、その厚みが0.05〜1.0mmであり、内面には90体積%以上の気体を含む有機材料を用いることも出来る。 An acoustic wave reflection layer 76 containing gas is attached to an area of 80% or more of the side surface and the bottom surface which are the inner surface of the water tank 72. The acoustic wave reflection layer 76 is an acoustic wave reflection material made of foamed resin containing 90 to 99% by volume of gas. By using such an acoustic wave reflecting material, 90% or more of the low-intensity acoustic wave 21 can be effectively reflected and the cultured fish 29 can be effectively irradiated. Further, the material of the acoustic wave reflection layer 76 is preferably vinyl chloride resin, PET, EVA, or rubber containing a gas layer inside. It is also possible to use a thin sheet or film, at least the front surface or the back surface of which is covered with an organic film, which has a thickness of 0.05 to 1.0 mm, and whose inner surface contains an organic material containing 90% by volume or more of a gas. I can.

この実施形態では、水槽72の底面から水面までの高さが0.1〜10mである水槽72中にある養殖魚29等の水産物に、低強度音響波刺激を与えるものである。水面までの高さが0.1m以下では、装置を入れるための十分な深さが取れず、更に小型の魚類でもその全身を入れるには十分な深さがとれない。またまた、10m以上では音響波の効果が音響減衰により弱くなるためである。最適な深さは装置を浮揚させて使用しやすい0.2〜1.0mである。 In this embodiment, low-intensity acoustic wave stimulation is applied to aquatic products such as the cultured fish 29 in the water tank 72 having a height from the bottom surface of the water tank 72 to the water surface of 0.1 to 10 m. If the height to the surface of the water is 0.1 m or less, sufficient depth for inserting the device cannot be obtained, and even a small fish cannot have a sufficient depth for inserting the whole body. Further, this is because the effect of the acoustic wave is weakened by the acoustic attenuation when the distance is 10 m or more. The optimum depth is 0.2 to 1.0 m, which makes it easy to float the device and use it.

使用する超音波はその周波数が0.1〜10MHzで選択できるが、水産物表面から10cm以上の深部に位置する骨に音響波パワーを送るためには0.1〜2MHzが適しており、表面から3cm以下の骨や筋肉、魚卵などを刺激するのであれば2〜10MHzが適している。より好ましくはこれらの周波数を組み合わせて、シリーズに使用する。また、使用する超音波振動子の周波数が10MHz以上では空気の多い水中や水産物中での減衰が大きくなり、必要な音響波強度を得ることが困難となる。水槽72は、音響インピーダンスが海水または淡水の音響インピーダンスよりも十分に低い発泡樹脂からなる底面及び側面であれば良く、発泡ポリスチレンや樹脂の間に空気層を設けた材料などが軽量であり、使用出来る。 The ultrasonic wave to be used can be selected at a frequency of 0.1 to 10 MHz, but 0.1 to 2 MHz is suitable for transmitting acoustic wave power to the bone located at a depth of 10 cm or more from the surface of the aquatic product. When stimulating bones or muscles of 3 cm or less, fish eggs, etc., 2 to 10 MHz is suitable. More preferably, these frequencies are combined and used in series. Further, when the frequency of the ultrasonic transducer used is 10 MHz or more, attenuation in water or marine products containing a lot of air becomes large, and it becomes difficult to obtain a required acoustic wave intensity. The aquarium 72 may have a bottom surface and a side surface made of foamed resin whose acoustic impedance is sufficiently lower than that of seawater or fresh water, and is made of a material such as polystyrene foam or a material having an air layer between the resins, and is used. I can.

水産物養殖装置74の音響波を発生する間隔は、例えば、10〜60分/日、1〜7回/週、1〜50週間連続して行う。10分以下の短時間では水産物養殖の効果が小さく、一つの水槽72に60分以上照射しても効果は大きく変わらない。照射頻度は1〜7回/週、更に好ましくは3〜5回/週である。また照射期間は小型の魚や魚卵の場合などは数日程度でも有効であるが、好ましくは30週以上の長期間である。また、水槽72は、水温が2〜30℃の範囲で温度制御装置により適宜設定可能に設けられている。2℃以下では水産物の活動が低下し、30℃以上では多くの水産物の生存率が低下するためである。 The aquaculture device 74 generates acoustic waves at intervals of, for example, 10 to 60 minutes/day, 1 to 7 times/week, and 1 to 50 weeks continuously. The effect of aquaculture is small in a short time of 10 minutes or less, and the effect does not change significantly even if one aquarium 72 is irradiated for 60 minutes or more. The irradiation frequency is 1 to 7 times/week, more preferably 3 to 5 times/week. The irradiation period is effective for several days in the case of small fish and fish eggs, but is preferably a long period of 30 weeks or more. Further, the water tank 72 is provided so that the water temperature can be appropriately set by a temperature control device within a range of 2 to 30°C. This is because the activity of marine products decreases below 2°C, and the survival rate of many marine products decreases below 30°C.

水に浮かべる水産物養殖装置74は、水槽72の液面の揺動により前後左右に移動したり、揺動して傾きが変わったりして、超音波振動子20と音響波拡散層24の位置と角度が絶えず変化し、更に音響波拡散層24の効果により養殖魚29等の水産物に対して偏りなく低強度音響波21を照射する。この水産物養殖システムは、直径0.01〜10mmの空気バブルを水中に放出しながら使用しても良い。 The aquaculture device 74 floating on the water moves to the front, rear, left, and right due to the rocking of the liquid surface of the aquarium 72, or rocks to change the inclination, so that the position of the ultrasonic transducer 20 and the acoustic wave diffusion layer 24 changes. The angle constantly changes, and further, due to the effect of the acoustic wave diffusion layer 24, the low-intensity acoustic wave 21 is uniformly applied to the marine products such as the cultured fish 29. The aquaculture system may be used while releasing air bubbles having a diameter of 0.01 to 10 mm into water.

この実施形態の水産物養殖システム70及び水産物養殖方法によれば、簡単な構造の水産物養殖装置74により、低強度音響波21の放射方向を自由に変化させながら、養殖魚29等の水産物に音響波刺激を均一に与え、更に水槽72の底面、側面及び水面からの音響波の乱反射を利用して水槽中の水産物に幅広くほぼ均一に低強度音響波刺激を与えることが可能となる。更に水槽72以外の大形のいけすでも使用することが出来、水産物養殖装置74の数量を増加したり、水産物養殖装置74を一時的に固定式にして水槽72に取り付けたり、水中に固定しても同様な効果が得られる。さらに、これらの装置を用いることで大型いけす内の魚類に対しても同時に、且つ均一に低強度音響波刺激を行うことが可能となる。また、水産物養殖装置74は、重量を0.2〜10kgの小型の形状に製造することが出来、女性や高齢者でも容易に運搬可能であり、不使用時には水槽から取り出して容易に保管、点検、充電及び清掃することができる。このために量産しやすいばかりでなく、その修理や回収の維持管理コストが小さいために生産コストを大幅に低減させることができる。さらに、この実施形態の水産物養殖システム70及水産物養殖方法は、ほとんどの水産物で使用でき、特に小型の魚類、甲殻類やその稚魚、魚卵の生存率向上に大きく寄与するものである。 According to the aquaculture system 70 and the aquaculture method of this embodiment, the aquaculture device 74 having a simple structure is used to freely change the emission direction of the low-intensity acoustic wave 21 and generate an acoustic wave to the aquaculture fish 29 or the like. It is possible to uniformly apply a stimulus, and further, by utilizing diffuse reflection of acoustic waves from the bottom surface, side surfaces, and water surface of the water tank 72, it is possible to widely and almost uniformly apply a low-intensity acoustic wave stimulation to the marine products in the water tank. Further, it is possible to use a large-sized fish box other than the aquarium 72, to increase the number of the aquaculture device 74, or to temporarily fix the aquaculture device 74 to the aquarium 72, or fix it in water. Also has the same effect. Furthermore, by using these devices, it becomes possible to simultaneously and uniformly perform low-intensity acoustic wave stimulation on fish in a large cage. In addition, the aquaculture device 74 can be manufactured in a small shape with a weight of 0.2 to 10 kg, and can be easily transported by women and the elderly. When not in use, it can be easily stored and inspected by taking it out of the aquarium. Can be recharged and cleaned. Therefore, not only is mass production easy, but the maintenance cost for repairing and collecting the product is small, so that the production cost can be significantly reduced. Furthermore, the aquaculture system 70 and the aquaculture method of this embodiment can be used for most aquatic products, and particularly contributes greatly to the improvement of the survival rate of small fish, crustaceans, their fry, and fish eggs.

また、この実施形態の音響波水産物養殖システム70及び水産物養殖方法は、図5に示した2個以上の超音波振動子41,42を設けた水産物養殖装置40を用いると良い。水産物養殖装置40を用いることにより、1台の水産物養殖装置40で異なる2方向以上に広く低強度音響波21を照射することが可能であり、水槽72内で均一に低強度音響波21を照射し、必要な水産物養殖装置40の台数を低減させることが出来る。また、複数個の音響波振動子41,42は周波数やPRF、Duty factor、音響強度を互いに変えても良く、適宜設定することができる。さらに、図6〜図8に示す水産物養殖装置を用いても良い。 Further, the acoustic aquaculture system 70 and the aquaculture method of this embodiment may use the aquaculture device 40 having two or more ultrasonic transducers 41 and 42 shown in FIG. By using the aquaculture apparatus 40, it is possible to irradiate the low-intensity acoustic wave 21 widely in two or more different directions with one aquaculture apparatus 40, and the low-intensity acoustic wave 21 is uniformly applied in the aquarium 72. However, the number of required aquaculture equipment 40 can be reduced. Further, the plurality of acoustic wave oscillators 41, 42 may be different in frequency, PRF, Duty factor, and acoustic intensity, and can be set appropriately. Furthermore, you may use the aquaculture apparatus shown in FIGS.

次に、この発明の第五実施形態の水産物養殖装置80と水産物養殖システム及び水産物養殖方法について。図10を基にして説明する。ここで、上記実施形態と同様の部材は同一の符号を付して説明を省略する。水産物養殖装置80は、図10(a),(b)に示すように、四角錐状の中空の外ケース12と上蓋82を備え、上蓋82にはこれを水密構造にするためのOリング84を備える。超音波振動子20としては、0.5MHz、1.5MHz、3.0MHz、8MHzの4種類が、四角錐の外ケース12の各内側面に取り付けられている。超音波振動子20は、例えば8MHzは非鉛系圧電材料のニオブ酸アルカリ材料を用い、残りの3種類は通常のPZT振動子を用いた。超音波振動子20の形状は直径が2cmの円板である。 Next, the aquaculture apparatus 80, the aquaculture system, and the aquaculture method according to the fifth embodiment of the present invention. Description will be made with reference to FIG. Here, the same members as those in the above-described embodiment are designated by the same reference numerals and the description thereof will be omitted. As shown in FIGS. 10A and 10B, the aquaculture device 80 includes a hollow outer case 12 having a quadrangular pyramid shape and an upper lid 82, and the upper lid 82 has an O-ring 84 for forming a watertight structure. Equipped with. As the ultrasonic transducer 20, four types of 0.5 MHz, 1.5 MHz, 3.0 MHz, and 8 MHz are attached to each inner side surface of the quadrangular pyramid outer case 12. As the ultrasonic oscillator 20, for example, an alkali niobate material which is a lead-free piezoelectric material is used for 8 MHz, and a normal PZT oscillator is used for the remaining three types. The shape of the ultrasonic transducer 20 is a disc having a diameter of 2 cm.

超音波振動子20には、音響整合層22としてλ/4の厚みのガラス板が取り付けられ、図10に示すように、外ケース12の4方の内側面に各々取り付けられている。駆動用の電源16としては、例えば充電式のリチウム電池を用いる。水産物養殖装置80の側面部の振動子上には、ABS樹脂を用いて、複数の空洞を有する直径が3cmで厚みが4mmの凸部形状の音響波拡散層24が設けられている。音響波拡散層24には、音響波拡散部49である空洞が複数形成されている。 As the acoustic matching layer 22, a glass plate having a thickness of λ/4 is attached to the ultrasonic transducer 20, and is attached to each of the four inner surfaces of the outer case 12 as shown in FIG. 10. As the driving power source 16, for example, a rechargeable lithium battery is used. A convex acoustic wave diffusion layer 24 having a plurality of cavities and having a diameter of 3 cm and a thickness of 4 mm is provided on the vibrator on the side surface of the aquaculture apparatus 80 using ABS resin. In the acoustic wave diffusion layer 24, a plurality of cavities that are acoustic wave diffusion portions 49 are formed.

この実施形態の水産物養殖装置80は、図9に示す水産物養殖システムの水槽72に入れて用いるもので、上記実施形態と同様に、効果的に低強度音響波21の放射方向を自由に変化させながら、養殖魚29等の水産物に音響波刺激を均一に与えルものである。更に、水槽の底面、側面及び水面からの音響波の乱反射を利用して水槽中の水産物に均一に低強度音響波刺激を与えるものである。 The aquaculture apparatus 80 of this embodiment is used by being placed in the aquarium 72 of the aquaculture system shown in FIG. 9, and effectively changes the radiation direction of the low-intensity acoustic wave 21 as in the above-described embodiment. However, the acoustic wave stimulation is uniformly applied to the marine products such as the cultured fish 29. Further, the diffuse reflection of acoustic waves from the bottom surface, side surfaces and water surface of the water tank is utilized to uniformly give low-intensity acoustic wave stimulation to the marine products in the water tank.

なお、この発明の水産物養殖装置、システムと養殖方法は、上記実施形態に限定されず、適宜変更可能である。水産物養殖装置は、水面に浮かぶもの以外に、水中の任意の深さに沈んだ状態で一時的に移動または固定しながら音響波を発生するものでも良い。水産物養殖装置の容器は、構造と材料、形状は自由に選択可能であり、確実に超音波振動子を保持して移動するものであればよい。使用する水槽の大きさや形状も変更可能であり、水槽の大きさや形状に合わせて、水産物養殖装置の超音波振動子の数や、水槽に入れる個数を適宜調整して、その水産物に好適な超音波強度に設定する。また、浮力を増加したり、装置の転倒防止をする場合には浮輪を使用することも出来る。 The aquaculture apparatus, system and aquaculture method of the present invention are not limited to the above embodiment and can be changed as appropriate. The aquaculture device may be a device that generates acoustic waves while temporarily moving or fixing in a state of being submerged at any depth in water, in addition to a device that floats on the water surface. The structure, material, and shape of the container of the aquaculture device can be freely selected as long as the container can reliably hold and move the ultrasonic vibrator. The size and shape of the aquarium used can also be changed, and the number of ultrasonic transducers in the aquaculture device and the number put in the aquarium can be adjusted appropriately to suit the size and shape of the aquarium, making it suitable for the aquatic product. Set to sound wave intensity. A floating wheel can be used to increase the buoyancy and prevent the device from falling.

その他、この発明の音響波拡散部は、空隙、発泡樹脂板や金属板に穴を空けた構造や網のみならず、プロペラや風車などの形状や、傘状の形状、金属にスリット穴を空けた形状でも同様に超音波ビームを広く拡散・散乱出来る効果が得られる。また、超音波振動子の配置も容器の底面のみならず、水中にある側面部に取り付けても良い。 In addition, the acoustic wave diffusing section of the present invention is not limited to a void, a foamed resin plate or a metal plate having a hole or a structure or a net, but also a propeller, a windmill, or the like, an umbrella-like shape, or a metal having a slit hole. Even with a different shape, the effect of widely spreading and scattering the ultrasonic beam can be obtained. Further, the ultrasonic transducer may be arranged not only on the bottom surface of the container but also on the side surface portion in the water.

本発明は音響波を用いた養殖方法の一つであり、これまで知られているマイクロバブルや泡、ウイルスワクチン投与を用いた装置や方法と併用したりしても良い。また、水槽中の水産物の成長と数量に合わせて、その音響波の強度と時間を調整することも出来る。 The present invention is one of aquaculture methods using acoustic waves, and may be used in combination with conventionally known devices and methods using microbubbles, bubbles, and virus vaccine administration. Also, the intensity and time of the acoustic wave can be adjusted according to the growth and quantity of the seafood in the aquarium.

次に、この発明の水産物養殖装置と水産物養殖方法の実施例について、以下に説明する。まず、第1実施例として、この発明の水産物養殖装置と水産物養殖システム及び水産物養殖方法を、図9に示すように、桜鱒の小形水槽による養殖に利用する実験を行った。桜鱒は、魚年齢が65週で平均体重73gの人工養殖桜鱒を用いた。まず、同一の親魚から生まれた桜鱒の140匹を用いて各20匹ずつ7組に分けた。これらを試験前の体重を測定し、更に16週間後の体重を測定した。更に生存率は給餌の際にほぼ毎日観察し、死亡した魚は直ちに水槽から取り出した。水槽は、直径が130cmで深さが90cmの繊維強化プラスチック(FRP)製の円形水槽であり、海水を70cmの深さまで入れた。 Next, examples of the aquaculture apparatus and the aquaculture method of the present invention will be described below. First, as a first example, an experiment was conducted in which the aquaculture apparatus, aquaculture system, and aquaculture method of the present invention were used for aquaculture in a small trout trout as shown in FIG. As the cherry trout, an artificially cultured cherry trout having a fish age of 65 weeks and an average weight of 73 g was used. First, 140 cherry trout that were born from the same parent fish were used, and each group was divided into 7 groups of 20 fish each. These were weighed before the test, and further weighed after 16 weeks. Further, the survival rate was observed almost every day during feeding, and the dead fish were immediately taken out of the aquarium. The water tank was a circular water tank made of fiber reinforced plastic (FRP) having a diameter of 130 cm and a depth of 90 cm, and seawater was added to a depth of 70 cm.

円形水槽は7個を使用し、それぞれ、異なる周波数を持つ音波や音楽の発生装置、超音波発生装置、音響波拡散層を持つ装置を、音響波反射層(水槽内壁)を取り付け又は無しの水槽に浮揚させながら超音波を照射した。水槽内の海水は、ポンプにより24トン/日を供給し、余分な海水はオーバーフローさせた。更に、圧縮空気を用いて25m/日の空気を水槽の中央部に供給した。餌は通常の魚用配合飼料を1〜3g/匹を毎日、朝に与えた。海水の撹拌や未消化餌の回収、魚糞の除去は行わなかった。 Seven circular aquariums are used, each with a sound wave or music generator with different frequencies, an ultrasonic generator, a device with an acoustic wave diffusion layer, and a tank with or without an acoustic wave reflection layer (water tank inner wall). Ultrasonic waves were applied while levitating. The seawater in the water tank was supplied with 24 tons/day by a pump, and excess seawater was overflowed. Further, compressed air was used to supply 25 m 3 /day of air to the central part of the water tank. As the feed, 1 to 3 g/animal of a normal mixed feed for fish was fed daily in the morning. No agitation of seawater, collection of undigested food, and removal of fish dung were performed.

実施例1で用いた水産物養殖装置は、直径が33cm、深さが14cmのアルミ製の容器である外ケース12に音響整合層22の大きさである約5cm直径の穴を空けたものである。実施例1の装置はこの外ケース12に直径が3cmの8個の超音波振動子20を配置した図1に示すような基本構造のものである。超音波振動子20は、PZT系圧電セラミックス(富士セラミックス社製204材料)超音波振動子の厚み振動を用いた。超音波振動子20の超音波放射面は、水面に対して3〜5°の傾きをもつものである。超音波振動子20の共振周波数は0.5MHzのものを用いた。また、この水産物養殖装置10は、50%dutyのパルス超音波を9分発生した後、1分停止するサイクルで1日約60分間、3回/週、で16週間を継続して音響波刺激した。超音波強度(Isata)は水深30cmの超音波振動子直下で音響波拡散層24を用いない場合は800mW/cmであり、音響波拡散層24を用いた場合は80mW/cmであった。 The aquaculture apparatus used in Example 1 has a hole of about 5 cm in diameter, which is the size of the acoustic matching layer 22, in the outer case 12 which is an aluminum container having a diameter of 33 cm and a depth of 14 cm. .. The apparatus of Example 1 has a basic structure as shown in FIG. 1 in which eight ultrasonic transducers 20 having a diameter of 3 cm are arranged in the outer case 12. As the ultrasonic vibrator 20, a thickness vibration of a PZT-based piezoelectric ceramic (204 material manufactured by Fuji Ceramics Co., Ltd.) ultrasonic vibrator was used. The ultrasonic wave emitting surface of the ultrasonic oscillator 20 has an inclination of 3 to 5° with respect to the water surface. The resonance frequency of the ultrasonic oscillator 20 used was 0.5 MHz. In addition, this aquaculture apparatus 10 generates a pulse ultrasonic wave of 50% duty for 9 minutes and then stops for 1 minute for about 60 minutes per day, 3 times/week for 16 weeks, and continues to stimulate acoustic waves. did. Ultrasonic wave intensity (Isata) is the case of not using the acoustic wave diffusion layer 24 directly below the ultrasonic vibrator at a depth of 30cm was 800 mW / cm 2, in the case of using an acoustic wave diffusion layer 24 was 80 mW / cm 2 ..

音響波拡散層24は目開きが0.5mm(水中波長λの17%)のステンレス網を4枚、方向を変えて積層し容器の外側に取り付けたものを用いた。この音響波拡散層24を用いることで、取り付けない場合と比較して超音波振動子20から放射された音響波強度の最大値を約10%の80mW/cmに低下させ、音響波ビームを広い面積に拡散することが出来た。音響波反射層76は密度が25kg/m(約98%が空気)の発泡ポリスチレンシートで、厚みが2mmのものの両面に0.05mmのPETフィルムを張り、これを水槽の内壁に張り付けたものを用いた。 As the acoustic wave diffusion layer 24, four stainless steel nets having a mesh opening of 0.5 mm (17% of wavelength λ in water), laminated in different directions and attached to the outside of the container, were used. By using this acoustic wave diffusion layer 24, the maximum value of the acoustic wave intensity radiated from the ultrasonic transducer 20 is reduced to about 10% of 80 mW/cm 2 as compared with the case where it is not attached, and the acoustic wave beam is generated. It was able to spread over a wide area. The acoustic wave reflection layer 76 is a foamed polystyrene sheet having a density of 25 kg/m 3 (about 98% is air), having a thickness of 2 mm and a 0.05 mm PET film attached to both sides, and attached to the inner wall of the water tank. Was used.

魚の総体重(73g×20匹=1.4kg)と水槽の海水量(800kg)から実際に魚に照射された割合をPZT振動子の総出力(7cm×800mW/cm×8枚=45W)から計算した概算値は45W×(1.4kg/800kg)=79mW/kgである。しかし、一度、側面と底面に反射された超音波が再び魚に数回に渡り照射された場合にはこの約3倍の約240mW/kgである。桜鱒はその体重が16週間後には平均で0.23kgとなり、総重量は3.9kgとなった。このために体重当たりの平均強度は28mW/kgから84mW/kgと見積もられる。 The total output of PZT transducer (7 cm 2 ×800 mW/cm 2 ×8 pieces=45 W) was calculated from the total weight of fish (73 g×20 fish=1.4 kg) and the amount of seawater in the aquarium (800 kg). ) Is approximately 45 W x (1.4 kg/800 kg) = 79 mW/kg. However, once the ultrasonic waves reflected on the side surface and the bottom surface are irradiated again on the fish several times, the amount is about 240 mW/kg, which is about three times as large as this. The average weight of Sakura trout after 16 weeks was 0.23 kg, and the total weight was 3.9 kg. Therefore, the average strength per body weight is estimated to be 28 mW/kg to 84 mW/kg.

参考例1の装置2は、装置1と同様な構造であるが音響波拡散層と音響波反射層を用いないものである。参考例2の装置3は、装置1と同様な大きさと重量の外ケース12のみであり、超音波振動子も音響波拡散層も用いていないものである。これらの装置の基本仕様と16週間後の桜鱒の生存率、平均重量、総重量を表1に示した。

Figure 0006749691
The device 2 of Reference Example 1 has the same structure as the device 1, but does not use the acoustic wave diffusion layer and the acoustic wave reflection layer. The device 3 of Reference Example 2 includes only the outer case 12 having the same size and weight as the device 1, and does not use an ultrasonic transducer or an acoustic wave diffusion layer. Table 1 shows the basic specifications of these devices and the survival rate, average weight, and total weight of cherry trout after 16 weeks.
Figure 0006749691

表1から明らかなように、音響波拡散層及び音響波反射層を取り付けた養殖装置を用いた実施例1では、その生存率が85%と高く、更に平均重量も0.231kg大きい。このため、総重量の3.93kgは、本発明の装置を用いない参考例2の総重量の3.15kgと比べて125%であることを示した。また、音響波拡散層のない場合の参考例1の3.30kgと比較しても、119%と大幅な総重量の増加を示した。 As is clear from Table 1, in Example 1 using the aquaculture device equipped with the acoustic wave diffusion layer and the acoustic wave reflection layer, the survival rate was as high as 85%, and the average weight was 0.231 kg larger. Therefore, it was shown that the total weight of 3.93 kg was 125% as compared with the total weight of 3.15 kg of Reference Example 2 in which the device of the present invention was not used. Further, compared with 3.30 kg of Reference Example 1 without the acoustic wave diffusion layer, the total weight was 119%, which was a large increase.

実施例2の装置4は、同一容器である外ケース12に直径が3cmの4個の超音波振動子20を配置した図5に示すような構造のものであり、その他の条件は実施例1と同じである。また、低周波の音源としては350Hzを10秒発信し、30秒を停止するモードで60分間行った。更に音楽としてはハッペルベルのカノンを60分間連続で容器に取り付けたスピーカから放射して使用した。 The device 4 of the second embodiment has a structure as shown in FIG. 5 in which four ultrasonic transducers 20 having a diameter of 3 cm are arranged in the outer case 12 which is the same container, and other conditions are the same as those of the first embodiment. Is the same as. As a low frequency sound source, 350 Hz was transmitted for 10 seconds, and 30 seconds was stopped for 60 minutes. Further, as music, a cannon of Happelbell was emitted from a speaker attached to the container for 60 minutes continuously and used.

超音波強度(Isata)は、水深30cmの超音波振動子直下で音響波拡散層24を用いない場合は1200mW/cmであり、音響波拡散層24を用いた場合は120mW/cmであった。音響波拡散層は、図8(a)に示した構造のものを用いた。第一音響整合層31は音響インピーダンスが13MRaylsのガラス板をλ/4の厚みでPZT振動子に取り付け、更に第二音響整合層32としては音響インピーダンスが3.3MRaylsのアクリル板をλ/4の厚みで取り付けた。音響波拡散層24はエポキシ樹脂を用い、音響波散乱材料は中央部の厚みが2.0mmで直径が10mmのR30mmの円板状の空洞を用いた。この音響波拡散層24を用いることで、取り付けない場合と比較して超音波振動子20から放射された音響波強度の最大値を約10%の120mW/cmに低下させ、音響波ビームを広い面積に拡散することが出来た。 Ultrasonic wave intensity (Isata), when just below the ultrasonic vibrator at a depth of 30cm without using the acoustic wave diffusion layer 24 is 1200 mW / cm 2, in the case of using an acoustic wave diffusion layer 24 120 mW / cm 2 met It was As the acoustic wave diffusion layer, the one having the structure shown in FIG. The first acoustic matching layer 31 is a glass plate having an acoustic impedance of 13 MRayls attached to a PZT oscillator with a thickness of λ/4, and the second acoustic matching layer 32 is an acrylic plate having an acoustic impedance of 3.3 MRayls of λ/4. I attached it in thickness. The acoustic wave diffusion layer 24 was made of epoxy resin, and the acoustic wave scattering material was a disk-shaped cavity of R30 mm having a central thickness of 2.0 mm and a diameter of 10 mm. By using this acoustic wave diffusion layer 24, the maximum value of the acoustic wave intensity radiated from the ultrasonic transducer 20 is reduced to about 10% of 120 mW/cm 2 as compared with the case where it is not attached, and the acoustic wave beam is generated. It was able to spread over a wide area.

音響波反射層は実施例1と同一である。魚の総体重(73g×20匹=1.4kg)と水槽の海水量(800kg)から実際に魚に照射された割合を、PZT振動子の総出力(7cm×1200mW/cm×4枚=34W)から計算した概算値は、34W×(1.4kg/800kg)=60mW/kgである。しかし、一度、側面と底面に反射された超音波が再び魚に数回に渡り照射された場合には、この約3倍の約180mW/kgと推定される。桜鱒はその体重が16週間には平均で0.22kgとなり、総重量は3.7kgとなった。このために体重当たりの平均強度は、23mW/kgから66mW/kgと見積もられる。実施例3の装置5は、装置4と同様な構造であるが音響波反射層を用いない場合である。 The acoustic wave reflection layer is the same as in Example 1. Based on the total weight of fish (73 g x 20 = 1.4 kg) and the amount of seawater in the aquarium (800 kg), the ratio of the actual irradiation of fish to the total output of the PZT oscillator (7 cm x 1200 mW/cm 2 x 4 pieces = 34 W) The estimated value calculated from () is 34 W×(1.4 kg/800 kg)=60 mW/kg. However, once the ultrasonic waves reflected on the side surface and the bottom surface are irradiated again on the fish several times, it is estimated to be about 180 mW/kg, which is about three times as large as this. The average weight of Sakura trout in 16 weeks was 0.22 kg, and the total weight was 3.7 kg. Therefore, the average intensity per body weight is estimated to be 23 mW/kg to 66 mW/kg. The device 5 of Example 3 has the same structure as the device 4, but does not use the acoustic wave reflection layer.

参考例2の装置3は、装置1と同様な大きさと重量の外ケースのみであり、超音波振動子も音響波反射層も用いていないものである。これらの構造と16週間後の桜鱒の生存率、平均重量、総重量を表2に示した。

Figure 0006749691
The device 3 of Reference Example 2 includes only an outer case having the same size and weight as the device 1, and does not use an ultrasonic transducer or an acoustic wave reflection layer. Table 2 shows these structures and the survival rate, average weight, and total weight of cherry trout after 16 weeks.
Figure 0006749691

表2から明らかなように、実施例ではその生存率が85%と高く、更に平均重量も0.217kg大きい。このために総重量は本発明の装置を用いない参考例2の総重量の3.15kgと比べて3.69kgと117%を示した。また、音響波反射層のない場合の実施例3は、3.45kgと参考例2の重量の3.15kgと比較しても110%と収穫量の増加を示した。 As is clear from Table 2, in Example 2 , the survival rate was as high as 85%, and the average weight was 0.217 kg higher. For this reason, the total weight was 3.69 kg, which was 117% of the total weight of Reference Example 2 in which the apparatus of the present invention was not used. In addition, Example 3 without the acoustic wave reflection layer showed an increase of 110% as compared with 3.45 kg which is the weight of Reference Example 2 and 3.15 kg, which is an increase in the harvest amount.

表3に示した参考例3の装置6は、同一の水槽に音源としては可聴音の350Hzのみを10秒発信し、30秒を停止するモードで60分間行った場合の結果を示す。参考例4の装置7は、同一水槽に音源としては音楽のハッペルベルのカノンを60分間連続で容器に取り付けたスピーカから放射した場合である。これらを参考例2と合わせて示した。 The device 6 of the reference example 3 shown in Table 3 shows the result when the audible sound of 350 Hz as a sound source is transmitted to the same water tank for 10 seconds and stopped for 30 seconds for 60 minutes. The device 7 of Reference Example 4 is a case where a cannon of music Happelbell is radiated from the speaker attached to the container for 60 minutes continuously as the sound source in the same water tank. These are shown together with Reference Example 2.

参考例2の装置3は、装置1と同様な大きさと重量の外ケースのみであり、超音波振動子20も音響波反射層も用いていないものである。これらの構造と16週間後の桜鱒の生存率、平均重量、総重量を表3に示した。

Figure 0006749691
The device 3 of Reference Example 2 has only the outer case having the same size and weight as the device 1, and does not use the ultrasonic transducer 20 or the acoustic wave reflection layer. Table 3 shows these structures and the survival rate, average weight and total weight of cherry trout after 16 weeks.
Figure 0006749691

表3から明らかなように、参考例3ではその生存率が65%と低く、平均重量は0.243kgのために、総重量は本発明の装置を用いない参考例2の総重量の3.15kgと同等の3.16kgの値を示した。また、参考例4ではその生存率が65%と低く、平均重量は0.235kgのために、総重量は本発明の装置を用いない参考例2の総重量の3.15kgと比べて、3.06kgの97%とさらに低い値を示した。 As is clear from Table 3, the survival rate of Reference Example 3 was as low as 65%, and the average weight was 0.243 kg. Therefore, the total weight was 3. of the total weight of Reference Example 2 in which the apparatus of the present invention was not used. A value of 3.16 kg, which is equivalent to 15 kg, was shown. Further, in Reference Example 4, the survival rate is as low as 65%, and the average weight is 0.235 kg. Therefore, the total weight is 3 compared with the total weight of 3.15 kg of Reference Example 2 in which the apparatus of the present invention is not used. The value was as low as 97% of 0.06 kg.

次に、実施例4では、図10(a),(b)に示す水産物養殖装置80を用い、外ケース12として、側壁の厚みが1.0mmの4角錐のABS樹脂を用いて水産物の養殖を行った。外ケース12には、上蓋82とこれを水密構造にするためのOリング84を設けた。超音波振動子20としては0.5MHz、1.5MHz、3.0MHz、8MHzの4種類を用いた。この中で8MHzは非鉛系圧電材料のニオブ酸アルカリ材料を用い、残りの3種類は通常のPZT振動子を用いた。振動子の形状は直径が2cmの円板である。 Next, in Example 4, the aquaculture apparatus 80 shown in FIGS. 10A and 10B is used, and the outer case 12 is made of a quadrangular pyramid ABS resin having a side wall thickness of 1.0 mm to culture aquatic products. I went. The outer case 12 is provided with an upper lid 82 and an O-ring 84 for making it a watertight structure. As the ultrasonic oscillator 20, four types of 0.5 MHz, 1.5 MHz, 3.0 MHz and 8 MHz were used. Of these, 8 MHz was an alkali niobate material which is a lead-free piezoelectric material, and the other three types were ordinary PZT oscillators. The shape of the vibrator is a disk having a diameter of 2 cm.

超音波振動子20に、音響整合層22としてλ/4の厚みのガラス板を取り付けた。これらを図10に示したように、水産物養殖装置80の外ケース12の4側面の各々内側に取り付けた。駆動用の電池16には、充電式のリチウム電池を用いた。装置の側面部の振動子上にはABS樹脂を用いて音響波拡散部49である複数の空洞を有する直径が3cmで厚みが4mmの凸部形状の音響波拡散層24を取り付けた。 A glass plate having a thickness of λ/4 was attached to the ultrasonic vibrator 20 as the acoustic matching layer 22. As shown in FIG. 10, these were attached inside each of the four side surfaces of the outer case 12 of the aquaculture apparatus 80. A rechargeable lithium battery was used as the driving battery 16. A convex acoustic wave diffusion layer 24 having a diameter of 3 cm and a thickness of 4 mm, which has a plurality of cavities serving as acoustic wave diffusion portions 49, was attached to the vibrator on the side surface of the device by using ABS resin.

パルス繰り返し周期(PRF)は1msec(1000Hz)と1s(1Hz)であり、これらはDuty factorが20%で駆動した。合計で周波数が4種類でPRFが2種類の合計で8種類の異なる音源をシリーズに各8秒間、放射した。 The pulse repetition period (PRF) was 1 msec (1000 Hz) and 1 s (1 Hz), and these were driven at a duty factor of 20%. Eight different sound sources with a total of four frequencies and two PRFs were emitted to the series for 8 seconds each.

この水産物養殖装置80の音響強度(Isata)は、20リットルの水槽中の水産物1kgに対して800mW/kgの音響波を照射することが出来るように調整した。水槽容器は、発泡スチロールの表面に0.05mmのPETフィルムを張り付け、大きさが20リットルの角型容器である。温度制御は外部で温度を調整した循環水をステンレスパイプで水槽内に送り、水温を制御した。水産物として直径が約4mmの同一の親魚から採取した桜鱒の魚卵を用いた。水温は4℃+−1℃に調整した。受精後の魚卵0.5kgを水槽の水面から10cmに張ったナイロンネットに移した。水産物養殖装置80を水槽の中央部の水面に浮かべ、音響波刺激を20分間/日、5回/週を1週間継続した。同様な装置を、スイッチを入れることなく同一時間、同一魚卵を有する水槽Bの中央部の水面に浮かべて比較した。生存率は毎日、死亡して変色した魚卵と稚魚をピンセットで取り出し、生存率を確認した。その結果を表4に示す。

Figure 0006749691
The acoustic intensity (Isata) of this aquaculture device 80 was adjusted so that 1 kg of marine products in a 20-liter aquarium could be irradiated with an acoustic wave of 800 mW/kg. The water tank container is a rectangular container having a size of 20 liters, which is obtained by sticking a 0.05 mm PET film on the surface of styrofoam. For temperature control, circulating water whose temperature was adjusted externally was sent into the water tank with a stainless pipe to control the water temperature. As the marine products, fish trout roe collected from the same parent fish having a diameter of about 4 mm was used. The water temperature was adjusted to 4°C +-1°C. 0.5 kg of the fertilized fish roe was transferred from the water surface of the aquarium to a nylon net stretched to 10 cm. The aquaculture device 80 was floated on the water surface in the center of the aquarium, and acoustic wave stimulation was continued for 20 minutes/day, 5 times/week for 1 week. A similar device was floated on the water surface in the central part of aquarium B having the same roe for the same time without switching on and compared. For the survival rate, the fish eggs and fry that had died and discolored were taken out with tweezers every day to confirm the survival rate. The results are shown in Table 4.
Figure 0006749691

実施例4と参考例5から明らかなように、本発明の水産物養殖装置と水産物養殖システム及び水産物養殖方法を用いた場合は、魚卵と稚魚の高い生存率が確認出来た。 As is clear from Example 4 and Reference Example 5, when the aquaculture apparatus, the aquaculture system and the aquaculture method of the present invention were used, high survival rates of fish eggs and fry could be confirmed.

実施例1から4に示した結果から、本発明の水産物養殖装置と養殖システム及び水産物養殖方法は、超音波の共振周波数が0.1MHz以上10MHz以下で、更に超音波強度(Isata)が、水産物の重量当たりで20mW/kgから1000mW/kgの範囲である条件を選び、これを音響インピーダンスが低い水槽中で水産物に照射することでその生存率を大幅に向上させ収穫量を増加出来ることが明らかとなった。 From the results shown in Examples 1 to 4, the aquaculture apparatus, the aquaculture system, and the aquaculture method of the present invention have a resonance frequency of ultrasonic waves of 0.1 MHz or more and 10 MHz or less, and ultrasonic intensity (Isata) It is clear that by selecting a condition in the range of 20 mW/kg to 1000 mW/kg per unit weight and irradiating the marine products in a tank with low acoustic impedance, the survival rate can be greatly improved and the yield can be increased. Became.

10,30,40,50,52,54,56,58,60,62,64,74、80 水産物養殖装置
12 外ケース
14 基板
15 駆動部
16 電源
17 制御回路
18 リード線
19 高強度音響波
20,41,42 超音波振動子
21 低強度音響波
22,31,32 音響整合層
24,36,48 音響波拡散層
26 携帯型機器
28 支持台
29 養殖魚
44 音響スピーカ
46 外ケース
49 音響波拡散部
70 水産物養殖システム
72 水槽
76 音響波反射層
10, 30, 40, 50, 52, 54, 56, 58, 60, 62, 64, 74, 80 Aquaculture device 12 Outer case 14 Substrate 15 Drive unit 16 Power supply 17 Control circuit 18 Lead wire 19 High intensity acoustic wave 20 , 41, 42 Ultrasonic transducer 21 Low-intensity acoustic wave 22, 31, 32 Acoustic matching layer 24, 36, 48 Acoustic wave diffusion layer 26 Portable equipment 28 Support stand 29 Aquaculture fish 44 Acoustic speaker 46 Outer case 49 Acoustic wave diffusion 70 Aquaculture system 72 Aquarium 76 Acoustic wave reflection layer

Claims (20)

養殖している水産物に、音波及び超音波の少なくともいずれかである音響波を照射する水産物養殖装置であって、
前記音響波を発生可能な超音波振動子と、この超音波振動子を駆動する駆動部と、前記超音波振動子及び前記駆動部を保持した外ケースとを備え、
前記超音波振動子から発せられる高強度音響波が放射される前面側に、前記高強度音響波を拡散させるとともに、単位面積当たりの強度が前記高強度音響波よりも弱い低強度音響波に変換し照射させる音響波散乱材料から成る音響波拡散層を備え、
前記音響波拡散層の前記音響波散乱材料は、金属製の網により構成され、その網目の大きさが、使用する超音波の水中波長λのλ〜λ/10であることを特徴とする水産物養殖装置。
An aquaculture device for irradiating an aquatic wave, which is at least one of a sound wave and an ultrasonic wave, to aquaculture aquaculture,
An ultrasonic transducer capable of generating the acoustic wave, a driving unit that drives the ultrasonic transducer, and an outer case that holds the ultrasonic transducer and the driving unit,
The high-intensity acoustic wave emitted from the ultrasonic transducer is diffused on the front side, and the high-intensity acoustic wave is diffused and converted into a low-intensity acoustic wave whose intensity per unit area is weaker than that of the high-intensity acoustic wave. Equipped with an acoustic wave diffusion layer made of an acoustic wave scattering material to be irradiated
The acoustic wave scattering material of the acoustic wave diffusion layer is composed of a metal mesh, and the size of the mesh is λ to λ/10 of the underwater wavelength λ of the ultrasonic wave to be used. Aquaculture equipment.
前記超音波振動子は圧電振動子である請求項1記載の水産物養殖装置。 The ultrasonic transducer aquaculture system according to claim 1, wherein the piezoelectric vibrator. 前記音響波拡散層は、前記外ケース中または前記外ケース外の音響整合層の内部、または前記外ケースの外側に配置されている請求項1記載の水産物養殖装置。 The acoustic wave diffusion layer, the outer casing or in the interior of the outer casing outside the acoustic matching layer or the outer casing aquaculture system according to claim 1, wherein disposed on the outside of. 前記圧電振動子と、媒体である淡水または海水との音響整合を取るための少なくとも2層の前記音響整合層が配置され、前記音響整合層の形状が、前記圧電振動子よりも大きい請求項2記載の水産物養殖装置。 3. At least two acoustic matching layers for acoustic matching between the piezoelectric vibrator and fresh water or seawater as a medium are arranged, and the shape of the acoustic matching layer is larger than that of the piezoelectric vibrator. The aquaculture device described. 前記外ケースには、内部に少なくとも2種類の周波数を発生する円板、リング状、または矩形板の前記圧電振動子が配置され、前記超音波振動子の基本波周波数は、0.1MHz〜10MHzの範囲である請求項2記載の水産物養殖装置。 The outer case is provided with the piezoelectric vibrator having a disk, ring or rectangular plate that generates at least two kinds of frequencies, and the fundamental wave frequency of the ultrasonic vibrator is 0.1 MHz to 10 MHz. The aquaculture device according to claim 2, wherein 前記圧電振動子は、鉛を用いない圧電材料を使用した請求項2記載の水産物養殖装置。 The aquaculture device according to claim 2, wherein the piezoelectric vibrator uses a piezoelectric material that does not use lead. 前記超音波はパルス波であり、その繰り返し周波数は1000Hz〜0.5Hz、Duty factorは10〜60%であり、これらの少なくとも1つの前記超音波振動子を、中空角錐容器の側面部に配置した請求項1記載の水産物養殖装置。 The ultrasonic wave is a pulse wave, the repetition frequency thereof is 1000 Hz to 0.5 Hz, and the duty factor is 10 to 60%. At least one of these ultrasonic vibrators is arranged on the side surface of the hollow pyramid container. The aquaculture device according to claim 1. 着脱可能な携帯型電子機器、または可聴音の音楽、摂餌音、或いは遊泳音を発生させる音響発生装置を有する請求項1乃至7のいずれか記載の水産物養殖装置。 The aquaculture device according to claim 1, further comprising a removable portable electronic device or a sound generation device that generates an audible sound, a feeding sound, or a swimming sound. 電源として充電式の電池を備え、前記駆動部は前記電池により動作可能であり、防水機能を有する請求項1乃至8のいずれか記載の水産物養殖装置 9. The aquaculture apparatus according to claim 1, further comprising a rechargeable battery as a power source , the driving unit being operable by the battery, and having a waterproof function. 前記請求項1乃至9のいずれかに記載の水産物養殖装置を備え、水産物を収容可能で、海水または淡水を入れた水槽と、前記水槽の水面または水中の少なくともいずれかに、前記水産物養殖装置が設けられ、前記水槽中の水中に前記音響波を照射可能に設けられたことを特徴とする水産物養殖システム。 The aquaculture device according to any one of claims 1 to 9, wherein the aquaculture device is capable of accommodating marine products and containing seawater or fresh water, and at least one of water surface and water in the aquarium. An aquaculture system, wherein the aquaculture system is provided so as to irradiate the acoustic wave into the water in the aquarium. 前記水槽表面は、表面積の少なくも80%以上に、前記音響波を反射及び散乱させるための音響波反射率が90%以上の音響波反射材料の音響波反射層が設けられている請求項10記載の水産物養殖システム。 The acoustic wave reflection layer of an acoustic wave reflection material having an acoustic wave reflectance of 90% or more for reflecting and scattering the acoustic waves is provided on at least 80% or more of the surface of the aquarium surface. The aquaculture system described. 前記音響波反射層はシートからなり、その少なくとも表面または裏面が有機フィルムで被覆され、その厚みが0.05〜1.0mmであり、内面には90体積%以上の気体を含む有機材料を備えた請求項10または11記載の水産物養殖システム。 The acoustic wave reflection layer is made of a sheet, at least the front surface or the back surface thereof is covered with an organic film, the thickness is 0.05 to 1.0 mm, and the inner surface is provided with an organic material containing 90% by volume or more of gas. The aquaculture system according to claim 10 or 11. 前記の音響反射材料の表面の有機フィルムが、フッ素樹脂、PET、またはナイロンであり、内部に気体層または発泡ポリスチレン、発泡ポリウレタン、または発泡ゴムを含む請求項10,11または12記載の水産物養殖システム。 13. The aquaculture according to claim 10, 11 or 12, wherein the organic film on the surface of the acoustic wave reflection material is fluororesin, PET, or nylon, and contains a gas layer or expanded polystyrene, expanded polyurethane, or expanded rubber inside. system. 前記水産物養殖システムは、直径0.01〜10mmの空気バブルを水中に放出しながら使用する請求項10乃至13のいずれか記載の水産物養殖システム。 The aquaculture system according to any one of claims 10 to 13, wherein the aquaculture system is used while releasing air bubbles having a diameter of 0.01 to 10 mm into water. 前記水槽中の海水または淡水の温度を、2℃から30℃に設定可能な温度制御装置を備えた請求項10乃至14のいずれか記載の水産物養殖システム。 The aquaculture system according to any one of claims 10 to 14, further comprising a temperature control device capable of setting the temperature of seawater or fresh water in the aquarium to 2°C to 30°C. 前記請求項1乃至9のいずれかに記載の水産物養殖装置を用いる水産物養殖方法であって、
前記水産物養殖装置を、水産物を収容可能で海水または淡水を入れた水槽中の水に浮かせて自由に揺動させ、前記水産物養殖装置から前記音響波を発生させて前記水槽の壁面で反射させ、水中の水前記産物に音響刺激を施すことを特徴とする水産物養殖方法。
A method for aquaculture using the apparatus for aquaculture according to claim 1.
The aquaculture device, floating in the water in the aquarium containing seawater or fresh water that can contain aquatic products and freely rocks, generating the acoustic wave from the aquaculture device and reflecting it on the wall of the aquarium, Water in water A method for aquaculture, comprising applying acoustic stimulation to the product.
前記水産物養殖装置により、水中の前記水産物の総重量に対して20mW/kg〜1W/kgの超音波強度(Isata)の超音波を与えて、前記水産物に音響波刺激を施して養殖を行う請求項16記載の水産物養殖方法。 An ultrasonic wave having an ultrasonic wave intensity (Isata) of 20 mW/kg to 1 W/kg is applied to the total weight of the marine product in water by the aquaculture device, and the aquatic product is subjected to acoustic wave stimulation for aquaculture. Item 16. A method for aquaculture of marine products according to item 16. 前記水産物養殖装置により、10〜60分/日、1〜7日/週、且つ1〜50週間、連続または間欠的に、前記音響波を前記水中の水産物に照射する請求項16または17記載の水産物養殖方法。 The aquaculture device irradiates the aquatic products in the water with the acoustic waves continuously or intermittently for 10 to 60 minutes/day, 1 to 7 days/week, and 1 to 50 weeks. Aquaculture method. 前記水産物養殖装置の可聴音のスピーカ、または携帯電話から水産物の活動を活発にする周波数と強度の音響波を出して養殖を行う請求項16乃至18のいずれか記載の水産物養殖方法。 The aquaculture method according to any one of claims 16 to 18, wherein an aquatic speaker of the aquaculture device or a mobile phone emits acoustic waves of a frequency and intensity that activate the activity of the aquaculture. 前記水産物は、魚類、甲殻類の卵、稚魚及び成魚である請求項16乃至19のいずれか記載の水産物養殖方法。 The aquaculture method according to any one of claims 16 to 19, wherein the marine products are fish, eggs of crustaceans, fry and adult fish.
JP2016221466A 2016-11-14 2016-11-14 Aquaculture device, aquaculture system and aquaculture method Active JP6749691B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016221466A JP6749691B2 (en) 2016-11-14 2016-11-14 Aquaculture device, aquaculture system and aquaculture method
PCT/JP2017/039781 WO2018088332A1 (en) 2016-11-14 2017-11-02 Aquaculture device, aquaculture system and aquaculture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016221466A JP6749691B2 (en) 2016-11-14 2016-11-14 Aquaculture device, aquaculture system and aquaculture method

Publications (2)

Publication Number Publication Date
JP2018078807A JP2018078807A (en) 2018-05-24
JP6749691B2 true JP6749691B2 (en) 2020-09-02

Family

ID=62110245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016221466A Active JP6749691B2 (en) 2016-11-14 2016-11-14 Aquaculture device, aquaculture system and aquaculture method

Country Status (2)

Country Link
JP (1) JP6749691B2 (en)
WO (1) WO2018088332A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019181049A (en) 2018-04-17 2019-10-24 ソニー株式会社 Biometric information evaluating device and biometric information evaluating method
CN110091453A (en) * 2019-04-24 2019-08-06 日照港达船舶重工有限公司 A kind of cultivation work ship heat preservation fish hold construction technology
CN110946104A (en) * 2019-11-01 2020-04-03 广西壮族自治区水利科学研究院 Automatic feeding device for aquatic products
CN112425534B (en) * 2020-11-23 2022-04-29 德清瓜山水产养殖有限公司 Device is put in with seedling to aquaculture
CN113826577B (en) * 2021-10-13 2022-08-26 路明 Constant-temperature aquatic product storage device
CN115474563B (en) * 2022-09-02 2023-06-06 中国水产科学研究院东海水产研究所 Cultivation method for improving anti-current capability of fry of large yellow croaker

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06113694A (en) * 1992-10-08 1994-04-26 Makomo:Kk Ultrasonic oscillator for growing fish and shellfish
JP3697848B2 (en) * 1997-08-25 2005-09-21 松下電器産業株式会社 Pest control equipment
JP2002000119A (en) * 2000-06-20 2002-01-08 Kyowa Eng Kk Method for culturing fish and shellfish
JP6354021B2 (en) * 2014-04-14 2018-07-11 公立大学法人 富山県立大学 Aquaculture equipment and aquaculture method

Also Published As

Publication number Publication date
JP2018078807A (en) 2018-05-24
WO2018088332A1 (en) 2018-05-17

Similar Documents

Publication Publication Date Title
JP6749691B2 (en) Aquaculture device, aquaculture system and aquaculture method
JP6354021B2 (en) Aquaculture equipment and aquaculture method
WO2017199779A1 (en) Ultrasound emission device and system, and ultrasound emission method
Xu et al. Controlled ultrasound tissue erosion
US3550586A (en) Ultrasonic treatment method and device for fertilized ova and live embryos
Hill Ultrasonic exposure thresholds for changes in cells and tissues
CN100342929C (en) Apparatus and method for altrasonically and electromagnetically treating tissue
US20080045882A1 (en) Biological Cell Acoustic Enhancement and Stimulation
NO20181621A1 (en) Methods, systems and apparatus for control of parasite infestation in aquatic animals
Duryea et al. Removal of residual cavitation nuclei to enhance histotripsy fractionation of soft tissue
GB2333431A (en) Electronic fishing lure
JP2010004868A (en) Culturing system for aquatic photosynthesizing organism
CN212381952U (en) Squid fishing device
JP2008193928A (en) Method for culturing infaunal bivalve
JP2002000119A (en) Method for culturing fish and shellfish
WO1990014002A1 (en) Method and apparatus providing ultrasonic waves for enhancing the quality of water for aquatic animal and plant life
CN110090364B (en) Wall-attached charging type ultrasonic positive inotropic treatment device
JPH06113694A (en) Ultrasonic oscillator for growing fish and shellfish
RU2203529C2 (en) Water activating apparatus
JP4637922B2 (en) Aquatic organism breeding method and apparatus
WO2021049947A1 (en) Combating free swimming lice and other ectoparasites in the water of a fish farm
RU164505U1 (en) REMOTE ACOUSTIC CONCENTRATOR OF HYDROBIONTS OF SELECTIVE ACTION
CN108834959A (en) One kind drags ovum type Copepods ovum grain to be detached from method
USH2119H1 (en) Acoustic fusion of aquatic animal tissue cells with biological agents
RU2667749C1 (en) Method of selective choice of marketable fish

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200806

R150 Certificate of patent or registration of utility model

Ref document number: 6749691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350