JP2001523318A - External cooling device for electric drive motor of centrifugal pump device - Google Patents
External cooling device for electric drive motor of centrifugal pump deviceInfo
- Publication number
- JP2001523318A JP2001523318A JP54304999A JP54304999A JP2001523318A JP 2001523318 A JP2001523318 A JP 2001523318A JP 54304999 A JP54304999 A JP 54304999A JP 54304999 A JP54304999 A JP 54304999A JP 2001523318 A JP2001523318 A JP 2001523318A
- Authority
- JP
- Japan
- Prior art keywords
- cooling device
- motor
- hollow body
- fluid
- centrifugal pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 38
- 239000012530 fluid Substances 0.000 claims abstract description 51
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 9
- 238000009835 boiling Methods 0.000 claims description 8
- 239000013529 heat transfer fluid Substances 0.000 claims description 6
- 238000009834 vaporization Methods 0.000 claims description 5
- 230000008016 vaporization Effects 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims 2
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011796 hollow space material Substances 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- 239000002826 coolant Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/5806—Cooling the drive system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/586—Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
- F04D29/588—Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps cooling or heating the machine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/06—Units comprising pumps and their driving means the pump being electrically driven
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/22—Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
- H02K9/225—Heat pipes
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Motor Or Generator Cooling System (AREA)
Abstract
(57)【要約】 モータが遠心ポンプの上に組み付けられていることが有利である遠心ポンプ装置の電気駆動モータの外部冷却装置は、モータの周囲を少なくとも部分的に包囲し、モータ側面およびポンプ側面に対するその壁面がモータおよび遠心ポンプと熱伝導的に面接触し、熱伝導媒体として気密状態の中空体を含み、この中空体は、モータ熱を伝導し、加熱されたモータにより自然の循環性対流を起こす流体で実質的に満たされている。 (57) Abstract: An external cooling device of an electric drive motor of a centrifugal pump device, in which the motor is advantageously assembled on the centrifugal pump, at least partially surrounds the periphery of the motor, the motor side and the pump. Its wall against the side surface is in heat conductive surface contact with the motor and the centrifugal pump and includes a hermetically sealed hollow body as heat transfer medium, which conducts motor heat and allows the heated motor to provide natural circulation It is substantially filled with a convective fluid.
Description
【発明の詳細な説明】 遠心ポンプ装置の電気駆動モータの外部冷却装置 発明の背景 本発明は、遠心ポンプ装置の電気駆動モータの外部冷却装置に関する。 たとえば廃水を溝路、溜め井などに送り出すためなどに用いられる遠心ポンプ 装置に関してである。これらの遠心ポンプ装置においては、電気駆動モータは、 乾燥状態で作動するため、放散熱はモータ外面を介して周囲媒体の中に除去され る。遠心ポンプ装置は、原則的にはポンプの上にモータを備え、溝路または溜め 井の中に組み付けられている。このためモータは、送り出しの開始時には廃水の 中に完全に浸っているが、ある程度運転した後は、具体的には水位が相応に下が ると、モータは廃水から突出する。遠心ポンプ装置はオンオフ切り換え動作で駆 動されるため、通常、短い運転時間では放散熱に関する問題は生じない。 しかし、遠心ポンプ装置を乾燥状態で据え付けなければならない場合、すなわ ち没した状態で運転してはならない場合、状況は異なる。たとえば耐爆圧性の理 由のため密閉されたモータの場合がある。このときモータ冷却面積は寸法の2乗 で増大するが、モータの仕事率は3乗で増大するため、これらの遠心ポンプ装置 は、放散される熱を除去して周囲の空気に排出するだけでは、あっという間にそ の使用限界に達してしまう。 これに対して、駆動モータの外側に距離を置いてそれを包囲するジャケットを 設け、それによって形成される中空体にポンプ送り出し流体の一部を流すことが 公知であり、これはいわゆる「フード冷却」と呼ばれている。しかしこの冷却方 法では、送り出し流体が、ほこり成分、他の微細な混入物もしくは不純物を含ま ない場合にしか適さない。そうでなければポンプ側の流れの入口および出口が閉 塞し、そのせいでフード冷却の効果がなくなるからである。 発明の概要 本発明の目的は、遠心ポンプ装置の駆動モータの外部冷却装置であって、モー タが比較的長時間、送り出し媒体の外に突出する場合でも、駆動モータの外部冷 却を保証 する冷却装置を提供することにある。 本発明は、フード冷却装置を改良させたもので、冷却装置がモータの周囲を少 なくとも部分的に包囲し、モータ側面およびポンプ側面上のその壁面がモータお よび遠心ポンプと熱伝導的に面接触し、熱伝導材媒体として密閉状態の中空体を 含むことと、この中空体は、モータ熱を伝導し、モータ熱により自然の循環性対 流を起こす流体で実質的に満たされていることとを特徴とする。 これにより、遠心ポンプ装置の作動中に駆動モータが比較的長い期間または恒 久的に液状送り出し媒体の外に位置する場合でも、特に廃水を送り出するための 遠心ポンプ装置の駆動モータの外部冷却を向上することができる。駆動モータの 固定子によって発生する熱は、片側が周囲のモータ壁に当接する中空体中の流体 にさらに伝導され、その中空体中で液体の循環を生じさせる。有利な環状の中空 体は、その下端の面がポンプ壁と熱伝導的に接続しており、ポンプには、はるか に低温の送り出し流体が供給されるものである。そのため中空間中の流体からの 熱は、大部分がポンプ中のより低温の送り出し流体に入り、その熱は除去される 。中空体中の流体の熱の残り部分は、この中空体の外側自由面を介して駆動モー タの周囲の空気に放出する。さらに本発明の冷却装置は、送り出し媒体の粒子状 の混入物が中空体に入り込むことはないため、それらが中空体の冷却効果に不利 な影響を与えない利点がある。 中空体中の流体は、水と、水よりも低い沸点を有する別の流体との混合物であ ることが好ましい。そのような流体は、たとえばアルコールがある。そのような 流体混合物を用いると、中空体中の対流を増大させることができる。これはモー タから中空空間中の冷却液に伝導される熱が、冷却液中に小さな蒸気泡を発生さ せ、その蒸気泡が急速に上昇することにより、中空体中の混合物の循環速度を増 すものである。そしてこの上昇した蒸気泡は、中空体中の流体で満たされていな い上部領域で再び凝縮する。 中空体のうち、固定子から遠いほうの壁領域で、中空体中に下降流が生じるが 、遠心ポンプの上方にポンプが据え付けられているときは、流体混合物がポンプ の方向へと下降することとなる。ここでモータの放散熱の大部分を送り出し流体 に伝達するために、ポンプにおいて送り出し流体への熱の通過が起こる。そして 流体混合物は再び中空本体中の固定子に近いほうの壁に達し、上述したように、 循環流動および熱伝導が繰り返される。 中空体中の流体または流体混合物の対流の循環をさらによくするため、中空体 の流体充填がその容積の約95%以下となるようにし、中空体の残り空間から空 気を抜くことを考えることができる。これにより流体充填物の沸点が相当に下が り、その結果、流動を促進する蒸気泡形成が相当早く起こりはじめる。 一態様によれば、中空体中に循環流の流路を画定するために、中空体中に隔壁 が設けられている。そのため熱伝導流体充填物の上昇流と下降流との分離が達成 され、さらに、すべての加熱流体がポンプに導かれる。 本発明の冷却装置の他の態様によれば、冷却装置を別個の構成単位として形成 することができ、その結果、後で遠心ポンプ装置のモータに組み付けられること が可能となる。あるいはまた、本発明の冷却装置を遠心ポンプ装置の完全なハウ ジングの一体部分として提供することも可能である。 図面の簡単な説明 以下、添付図面に表す実施例によって本発明をより詳細に説明する。図には、 実施例を一つの軸方向断面で示す。 発明の実施の形態 図示する実施形態のように、遠心ポンプ1はインペラ2と電気駆動モータ3と を備えており、この電気駆動モータは固定子4と、回転子6に組み付けられた軸 5とから成っている。モータの軸5には、通常どおり、ポンプ1のインペラ2が 取り付けられている。本例の装置は、使用の場所で、すなわち廃水用の溝路また は溜め井の中で、組み立てることができ、例えば、ポンプ1の上方に直立する軸 5を介して電気駆動モータ3が配されている。 図示する実施形態では、モータ3のハウジング7は、冷却装置8に包囲されて おり、別ユニットの気密形状を形成する。ここで熱伝導媒体(heat-condactive material)としての中空体9は環状となっている。これにより中空体は、その内 壁面がモータハウジング7に当接するだけでなく、その下壁面がポンプ1のハウ ジング10に当接する。その結果、モータハウジング7およびポンプハウジング 10ならびに中空体9の、互いに当接する壁面の間に熱伝導性の面接触が生じる 。この中空体9中には、モータ 3からポンプハウジング10中の送り出し流体12に熱を伝導するための流体1 1が入れられている。 できるだけ多量の熱を除去するために、中空体9はモータ3の全長にわたって 延びている。環状の中空体9はある程度の高さ有しており、図示する中空体の軸 方向断面を見るならば、ある種の円筒形の環として見える。この円筒形の環状空 間である中空体9中には、モータ3の固定子4の長さにわたってほぼ延びるよう な高さの円筒形の壁体13が配置されている。このように中空体9の中に円筒形 の壁体13を設けることにより、熱伝導流体11の垂直循環対流のための循環流 路14が画定される。循環流路14は、加熱された流体11が上方に流れる内側 部分15と、流体が下方に流れる外側部分16と、これら長い部分15および1 6を互いにつなぐための短い下横断方向部分17および短い上横断方向部分18 とを含む。 中空体9には、より小さな中空空間19が存在するように、熱伝導流体11を 満している。充填の程度は、中空体9の容積の約90%までであり、これは図中 の符号20で示されている。いずれにしても、流路15〜18を形成するための 内側壁体13を適用した場合の充填は、流体が隔壁13の上端を越えて流れるよ うに設計されている。したがって、中空体9の上方にある環状の中空空間19は 、空気で充填されるか、または空気を抜かれている。これは加熱され、上方に流 動している流体11内で、蒸気泡形成させるためである。特に空気が抜かれてい る場合は、蒸気泡の形成が簡単になる。 中空体9の中で使用される流体は水が考えられる。また水と水よりも低い沸点 を有する別の流体との混合物であってもよい。これにより流体11中の蒸気泡は 発生し易くなり、さらには循環流路14の内側流通部15中で形成される蒸気泡 により、流体11は速く流れ、ひいてはより速い熱の除去が実現される。 ここで低い沸点を有する流体としては、アルコールを用いるのが好ましい。こ のような混合物中では、混入されたアルコールは、大気圧下で、混合比に応じて 約80℃で沸騰する。アルコールの気化熱は水の気化熱の半分しかないため、熱 がモータの固定子4から中空体9中の流体11へ伝導するとき、蒸気泡形成が比 較的早く起こり、対流が活性する。さらには、アルコールは、冷却流体の凍結防 止を保証する。 流体に水を使用する代わりに、アルコールだけを選択してもよい。また混合物 とし て水を用いる場合、水の混合相手に、アルコールと同様の性質を有する別の流体 を選択することも可能である。このような混合物は同じ圧力で異なる蒸気圧曲線 を示し、且つより低い温度で沸騰する相手の気化熱が、より高い温度で沸騰する 相手の気化熱よりも低くなるようにしさえすればよい。 上述した遠心ポンプ装置を有するモータの冷却手順は次のようになる。特に固 定子4によって加熱されたモータ3が、その放散熱を、円筒形のモータハウジン グ7および中空体9の内壁を介して、循環流路14の内側部分15にある流体1 1へと横方向に伝導する。熱伝導の結果として、流体11は加熱され、内側部分 15で上昇流を生む。特に流体がアルコールを含有する場合、蒸気泡が形成し、 それが部分15の中を上昇し、それにより、流体の上昇流を加速させる。この急 速な動きは、当然、循環流路14の下向き流動部16に伝達され、循環流路全体 を通じて循環速度が増大する。循環流路14中の流れのコースを矢印22によっ て示す。蒸気泡21は、流体境界20よりも上に到達すると、再び凝縮する。し たがって、循環流路14の外側流動部16では、流体は下にしか流動しないこと が保証される。 下に達した加熱された流体11がポンプハウジング10を過ぎながら半径方向 内側に流れると、ただちにこの領域で、矢印23によって示すように、熱が、中 空体9のポンプ側の壁およびポンプハウジングを介してポンプ1中の送り出し流 体12に伝わる。そして、送り出し流体12によってこの放散熱が除去される。 このようにして除去される熱は、放散熱全体の約70%である。放散熱の残り約 30%は、加熱された流体が外側流動部分16にあるとき、矢印24で示すよう に、実質的に中空体9の外壁を介して周囲、空気または水に除去される。 冷却装置8は、ポンプ1とモータ3とから成る遠心ポンプ装置に、外側から取 り付けることができる別個の構成単位として形成することができるだけでなく、 遠心ポンプ装置全体のハウジングの一体部分として形成することもできる。さら に、冷却装置の中空体9には、ここで起こる熱除去を増大するために外部リブ2 5を設けてもよい。 さらなる態様では、ハウジング9は、図示する環以外の形を有することもでき る。たとえば、円弧形の断面を有することもでき、そのような円弧形ハウジング 1個以上をモータの周囲に配置することができる。たとえば、そのような円弧形 ハウジングを半シェルとして形成し、そのような半シェル2個でモータを包囲し てもよい。いくつ かの用途の場合には、モータが、熱伝導流体を充填された中空体によってその円 周を部分的に包囲されているだけで十分である、すなわち、たとえば半シェルま たは円弧形ハウジングが1個しか要らないかもしれない。各中空体そのものが、 記載した熱伝導循環路を有する閉鎖系を形成する。 さらには、上述したように、垂直または実質的に垂直のモータ作動位置が非常 に有利であるが、これ以外にモータの配置を選択することもできる。構成要素は 幾らか斜めの、または傾いた作動位置でも、遠心ポンプ1の送り出し流体へのモ ータ3の放散熱の良好な除去が達成される。 以上述べたように、とりわけ、ポンプ1とモータ3かとら成る遠心ポンプ装置 のモータ3が、送り出される流体、特に廃水の外に位置する場合でも、ポンプ1 の送り出し流体12を介してきわめて効果的な冷却が得られる。また、中空体9 中の熱伝導流体11が比較的高速で循環するとき、モータ3の冷却効果は特に強 い。さらに循環流路14の内側流通部分15における蒸気泡の形成が、冷却効果 を高めるように働く。DETAILED DESCRIPTION OF THE INVENTION External cooling device for electric drive motor of centrifugal pump device Background of the Invention The present invention relates to an external cooling device for an electric drive motor of a centrifugal pump device. Centrifugal pumps used, for example, to pump wastewater into ditches, reservoir wells, etc. Regarding the device. In these centrifugal pump devices, the electric drive motor To operate in a dry state, the heat dissipated is removed into the surrounding medium through the motor outer surface. You. Centrifugal pump devices are, in principle, equipped with a motor above the pump and Assembled in the well. For this reason, the motor Although it is completely immersed in the water, after a certain amount of driving, the water level will drop Then the motor protrudes from the wastewater. The centrifugal pump device is driven by on / off switching operation. As a result, there is usually no problem with dissipated heat in short operating times. However, if the centrifugal pump device must be installed dry, The situation is different if you must not drive in the sunken state. For example, explosion-resistant The motor may be closed for some reason. At this time, the motor cooling area is the square of the dimension. However, since the power of the motor increases by the third power, these centrifugal pump devices Simply removes the dissipated heat and discharges it to the surrounding air in a matter of seconds. Will reach its usage limit. In contrast, a jacket that surrounds the drive motor at a distance from the outside Providing a portion of the pumping fluid through the hollow body formed thereby. It is known and this is called "hood cooling". But this way of cooling Process, the delivery fluid contains dust components, other fine contaminants or impurities Only suitable if not. Otherwise the pump inlet and outlet are closed This is because the hood is not effectively cooled. Summary of the Invention An object of the present invention is to provide an external cooling device for a drive motor of a centrifugal pump device, Even if the motor protrudes out of the delivery medium for a relatively long time, Guaranteed To provide a cooling device. The present invention is an improvement of the hood cooling device, in which the cooling device reduces the area around the motor. At least partially surrounds, and its walls on the motor side and the pump side And a centrifugal pump in heat-conducting surface contact, forming a closed hollow body as a heat-conducting medium. Including and that this hollow body conducts the motor heat, Being substantially filled with a fluid that causes a flow. This allows the drive motor to run for a relatively long period or constant during operation of the centrifugal pump device. Even if it is located outside the liquid delivery medium for a long time, External cooling of the drive motor of the centrifugal pump device can be improved. Drive motor The heat generated by the stator is the fluid in the hollow body, one side of which contacts the surrounding motor wall. To cause liquid circulation in the hollow body. Advantageous annular hollow The body has a thermally conductive connection at its lower end to the pump wall, and the pump Is supplied with a low-temperature delivery fluid. Therefore, from the fluid in the inner space Heat mostly enters the cooler pump fluid in the pump, and that heat is removed . The remainder of the heat of the fluid in the hollow body is driven via the outer free surface of the hollow body into the drive mode. Release into the air around the area. Furthermore, the cooling device of the present invention is capable of controlling Do not penetrate into the hollow body, they are disadvantageous for the cooling effect of the hollow body. There is an advantage that does not have a significant effect. The fluid in the hollow body is a mixture of water and another fluid having a lower boiling point than water. Preferably. Such a fluid is, for example, alcohol. like that The use of a fluid mixture can increase convection in the hollow body. This is the mode The heat conducted from the heater to the coolant in the hollow space generates small vapor bubbles in the coolant. The vapor bubbles rise rapidly, increasing the circulation speed of the mixture in the hollow body. It is something. And this raised vapor bubble is not filled with the fluid in the hollow body. Again condenses in the upper region. Downflow occurs in the hollow body in the wall region of the hollow body farther from the stator. When the pump is installed above the centrifugal pump, the fluid mixture In the direction of. Where most of the heat dissipated by the motor In the pump, the passage of heat to the delivery fluid occurs. And The fluid mixture again reaches the wall closer to the stator in the hollow body, and as described above, Circulation flow and heat conduction are repeated. To further improve the convective circulation of the fluid or fluid mixture in the hollow body, Fluid filling is less than about 95% of its volume, and You can think of a distraction. This significantly lowers the boiling point of the fluid filling As a result, the formation of vapor bubbles which promotes flow begins to occur fairly quickly. According to one aspect, a partition is defined in the hollow body to define a flow path for the circulating flow in the hollow body. Is provided. As a result, separation between the upward flow and the downward flow of the heat transfer fluid packing is achieved. And all the heated fluid is directed to the pump. According to another aspect of the cooling device of the present invention, the cooling device is formed as a separate constituent unit. So that it can be later assembled to the motor of the centrifugal pump device. Becomes possible. Alternatively, the cooling device of the present invention can be completely replaced with a centrifugal pump device. It can also be provided as an integral part of the jing. BRIEF DESCRIPTION OF THE FIGURES Hereinafter, the present invention will be described in more detail with reference to the embodiments shown in the accompanying drawings. In the figure, The embodiment is shown in one axial section. Embodiment of the Invention As in the illustrated embodiment, the centrifugal pump 1 includes an impeller 2 and an electric drive motor 3. The electric drive motor includes a stator 4 and a shaft mounted on the rotor 6. It consists of five. As usual, the impeller 2 of the pump 1 is mounted on the shaft 5 of the motor. Installed. The device of this example is used at the point of use, i.e. Can be assembled in a well, for example, a shaft upright above the pump 1 The electric drive motor 3 is arranged via 5. In the embodiment shown, the housing 7 of the motor 3 is surrounded by a cooling device 8 And form an airtight shape of another unit. Here, the heat conduction medium (heat-condactive The hollow body 9 as a material) is annular. This allows the hollow body to Not only does the wall surface contact the motor housing 7, but its lower wall surface It contacts the jing 10. As a result, the motor housing 7 and the pump housing A thermally conductive surface contact occurs between the abutting walls of the body 10 and the hollow body 9 . In this hollow body 9, a motor Fluid 1 for conducting heat from 3 to delivery fluid 12 in pump housing 10 1 is entered. In order to remove as much heat as possible, the hollow body 9 extends over the entire length of the motor 3. Extending. The annular hollow body 9 has a certain height, and the shaft of the illustrated hollow body When viewed in a cross section, it appears as a kind of cylindrical ring. This cylindrical annular sky In the hollow body 9 between which it extends substantially over the length of the stator 4 of the motor 3 A cylindrical wall body 13 having an appropriate height is arranged. Thus, the hollow body 9 has a cylindrical shape. Circulating flow for the vertical convection of the heat transfer fluid 11 A path 14 is defined. The circulation flow path 14 has an inner side where the heated fluid 11 flows upward. Section 15, an outer section 16 through which fluid flows downwards, and these longer sections 15 and 1 A short lower transverse section 17 and a short upper transverse section 18 for connecting And The heat transfer fluid 11 is placed in the hollow body 9 so that a smaller hollow space 19 exists. Is full. The degree of filling is up to about 90% of the volume of the hollow body 9, which is The reference numeral 20 is used. In any case, for forming the channels 15 to 18 When the inner wall body 13 is applied, the filling is performed so that the fluid flows over the upper end of the partition wall 13. It is designed to be. Therefore, the annular hollow space 19 above the hollow body 9 is Filled with air or deflated. It is heated and flows upward This is for forming vapor bubbles in the moving fluid 11. Especially when the air is deflated In this case, the formation of vapor bubbles is simplified. The fluid used in the hollow body 9 may be water. Also water and lower boiling point than water May be a mixture with another fluid having Thereby, the vapor bubbles in the fluid 11 Steam bubbles that are easily generated and are formed in the inner circulation portion 15 of the circulation passage 14. Thereby, the fluid 11 flows faster, and thus faster heat removal is realized. Here, it is preferable to use alcohol as the fluid having a low boiling point. This In such a mixture, the mixed alcohol may be mixed under atmospheric pressure at a mixing ratio. Boiling at about 80 ° C. Alcohol has only half the heat of vaporization of water, Is transmitted from the motor stator 4 to the fluid 11 in the hollow body 9, It occurs relatively quickly, and convection is activated. Furthermore, alcohol is used to prevent the cooling fluid from freezing. Guarantees stoppage. Instead of using water for the fluid, only alcohol may be selected. Also a mixture age When water is used, another fluid having the same properties as alcohol is added to the water mixing partner. It is also possible to select. Such mixtures have different vapor pressure curves at the same pressure. And the heat of vaporization of the partner boiling at a lower temperature boils at a higher temperature All you have to do is to lower the heat of vaporization of the opponent. The cooling procedure of the motor having the centrifugal pump device described above is as follows. Especially solid The motor 3 heated by the armature 4 dissipates the heat dissipated by the motor 3 in a cylindrical motor housing. The fluid 1 in the inner part 15 of the circulation channel 14 is Conduction laterally to 1. As a result of the heat transfer, the fluid 11 is heated and the inner part 15 creates an upward flow. Vapor bubbles form, especially if the fluid contains alcohol, It rises in the part 15, thereby accelerating the ascending flow of the fluid. This steep The quick movement is, of course, transmitted to the downward flowing portion 16 of the circulation channel 14 and the entire circulation channel Through which the circulation speed increases. The course of the flow in the circulation channel 14 is indicated by an arrow 22. Shown. When the vapor bubbles 21 reach above the fluid boundary 20, they condense again. I Therefore, in the outer flow portion 16 of the circulation flow path 14, the fluid flows only downward. Is guaranteed. The heated fluid 11 that has reached the bottom passes radially through the pump housing 10 As soon as it flows inward, heat is generated in this area, as indicated by arrow 23. Delivery flow in the pump 1 through the pump-side wall of the air body 9 and the pump housing It is transmitted to the body 12. Then, the dissipated heat is removed by the delivery fluid 12. The heat thus removed is about 70% of the total heat dissipated. About the rest of the heat dissipated 30%, as indicated by arrow 24 when heated fluid is in outer flow portion 16 Then, it is substantially removed to the surroundings, air or water through the outer wall of the hollow body 9. The cooling device 8 is connected to a centrifugal pump device including the pump 1 and the motor 3 from outside. Not only can it be formed as a separate building unit that can be It can also be formed as an integral part of the housing of the entire centrifugal pump device. Further In addition, the hollow body 9 of the cooling device has external ribs 2 to increase the heat removal that takes place here. 5 may be provided. In a further aspect, the housing 9 can have a shape other than the ring shown. You. For example, it may have an arc-shaped cross-section, such an arc-shaped housing One or more can be placed around the motor. For example, such an arc The housing is formed as a half-shell, and two such half-shells surround the motor. You may. How many In some applications, the motor is driven by a hollow body filled with a heat transfer fluid. It is sufficient that the circumference is only partially enclosed, i.e., for example, a half-shell. Or only one arc-shaped housing may be required. Each hollow body itself, A closed system having the described heat transfer circuit is formed. In addition, as mentioned above, a vertical or substantially vertical motor However, other arrangements of the motor can be selected. The components are Even with a slightly oblique or inclined operating position, the centrifugal pump 1 can Good removal of the heat dissipated by the motor 3 is achieved. As described above, in particular, the centrifugal pump device including the pump 1 and the motor 3 Motor 3 is located outside the pumped fluid, especially the waste water, A very effective cooling is obtained via the delivery fluid 12 of Also, the hollow body 9 When the heat transfer fluid 11 circulates at a relatively high speed, the cooling effect of the motor 3 is particularly strong. No. Furthermore, the formation of steam bubbles in the inner flow portion 15 of the circulation flow path 14 is effective in cooling. Work to enhance.
Claims (1)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19808602A DE19808602C1 (en) | 1998-02-28 | 1998-02-28 | Device for external cooling of the electric drive motor of a centrifugal pump unit |
DE19808602.4 | 1998-02-28 | ||
PCT/DE1999/000586 WO1999043960A1 (en) | 1998-02-28 | 1999-02-25 | Device for the external cooling of the electric drive motor of a centrifugal pump unit |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001523318A true JP2001523318A (en) | 2001-11-20 |
JP4067577B2 JP4067577B2 (en) | 2008-03-26 |
Family
ID=7859295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP54304999A Expired - Fee Related JP4067577B2 (en) | 1998-02-28 | 1999-02-25 | External cooling device for electric drive motor of centrifugal pump device |
Country Status (5)
Country | Link |
---|---|
US (1) | US6322332B1 (en) |
EP (1) | EP0979356B1 (en) |
JP (1) | JP4067577B2 (en) |
DE (2) | DE19808602C1 (en) |
WO (1) | WO1999043960A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010508462A (en) * | 2007-08-02 | 2010-03-18 | コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method and apparatus for exhausting heat from components of a liquid pump |
CN102150347A (en) * | 2008-09-12 | 2011-08-10 | 可控动力技术有限公司 | Liquid cooled electrical machine |
KR101103547B1 (en) | 2009-12-29 | 2012-01-09 | 국방과학연구소 | Cooling device of underwater moving body and underwater moving body having the same |
JP2012154328A (en) * | 2011-01-21 | 2012-08-16 | Toyota Motor Engineering & Manufacturing North America Inc | Temperature control ring for vehicle air pump |
JP2015096715A (en) * | 2013-11-15 | 2015-05-21 | 株式会社荏原製作所 | Cooling device for motor part of pump |
WO2018034316A1 (en) * | 2016-08-18 | 2018-02-22 | 日本電産株式会社 | Motor |
JP2018135764A (en) * | 2017-02-20 | 2018-08-30 | 株式会社荏原製作所 | pump |
KR20190002619A (en) * | 2016-05-10 | 2019-01-08 | 에이비비 슈바이쯔 아게 | Stator frames and electric machines of electric machines |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10047387B4 (en) * | 2000-09-25 | 2013-09-12 | GPM Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt, Merbelsrod | Electrically driven coolant pump |
DE10063941C1 (en) * | 2000-12-20 | 2002-07-25 | Krebs & Aulich Gmbh | Electric drive for smoke and heat extraction device with cooling of thermally-sensitive system components of drive for maintaining its operation in emergency situation |
AT504056B1 (en) * | 2003-10-06 | 2009-08-15 | Traktionssysteme Austria Gmbh | CAPSULATED, ELECTRIC MACHINE |
US6909210B1 (en) | 2004-02-06 | 2005-06-21 | Emerson Electric Co. | Cooling system for dynamoelectric machine |
DE102005002564A1 (en) * | 2005-01-19 | 2006-08-10 | Siemens Ag | Electric drive device with heatpipe cooling |
US7638741B2 (en) * | 2006-05-26 | 2009-12-29 | Emerson Electric Co. | Heat conductor for pump system |
US20080073563A1 (en) * | 2006-07-01 | 2008-03-27 | Nikon Corporation | Exposure apparatus that includes a phase change circulation system for movers |
ATE469304T1 (en) * | 2007-02-15 | 2010-06-15 | Hamilton Medical Ag | BLOWER FOR A VENTILATOR AND VENTILATOR COMPRISING SAME |
JP5173779B2 (en) * | 2008-01-11 | 2013-04-03 | 株式会社東芝 | Submersible drive motor |
DE102009010461A1 (en) | 2009-02-13 | 2010-08-19 | Alfred Kärcher Gmbh & Co. Kg | Motor pump unit |
PL2396550T3 (en) * | 2009-02-13 | 2014-09-30 | Kaercher Gmbh & Co Kg Alfred | Motor pump unit |
AU2009339812B2 (en) | 2009-02-13 | 2014-01-23 | Alfred Karcher Gmbh & Co. Kg | Motor pump unit |
US9856866B2 (en) | 2011-01-28 | 2018-01-02 | Wabtec Holding Corp. | Oil-free air compressor for rail vehicles |
CN102121477B (en) * | 2011-03-31 | 2012-12-26 | 宁波巨神制泵实业有限公司 | Large submerged sewage pump |
FR2977743A1 (en) | 2011-07-04 | 2013-01-11 | Tmw | DEVICE FOR COOLING AN ELECTRIC MOTOR |
DE102012209970A1 (en) | 2012-06-14 | 2013-12-19 | Krones Ag | Circulating air radiator for beverage filling system, has rolling device arranged in pillar such that air surrounds electromotive drive unit and circulates within pillar, where rolling device is provided with drivable fan |
ITUB20160314A1 (en) * | 2016-02-02 | 2017-08-02 | Dab Pumps Spa | PERFECT STRUCTURE OF CENTRIFUGAL ELECTRIC PUMP AND MOTOR CASE FOR THIS PERFECT STRUCTURE |
EP4199317A1 (en) | 2021-12-17 | 2023-06-21 | Grundfos Holding A/S | Integrated electric motor drive and dry runner centrifugal pump assembly with such an integrated electric motor drive |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE312607C (en) * | ||||
US2683823A (en) | 1953-01-19 | 1954-07-13 | Gen Electric | Cooling of electrical apparatus |
US2862120A (en) * | 1957-07-02 | 1958-11-25 | Onsrud Machine Works Inc | Fluid-cooled motor housing |
US3127530A (en) * | 1962-02-21 | 1964-03-31 | Fostoria Corp | Motor driven pumps |
US3838947A (en) * | 1970-11-30 | 1974-10-01 | Laing Nikolaus | Rotating electrical machine with evaporation cooling |
JPS52132310A (en) | 1976-04-30 | 1977-11-07 | Toshiba Machine Co Ltd | Rotatinggfield type dc machine |
DE2810222A1 (en) * | 1978-03-09 | 1979-09-13 | Bosch Gmbh Robert | COOLING DEVICE FOR ELECTRIC MACHINERY |
JPS5762754A (en) * | 1980-10-03 | 1982-04-15 | Teikoku Denki Seisakusho:Kk | Heat exchanger of canned motor with heat pipe |
US4516044A (en) * | 1984-05-31 | 1985-05-07 | Cincinnati Milacron Inc. | Heat exchange apparatus for electric motor and electric motor equipped therewith |
JPS6115542A (en) | 1984-06-29 | 1986-01-23 | Matsushita Electric Ind Co Ltd | Fully-enclosed motor |
DE3738592C1 (en) * | 1987-11-13 | 1989-05-24 | Licentia Gmbh | Electric motor for driving a liquid pump, and a method for its production |
US4854373A (en) * | 1988-03-30 | 1989-08-08 | Williams Gordon G | Heat exchanger for a pump motor |
DE3828512A1 (en) * | 1988-08-23 | 1990-03-08 | Grundfos Int | SUBMERSIBLE PUMP UNIT |
US5509463A (en) * | 1989-01-17 | 1996-04-23 | Callaway, Sr.; James K. | Saddle type heat exchanger |
US5616973A (en) * | 1994-06-29 | 1997-04-01 | Yeomans Chicago Corporation | Pump motor housing with improved cooling means |
DE4435510C1 (en) * | 1994-10-04 | 1996-03-07 | Grundfos As | Pump system supplied by frequency inverter e.g. for room heating medium circulation pump |
US5859482A (en) * | 1997-02-14 | 1999-01-12 | General Electric Company | Liquid cooled electric motor frame |
US5906236A (en) * | 1997-07-28 | 1999-05-25 | Heatflo Systems, Inc. | Heat exchange jacket for attachment to an external surface of a pump motor |
US5939808A (en) * | 1998-06-03 | 1999-08-17 | Adames; Fermin | Electric motor housing with integrated heat removal facilities |
-
1998
- 1998-02-28 DE DE19808602A patent/DE19808602C1/en not_active Expired - Fee Related
-
1999
- 1999-02-25 WO PCT/DE1999/000586 patent/WO1999043960A1/en active IP Right Grant
- 1999-02-25 EP EP99914437A patent/EP0979356B1/en not_active Expired - Lifetime
- 1999-02-25 DE DE59908348T patent/DE59908348D1/en not_active Expired - Lifetime
- 1999-02-25 US US09/403,916 patent/US6322332B1/en not_active Expired - Lifetime
- 1999-02-25 JP JP54304999A patent/JP4067577B2/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010508462A (en) * | 2007-08-02 | 2010-03-18 | コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method and apparatus for exhausting heat from components of a liquid pump |
CN102150347A (en) * | 2008-09-12 | 2011-08-10 | 可控动力技术有限公司 | Liquid cooled electrical machine |
CN102150347B (en) * | 2008-09-12 | 2014-04-02 | 可控动力技术有限公司 | Liquid cooled electrical machine |
KR101103547B1 (en) | 2009-12-29 | 2012-01-09 | 국방과학연구소 | Cooling device of underwater moving body and underwater moving body having the same |
JP2012154328A (en) * | 2011-01-21 | 2012-08-16 | Toyota Motor Engineering & Manufacturing North America Inc | Temperature control ring for vehicle air pump |
JP2015096715A (en) * | 2013-11-15 | 2015-05-21 | 株式会社荏原製作所 | Cooling device for motor part of pump |
KR20190002619A (en) * | 2016-05-10 | 2019-01-08 | 에이비비 슈바이쯔 아게 | Stator frames and electric machines of electric machines |
KR102139262B1 (en) | 2016-05-10 | 2020-07-30 | 에이비비 슈바이쯔 아게 | Stator frame of electric machine and electric machine |
WO2018034316A1 (en) * | 2016-08-18 | 2018-02-22 | 日本電産株式会社 | Motor |
CN109478828A (en) * | 2016-08-18 | 2019-03-15 | 日本电产株式会社 | Motor |
JPWO2018034316A1 (en) * | 2016-08-18 | 2019-06-20 | 日本電産株式会社 | motor |
CN109478828B (en) * | 2016-08-18 | 2020-12-15 | 日本电产株式会社 | Motor with a stator having a stator core |
JP7056563B2 (en) | 2016-08-18 | 2022-04-19 | 日本電産株式会社 | motor |
JP2018135764A (en) * | 2017-02-20 | 2018-08-30 | 株式会社荏原製作所 | pump |
Also Published As
Publication number | Publication date |
---|---|
US6322332B1 (en) | 2001-11-27 |
DE19808602C1 (en) | 1999-09-02 |
WO1999043960A1 (en) | 1999-09-02 |
JP4067577B2 (en) | 2008-03-26 |
DE59908348D1 (en) | 2004-02-26 |
EP0979356B1 (en) | 2004-01-21 |
EP0979356A1 (en) | 2000-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001523318A (en) | External cooling device for electric drive motor of centrifugal pump device | |
US6408937B1 (en) | Active cold plate/heat sink | |
US3024298A (en) | Evaporative-gravity cooling systems | |
EP0352688B1 (en) | Vacuum pump | |
JP2000110768A (en) | Closed loop compulsory cooling system for submarine pump motor | |
US6209626B1 (en) | Heat pipe with pumping capabilities and use thereof in cooling a device | |
KR20150092330A (en) | Cooling arrangement of a pump intended for pumping a liquid | |
US8820114B2 (en) | Cooling of heat intensive systems | |
RU2373473C1 (en) | Thermal siphon | |
US20140300221A1 (en) | Electric motor | |
JPS61501965A (en) | vacuum pump cleaning equipment | |
US6371742B1 (en) | Cooling device | |
US3136258A (en) | Centrifugal pump | |
WO2000007282A1 (en) | Oil cooled motor and pump apparatus | |
JP2004516422A (en) | How to operate the pump unit | |
JP2005315158A5 (en) | ||
JPH1175345A (en) | Submergible pump | |
US3960467A (en) | Cooling device for a pump motor | |
KR101120696B1 (en) | Apparatus for withdrawing heat from components | |
JPH10205499A (en) | Motor cooling device for vertical type motor-driven pump | |
JPH06217496A (en) | Liquid-cooled induction motor | |
KR100437861B1 (en) | Submersible sewage pumps | |
RU2295190C1 (en) | Submersible oil-filled motor | |
KR200248441Y1 (en) | Submersible sewage pumps | |
KR101172679B1 (en) | Outdoor unit of air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20040924 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070619 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070912 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071211 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080109 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110118 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120118 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130118 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140118 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |